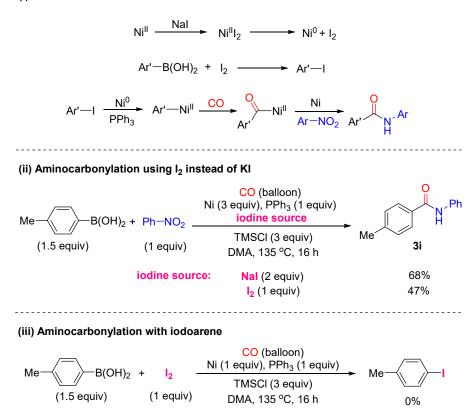
Electronic Supplementary Information

Direct Amide Synthesis via Ni-mediated Aminocarbonylation of Arylboronic Acids with CO and Nitroarenes

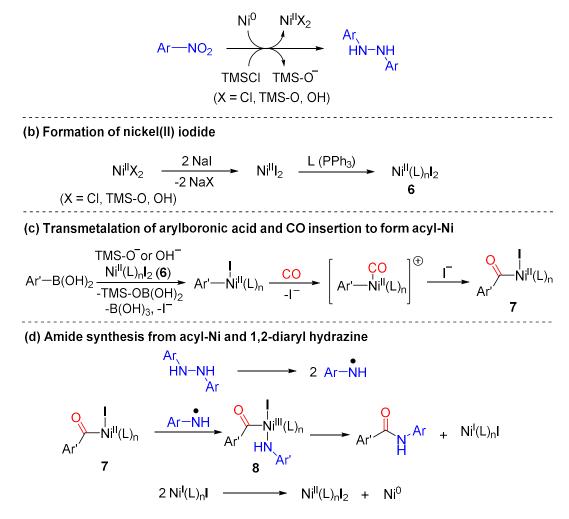
Ni Shen, Chi Wai Cheung,* and Jun-An Ma*


Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, People's Republic of China; and Joint School of NUS & TJU, International Campus of Tianjin University, Fuzhou 350207, People's Republic of China

*E-mail: zhiwei.zhang@tju.edu.cn

*E-mail: majun_an68@tju.edu.cn

Content	Page No.
Scheme S1. Possible conversion of iodide to iodine and iodoarene for aminocarbonylation	S2
Scheme S2. Proposed mechanism of aminocarbonylation.	S3
General Considerations	S5
Experimental Section	S7
References	S25
NMR Spectra	S27


Scheme S1. Possible conversion of iodide to iodine and iodoarene for aminocarbonylation.

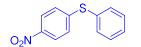
(i) Possible Mechanism via the formation of iodoarene

The addition of NaI was found to promote the efficiency of aminocarbonylation and significantly enhance the yield of amide (Table 1, entries 7 and 8). A possible role of NaI is to generate I₂, which can also induce the formation of iodoarene, such that both I₂ and iodoarene may promote the aminocarbonylation [Scheme S1, (i)]. Iodide could coordinate to Ni(II) species to form Ni^{II}I₂, which can liberate I₂ under high temperature. Arylboronic acid then reacts with I₂ to form iodoarene, which further reacts with Ni metal and nitroarene to give amide. However, when I₂ was used instead of KI, the reaction was less efficient, giving the amide product in much less yield [Scheme S1, (ii)]. Moreover, no iodoarene was formed in the Ni^{II}Cl₂-mediated reaction between arylboronic acid and I₂ [Scheme S1, (iii)]. These results suggested that the in-situ formation of iodine or iodoarene does not take place to trigger aminocarbonylation. Scheme S2. Proposed mechanism of aminocarbonylation.

(a) Reduction of nitroarene

Based on the experimental results, we proposed a plausible mechanism of this aminocarbonylation reaction (Scheme S2). Ni metal (Ni(0)) reduces nitroarene successively to 1,2-diaryl hydrazine in the presence of TMSCl as a deoxygenating additive [Scheme S2(a)]. Meanwhile, Ni(0) is oxidized to Ni(II) salts, in which the counter anion could be chloride or O-centered ligands [trimethylsilanolate (TMS-O⁻), hydroxide (OH⁻)]] originated from the reduction process of nitroarene. Ni(II) salts then undergo ligand substitution with NaI to form Ni^{II}I₂, which further reacts with PPh₃ to form ligated Ni^{II}I₂ complexes **6** [Scheme S2(b)]. We speculated that the formation of complex **6** could prevent Ni precipitation with O-centered ligands. The good leaving group ability of iodide also enables rapid iodide dissociation from **6**,

providing vacant site to effect transmetalation of arylboronic acid via the activation with TMS-O⁻ or OH⁻, as well as the subsequent CO insertion to form acyl-Ni^{II} intermediate 7 [Scheme S2(c)]. 1,2-Diaryl hydrazine bears a weak N-N bond (bond dissociation energy ~ 39 kcal mol⁻¹) and likely splits readily into amino radicals, which then react with 7 to give Ni^{III}(acyl)(amino) complex **8** [Scheme S2(d)]. Finally, 7 undergoes reductive elimination to afford the amide product, while the co-product Ni(I) species could disproportionate to regenerate Ni^{III}₂ and Ni(0). The detailed reaction mechanism will be subjected to the dedicated study in the future.

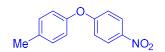

General Considerations

(A) General Analytical Information

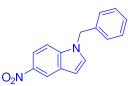
Nuclear Magnetic Resonance (NMR) spectra were recorded on a Bruker Avance 400 MHz at ambient temperature. All ¹H NMR spectra were measured in part per million (ppm) relative to the signal of tetramethylsilane (TMS, 0.00 ppm), the signal of residual chloroform in deuterated chloroform (CDCl₃, 7.26 ppm), or the signal of residual dimethyl sulfoxide in dimethyl- d_6 sulfoxide (DMSO- d_6 , 2.50 ppm).¹ Data for ¹H NMR were reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, sex = sextet, m = multiplet), coupling constant (*J*, in Hz), and integration. All ¹³C NMR spectra were reported in ppm relative to CDCl₃ (77.16 ppm) or DMSO- d_6 (39.52 ppm)¹ and were obtained with complete ¹H decoupling. High-resolution mass spectrometry (HRMS) images were obtained on a microTOF-QII or Waters Micromass GCT Premier Instrument.

(B) General Reagent Information

Unless otherwise noted, all chemicals were used as received without further purifications. *N*,*N*-Dimethylacetamide (DMA, 99.8% purity) were dried with 4 Å molecular sieve beads prior to use. Carbon monoxide (CO), nickel powder (Ni), triphenylphosphine (PPh₃), and sodium iodide (NaI) were in 99.9%, 99.9%, 98%, and 99% purities, respectively. Chlorotrimethylsilane (TMSCl, 98% purity) was stored in the refrigerator prior to use. The following known starting materials (nitroarenes) were prepared according to the literature procedures.²⁻⁶


(4-nitrophenyl)(phenyl)sulfane²

NO₂


(4-(4-nitrophenoxy)phenyl)(phenyl)methanone 4

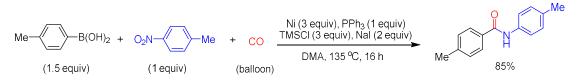
 VO_2

5-nitro-2-phenylbenzo[d]oxazole⁶

1-methyl-4-(4-nitrophenoxy)benzene³

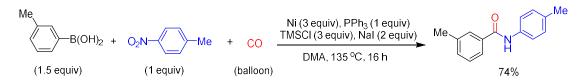
1-benzyl-5-nitro-1H-indole⁵

NO₂


2-(4-fluorophenyl)-5-nitrobenzo[d]oxazole⁶

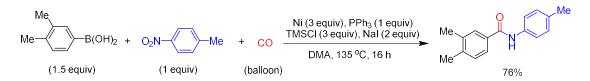
(C) General Manipulation Considerations

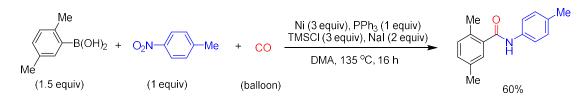
All manipulations for direct reductive aminocarbonylation of nitroarenes with arylboronic acids were set up in a 20 mL rubber septum-capped Schlenk tube. Flash column chromatography was performed using silica gel (200-300 mesh). The eluents used for column chromatography were presented as ratios of solvent volumes. Yields reported in the publication are isolated yields unless otherwise noted. All new amide products were characterized by ¹H and ¹³C NMR spectroscopies amd high-resolution mass spectrometry (HRMS). All known amide products were characterized by ¹H and ¹³C NMR spectroscopies, which were further compared with the reported data when provided.

