Supporting Information

Using alcohols as simple H₂-equivalents for copper-catalysed transfer semihydrogenations of alkynes

Contents

1		Gen	eral Information	2
	1.1	1	Solvents	2
	1.2	2	Chemicals	3
2		Opt	imization	3
3		Gen	eral Procedures	5
	3.3	1	General procedure for the Cu(I)-Catalyzed Transfer Semihydrogenation of Alkynes (GP1)	5
4		Prep	paration of Z-Alkenes	5
	4.:	1	(Z)-1,2-diphenylethene (8a)	5
	4.2	2	(<i>Z</i>)-1,2-di- <i>p</i> -tolylethene (8b)	6
	4.3	3	(<i>Z</i>)-1,2-di- <i>o</i> -tolylethene (8c)	6
	4.4	4	(Z)-1,2-bis(4-methoxyphenyl)ethene (8d)	7
	4.5	5	(Z)-1-methoxy-4-styrylbenzene (8e)	7
	4.6	6	(Z)-1-chloro-4-styrylbenzene (8f)	8
	4.7	7	(Z)-1-styryl-4-(trifluoromethyl)benzene (8g)	9
	4.8	8	(<i>Z</i>)-(5-(benzyloxy)pent-1-en-1-yl)benzene (8h)	9
	4.9	9	(<i>Z</i>)-(2-cyclohexylvinyl)benzene (8i)	10
	4.:	10	(<i>Z</i>)-(2-cyclopropylvinyl)benzene (8j)	10
	4.:	11	(<i>Z</i>)-dodec-6-ene (8k)	11
5		CuC	l-catalyzed transfer hydrogenation of internal alkynes to alkanes	11
	5.3	1	1,2-diphenylethane (9)	11
	5.2	2	1,2-diphenylethane (9) and 1-chloro-4-phenethylbenzene (10)	12
6		Deu	teration experiment with $BnOH-D_2$	13
7		Exte	ended Deuteration experiments with BnOH-D ₂ (2 - d_2) and isomerization studies	14
8		Cu(l)-Catalyzed Transfer Semihydrogenation of Ketones	18
9		Cu(l)-Catalyzed Transfer Semihydrogenation of Aldehydes	18
1	0	R	eferences	19
1	1	S	pectra	19

1 General Information

All reactions were carried out in flame dried glassware under a nitrogen atmosphere using standard Schlenk techniques. Glassware and stirring bars contaminated with transition metals were treated with aqua regia (conc. HCl/conc. HNO₃ 3:1) prior to cleaning. For cleaning, glassware and stirring bars were kept in a *i*PrOH/KOH bath overnight, rinsed with H₂O, kept in a citric acid/H₂O bath overnight and finally rinsed with dest. H₂O and dried at 120 °C. Solutions and reagents were added with nitrogen-flushed disposable syringes/needles. Solvents were added using glass syringes and stainless steel needles (stored at 120 °C). Analytical thin layer chromatography (TLC) was performed on silica gel 60 G/UV₂₅₄ aluminium sheets (Macherey-Nagel). Flash column chromatography was performed on silica gel Davisil LC60A (40-63 µm, pore size 60 Å, Grace) using the indicated solvents. NMR spectra were recorded on AVII 400, AVIII 500 or AVIII 700 NMR instruments (Bruker) at the Institut für Chemie of Technische Universität Berlin. Chemical shifts are reported in parts per million (ppm) relative to TMS or CCI₃F. For the calibration of the chemical shift the residual solvent resonance was used as the internal standard according to the standard literature.^{[1,2] 19}F chemical shifts were calibrated using the unified scale.^[2] Data are reported as follows: chemical shift, multiplicity (br s = broad singlet, s = singlet, d = doublet, t = triplet, q = quartet, sept = septet, m = multiplet, m_c = centrosymmetric multiplet), coupling constants (Hz), integration and - if possible - atom assignment. The assignment refers to the atom number shown in the corresponding molecule and was achieved by analysis of DEPT (DEPT 135) and 2D-NMR spectra (COSY, HSQC, HMQC, HMBC, NOESY). If a distinct assignment was not possible, atoms were marked with "*" and can be interchanged. Melting points (m.p.) were determined using a Leica Galen III melting point apparatus (Wagner & Munz) and are reported as the meniscus melting point.^[3] Infrared (IR) spectra were recorded on a Cary 630 FT-IR spectrometer equipped with an ATR unit (Agilent Technologies). Mass spectra (HRMS) were obtained from the Analytical Facility at the Institut für Chemie at Technische Universität Berlin (ESI/APCI: LTQ Orbitrap XL, Thermo Scientific; EI: GC-system 5975C, HP-5MS, Agilent Technologies). All transfer hydrogenation reactions were carried out in pressure tubes, equipped with a magnetic stirring bar.

1.1 Solvents

THF and 1,4-dioxane were dried over sodium/benzophenone and distilled under a N₂ atmosphere prior to use. HPLC grade *i*PrOH, 2-pentanol and 2-hexanol were dried over CaH₂ and distilled under a N₂ atmosphere prior to use. Solvents (technical grade) for extraction/chromatography

(cyclohexane, CH₂Cl₂, *tert*-butyl methyl ether and *n*-pentane) were distilled under reduced pressure prior to use.

1.2 Chemicals

The following chemicals were purchased and used without further purification: tolane (*Sigma-Aldrich*), copper(I) chloride (99.99% Cu, Strem), dodec-6-yne (*TCI*), sodium *tert*-butoxide (*Acros*), lithium *tert*-butoxide (*ABCR*), acetophenone (*Sigma-Aldrich*), 4-chlorobenzaldehyde (*Sigma-Aldrich*).

The Cu-complexes [IPrCuCI], [IMesCuCI] and [SIMesCuCI] were prepared according to a literature procedure^[4] from the corresponding imidazolium salts.^[5]

BnOH-D₂ (**2**-*d*₂) was prepared following a literature procedure.^[6] Alkynes 1,2-di-*p*-tolylethyne (**7b**),^[7] 1,2-di-*o*-tolylethyne (**7c**),^[7] 1,2-bis(4-methoxyphenyl)ethyne (**7d**),^[7] 1-methoxy-4- (phenylethynyl)benzene (**7e**),^[8] 1-chloro-4-(phenylethynyl)benzene (**7f**),^[8] 1-(phenylethynyl)-4- (trifluoromethyl)benzene (**7g**),^[8] (5-(benzyloxy)pent-1-yn-1-yl)benzene (**7h**),^[9] (cyclohexylethynyl)benzene (**7i**)^[10] and (cyclopropylethynyl)benzene (**7j**)^[11] were synthesized following literature procedures.