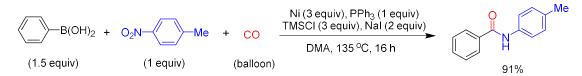

Experimental Section

Nickel Metal-mediated Aminocarbonylation of Arylboronic Acids with Nitroarenes (General Procedure). An oven-dried 10 mL Schlenk tube equipped with a Teflon-coated magnetic stir bar was sequentially charged with nickel powder (Ni, 3 equiv, 1.5 mmol, 87 mg), arylboronic acid (1.5 equiv, 0.75 mmol), nitroarene (1 equiv, 0.50 mmol), triphenylphosphine (PPh₃, 1 equiv, 0.5 mmol, 131 mg), and sodium iodide (NaI, 2 equiv, 1.0 mmol, 150 mg). The tube was capped with an airtight rubber septum, and the tube was degassed in vacuo and then backfilled with carbon monoxide (CO) for three times via a CO-filled balloon. After being degassed and equipped with a CO-filled balloon, N,N-dimethylacetamide solvent (DMA, 1.5 mL) followed by chlorotrimethylsilane (TMSCl, 3 equiv, 1.50 mmol, 190 μ L) were then transferred into the reaction mixture via a syringe. The reaction mixture was stirred at 135 °C in a preheated oil bath for 16 h. After the reaction, the reaction mixture was cooled down to room temperature. The reaction mixture was diluted with ethyl acetate (EtOAc, ~50 mL), and the organic fraction was further acidified with HCl solution (~1 M (aq), ~10 mL), neutralized with NaOH solution (~1 M (aq), ~30 mL), washed with saturated NaCl solution, dried with anhydrous Na₂SO₄, and then concentrated in vacuo with the aid of a rotary evaporator. The residue was purified by flash column chromatography using a mixture of petroleum ether (PE) and ethyl acetate (EtOAc) as eluents to afford the amide product.

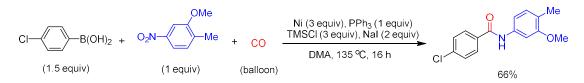
4-Methyl-*N-p***-tolylbenzamide (3a).**⁷ Following the general procedure, the title compound was prepared using 4-methylphenylboronic acid (1.5 equiv, 0.75 mmol, 101 mg) and 1-methyl-4-nitrobenzene (1.0 equiv, 0.50 mmol, 69 mg) using PE/EtOAc (8:1) as an eluent to afford the title compound as a white amorphous solid (95 mg, 85%). ¹H NMR (400 MHz, CDCl₃) δ 8.02 (s, 1H), 7.73 (d, *J* = 7.7 Hz, 2H), 7.51 (d, *J*


= 7.9 Hz, 2H), 7.20 (d, *J* = 7.8 Hz, 2H), 7.12 (d, *J* = 7.9 Hz, 2H), 2.38 (s, 3H), 2.31 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 165.77, 142.14, 135.55, 134.01, 132.18, 129.51, 129.33, 127.09, 120.40, 21.51, 20.94.

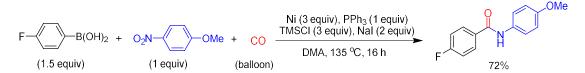

3-Methyl-*N***-***p***-tolylbenzamide (3b).**⁸ Following the general procedure, the title compound was prepared using 3-methylphenylboronic acid (1.5 equiv, 0.75 mmol, 101 mg) and 1-methyl-4-nitrobenzene (1.0 equiv, 0.50 mmol, 69 mg) using PE/EtOAc (8:1) as an eluent to afford the title compound as a white amorphous solid (83 mg, 74%). ¹H NMR (400 MHz, CDCl₃) δ 7.98 (s, 1H), 7.69 – 7.57 (m, 2H), 7.51 (d, *J* = 8.0 Hz, 2H), 7.34-7.29 (m, 2H), 7.13 (d, *J* = 7.9 Hz, 2H), 2.37 (s, 3H), 2.32 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.98, 138.58, 135.49, 135.06, 134.10, 132.43, 129.53, 128.55, 127.83, 124.01, 120.38, 21.39, 20.94.


3,5-Dimethyl-*N***-***p***-tolylbenzamide (3c).**⁹ Following the general procedure, the title compound was prepared using 3,5-dimethylphenylboronic acid (1.5 equiv, 0.75 mmol, 113 mg) and 1-methyl-4-nitrobenzene (1.0 equiv, 0.50 mmol, 69 mg) using PE/EtOAc (8:1) as an eluent to afford the title compound as a white amorphous solid (84 mg, 70%). ¹H NMR (400 MHz, CDCl₃) δ 7.72 (s, 1H), 7.52 (d, *J* = 8.0 Hz, 2H), 7.47-7.45 (m, 2H), 7.20 – 7.12 (m, 3H), 2.39 (s, 6H), 2.34 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.93, 138.50, 135.48, 135.14, 134.07, 133.33, 129.56, 124.73, 120.17, 21.29, 20.91.

3,4-Dimethyl-*N***-***p***-tolylbenzamide (3d).**¹⁰ Following the general procedure, the title compound was prepared using 3,4-dimethylphenylboronic acid (1.5 equiv, 0.75 mmol, 113 mg) and 1-methyl-4-nitrobenzene (1.0 equiv, 0.50 mmol, 69 mg) using PE/EtOAc (8:1) as an eluent to afford the title compound as a white amorphous solid (91 mg, 76%). ¹H NMR (400 MHz, CDCl₃) δ 8.00 (s, 1H), 7.61 (s, 1H), 7.56-7.50 (m, 3H), 7.16-7.11 (m, 3H), 2.31 (s, 3H), 2.28 (s, 3 H), 2.26 (s, 3 H). ¹³C NMR (101 MHz, CDCl₃) δ 166.06, 140.74, 137.01, 135.69, 133.87, 132.55, 129.77, 129.45, 128.44, 124.47, 120.48, 20.94, 19.85, 19.76.

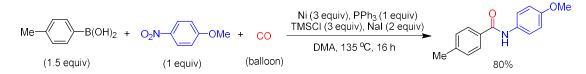


2,5-Dimethyl-*N***-***p***-tolylbenzamide (3e).**¹¹ Following the general procedure, the title compound was prepared using 2,5-dimethylphenylboronic acid (1.5 equiv, 0.75 mmol, 113 mg) and 1-methyl-4-nitrobenzene (1.0 equiv, 0.50 mmol, 69 mg) using PE/EtOAc (8:1) as an eluent to afford the title compound as a white amorphous solid (71 mg, 60%). ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, *J* = 7.9 Hz, 2H), 7.44 (s, 1H), 7.28 (s, 1H), 7.18 – 7.12 (m, 4H), 2.44 (s, 3H), 2.34 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 168.14, 136.43, 135.48, 134.12, 133.14, 131.14, 130.86, 129.56, 127.25, 119.93, 20.92, 20.87, 19.35 (13 carbon signals were observed out of expected 14 carbon signals).



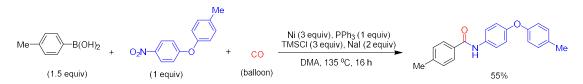
*N-p-***Tolylbenzamide (3f).**¹² Following the general procedure, the title compound was prepared using phenylboronic acid (1.5 equiv, 0.75 mmol, 92 mg) and

1-methyl-4-nitrobenzene (1 equiv, 0.50 mmol, 69 mg) using PE/EtOAc (8:1) as an eluent to afford the title compound as a white amorphous solid (96 mg, 91%). ¹H NMR (400 MHz, CDCl₃) δ 7.90-7.82 (m, 3H), 7.56-7.50 (m, 3H), 7.46 (t, *J* = 7.5 Hz, 2H), 7.16 (d, *J* = 8.0 Hz, 2H), 2.34 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.74, 135.39, 135.08, 134.22, 131.71, 129.57, 128.73, 127.03, 120.36, 20.94.

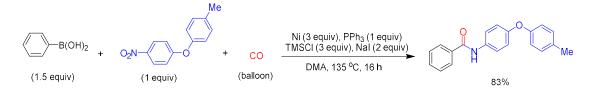

4-Chloro-*N***-(3-methoxy-4-methylphenyl)benzamide (3g).**¹³ Following the general procedure, the title compound was prepared using 4-chlorophenylboronic acid (1.5 equiv, 0.75 mmol, 117 mg) and 2-methoxy-1-methyl-4-nitrobenzene (1.0 equiv, 0.50 mmol, 84 mg) using PE/EtOAc (8:1) as an eluent to afford the title compound as a white amorphous solid (91 mg, 66%). ¹**H NMR** (400 MHz, CDCl₃) δ 7.88 – 7.76 (m, 3H), 7.48 – 7.41 (m, 3H), 7.08 (d, *J* = 7.9 Hz, 1H), 6.88 (d, *J* = 7.9 Hz, 1H), 3.84 (s, 3H), 2.20 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 164.59, 157.99, 138.07, 136.60, 133.37, 130.49, 129.04, 128.41, 123.18, 111.59, 103.04, 55.39, 15.88.

4-Fluoro-*N*-(**4-methoxyphenyl)benzamide** (**3h**).¹⁴ Following the general procedure, the title compound was prepared using 4-fluorophenylboronic acid (1.5 equiv, 0.75 mmol, 106 mg) and 1-methoxy-4-nitrobenzene (1.0 equiv, 0.50 mmol, 76 mg) using PE/EtOAc (8:1) as an eluent to afford the title compound as a white amorphous solid (88.23 mg, 72%). ¹H NMR (400 MHz, CDCl₃) δ 7.90-7.85 (m, 2H), 7.70 (s, 1H), 7.52 (d, *J* = 8.3 Hz, 2H), 7.16 (t, *J* = 8.4 Hz, 2H), 6.91 (d, *J* = 8.3 Hz, 2H), 3.82 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 163.97, 163.94 (d, *J*_{C-F} = 247.1 Hz), 155.58, 132.09, 131.44 (d, *J*_{C-F} = 2.1 Hz), 130.24 (d, *J*_{C-F} = 9.0 Hz), 122.01, 115.28 (d, *J*_{C-F} = 21.5 Hz), 113.74, 55.18.