2 Optimization

Table: Optimization of the reaction conditions^[a]

		Cu(I) catalys	t				
	Ph	base) + n	∽ ^{Ph} + г	Ph	
Ph	formal I 4	H ₂ source, 140) °C, 24 h Z-5	Ph Ph E-5	• · · ·	6	
Entry	Catalyst	Base	H ₂ Source	Conversion	Z/E ^[b]	Alkane	
1	5 mol%	1.1 equiv		40%	00.10	-1	
I	[SIMesCuCI]	NaO <i>t</i> Bu		4970	90.10		
2	10 mol%	1.1 equiv	<i>i</i> PrOH (1 ml)	100%	92.8	<1	
2	[SIMesCuCl]	NaO <i>t</i> Bu		10070	02.0		
3	10 mol%	1.1 equiv	<i>i</i> PrOH (1ml)	90%	92:8	<1%	
-	[IPrCuCI]	NaO <i>t</i> Bu			-		

Entry	Catalyst	Base	H ₂ Source	Conversion	Z/E ^[b]	Alkane
4	10 mol% [IMesCuCl]	1.1 equiv NaO <i>t</i> Bu	<i>i</i> PrOH (1ml)	100%	90:10	<1%
5 ^[c]	10 mol% [SIMesCuCl]	1.1 equiv NaO <i>t</i> Bu	<i>i</i> PrOH (1ml)	100%	95:05	<1%
6	10 mol% [SIMesCuCl]	50 mol% NaO <i>t</i> Bu	<i>i</i> PrOH (1ml)	100%	84:16	<1%
7 ^[d]	10 mol% [SIMesCuCl]	1.1 equiv NaO <i>t</i> Bu	<i>i</i> PrOH (1ml)	2%	20:80	0%
8	10 mol% [SIMesCuCl]	1.1 equiv NaO <i>t</i> Bu	2.0 equiv. BnOH in dioxane (1ml)	100%	70:30	<1%
9	10 mol% [SIMesCuCl]	1.1 equiv NaO <i>t</i> Bu	1:10 (1 ml) (glycerol:dioxane)	69%	64:05	<1%
10	10 mol% [SIMesCuCl]	1.1 equiv NaO <i>t</i> Bu	EtOH (1ml)	29%	93:7	<1%
11	10 mol% [SIMesCuCl]	1.1 equiv NaO <i>t</i> Bu	2-pentanol (1 mL)	56%	88:12	0%
12	10 mol% [SIMesCuCl]	1.1 equiv NaO <i>t</i> Bu	2-hexanol (1 mL)	100%	<1%	100%
13	20 mol% CuCl	1.1 equiv NaO <i>t</i> Bu	<i>i</i> PrOH (1ml)	100%	80:20	6%
14	20 mol% CuCl	1.0 equiv LiO <i>t</i> Bu	<i>i</i> PrOH (1ml)	100%	<1%	100%

[a] Reactions were conducted on a 0.2 mmol scale in *i*PrOH (1 mL). [b] Determined by GC and ¹H NMR Analysis. [c] recation performed in microwave at 120 °C for 16h. [d] Reaction was performed at 85 °C.

3 General Procedures

Click or tap here to enter text. Click or tap here to enter text.

3.1 General procedure for the Cu(I)-Catalyzed Transfer Semihydrogenation of Alkynes (**GP1**)

A flame dried 5 ml pressure tube equipped with a magnetic stir bar is charged with [SIMesCuCl] (10 mol%), NaO*t*Bu (1.1 equiv). The corresponding alkyne substrate (1.0 equiv) is added to the reaction mixture followed by the addition of *i*PrOH (5.0 mL/mmol) under N₂ atmosphere. The reaction mixture is placed in a pre-heated heating block at 140 °C for 24 h. The reaction mixture is allowed to cool down to room temperature and diluted with *tert*-butyl methyl ether, filtered over a pad of silica (2.5 x 2.5 cm) and eluted with *tert*-butyl methyl ether (30 mL/mmol). Reactions were subsequently analyzed either by GC or ¹H NMR. All volatiles are removed under reduced pressure and the residue is purified via flash column chromatography to afford the corresponding alkenes.

4 Preparation of Z-Alkenes

4.1 (*Z*)-1,2-diphenylethene (**8a**)

C₁₄H₁₂ Mw = 180.25 g/mol Following the general procedure **GP1**, 1,2-diphenylethyne **3a** (36 mg, 0.2 mmol, 1.0 equiv), [SIMesCuCI] (8.1 mg, 0.02 mmol, 10 mol%), NaO*t*Bu (69 mg, 0.22 mmol, 1.1 equiv) was allowed to react in *i*PrOH at 140 °C for 24 h. Then, the reaction mixture was filtered through a plug of silica (1 cm), eluted with *tert*-butyl methyl ether (5 mL) and concentrated under reduced pressure. Purification by flash column chromatography on silica gel using cyclohexane as

eluent afforded **8a** (34 mg, 0.19 mmol, 94%, 92:8 = *Z*:*E*) as a colorless oil.

 $\mathbf{R}_{f} = 0.62$ (cyclohexane).

¹**H NMR** (500 MHz, CDCl₃): δ = 6.64 (s, 2H, H-1), 7.30-7.20 (m, 10H, H-3, H-4, H-5) ppm.

¹³**C NMR** (126 MHz, CDCl₃): δ = 127.2 (C-5), 128.3 (C-4), 129.0 (C-3), 130.4 (C-1), 137.4 (C-2) ppm.

HRMS (APCI) calcd for $C_{14}H_{12}^{++}$ [(M)⁺⁺]: 180.0934, found 180.0928.

The analytical data is in accordance with the literature.^[9]

4.2 (*Z*)-1,2-di-*p*-tolylethene (**8b**)

Following the general procedure **GP3**, 1,2-di-*p*-tolylethyne (**7b**, 41 mg, 0.20 mmol, 1.0 equiv) with [SIMesCuCI] (8.1 mg, 0.02 mmol, 10 mol%), NaO*t*Bu (21.1 mg, 0.22 mmol, 1.1 equiv) was allowed to react in *i*PrOH (1.0 ml) at 140 °C for 24 h. Then, the reaction mixture was filtered through a plug of silica (2.5 cm), eluted with *tert*-butyl methyl ether (5 mL) and concentrated under reduced pressure. Purification by flash column chromatography on silica gel using cyclohexane as eluent afforded **8b**

(40 mg, 0.19 mmol, 96%, 98:2 = *Z*:*E*) as a colorless oil.