4-Methyl-*N***-phenylbenzamide (3i).**¹⁵ Following the general procedure, the title compound was prepared using 4-methylphenylboronic acid (1.5 equiv, 0.75 mmol, 101 mg) and nitrobenzene (1.0 equiv, 0.50 mmol, 62 mg) using PE/EtOAc (8:1) as an eluent to afford the title compound as a white amorphous solid (72 mg, 68%). ¹**H NMR** (400 MHz, CDCl₃) δ 8.01 (s, 1H), 7.75 (d, *J* = 7.7 Hz, 2H), 7.64 (d, *J* = 7.9 Hz, 2H), 7.33 (t, *J* = 7.7 Hz, 2H), 7.23 (d, *J* = 8.0 Hz, 2H), 7.13 (t, *J* = 7.5 Hz, 1H), 2.40 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 165.86, 142.31, 138.10, 132.10, 129.39, 129.04, 127.11, 124.41, 120.30, 21.52.

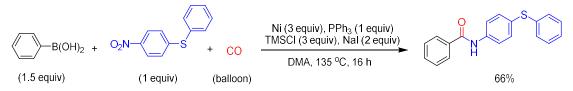


N-(4-Methoxyphenyl)-4-methylbenzamide (3j).¹⁶ Following the general procedure, the title compound was prepared using 4-methylphenylboronic acid (1.5 equiv, 0.75 mmol, 101 mg) and 1-methoxy-4-nitrobenzene (1.0 equiv, 0.50 mmol, 77 mg) using PE/EtOAc (8:1) as an eluent to afford the title compound as a white amorphous solid (96 mg, 80%). ¹H NMR (400 MHz, CDCl₃) δ 7.86 (s, 1H), 7.75 (d, *J* = 7.8 Hz, 2H), 7.53 (d, *J* = 8.4 Hz, 2H), 7.24 (s, 2H), 6.88 (d, *J* = 8.4 Hz, 2H), 3.80 (s, 3H), 2.41 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.63, 156.49, 142.19, 132.10, 131.11, 129.39, 127.02, 122.11, 114.18, 55.51, 21.53.

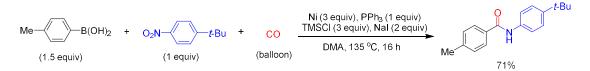


N-(4-Methoxyphenyl)benzamide (3k).¹⁷ Following the general procedure, the title compound was prepared using phenylboronic acid (1.5 equiv, 0.75 mmol, 92 mg) and

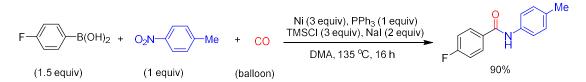
1-methoxy-4-nitrobenzene (1.0 equiv, 0.50 mmol, 77 mg) using PE/EtOAc (6:1) as an eluent to afford the title compound as a white amorphous solid (102 mg, 90%). ¹H **NMR** (400 MHz, CDCl₃) δ 7.87 (d, J = 7.6 Hz, 2H), 7.76 (s, 1H), 7.60 – 7.52 (m, 3H), 7.48 (t, J = 7.4 Hz, 2H), 6.91 (d, J = 8.4 Hz, 2H), 3.82 (s, 3H). ¹³C **NMR** (101 MHz, CDCl₃) δ 165.61, 156.62, 135.03, 131.73, 130.98, 128.77, 126.98, 122.08, 114.24, 55.53.



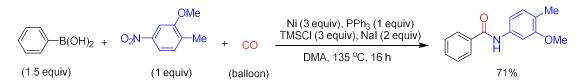
N-(4-(*p*-Tolyloxy)phenyl)-4-methylbenzamide (3l). Following the general procedure, the title compound was prepared using 4-methylphenylboronic acid (1.5 equiv, 0.75 mmol, 102 mg) and 1-(4-nitrophenoxy)-4-methylbenzene (1.0 equiv, 0.50 mmol, 114 mg) using PE/EtOAc (8:1) as an eluent to afford the title compound as a white amorphous solid (87 mg, 55%). ¹H NMR (400 MHz, CDCl₃) δ 7.78-7.77 (m, 3H), 7.57 (d, *J* = 8.4 Hz, 2H), 7.29 (d, *J* = 7.9 Hz, 2H), 7.13 (d, *J* = 8.0 Hz, 2H), 7.00 (d, *J* = 8.4 Hz, 2H), 6.91 (d, *J* = 8.0 Hz, 2H), 2.43 (s, 3H), 2.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.56, 155.05, 154.25, 142.38, 133.14, 132.78, 132.02, 130.23, 129.46, 126.99, 121.90, 119.15, 118.71, 21.51, 20.69. HRMS (ESI): Calcd for C₂₁H₁₉NO₂ [M+H]: 318.1489; Found: 318.1488.



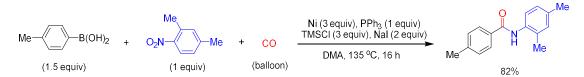
N-(4-(*p*-Tolyloxy)phenyl)benzamide (3m). Following the general procedure, the title compound was prepared using phenylboronic acid (1.5 equiv, 0.75 mmol, 92 mg) and 1-(4-nitrophenoxy)-4-methylbenzene (1.0 equiv, 0.50 mmol, 115 mg) using PE/EtOAc (8:1) as an eluent to afford the title compound as a white amorphous solid (126 mg, 83%). ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J* = 7.5 Hz, 2H), 7.79 (s, 1H),


7.61=7.54 (m, 3H), 7.50 (t, J = 7.3 Hz, 2H), 7.14 (d, J = 8.0 Hz, 2H), 7.01 (d, J = 8.6 Hz, 2H), 6.92 (d, J = 8.0 Hz, 2H), 2.34 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 165.66, 154.97, 154.37, 134.89, 132.97, 132.86, 131.88, 130.26, 128.84, 126.99, 121.95, 119.14, 118.75, 20.73. **HRMS** (ESI): Calcd for C₂₀H₁₇NO₂ [M+H]: 304.1332; Found: 304.1331.

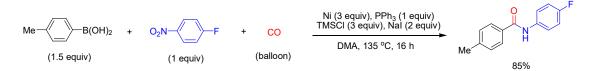
N-(4-(Phenylthio)phenyl)benzamide (3n).¹⁸ Following the general procedure, the title compound was prepared using phenylboronic acid (1.5 equiv, 0.75 mmol, 92 mg) and (4-nitrophenyl)(phenyl)sulfane (1.0 equiv, 0.50 mmol, 116 mg) using PE/EtOAc (8:1) as an eluent to afford the title compound as a white amorphous solid (101 mg, 66%). ¹H NMR (400 MHz, CDCl₃) δ 7.92 – 7.83 (m, 3H), 7.62 (d, *J* = 8.8 Hz, 2H), 7.56 (t, *J* = 7.3 Hz, 1H), 7.49 (t, *J* = 7.3 Hz, 2H), 7.41 (d, *J* = 8.1 Hz, 2H), 7.31-7.27 (m, 4H), 7.24-1.19 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 165.71, 137.47, 136.74, 134.75, 133.03, 132.02, 130.41, 129.98, 129.14, 128.86, 127.02, 126.66, 120.90.


N-(4-*tert*-Butylphenyl)-4-methylbenzamide (30).¹⁹ Following the general procedure, the title compound was prepared using 4-methylphenylboronic acid (1.5 equiv, 0.75 mmol, 102 mg) and 1-*tert*-butyl-4-nitrobenzene (1.0 equiv, 0.50 mmol, 87 mg) using PE/EtOAc (8:1) as an eluent to afford the title compound as a white amorphous solid (96 mg, 71%). ¹H NMR (400 MHz, CDCl₃) δ 7.92 (s, 1H), 7.75 (d, *J* = 8.1 Hz, 2H), 7.56 (d, *J* = 7.8 Hz, 2H), 7.36 (d, *J* = 7.7 Hz, 2H), 7.24 (d, *J* = 8.0 Hz, 2H), 2.40 (s, 3H), 1.31 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 165.69, 147.39, 142.19, 135.44, 132.21, 129.38, 127.06, 125.87, 120.04, 34.42, 31.40, 21.51.

4-Fluoro-*N*-*p*-tolylbenzamide (3p).²⁰ Following the general procedure, the title compound was prepared using 4-fluorophenylboronic acid (1.5 equiv, 0.75 mmol, 105 mg) and 1-methyl-4-nitrobenzene (1.0 equiv, 0.50 mmol, 68 mg) using PE/EtOAc (8:1) as an eluent to afford the title compound as a white amorphous solid (102 mg, 90%). ¹H NMR (400 MHz, CDCl₃) δ 7.93 – 7.82 (m, 2H), 7.75 (s, 1H), 7.50 (d, *J* = 7.9 Hz, 2H), 7.23 – 7.07 (m, 4H), 2.34 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.98 (d, *J*_{C-F} = 250.8 Hz), 164.72, 135.33, 134.56, 131.38 (d, *J*_{C-F} = 3.2 Hz), 129.76, 129.51 (d, *J*_{C-F} = 8.9 Hz), 120.50, 115.96 (d, *J*_{C-F} = 21.9 Hz), 21.06.

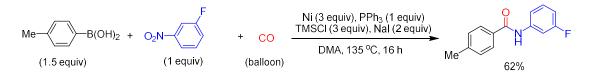


N-(3-Methoxy-4-methylphenyl)-4-methylbenzamide (3q). Following the general procedure, the title compound was prepared using 4-methylphenylboronic acid (1.5 equiv, 0.75 mmol, 103 mg) and 2-methoxy-1-methyl-4-nitrobenzene (1.0 equiv, 0.50 mmol, 84 mg) using PE/EtOAc (8:1) as an eluent to afford the title compound as a white amorphous solid (106 mg, 83%). ¹H NMR (400 MHz, CDCl₃) δ 7.86 (s, 1H), 7.76 (d, *J* = 7.8 Hz, 2H), 7.51 (s, 1H), 7.26 (d, *J* = 8.6 Hz, 2H), 7.07 (d, *J* = 7.9 Hz, 1H), 6.88 (d, *J* = 7.9 Hz, 1H), 3.84 (s, 3H), 2.41 (s, 3H), 2.19 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.67, 157.94, 142.26, 137.06, 132.14, 130.40, 129.40, 127.00, 122.68, 111.53, 103.05, 55.35, 21.50, 15.85. HRMS (ESI): Calcd for C₁₆H₁₇NO₂ [M+H]: 256.1332; Found: 256.1334.

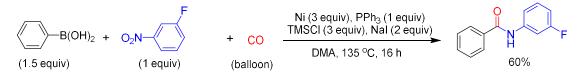


N-(3-Methoxy-4-methylphenyl)benzamide (3r).²¹ Following the general procedure,

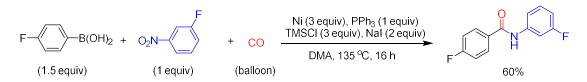
the title compound was prepared using phenylboronic acid (1.5 equiv, 0.75 mmol, 92 mg) and 2-methoxy-1-methyl-4-nitrobenzene (1.0 equiv, 0.50 mmol, 84 mg) using PE/EtOAc (8:1) as an eluent to afford the title compound as a white amorphous solid (86 mg, 71%). ¹H NMR (400 MHz, CDCl₃) δ 7.96 (s, 1H), 7.85 (d, *J* = 7.6 Hz, 2H), 7.56 – 7.40 (m, 4H), 7.07 (d, *J* = 7.9 Hz, 1H), 6.90 (d, *J* = 8.0 Hz, 1H), 3.82 (s, 3H), 2.19 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.84, 157.93, 136.96, 135.01, 131.74, 130.43, 128.72, 127.03, 122.85, 111.73, 103.16, 55.33, 15.86.

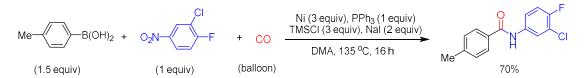


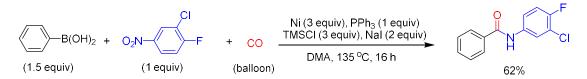
4-Methyl-*N***-(2,4-dimethylphenyl)benzamide** (3s).²² Following the general procedure, the title compound was prepared using 4-methylphenylboronic acid (1.5 equiv, 0.75 mmol, 102 mg) and 2,4-dimethyl-1-nitrobenzene (1.0 equiv, 0.50 mmol, 76 mg) using PE/EtOAc (8:1) as an eluent to afford the title compound as a white amorphous solid (98 mg, 82%). ¹H NMR (400 MHz, CDCl₃) δ 7.81-7.71 (m, 3H), 7.60 (s, 1H), 7.28 (d, *J* = 7.7 Hz, 2H), 7.08-7.02 (m, 2H), 2.42 (s, 3H), 2.31 (s, 3H), 2.28 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.62, 142.23, 135.01, 133.24, 132.22, 131.20, 129.54, 129.43, 127.39, 127.06, 123.41, 21.51, 20.92, 17.80.

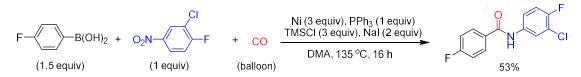


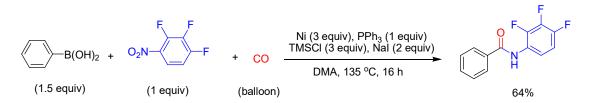
N-(4-Fluorophenyl)-4-methylbenzamide (3t).²³ Following the general procedure, the title compound was prepared using 4-methylphenylboronic acid (1.5 equiv, 0.75 mmol, 102 mg) and 1-fluoro-4-nitrobenzene (1.0 equiv, 0.50 mmol, 70 mg) using PE/EtOAc (8:1) as an eluent to afford the title compound as a white amorphous solid (97 mg, 85%). ¹H NMR (400 MHz, CDCl₃) δ 7.80 (s, 1 H), 7.76 (d, *J* = 8.6 Hz, 2H), 7.59 (dd, *J* = 7.7 Hz, *J* = 5.0 Hz, 2H), 7.29 (d, *J* = 7.8 Hz, 2H), 7.10 – 7.01 (m, 2H), 2.43 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.76, 159.58 (d, *J*_{C-F} = 242.2 Hz),

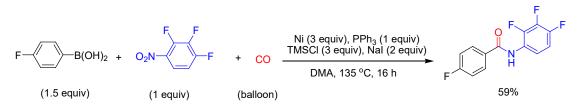

142.66, 134.10 (d, *J*_{C-F} = 2.6 Hz), 131.93, 129.62, 127.13, 122.14 (d, *J*_{C-F} = 7.9 Hz), 115.87 (d, *J*_{C-F} = 22.4 Hz), 21.7.


N-(3-Fluorophenyl)-4-methylbenzamide (3u).²⁴ Following the general procedure, the title compound was prepared using 4-methylphenylboronic acid (1.5 equiv, 0.75 mmol, 102 mg) and 1-fluoro-3-nitrobenzene (1.0 equiv, 0.50 mmol, 70 mg) using PE/EtOAc (8:1) as an eluent to afford the title compound as a white amorphous solid (71 mg, 62%). ¹H NMR (400 MHz, CDCl₃) δ 7.89 (s, 1H), 7.76 (d, *J* = 7.8 Hz, 2H), 7.64 (d, *J* = 10.9 Hz, 1H), 7.33-7.25 (m, 4H), 6.84 (t, *J* = 8.4 Hz, 1H), 2.43 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.84, 163.16 (d, *J*_{C-F} = 243.2 Hz), 142.81, 139.70 (d, *J*_{C-F} = 10.9 Hz), 131.81, 130.22 (d, *J*_{C-F} = 9.3 Hz), 129.62, 127.16, 115.42 (d, *J*_{C-F} = 2.9 Hz), 111.24 (d, *J*_{C-F} = 21.2 Hz), 107.73 (d, *J*_{C-F} = 26.2 Hz), 21.7.

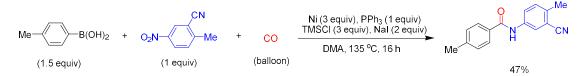

N-(3-Fluorophenyl)benzamide (3v).²⁵ Following the general procedure, the title compound was prepared using phenylboronic acid (1.5 equiv, 0.75 mmol, 91 mg) and 1-fluoro-3-nitrobenzene (1.0 equiv, 0.50 mmol, 71 mg) using PE/EtOAc (8:1) as an eluent to afford the title compound as a white amorphous solid (64.2 mg, 60%). ¹H NMR (400 MHz, CDCl₃) δ 7.92 (s, 1H), 7.86 (d, *J* = 7.6 Hz, 2H), 7.63 (d, *J* = 10.7 Hz, 1H), 7.56 (t, *J* = 7.3 Hz, 1H), 7.49 (t, *J* = 7.5 Hz, 2H), 7.34-7.24 (m, 2H), 6.85 (t, *J* = 7.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 165.92, 163.18 (d, *J*_{C-F} = 243.5 Hz), 139.58 (d, *J*_{C-F} = 10.8 Hz), 134.7, 132.2, 130.28 (d, *J*_{C-F} = 9.2 Hz), 128.99, 127.15, 115.49 (d, *J*_{C-F} = 3.4 Hz), 111.41 (d, *J*_{C-F} = 21.2 Hz), 107.80 (d, *J*_{C-F} = 9.0 Hz).


4-Fluoro-*N*-(**3-fluorophenyl)benzamide** (**3w**).²⁶ Following the general procedure, the title compound was prepared using 4-fluorophenylboronic acid (1.5 equiv, 0.75 mmol, 106 mg) and 1-fluoro-3-nitrobenzene (1.0 equiv, 0.50 mmol, 71 mg) using PE/EtOAc (8:1) as an eluent to afford the title compound as a white amorphous solid (70 mg, 60%). ¹H NMR (400 MHz, CDCl₃) δ 7.89-7.84 (m, 3H), 7.61 (d, *J* = 10.9 Hz, 1H), 7.37-7.24 (m, 2H), 7.17 (t, *J* = 8.6 Hz, 2H), 6.86 (t, *J* = 8.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 165.18 (d, *J*_{C-F} = 251.6 Hz), 164.76, 163.19 (d, *J*_{C-F} = 243.7 Hz), 139.40 (d, *J*_{C-F} = 10.8 Hz), 130.89 (d, *J*_{C-F} = 3.3 Hz), 130.35 (d, *J*_{C-F} = 9.3 Hz), 129.57 (d, *J*_{C-F} = 9.0 Hz), 116.14 (d, *J*_{C-F} = 21.9 Hz), 115.48 (d, *J*_{C-F} = 2.9 Hz), 111.58 (d, *J*_{C-F} = 21.2 Hz), 107.84 (d, *J*_{C-F} = 26.2 Hz).