 $\mathbf{R}_f = 0.43$ (cyclohexane)

¹**H NMR** (500 MHz, CDCl₃): δ = 2.34 (s, 6H, H-6), 6.55 (s, 2H, H-1), 7.06 (d, ${}^{3}J_{3,4}$ = 7.9 Hz, 4H, H-3), 7.19 (d, ${}^{3}J_{4,3}$ = 8.1 Hz, 4H, H-4) ppm.

¹³**C NMR** (126 MHz, CDCl₃): δ = 21.4 (C-6), 128.9 (C-3), 129.0 (C-4), 129.7 (C-1), 134.7(C- 2), 136.8 (C-5).

HRMS (APCI) calcd for C₁₆H₁₆⁺⁺ [(M)⁺⁺]: 208.1252, found 208.1244.

The analytical data is in accordance with the literature.^[12]

4.3 (*Z*)-1,2-di-*o*-tolylethene (**8c**)

Following the general procedure **GP1**, 1,2-di-*o*-tolylethyne (**7c**, 41.3 mg, 0.2 mmol, 1.0 equiv) with [SIMesCuCI] (8.1 mg, 0.02 mmol, 10 mol%), NaO*t*Bu (21.1 mg, 0.22 mmol, 1.1 equiv) was allowed to react in *i*PrOH (1.1 ml) at 140 °C for 24 h. Then, the reaction mixture was filtered through a plug of silica, eluted with *tert*-butyl methyl ether (5 mL) and concentrated under reduced pressure. Purification by flash column chromatography on silica gel using cyclohexane as eluent afforded **8c** (39 mg, 0.19 mmol, 94%,

91:9 = Z:E) as a colorless oil which solidified slowly upon standing.

 $\mathbf{R}_f = 0.40$ (cyclohexane).

M.p. = 53 °C.

¹**H NMR** (500 MHz, CDCl₃): δ = 2.31 (s, 6H, H-8), 6.75 (s, 2H, H-1), 6.98-6.93 (m, 4H, H-4, H-5), 7.11 (td, ${}^{3}J$ = 6.9 Hz, ${}^{4}J$ = 1.9 Hz, 2H, H-7), 7.16 (d, ${}^{3}J$ = 7.2 Hz, 2H, H-6) ppm.

¹³**C NMR** (126 MHz, CDCl₃): δ = 20.0 (C-8), 125.5 (C-6), 127.1 (C-5), 129.2 (C-7), 129.5 (C-1), 130.1(C-4),136.3 (C-3),136.7 (C-2).

HRMS (APCI) calcd for $C_{16}H_{16}^{++}$ [(M)⁺⁺]: 208.1247, found 208.1244. The analytical data is in accordance with the literature.^[13] Not integrated signals belong to the minor *E*-isomer.

4.4 (*Z*)-1,2-bis(4-methoxyphenyl)ethene (**8d**)

Following the general procedure **GP1**, 1-methoxy-4-(p-tolylethynyl)benzene (**7d**, 47.7 mg, 0.2 mmol, 1.0 equiv) with [SIMesCuCI] (8.1 mg, 0.02 mmol, 10 mol%), NaO*t*Bu (21.1 mg, 0.22 mmol, 1.1 equiv) was allowed to react in *i*PrOH (1.0 ml) at 140 °C for 24 h. Then, the reaction mixture was filtered through a plug of silica, eluted with *tert*-butyl methyl ether (5 mL) and concentrated under reduced pressure. Purification by flash column chromatography on silica gel using (2 × 15 cm,

cyclohexane/*t*BME = 50:1 as eluent afforded **8d** (43 mg, 0.18 mmol, 89%, 92:8 = Z:E) as a slight yellow oil.

 $\mathbf{R}_{f} = 0.52$ (cyclohexane/*tert*-butyl methyl ether = 10:1).

¹**H NMR** (500 MHz, CDCl₃): δ = 3.79 (s, 6H, H-6), 6.46 (s, 2H, H-1), 6.77 (d, ${}^{3}J_{3,4}$ = 8.9 Hz, 4H, H-

3), 7.19 (d, ${}^{3}J_{4,3} = 8.1$ Hz, 4H, H-4) ppm.

¹³**C NMR** (126 MHz, CDCl₃): δ = 55.3 (C-6), 113.7 (C-4), 128.5 (C-2), 130.1 (C-1), 130.2(C-3), 158.65 (C-5).

HRMS (APCI) calcd for C₁₆H₁₆O₂⁺⁺ [(M)⁺⁺]: 240.1145, found 240.1141.

The analytical data is in accordance with the literature.^[14]

Click or tap here to enter text.

OMe 11

4.5 (*Z*)-1-methoxy-4-styrylbenzene (8e)

8e (C₁₅H₁₄O

Mw = 210.28 g/mol

(**7e**, 41.7 mg, 0.2 mmol, 1.0 equiv) with [SIMesCuCl] (8.1 mg, 0.02 mmol, 10 mol%), NaO*t*Bu (21.1 mg, 0.22 mmol, 1.0 equiv) was allowed to react in *i*PrOH (1.1 ml) at 140 °C for 24 h. Then, the reaction mixture was filtered through a plug of silica, eluted with *tert*-butyl methyl ether (5 mL) and concentrated under reduced pressure. Purification by flash column chromatography on silica gel (2 × 15 cm) using cyclohexane/*t*BME = 50:1 as

Following the general procedure GP1, 1-methoxy-4-(phenylethynyl)benzene

eluent afforded **8e** (39 mg, 0.19 mmol, 93%, 88:12 = Z:E) as a pale yellow oil.

 $\mathbf{R}_{f} = 0.64$ (cyclohexane/*tert*-butyl methyl ether = 10:1).

¹H NMR (500 MHz, CDCl₃): 3.79 (s, 3H, H-11), 6.47-6.56 (m, 2H, H-5, H-6), 6.70-6.79 (m, 2H, H-9), 1.11-7.3 (m, 7H, H-8, H-1, H-2, H-3) ppm.

¹³C NMR (126 MHz, CDCl₃): δ = 55.3 (C-11), 113.7 (C-9), 127.0 (C-1), 128.3 (C-2), 128.9 (C-5), 128.9 (C-3), 129.8 (C-7), 129.9 (C-6), 130.2 (C-8), 137.7 (C-4), 158.8 (C-10) ppm.

HRMS (APCI) calcd for $C_{15}H_{15}O^+$ [(M+H)⁺]: 211.1116, found 211.1117.