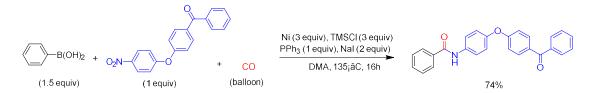

N-(3-Chloro-4-fluorophenyl)-4-methylbenzamide (3x). Following the general procedure, the title compound was prepared using 4-methylphenylboronic acid (1.5 equiv, 0.75 mmol, 102 mg) and 2-chloro-1-fluoro-4-nitrobenzene (1.0 equiv, 0.50 mmol, 88.0 mg) using PE/EtOAc (8:1) as an eluent to afford the title compound as a white amorphous solid (92 mg, 70%). ¹H NMR (400 MHz, CDCl₃) δ 7.97 (s, 1H), 7.81 (d, *J* = 5.5 Hz, 1H), 7.73 (d, *J* = 7.8 Hz, 2H), 7.46-7.41 (m, 1 H), 7.25 (d, *J* = 7.5 Hz, 2H), 7.09 (t, *J* = 8.8 Hz, 1H), 2.41 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.99, 154.94 (d, *J*_{C-F} = 244.9 Hz), 142.87, 134.76 (d, *J*_{C-F} = 3.5 Hz), 131.49, 129.58, 127.19, 122.74, 121.22 (d, *J*_{C-F} = 22.0 Hz), 120.19 (d, *J*_{C-F} = 6.8 Hz), 116.69 (d, *J*_{C-F} = 22.0 Hz), 21.63. HRMS (ESI): Calcd for C₁₄H₁₁ClFNO [M+H]: 264.0586; Found: 264.0589.


N-(3-Chloro-4-fluorophenyl)benzamide (3y).²⁷ Following the general procedure, the title compound was prepared using phenylboronic acid (1.5 equiv, 0.75 mmol, 91 mg) and 2-chloro-1-fluoro-4-nitrobenzene (1.0 equiv, 0.50 mmol, 88 mg) using PE/EtOAc (8:1) as an eluent to afford the title compound as a white amorphous solid (77.5 mg, 62%). ¹H NMR (400 MHz, CDCl₃) δ 7.95 (s, 1H), 7.86-7.81 (m, 3H), 7.56 (t, *J* = 7.4 Hz, 1H), 7.52 – 7.39 (m, 3H), 7.11 (t, *J* = 8.7 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 165.84, 155.08 (d, *J*_{C-F} = 245.2 Hz), 134.62 (d, *J*_{C-F} = 3.4 Hz), 134.4, 132.3, 129.05, 127.13, 122.67, 121.4 (d, *J*_{C-F} = 18.5 Hz), 120.06 (d, *J*_{C-F} = 6.9 Hz), 116.84 (d, *J*_{C-F} = 22.0 Hz).

N-(3-Chloro-4-fluorophenyl)-4-fluorobenzamide (3z). Following the general procedure, the title compound was prepared using 4-fluorophenylboronic acid (1.5 equiv, 0.75 mmol, 106 mg) and 2-chloro-1-fluoro-4-nitrobenzene (1.0 equiv, 0.50 mmol, 88 mg) using PE/EtOAc (8:1) as an eluent to afford the title compound as a white amorphous solid (72 mg, 53%). ¹H NMR (400 MHz, CDCl₃) δ 7.93 (s, 1H), 7.85 (dd, J = 8.4, J = 5.2 Hz, 2H), 7.79 (d, J = 6.5 Hz, 1H), 7.44-7.40 (m, 1H), 7.18 – 7.08 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.20 (d, $J_{C-F} = 251.9$ Hz), 164.92, 155.16 (d, $J_{C-F} = 245.4$ Hz), 134.44 (d, $J_{C-F} = 3.3$ Hz), 130.55 (d, $J_{C-F} = 3.2$ Hz), 129.59 (d, $J_{C-F} = 8.9$ Hz), 122.86, 121.41 (d, $J_{C-F} = 18.5$ Hz), 120.26 (d, $J_{C-F} = 6.8$ Hz), 116.84 (d, $J_{C-F} = 22.0$ Hz), 116.11 (d, $J_{C-F} = 21.8$ Hz). HRMS (ESI): Calcd for C₁₃H₈ClF₂NO [M+Na]: 290.0155; Found: 290.0157.

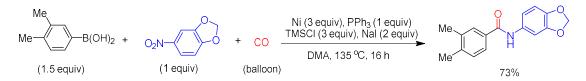


N-(2,3,4-Trifluorophenyl)benzamide (3aa). Following the general procedure, the title compound was prepared using phenylboronic acid (1.5 equiv, 0.75 mmol, 92 mg) and 1,2,3-trifluoro-4-nitrobenzene (1.0 equiv, 0.50 mmol, 89 mg) using PE/EtOAc (8:1) as an eluent to afford the title compound as a white amorphous solid (80 mg, 64%). ¹H NMR (400 MHz, CDCl₃) δ 8.17-8.10 (m, 1H), 7.97 (s, 1H), 7.88 (d, J = 7.7 Hz, 2H), 7.60 (t, J = 7.4 Hz, 1H), 7.52 (t, J = 7.6 Hz, 2H), 7.05 – 6.97 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 165.61, 147.5 (ddd, $J_{C-F} = 246.1$ Hz, $J_{C-F} = 9.9$ Hz, $J_{C-F} = 2.9$ Hz), 142.56 (ddd, $J_{C-F} = 245.4$ Hz, $J_{C-F} = 12.0$ Hz, $J_{C-F} = 3.3$ Hz), 139.79 (ddd, $J_{C-F} = 249.2$ Hz, $J_{C-F} = 16.1$ Hz, $J_{C-F} = 13.5$ Hz), 133.89, 132.47, 128.98, 127.11, 123.86 (dd, $J_{C-F} = 8.0$ Hz, $J_{C-F} = 4.0$ Hz), 116.04 (dd, $J_{C-F} = 9.9$ Hz, $J_{C-F} = 4.4$ Hz), 111.76 (dd, $J_{C-F} = 17.8$ Hz, $J_{C-F} = 4.0$ Hz). HRMS (ESI): Calcd for C₁₃H₈F₃NO [M+Na]: 274.0450; Found: 274.0453



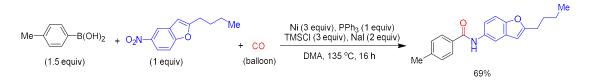
4-Fluoro-*N***-**(**2**,**3**,**4-trifluorophenyl)benzamide** (**3ab**). Following the general procedure, the title compound was prepared using 4-fluorophenylboronic acid (1.5 equiv, 0.75 mmol, 105 mg) and 1,2,3-trifluoro-4-nitrobenzene (1.0 equiv, 0.50 mmol, 89 mg, 57.2µl) using PE/EtOAc (8:1) as an eluent to afford the title compound as a white amorphous solid (80 mg, 59%). ¹H NMR (400 MHz, CDCl₃) δ 8.15-8.08 (m, 1H), 7.92 – 7.85 (m, 3H), 7.20 (t, *J* = 8.6 Hz, 2H), 7.06 – 6.99 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 165.39 (d, *J*_{C-F} = 252.3 Hz), 164.62, 147.80 (ddd, *J*_{C-F} = 246.1 Hz, *J*_{C-F} = 9.8 Hz, *J*_{C-F} = 2.6 Hz), 142.70 (ddd, *J*_{C-F} = 245.3 Hz, *J*_{C-F} = 11.9 Hz, *J*_{C-F} = 3.1 Hz), 139.98 (ddd, *J*_{C-F} = 242.9 Hz, *J*_{C-F} = 16.1 Hz, *J*_{C-F} = 13.8 Hz), 130.22 (d, *J*_{C-F} = 3.2 Hz), 129.72 (d, *J*_{C-F} = 9.1 Hz), 123.85 (dd, *J*_{C-F} = 7.9 Hz, *J*_{C-F} = 3.6 Hz), 116.29 S19

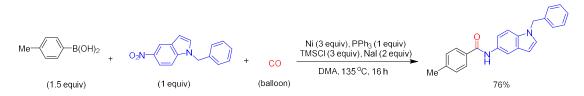
(d, $J_{C-F} = 21.9$ Hz), 116.17 (dd, $J_{C-F} = 7.5$ Hz, $J_{C-F} = 3.3$ Hz), 111.98 (dd, $J_{C-F} = 17.7$ Hz, $J_{C-F} = 3.9$ Hz). **HRMS** (ESI): Calcd for $C_{13}H_8F_3NO$ [M+H]: 270.0537; Found: 270.0541

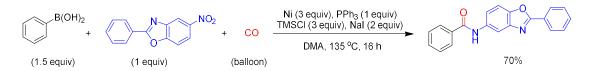


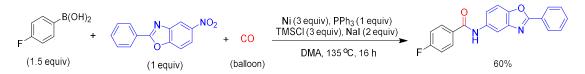
N-(3-Cyano-4-methylphenyl)-4-methylbenzamide (3ac). Following the general procedure, the title compound was prepared using 4-methylphenylboronic acid (1.5 equiv, 0.75 mmol, 101 mg) and 2-methyl-5-nitrobenzonitrile (1.0 equiv, 0.50 mmol, 82 mg) using PE/EtOAc (8:1) as an eluent to afford the title compound as a white amorphous solid (56 mg, 47%). ¹H NMR (400 MHz, CDCl₃) δ 8.10 (s, 1H), 7.95 (s, 1H), 7.79-7.72 (m, 3H), 7.31-7.23 (m, 3H), 2.51 (s, 3H), 2.42 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.88, 142.88, 137.68, 136.40, 131.29, 130.86, 129.51, 127.13, 124.66, 123.70, 117.83, 113.06, 21.55, 19.91. HRMS (ESI): Calcd for C₁₆H₁₄N₂O [M+H]: 251.1179; Found: 251.1174.