Minor *E*-isomer corresponding resonances: ¹H NMR (500 MHz, CDCl₃): 3.83 (s, 3H), 6.90 (m_c, 2H), 6.97 (d, J = 16.3 Hz, 1H), 7.07 (d, J = 16.3 Hz, 1H), 7.20-7.25 (m, 1H), 7.34 (m_c, 2H), 7.43-7.51 (m, 4H) ppm.

The analytical data is in accordance with the literature.^[9]

4.6 (*Z*)-1-chloro-4-styrylbenzene (**8f**)

 $C_{14}H_{11}CI$

Following the general procedure GP1 1-chloro-4-(phenylethynyl)benzene (7f, 42.9 mg, 0.2 mmol, 1.0 equiv) with [SIMesCuCl] (8.1 mg, 0.02 mmol, 10 mol%), NaOtBu (21.1 mg, 0.22 mmol, 1.1 equiv) was allowed to react in iPrOH at 140 °C for 24 h. Then, the reaction mixture was filtered through a plug of silica, eluted with tert-butyl methyl ether (5 mL) and concentrated under reduced pressure. Purification by flash column chromatography on Mw = 214.69 g/mol silica gel using cyclohexane as eluent afforded **8f** (39 mg, 0.18 mmol, 91%, 94:6 = Z:E) as a colorless oil.

 $\mathbf{R}_{f} = 0.50$ (cyclohexane).

¹**H NMR** (500 MHz, CDCl₃): δ = 6.55 (d, ³J_{6.5} = 12.2 Hz, 1H, H-6), 6.64 (d, ³J_{5.6} = 12.2 Hz, 1H, H-5), 7.18-7.22 (mc, 4H, H-8, H-9), 7.25-7.28 (m, 5H, H-1, H-2, H-3) ppm.

¹³**C NMR** (126 MHz, CDCl₃): δ = 127.5 (C-1), 128.4 (C-2), 128.5 (C-9), 128.9 (C-3), 129.1 (C-6), 130.3 (C-8), 131.1 (C-5), 132.9 (C-10), 135.8 (C-7), 137.0 (C-4) ppm.

HRMS (APCI) calcd for $C_{14}H_{14}CI^{+}$ [(M)⁺]: 214.0544, found 214.0543.

The analytical data is in accordance with the literature.^[15]

4.7 (Z)-1-styryl-4-(trifluoromethyl)benzene (8g)

Following the general procedure **GP1**, 1-(phenylethynyl)-4-(trifluoromethyl)benzene (**7g**, 49.3 mg, 0.2 mmol, 1.0 equiv) with [SIMesCuCI] (8.1 mg, 0.02 mmol, 10 mol%), NaO*t*Bu (21.1 mg, 0.22 mmol, 1.1 equiv) was allowed to react in *I*PrOH (1.0 ml) at 140 °C for 24 h. Then, the reaction mixture was filtered through a plug of silica, eluted with *tert*-butyl methyl ether (5 mL) and concentrated under reduced pressure. Purification by flash column chromatography on silica gel using cyclohexane as eluent afforded **8g** (33 mg,

Mw = 248.25 g/mol

0.13 mmol, 66%, 96:4 = *Z*:*E*) as a colorless oil.

 $\mathbf{R}_{f} = 0.52$ (cyclohexane/*tert*-butyl methyl ether = 10:1).

¹**H NMR** (500 MHz, CDCl₃): δ = 6.52 (d, ${}^{3}J_{6,5}$ = 12.3 Hz, 1H, H-6), 6.65 (d, ${}^{3}J_{5,6}$ = 12.2 Hz, 1H, H-5), 7.18-7.11 (m, 5H, H-1, H-2, H-3), 7.26 (d, ${}^{3}J_{8,9}$ = 8.15 Hz, 2H, H-8), 7.38 (d, ${}^{3}J_{9,8}$ = 8.20 Hz, 2H, H-9)ppm.

¹³**C NMR** (126 MHz, CDCl₃): δ = 124.3 (d, ¹*J* = 272.5 Hz, C-11), 125.3 (q, ³*J*_{9F} = 3.7 Hz, C-9), 127.7 (C-1), 127.6 (C-2), 128.6 (C-10), 128.8 (C-6), 128.9 (C-3), 129.3 (C-8), 132.5 (C-5), 136.7 (C-4), 141.1 (C-7).

¹⁹**F NMR** (471 MHz, CDCl₃): δ = -62.5 ppm.

HRMS (APCI) calcd for $C_{15}H_{11}F_{3}^{++}$ [(M)⁺⁺]: 248.0807, found 248.0804.

The analytical data is in accordance with the literature.^[8]

4.8 (*Z*)-(5-(benzyloxy)pent-1-en-1-yl)benzene (**8h**)

Following the general procedure **GP1**, (5-(benzyloxy)pent-1-yn-1yl)benzene (**7h**, 41.3 mg, 0.2 mmol, 1.0 equiv) with [SIMesCuCI] (8.1 mg, 0.02 mmol, 10 mol%), NaO*t*Bu (21.1 mg, 0.22 mmol, 1.0 equiv) was allowed to react in *i*PrOH (1.0 ml) at 140 °C for 24 h. Then, the reaction mixture was filtered through a plug of silica, eluted with *tert*-butyl methyl ether (5 mL) and concentrated under reduced pressure. Purification by flash column

chromatography on silica gel using 2 × 15 cm, cyclohexane/tBME = 50:1 as eluent afforded **8h** (46 mg, 0.19 mmol, 90%, 82:18 = Z:E) as a colorless oil.

 $\mathbf{R}_{f} = 0.72$ (cyclohexane/*tert*-butyl methyl ether = 10:1.)

¹**H NMR** (500 MHz, CDCl₃): δ = 1.66-1.72 (m, 2H, H-7), 2.36 (m_c, 2H, H-8), 3.41 (t, ³*J*_{6,7} = 7.1 Hz, 2H, H-6), 4.38 (s, 2H, H-5), 5.58 (dt, ³*J*_{9,10} = 11.6 Hz, ³*J*_{9,8} = 7.4 Hz, 1H, H-9), 6.35 (d, ³*J*_{10,9} = 11.6 Hz, 1H, H-10), 7.12-7.26 (m, 10H, H-Ar) ppm.

¹³C NMR (126 MHz, CDCl₃): 25.4 (C-7), 30.0 (C-8), 69.7 (C-6), 72.9 (C-5), 126.6 (C-14), 127.6 (C-1), 127.7 (C-3), 128.2 (C-13), 128.5 (C-2), 128.9 (C-12), 129.5 (C-10), 132.4 (C-9), 137.7 (C-11), 138.7 (C-4) ppm.