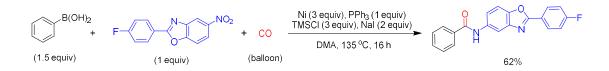
N-(4-(4-Benzoylphenoxy)phenyl)benzamide (3ad). Following the general procedure, the title compound was prepared using phenylboronic acid (1.5 equiv, 0.75 mmol, 92 mg) and (4-(4-nitrophenoxy)phenyl)(phenyl)methanone (1.0 equiv, 0.50 mmol, 159 mg) using PE/EtOAc (8:1) as an eluent to afford the title compound as a white amorphous solid (145 mg, 74%). ¹H NMR (400 MHz, CDCl₃) δ 7.98 (s, 1H), 7.89 (d, J = 7.7 Hz, 2H), 7.82 (d, J = 8.4 Hz, 2H), 7.78 (d, J = 7.6 Hz, 2H), 7.69 (d, J = 8.4 Hz, 2H), 7.60-7.54 (m, 2H), 7.52-7.46 (m, 4 H), 7.11 (d, J = 8.6 Hz, 2H), 7.03 (d, J = 8.3 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 195.54, 165.77, 161.81, 151.92, 137.93, 134.76, 134.63, 132.51, 132.17, 131.98, 131.90, 129.82, 128.85, 128.27, 127.04,

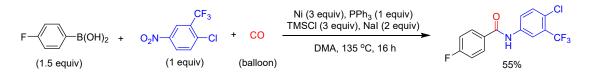

122.10, 120.92, 116.89. **HRMS** (ESI): Calcd for C₂₆H₁₉NO₃ [M+H]: 394.1438; Found: 394.1439.


N-(Benzo[d][1,3]dioxol-6-yl)-3,4-dimethylbenzamide (3ae). Following the general procedure, the title compound was prepared using 3,4-dimethylphenylboronic acid (1.5 equiv, 0.75 mmol, 112 mg) and 5-nitrobenzo[d][1,3]dioxole (1.0 equiv, 0.50 mmol, 84 mg) using PE/EtOAc (8:1) as an eluent to afford the title compound as a white amorphous solid (95 mg, 73%). ¹H NMR (400 MHz, CDCl₃) δ 7.83 (s, 1H), 7.62 (s, 1H), 7.55 (d, *J* = 7.9 Hz, 1H), 7.35 (s, 1H), 7.19 (d, *J* = 7.8 Hz, 1H), 6.90 (d, *J* = 8.3 Hz, 1H), 6.76 (d, *J* = 8.3 Hz, 1H), 5.95 (s, 2H), 2.30 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 165.87, 147.80, 144.32, 140.92, 137.13, 132.36, 132.32, 129.84, 128.32, 124.34, 113.56, 108.05, 103.22, 101.28, 19.88, 19.81. HRMS (ESI): Calcd for C₁₆H₁₅NO₃ [M+H]: 270.1125; Found: 270.1129.


N-(Benzo[b]thiophen-5-yl)-4-methylbenzamide (3af). Following the general procedure, the title compound was prepared using 4-methylphenylboronic acid (1.5 equiv, 0.75 mmol, 101 mg) and 5-nitrobenzo[b]thiophene (1.0 equiv, 0.50 mmol, 90 mg) using PE/EtOAc (8:1) as an eluent to afford the title compound as a white amorphous solid (112 mg, 84%). ¹H NMR (400 MHz, CDCl₃) δ 8.32 (s, 1H), 7.94 (s, 1H), 7.85-7.76 (m, 3H), 7.49-7.43 (m, 2H), 7.33-7.28 (m, 3H), 2.43 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.74, 142.42, 140.27, 135.67, 134.81, 132.10, 129.49, 127.60, 127.03, 124.01, 122.78, 117.84, 114.90, 21.55. HRMS (ESI): Calcd for C₁₆H₁₃NOS [M+H]: 268.0791; Found: 268.0790.

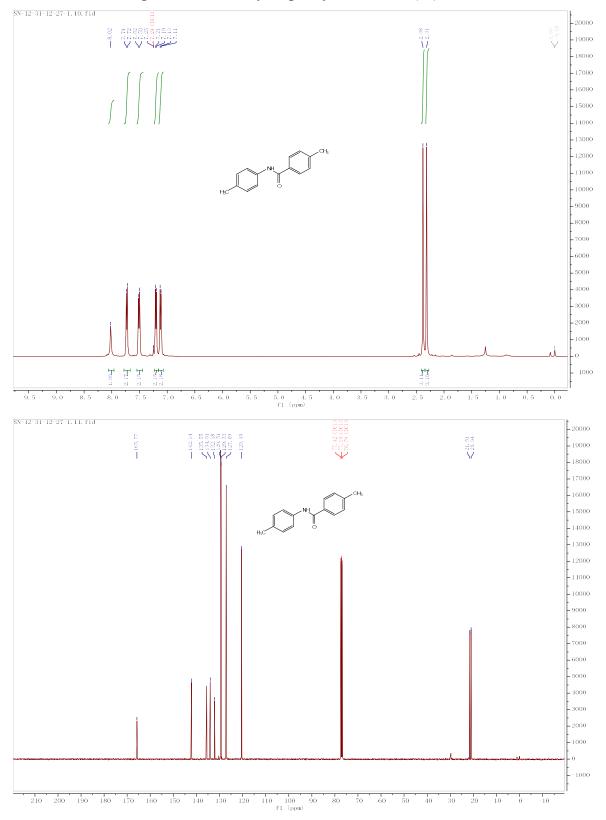

N-(2-Butylbenzofuran-5-yl)-4-methylbenzamide (3ag). Following the general procedure, the title compound was prepared using 4-methylphenylboronic acid (1.5 equiv, 0.75 mmol, 101 mg) and 2-butyl-5-nitrobenzofuran (1.0 equiv, 0.50 mmol, 109 mg) using PE/EtOAc (8:1) as an eluent to afford the title compound as a white amorphous solid (108 mg, 69%). ¹H NMR (400 MHz, CDCl₃) δ 7.94-7.86 (m, 2H), 7.77 (d, J = 7.7 Hz, 2H), 7.34 (d, J = 8.6 Hz, 1H), 7.29-7.23 (m, 3H), 6.34 (s, 1H), 2.75 (t, J = 7.6 Hz, 2H), 2.41 (s, 3H), 1.72 (quint, J = 7.6 Hz, 2H), 1.42 (sex, J = 7.4 Hz, 2H), 0.96 (t, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.74, 160.80, 151.73, 142.10, 132.83, 132.24, 129.48, 129.34, 127.02, 116.59, 112.54, 110.66, 102.08, 29.69, 28.19, 22.28, 21.48, 13.82. HRMS (ESI): Calcd for C₂₀H₂₁NO₂Na [M+Na]: 330.1465 ; Found: 330.1463.


N-(1-Benzyl-1H-indol-5-yl)-4-methylbenzamide (3ah). Following the general procedure, the title compound was prepared using 4-methylphenylboronic acid (1.5 equiv, 0.75 mmol, 102 mg) and 1-benzyl-5-nitro-1H-indole (1.0 equiv, 0.50 mmol, 126 mg) using PE/EtOAc (8:1) as an eluent to afford the title compound as a white amorphous solid (129 mg, 76%). ¹H NMR (400 MHz, CDCl₃) δ 7.98 (s, 1H), 7.85-7.73 (m, 3H), 7.35-7.20 (m, 8H), 7.15 (d, J = 3.1 Hz, 1H), 7.09 (d, J = 7.1 Hz, 2H), 6.54 (d, J = 3.1 Hz, 1H), 5.33 (s, 2H), 2.43 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.64, 141.97, 137.42, 133.90, 132.55, 130.43, 129.37, 129.24, 128.91, 128.78, 127.65, 126.99, 126.68, 116.27, 113.19, 109.94, 101.92, 50.25, 21.51. HRMS (ESI): Calcd for C₂₃H₂₀N₂O [M+H]: 341.1648; Found: 341.1648.

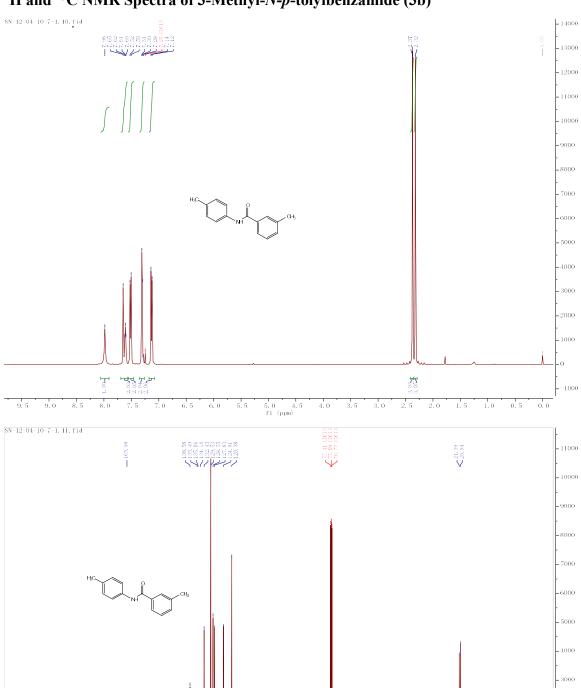

N-(2-Phenylbenzo[d]oxazol-5-yl)benzamide (4a).²⁸ Following the general procedure, the title compound was prepared using phenylboronic acid (1.5 equiv, 0.75 mmol, 92 mg) and 5-nitro-2-phenylbenzo[d]oxazole (1.0 equiv, 0.50 mmol, 120 mg) using PE/EtOAc (5:1) as an eluent to afford the title compound as a white amorphous solid (101 mg, 70%). ¹H NMR (400 MHz, CDCl₃) δ 8.25 (d, *J* = 6.8 Hz, 2H), 8.10-8.00 (m, 2H), 7.91 (d, *J* = 7.5 Hz, 2H), 7.66 (d, *J* = 8.9 Hz, 1H), 7.60-7.45 (m, 7H). ¹³C NMR (101 MHz, CDCl₃) δ 165.92, 164.01, 147.85, 142.61, 134.86, 131.92, 131.66, 128.94, 128.82, 127.68, 127.10, 127.01, 118.70, 112.10, 110.60 (15 carbon signals were observed out of expected 16 carbon signals).

4-Fluoro-*N***-(2-phenylbenzo[d]oxazol-5-yl)benzamide (4b).**²⁸ Following the general procedure, the title compound was prepared using 4-fluorophenylboronic acid (1.5 equiv, 0.75 mmol, 105 mg) and 5-nitro-2-phenylbenzo[d]oxazole (1.0 equiv, 0.50 mmol, 120 mg) using PE/EtOAc (5:1) as an eluent to afford the title compound as a white amorphous solid (100 mg, 60%). ¹**H NMR** (400 MHz, CDCl₃) δ 8.30 – 8.22 (m, 2H), 8.02 (s, 1H), 7.98 – 7.86 (m, 3H), 7.64 (d, *J* = 8.9 Hz, 1H), 7.60-7.50 (m, 4H), 7.20 (t, *J* = 8.3 Hz, 2H). ¹³**C NMR** (101 MHz, DMSO-*d*₆) δ 164.54, 164.11 (d, *J*_{C-F} = 247.6 Hz), 162.98, 146.70, 141.62, 136.28, 132.02, 131.33 (d, *J*_{C-F} = 2.9 Hz), 130.44 (d, *J*_{C-F} = 9.0 Hz), 129.37, 127,28, 126.42, 118.88, 115.41 (d, *J*_{C-F} = 21.6 Hz), 111.35, 110.67.

N-(2-(4-Fluorophenyl)benzo[d]oxazol-5-yl)benzamide (4c).²⁹ Following the general procedure, the title compound was prepared using phenylboronic acid (1.5 equiv, 0.75 mmol, 92 mg) and 2-(4-fluorophenyl)-5-nitrobenzo[d]oxazole (1.0 equiv, 0.50 mmol, 129 mg) using PE/EtOAc (5:1) as an eluent to afford the title compound as a white amorphous solid (103 mg, 62%). ¹H NMR (400 MHz, CDCl₃) δ 8.26 (dd, *J* = 8.2, *J* = 5.1 Hz, 2H), 8.05 (s, 1H), 7.96-7.88 (m, 3H), 7.66 (d, *J* = 8.8 Hz, 1H), 7.62 – 7.48 (m, 4H), 7.22 (t, *J* = 8.7 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 165.97, 165.02 (d, *J*_{C-F} = 251.5 Hz), 163.30, 147.99, 142.76, 135.05, 124.99, 132.12, 130.06 (d, *J*_{C-F} = 8.8 Hz), 129.01. 127.20, 123.49 (d, *J*_{C-F} = 3.0 Hz), 118.74, 116.38 (d, *J*_{C-F} = 22.1 Hz), 112.13, 110.75.


N-(4-Chloro-3-(trifluoromethyl)phenyl)-4-fluorobenzamide (4d).³⁰ Following the general procedure, the title compound was prepared using 4-fluorophenylboronic acid (1.5 equiv, 0.75 mmol, 105 mg) and 2-chloro-5-nitrobenzotrifluoride (1.0 equiv, 0.50 mmol, 113 mg) using PE/EtOAc (6:1) as an eluent to afford the title compound as a white amorphous solid (87 mg, 55%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.63 (s, 1H), 8.34 (s, 1H), 8.11-8.00 (m, 3H), 7.70 (d, *J* = 8.7 Hz, 1H), 7.39 (t, *J* = 8.4 Hz, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 164.9, 164.3 (d, *J*_{C-F} = 248.4 Hz), 138.6, 132.0, 130.63, 130.60 (d, *J*_{C-F} = 9.2 Hz), 126.7 (q, *J*_{C-F} = 30.6 Hz), 125.0, 124.4 (d, *J*_{C-F} = 1.7 Hz), 122.8 (q, *J*_{C-F} = 271.4 Hz), 119.0 (q, *J*_{C-F} = 5.7 Hz), 115.5 (d, *J*_{C-F} = 21.8 Hz).

References


- G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw and K. I. Goldberg, *Organometallics*, 2010, 29, 2176.
- (2) K. W. Bair, T. R. Baumeister, P. Dragovich, M. Zak, G. Zhao and X. Zheng (Genentech, Inc., USA; Forma TM, LLC.), US Patent 2014074715, May 15, 2014.
- M. E. Lanning, W. Yu, J. L. Yap, J. Chauhan, L. Chen, E. Whiting, L. S. Pidugu, T. Atkinson, H. Bailey, W. Li, B. M. Roth, L. Hynicka, K. Chesko, E. A. Toth, P. Shapiro, A. D. MacKerell Jr., P. T. Wilder and S. Fletcher, *Eur. J. Med. Chem.*, 2016, 113, 273.
- (4) C. W. Cheung, J.-A. Ma and X. Hu, J. Am. Chem. Soc., 2018, 140, 6789.
- (5) A. Selen Gurkan, A. Karabay, Z. Buyukbingol, A. Adejare and E. Buyukbingol, *Archiv der Pharmazie*, 2005, **338**, 67.
- (6) Y. Kawashita, N. Nakamichi, H. Kawabata and M. Hayashi, Org. Lett., 2003, 5, 3713.
- (7) Z. Zhao, Z. Peng, Y. Zhao, H. Liu, C. Li and J. Zhao, J. Org. Chem., 2017, 82, 11848.
- (8) J. Zhang, Y. Ma and Y. Ma, Eur. J. Org. Chem., 2018, 1720.
- (9) X.-Y. Shi, K.-Y. Liu, J. Fan, X.-F. Dong, J.-F. Wei and C.-J. Li, Chem. Eur. J., 2015, 21, 1900.
- (10) M. Kissane, D. Lynch, J. Chopra, S. E. Lawrence and A. R. Maguire, Org. Biomol. Chem., 2010, 8, 5602.
- (11) P. Sharma and N. Jain, Adv. Synth. Catal., 2018, 360, 1932.
- (12) S. Karthik, K. Muthuvel and T. Gandhi, J. Org. Chem., 2019, 84, 738.
- (13) H. Berneth, (Bayer A.-G.) Fed. Rep. Ger. 1986, DE 3500361 A1 19860710.
- (14) A. H. Dardir, P. R. Melvin, R. M. Davis, N. Hazari and M. Mohadjer Beromi, J. Org. Chem., 2018, 83, 469.
- (15) J. Zhang, Y. Hou, Y. Ma and M. Szostak, J. Org. Chem., 2019, 84, 338.
- (16) K. L. Wilson, J. Murray, C. Jamieson and A. J. B. Watson, *Org. Biomol. Chem.*, 2018, 16, 2851.