HRMS (APCI) calcd for C₁₈H₂₁O⁺ [(M+H)⁺]: 253.1587, found 253.1579.

The analytical data is in accordance with the literature.^[8]

4.9 (*Z*)-(2-cyclohexylvinyl)benzene (8i)

Following the general procedure **GP3** (cyclohexylethynyl)benzene (**7i**, 36.8 mg, 0.2 mmol, 1.0 equiv) with [SIMesCuCI] (8.1 mg, 0.02 mmol, 10 mol%), NaO*t*Bu (21.1 mg, 0.22 mmol, 1.0 equiv) was allowed to react in *i*PrOH (1.1 ml) at 140 °C for 24 h. Then, the reaction mixture was filtered through a plug of silica, eluted with *tert*-butyl methyl ether (5 mL) and concentrated under reduced pressure. Purification by flash column chromatography on silica gel using cyclohexane as eluent afforded **8i** (18 mg,

0.10 mmol, 48%, 93:4 = Z:E) as a colorless oil containing 4% of the corresponding alkane.

 $\mathbf{R}_{f} = 0.38$ (cyclohexane).

¹**H NMR** (500 MHz, CDCl₃): δ = 1.17-1.31 (m, 6H, H-9, H-10), 1.71-1.76 (m, 4H, H-8), 2.59 (m_c, 1H, H-7), 5.50 (dd, ${}^{3}J_{6,5}$ = 11.7 Hz, ${}^{4}J$ = 10.2 Hz, 1H, H-6), 6.33 (d, ${}^{3}J_{5,6}$ = 11.6 Hz, 1H, H-5), 7.28-7.21 (m, 3H, H-1,H-3), 7.35-7.33 (m, 2H, H-2) ppm.

¹³**C NMR** (126 MHz, CDCl₃): δ = 25.8 (C-9), 26.2 (C-10), 33.4 (C-8), 37.0 (C-7), 126.5 (C-6), 127.0 (C-5), 128.3 (C-2), 128.7 (C-3), 138.1 (C-4), 139.1 (C-1) ppm.

HRMS (APCI) calcd for $C_{14}H_{18}^{+}$ [(M)⁺]: 186.1403, found 186.1401.

The analytical data is in accordance with the literature.^[16]

4.10 (Z)-(2-cyclopropylvinyl)benzene (8j)

Mw = 144.22 g/mol

Following the general procedure **GP1** (cyclopropylethynyl)benzene (**7j**, 42.7 mg, 0.3 mmol, 1.0 equiv) with [SIMesCuCI] (12.1 mg, 0.03 mmol, 10 mol%), NaO*t*Bu (31.7 mg, 0.33 mmol, 1.1 equiv) was allowed to react in *i*PrOH (1.5 ml) at 140 °C for 24 h. Then, the reaction mixture was filtered through a plug of silica, eluted with *tert*-butyl methyl ether (5 mL) and concentrated under reduced pressure. Purification by flash column

chromatography on silica gel using cyclohexane as eluent afforded **8j** (36 mg, 0.25 mmol, 84%, 97:3 = Z:E) as a colorless oil. **R**_f = 0.63 (cyclohexane). ¹**H NMR** (500 MHz, CDCl₃): δ = 0.49 (m_c, 2H, H-9), 0.84 (m_c, 2H, H-8), 1.90 (m_c, 1H, H-7), 5.08 (dd, ${}^{3}J_{6,5}$ = 11.5 Hz, ${}^{4}J$ = 10.0 Hz, 1H, H-6), 6.37 (d, ${}^{3}J_{5,6}$ = 11.5, 1H Hz, H-5), 7.29 (t, ${}^{3}J$ = 7.4 Hz, 1H, H-1), 7.35 (t, ${}^{3}J$ = 7.9 Hz, 2H, H-2), 7.44 (d, ${}^{3}J$ = 7.8 Hz, 2H, H-3) ppm.

¹³**C NMR** (126 MHz, CDCl₃): δ = 8.2 (C-9, C-8), 11.2 (C-7), 126.5 (C-1), 127.5 (C-5), 128.3 (C-3), 128.8 (C-2), 136.9 (C-6), 138.1 (C-4) ppm.

HRMS (APCI) calcd for $C_{11}H_{12}^{++}$ [(M)⁺⁺]: 144.0934, found 144.0932.

The analytical data is in accordance with the literature.^[17]

4.11 (*Z*)-dodec-6-ene (**8k**)

Following the general procedure **GP1**, dodec-6-yne (**7k**, 49.9 mg, 0.3 mmol, 1.0 equiv) with [SIMesCuCl] (12.1 mg, 0.03 mmol, 10 mol%), NaO*t*Bu (31.7 mg, 0.33 mmol, 1.1 equiv) was allowed to react in *i*PrOH (1.5 ml) at 140 °C for 24 h. Then, the reaction mixture was filtered through a plug of silica, eluted with *tert*-butyl methyl ether (5 mL) and concentrated under

reduced pressure. Purification by flash column chromatography on silica gel using cyclohexane as eluent afforded **8k** (31 mg, 0.18 mmol, 61%, 99:1 = Z:E) as a colorless oil.

 $\mathbf{R}_f = 0.62$ (cyclohexane).

¹**H NMR** (500 MHz, CDCl₃): δ = 0.89 (t, ³*J* = 6.9 Hz, 6H, H-1), 1.36-1.26 (m, 12H, H-2, H-3, H-4), 2.00-2.04 (m, 4H, H-5), 5.36 (m_c, 2H, H-6) ppm.

¹³**C NMR** (126 MHz, CDCl₃): δ = 14.2 (C-1); 22.7 (C-2), 27.3 (C-5), 29.6 (C-4), 31.7 (C-3), 130.1 (C-6) ppm.

HRMS (APCI) calcd for $C_{12}H_{23}^+$ [(M-H)⁺]: 167.1794, found 167.1795.

The analytical data is in accordance with the literature.^[18]

5 CuCl-catalyzed transfer hydrogenation of internal alkynes to alkanes

5.1 1,2-diphenylethane (9)

C₁₄H₁₄ Mw = 182.27 g/mol To a flame dried 5 ml pressure tube equipped with a magnetic stir bar was added 1,2-diphenylethyne (**7a**, 35.6 mg, 0.2 mmol, 1.0 equiv) CuCl (4.0 mg, 0.04 mmol, 20 mol%) and LiO*t*Bu (16.0 mg, 0.20 mmol, 1.0 equiv) was allowed to react in *i*PrOH (1.0 ml). Then the reaction mixture was placed in a pre-heated heating block at 140 °C for 24 h. Then, the reaction was stopped and the reaction mixture was allowed cool to room

temperature. Then, the reaction mixture was filtered through a plug of silica (2.5 cm), eluted with *tert*-butyl methyl ether (5 mL) and concentrated under reduced pressure. Purification by flash column chromatography on silica gel using cyclohexane as eluent afforded 1,2-diphenylethane **9** (34 mg, 0.19 mmol, 93%) as a white solid.

 $\mathbf{R}_{f} = 0.61$ (cyclohexane).

M.p. = 55 °C.

¹**H NMR** (500 MHz, CDCl₃): δ = 2.95 (s, 4H, H-1), 7.23-7.20 (m, 6H, H-3, H-5), 7.29-7.32 (m, 4H, H-4) ppm.

¹³**C NMR** (126 MHz, CDCl₃): δ = 38.1 (C-1), 126.04 (C-5), 128.5 (C-3)*, 128.6 (C-4)*, 141.9 (C-2) ppm.

HRMS (APCI) calcd for C₁₄H₁₄⁺⁺ [(M)⁺⁺]: 182.1090, found 182.1089.

The analytical data is in accordance with the literature.^[19]

5.2 1,2-diphenylethane (9) and 1-chloro-4-phenethylbenzene (10)

To a flame dried 5 ml pressure tube equipped with a magnetic stir bar was added 1-chloro-4-(phenylethynyl)benzene (**7f**, 42.9 mg, 0.2 mmol, 1.0 equiv) CuCl (4.0 mg, 0.04 mmol, 20 mol%) and base (0.30 mmol, 1.5 equiv) in *i*PrOH (1.0 ml). Then, the reaction mixture was placed in a pre-heated heating block at 140 °C for 24 h. Then, the reaction

was stopped and the reaction mixture was allowed to cool to room temperature. Then, the reaction mixture was filtered through a plug of silica (2.5 cm), eluted with *tert*-butyl methyl ether (5 mL) and concentrated under reduced pressure. Purification by flash column chromatography on silica gel using cyclohexane as eluent afforded as a mixture of **9** and **10**.

Entry	Base	Conversion ^[a]	9/10 ^[a]							
1	LiO <i>t</i> Bu	full	66:34							
2	NaO <i>t</i> Bu	full	20:80							
[a] Destermined by GC.										

 $\mathbf{R}_{f} = 0.61$ (cyclohexane).

9: 1,2-diphenylethane representative peaks

¹H NMR (500 MHz, CDCl₃): δ = 2.99 (s, 4H, H-1). ¹³C NMR (126 MHz, CDCl₃): δ = 38.1 (C-1), 126.04, 128.5, 128.6, 141.9 ppm. HRMS (APCI) calcd for C₁₄H₁₃⁺ [(M-H)⁺]: 181.1012, found 181.1011. 10: 1-chloro-4-phenethylbenzene representative peaks ¹H NMR (500 MHz, CDCl₃): δ = 2.96 (s, 4H, H-5, H-5). ¹³C NMR (126 MHz, CDCl₃): δ = 37.3 (C-5)^{*}, 37.9 (C-6)^{*}, 126.2, 128.5, 130.0, 131.8, 140.2, 141.4. HRMS (APCI) calcd for C₁₄H₁₂Cl⁺ [(M-H)⁺]: 215.0622, found 215.0625.

6 Deuteration experiment with BnOH-D₂

A flame dried 2 ml microwave vial was charged with [SIMesCuCl] (3.6 mg, 8.5 μ mol, 10 mol%), NaO*t*Bu (11 mg, 9.4 μ mol, 1.1 equiv). The mixture was suspended in 1,4-dioxane (1 mL), stirred for 5 min at 40 °C. Then first a solution of 1,2-diphenylethyne (**4**, 32 mg, 0.17 mmol, 2.0 equiv) in 1,4-dioxane (0.1 mL) and second a solution of BnOH-D₂ (**2**-*d*₂, 12 mg, 8.5 μ mol, 1.0 equiv) in 1,4-dioxane (0.1 mL) were added to the reaction mixture. The reaction was heated for 24 h at 120 °C under microwave reaction conditions. The reaction mixture was cooled down to RT, diluted with CH₂Cl₂ (2 mL) and filtered over a pad of silica (2.5 x 0.5 cm, CH₂Cl₂, 20 mL). All volatiles are removed under reduced pressure and the crude reaction mixture was obtained and analyzed by NMR spectroscopy and GC analysis.

²H NMR show circumstantial evidence for the presence of benzaldehyde- d_1 (S1).

7 Extended Deuteration experiments with BnOH-D₂ ($2-d_2$) and isomerization studies

To a flame dried 2 ml microwave vial was charged with [SIMesCuCl] (8.1 mg, 0.02 mmol, 10 mol%) and NaOtBu (21 mg, 0.22 mmol, 1.1 equiv). The mixture was suspended in 1,4-dioxane (0.4 mL), stirred for 5 min at 40 °C. In two separate vials, a solution of 1(5-(benzyloxy)pent-1-yn-1-yl)benzene (**1**, 50 mg, 0.20 mmol, 1.0 equiv) in 1,4-dioxane (0.2 mL), and BnOH-D₂ (**2**- d_2 , 22 mg, 0.20 mmol, 1.0 equiv) in 1,4-dioxane (0.2 mL) are prepared under nitrogen atmosphere. The alkyne solution was added first and the alcohol solution afterwards. The reaction mixture was heated for 24 h at 120 °C in a microwave (conditions **A**) or for 2 h at 140 °C using conventional heating. The reaction mixture was cooled down to RT, diluted with CH₂Cl₂ (2 mL) and filtered over

a pad of silica (2.5 x 0.5 cm, CH_2CI_2 , 20 mL). All volatiles are removed under reduced pressure and crude product **3** was obtained.

To increase the deuterium incorporation further, the glassware was treated with D₂O before flame drying. (To do this, the high pressure tube was washed several times with D₂O at room tempereature and D₂O was left within the glassware for 2 h.)Finally, the D₂O was removed and the glassware was commonly dried and degassed using standard Schlenck technique. The overall D incorporation did indeed rise (see below), indicating that there is significant exchange with the OH groups of the glassware.

For isomerization studies a GC sample (0.05 mL of the crude mixture, filtered over a plug of silica 0.5 x 2 cm, CH_2CI) was taken at different reaction times.

In these experiments, full conversion of the starting materials was reached after 4 h reaction times. This indicates that a secondary Z to E isomerization process is taking place after the actual alkyne semihydrogenation. This eludes to the fact that careful reaction control should be extert with an alkyne of interest, as it is possible to attain higher Z/E ratios if the reaction is stopped early enough.

For further spectra see additional spectral data.

8 Cu(I)-Catalyzed Transfer Semihydrogenation of Ketones

To a flame dried 5 ml pressure tube was equipped with a magnetic stir bar was added acetophenone (**S2**, 24.0 mg, 0.2 mmol, 1.0 equiv) with [SIMesCuCI] (8.1 mg, 0.02 mmol, 10 mol%), NaO*t*Bu (21.1 mg, 0.22 mmol, 1.0 equiv) followed by the addition of *i*PrOH (5.0 mL/mmol) under N₂ atmosphere. Then, the reaction mixture is placed in a pre-heated heating block at 140 °C for 24 h. Then, the reaction is stopped and the reaction mixture is allow to cool down to room temperature. The reaction mixture is diluted with *tert*-butyl methyl ether and filtered over a pad of silica (2.5 x 2.5 cm) eluted with *tert*-butyl methyl ether (30 mL/mmol). Reaction is subsequently analyzed by GC, and GC-MS.

To a flame dried 5 ml pressure tube was equipped with a magnetic stir bar was added 4chlorobenzaldehyde (28.0 mg, 0.2 mmol, 1.0 equiv) with [SIMesCuCl] (8.1 mg, 0.02 mmol, 10 mol%), NaO*t*Bu (21.1 mg, 0.22 mmol, 1.0 equiv) followed by the addition of *i*PrOH (5.0 mL/mmol) under N₂ atmosphere. Then, the reaction mixture is placed in a pre-heated heating block at 140 °C for 24 h. Then, the reaction is stopped and the reaction mixture is allow to cool down to room temperature. The reaction mixture is diluted with *tert*-butyl methyl ether and filtered over a pad of silica (2.5 x 2.5 cm) eluted with *tert*-butyl methyl ether (30 mL/mmol). Reaction is subsequently analyzed by GC, and GC-MS.

10 References

- G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg, *Organometallics* 2010, *29*, 2176.
- [2] H. E. Gottlieb, V. Kotlyar, A. Nudelman, J. Org. Chem. 1997, 62, 7512.
- [3] K. N. Carter, K. N. Carter, J. Chem. Educ. 1995, 72, 647.
- [4] O. Santoro, A. Collado, A. M. Z. Slawin, S. P. Nolan, C. S. J. Cazin, Chem. Commun. 2013, 49, 10483.
- [5] L. Hintermann, Beilstein J. Org. Chem. 2007, 3, 22.
- [6] A. J. Neuvonen, T. Földes, Á. Madarász, I. Pápai, P. M. Pihko, ACS Catal. 2017, 7, 3284.
- [7] K. Park, G. Bae, J. Moon, J. Choe, K. H. Song, S. Lee, J. Org. Chem. 2010, 75, 6244.
- [8] E. Korytiaková, N. O. Thiel, F. Pape, J. F. Teichert, Chem. Commun. 2017, 53, 732.
- [9] F. Pape, N. O. Thiel, J. F. Teichert, Chem. Eur. J. 2015, 21, 15934.
- [10] M. Sarmah, A. B. Neog, P. K. Boruah, M. R. Das, P. Bharali, U. Bora, ACS Omega 2019, 4, 3329.
- [11] J. Teske, B. Plietker, Org. Lett. 2018, 20, 2257.
- [12] Y. Lu, X. Feng, B. S. Takale, Y. Yamamoto, W. Zhang, M. Bao, ACS Catal. 2017, 7, 8296.
- [13] P. A. Byrne, D. G. Gilheany, J. Am. Chem. Soc. 2012, 134, 9225.
- [14] M. K. Armstrong, M. B. Goodstein, G. Lalic, J. Am. Chem. Soc. 2018, 140, 10233.
- [15] D.-J. Dong, H.-H. Li, S.-K. Tian, J. Am. Chem. Soc. 2010, 132, 5018.
- [16] C. W. Cheung, F. E. Zhurkin, X. Hu, J. Am. Chem. Soc. 2015, 137, 4932.
- [17] R. Nishibayashi, T. Kurahashi, S. Matsubara, Synlett 2014, 25, 1287.
- [18] A. Brzozowska, L. M. Azofra, V. Zubar, I. Atodiresei, L. Cavallo, M. Rueping, O. El-Sepelgy, ACS Catal. 2018, 8, 4103.
- [19] S. Rej, M. Madasu, C.-S. Tan, C.-F. Hsia, M. H. Huang, Chem. Sci. 2018, 9, 2517.

11 Spectra

190 1	 160	 150	140	 130	 120	 110	 100		 80	 70	 60	 50	 40	 30	 20	 10	 0 ppm
99999999999999999999999999999999999999	 ****	n. - 4 4 Junie			dela Productiva Alexa			<u>walio, fi 1910 fi 1910 fi 19</u> 11 al			*****	geriellen feltreiten		ana da canta ningna la cara	atiya dan. ana da yanga d		99-99-9-99-99-99-9
8a				I													
³ C NMR			137	129	127				~ 1.7	76.9							
•			4	400	ญ				_	-							

¹H,¹H COSY NMR

¹³ C NMR		130.2 130.1 128.5	113.7	77.2		
МеО]					
8d OM	le					
1483 be a ser al a station of party allow a series for the factor of the	- to the second seco				 enturgilipad an enturgi planta englise en enturgi se a se a s	₩₩\$\\$#₩\$ ¹ ₩\$1 ⁻¹ ₩\$1 ⁻¹ ₩\$1 ⁻¹ ₩\$ ¹ ₩\$1 ⁻¹ ₩\$1
190 180 170	160 150		20 110 100		 40 30 20	 10 0 ppm

¹³ C NMR Me Ge	136.7 136.3 136.3 129.6 129.2 125.5	77.4 77.2 76.9	

¹H,¹³C HMBC NMR

¹³ C NMR	137.0 135.8 135.8 131.1 130.3 128.5 128.5 128.5	4.77.2 76.9	
8f Cl		¥	

¹H,¹³C HSQC NMR

¹H,¹H NOESY NMR

¹H,¹³C HMBC NMR

¹H,¹³C HSQC NMR

¹H NMR

¹H,¹³C HSQC NMR

¹³ C NMR	141.9 141.4 141.4 130.0 128.5 128.5 128.5 128.5 128.5 128.5 126.0	71.2	38.1 37.9 37.3	
		W	U f	
* 9 +				
CI 10				
lige openings water water and the state opening and the sure of the state of the state of the state of the state				and a second and a second s
 170 160 150	0 140 130 120 11	0 100 90 80 70 60	50 40 30 20	10 ppm

GC-data **9** and **10**, LiOtBu used as base

Index	Name	Time [Min]	Quantity [% Area]	Height [uV]	Area [uV.Min]	Area % [%]
1	UNKNOWN	6.64	65.85	598482.5	25558.0	65,847
2	UNKNOWN	7.88	34,15	197220.8	13256.3	34,153
Total			100.00	795703.3	38814,3	100,000

GC-data 9 and 10 NaOtBu used as base

Index	Name	Time [Min]	Quantity [% Area]	Height [uV]	Area [uV.Min]	Area % [%]
1	UNKNOWN	6,67	19.62	312268.7	13961.4	19,620
2	UNKNOWN	7.83	80.38	1230373.1	57197.8	80.380
Total			100.00	1542641.8	71159.2	100.000

¹H NMR

Deuteration experiment with $BnOH-D_2(2-d_2)$

Deuteration experiment with BnOH-D₂ ($2-d_2$)

Extended deuteration experiments with BnOH-D₂ $(2-d_2)$ and isomerization studies

A: microwave heating

Index	Name	Time [Min]	Quantity [% Area]	Height [uV]	Area [uV.Min]	Area %
1	UNKNOWN	9,55	29,78	37404.1	2344.5	29,783
_2	UNKNOWN	9,90	70,22	71032,7	5527,4	70,217
Total			100.00	108436.8	7871.9	100.000

GC-MS data

B: coventional heating

¹H NMR

Index	Name	Time [Min]	Quantity [% Area]	Height [uV]	Area [uV.Min]	Area % [%]
1	UNKNOWN	9.55	20,71	25232.4	1559,6	20.706
2	UNKNOWN	9,91	79,29	61376.8	5972.5	79.294
Total			100,00	86609,3	7532,1	100.000

GCMS data

A: microwave heating after treating glaswear with D₂O

¹H NMR

Index	Name	Time [Min]	Quantity [% Area]	Height [uV]	Area [uV.Min]	Area %
1	UNKNOWN	9,50	23.36	840292.5	35285 7	23.358
2	UNKNOWN	9.90	76.64	2535710.7	115780.7	76.642
Total			100,00	3376003.2	151066.3	100.000

B: coventional heating after treating glaswear with D₂O

¹H NMR

Index	Name	Time [Min]	Quantity [% Area]	Height [uV]	Area [uV.Min]	Area % [%]
1	UNKNOWN	9.52	45,19	1796353.6	75185.4	45,190
2	UNKNOWN	9,89	54,81	2092034.3	91190,5	54.810
Total			100.00	3888387.8	166376.0	100.000

Microwave heating – isomerization experiments

30 min

GC data

8h

Index	Name	Time [Min]	Quantity [% Area]	Height [uV]	Area [uV.Min]	Area % [%]
1	UNKNOWN	9,51	4,64	86051.5	4686,3	4,639
2	UNKNOWN	9,90	95.36	1723946.2	96327.2	95,361
Total			100.00	1809997.6	101013.4	100,000

90 min

GC data

Index	Name	Time [Min]	Quantity [% Area]	Height [uV]	Area [uV.Min]	Area %
1	UNKNOWN	9.50	6.50	90660.7	3968,1	6,501
2	UNKNOWN	9.88	93.50	1027116,8	57067.3	93,499
Total			100.00	1117777.5	61035,4	100,000

Index	Name	Time [Min]	Quantity [% Area]	Height [uV]	Area [uV.Min]	Area %
1	UNKNOWN	9,51	45.95	278044.0	12647.8	45,952
2	UNKNOWN	9.87	54.05	231566,0	14876.3	54.048
Total		-	100.00	509610.1	27524.1	100.000

Index	Name	Time [Min]	Quantity [% Area]	Height [uV]	Area [uV.Min]	Area % [%]
1	UNKNOWN	9.50	43.24	396030,3	17075.7	43.240
2	UNKNOWN	9.87	56,76	395856.9	22414.5	56,760
Total			100.00	791887.3	39490.2	100,000

22 h:

GC data

Index	Name	Time [Min]	Quantity [% Area]	Height [uV]	Area [uV.Min]	Area % [%]
.1	UNKNOWN	9,50	28,53	209177.7	9914.7	28.533
2	UNKNOWN	9,85	71.47	457443.3	24833.9	71.467
Total			100.00	666621.0	34748.6	100.000

conventional heating - isomerization experiments

30 min

GC data

Index	Name	Time [Min]	Quantity [% Area]	Height [uV]	Area [uV.Min]	Area % [%]
1	UNKNOWN	9.50	4,24	94157,6	4646.3	4,240
2	UNKNOWN	9.90	95.76	1845606.7	104940.0	95,760
Total		-	100.00	1939764.3	109586,2	100,000

90 min

GC data

Index	Name	Time [Min]	Quantity [% Area]	Height [uV]	Area [uV.Min]	Area % [%]
1	UNKNOWN	9,50	8,74	120320,2	6269,8	8,742
2	UNKNO/WN	9.89	91,26	1241170.1	65450,4	91.258
Total			100,00	1361490.3	71720.3	100.000

Index	Name	Time [Min]	Quantity [% Area]	Height [uV]	Area [uV.Min]	Area % [%]
1	UNKNOWN	9,50	44.05	223795.7	10830.3	44,049
2	UNKNOWN	9.86	55.95	282923.1	13756,5	55.951
Total			100.00	506718.8	24586.8	100,000

Peak results :

Index	Name	Time [Min]	Quantity [% Area]	Height [uV]	Area [uV.Min]	Area % [%]
1	UNKNOWN	9.50	40,18	297573,9	13870,0	40,176
2	UNKNOWN	9,87	59,82	448040.8	20653.2	59,824
Total			100,00	745614.7	34523,2	100.000

6 h

Index	Name	Time [Min]	Quantity [% Area]	Height [uV]	Area [uV Min]	Area % [%]
1.	UNKNOWN	9,50	26,25	269726,8	13129.1	26.245
2	UNKNOWN	9.87	73,75	826524,8	36895.4	73.755
Total			100.00	1096251.6	50024,5	100,000