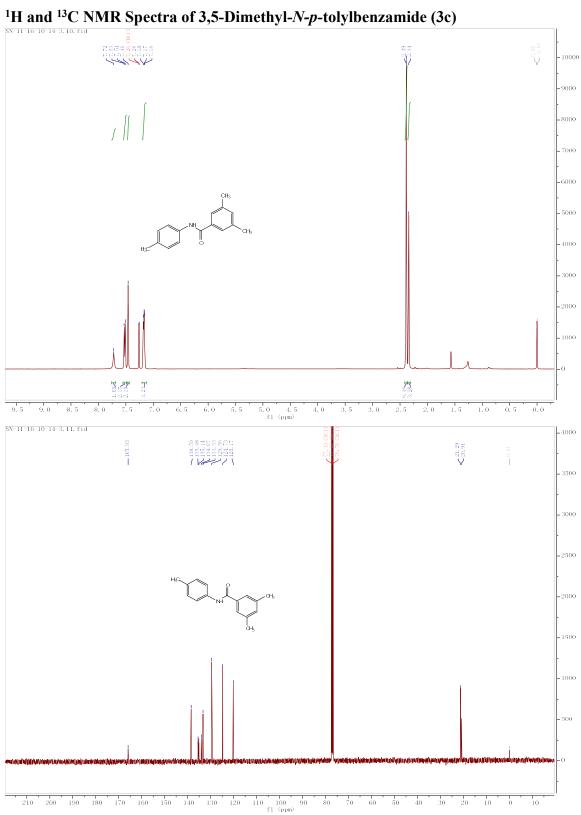
- (17) S. A. Rzhevskiy, A. A. Ageshina, G. A. Chesnokov, P. S. Gribanov, M. A. Topchiy, M. S. Nechaev and A F. Asachenko, *RSC Adv.*, 2019, 9, 1536.
- (18) A. Baruffini and F. Gialdi, *Farmaco, Edizione Scientifica*, 1958, **13**, 911.
- (19) B. Vinayak and M. Chandrasekharam, Org. Lett., 2017, 19, 3528.
- (20) S. De, J. Yin and D. Ma, Org. Lett., 2017, 19, 4864.
- (21) L. Schulz, M. Enders, B. Elsler, D. Schollmeyer, K. M. Dyballa, R. Franke and S. R. Waldvogel, *Angew. Chem. Int. Ed.*, 2017, 56, 4877.
- (22) V. Z. Rodrigues, M. Tokarcik, B. T. Gowda and J. Kozisek, *Acta Crystallogr. E.*, 2010, 66, o1116.
- (23) P. Sharma and N. Jain, Adv. Synth. Catal., 2018, 360, 1932.
- (24) K. Waisser, J. Kunes, Z. Odleroa, M. Roman, L. Kubicova and V. Horak, *Die Pharmazie*, 1998, **53**, 193.
- (25) E. Racine, F. Monnier, J.-P. Vors, J.-P. and M. Taillefer, *Chem. Commun.*, 2013, **49**, 7412.
- (26) D. Chopra and T. N. G. Row, CrystEngComm, 2008, 10, 54.
- (27) E. K. Woodman, J. G. K. Chaffey, P. A. Hopes D. R. J. Hose and J. P. Gilday, Org. Process Res. Dev., 2009, 13, 106.
- (28) E. A. Sener, O. T. Arpaci, I. Yalcin and N. Altanlar, Il Farmaco, 2000, 55, 397.
- (29) O. T. Arpaci, I. Oren and N. Altanlar, *Il Farmaco*, 2002, **57**, 175.
- (30) M. G. Vigorita, G. Saporito, G, T. Previtera, F. C. Pizzimenti and G. Bisignano, *Farmaco Sci.*, 1986, **41**, 168.

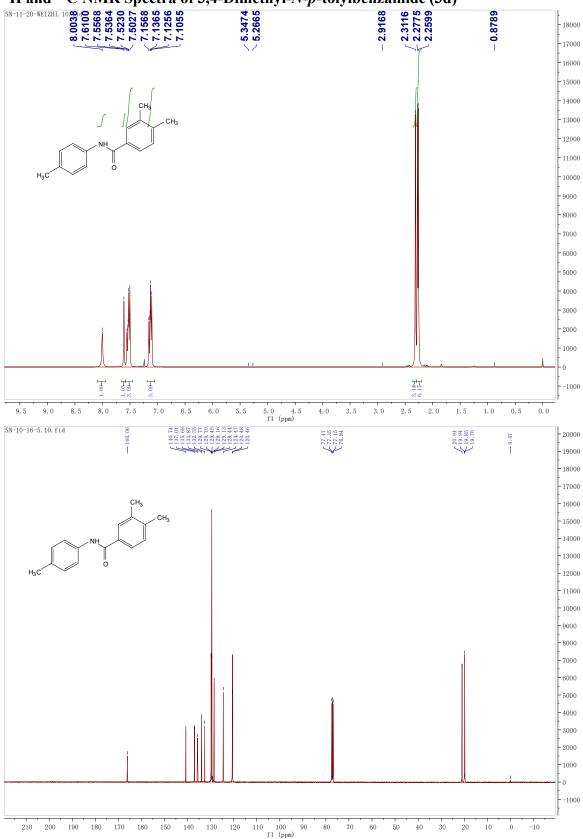
NMR Spectra

¹H and ¹³C NMR Spectra of 4-Methyl-*N-p*-tolylbenzamide (3a)

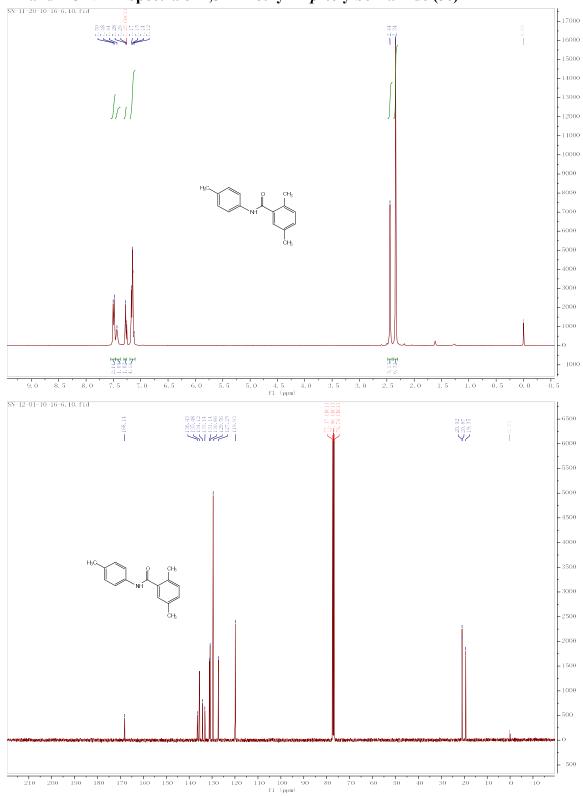
210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹H and ¹³C NMR Spectra of 3-Methyl-*N-p*-tolylbenzamide (3b)

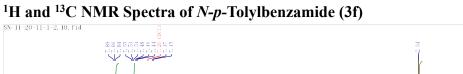

10

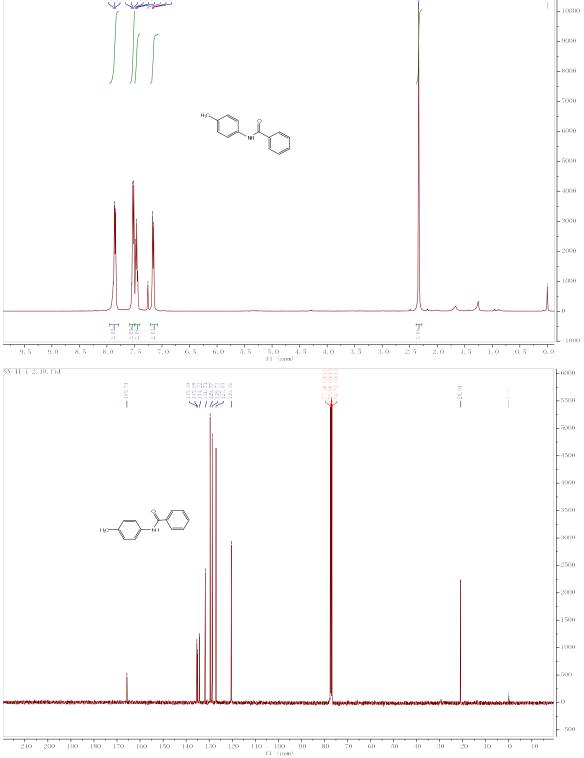

-2000

- 1000

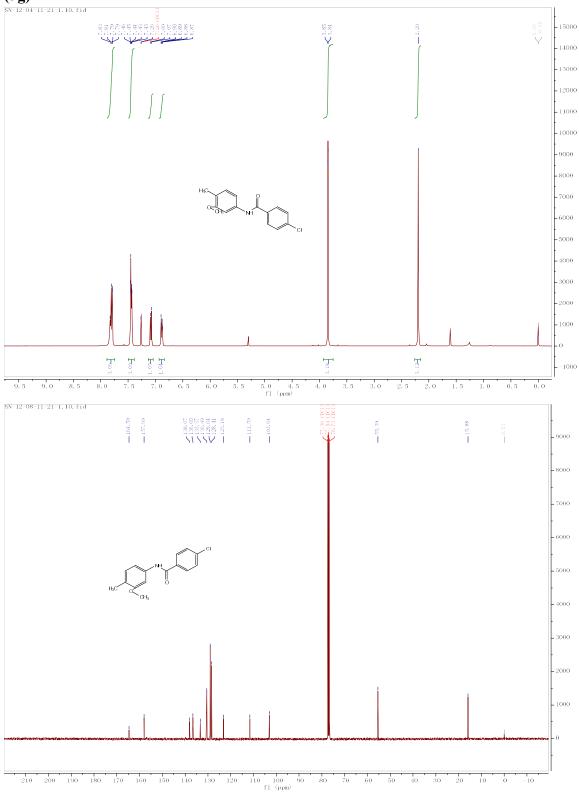

-0

-1000

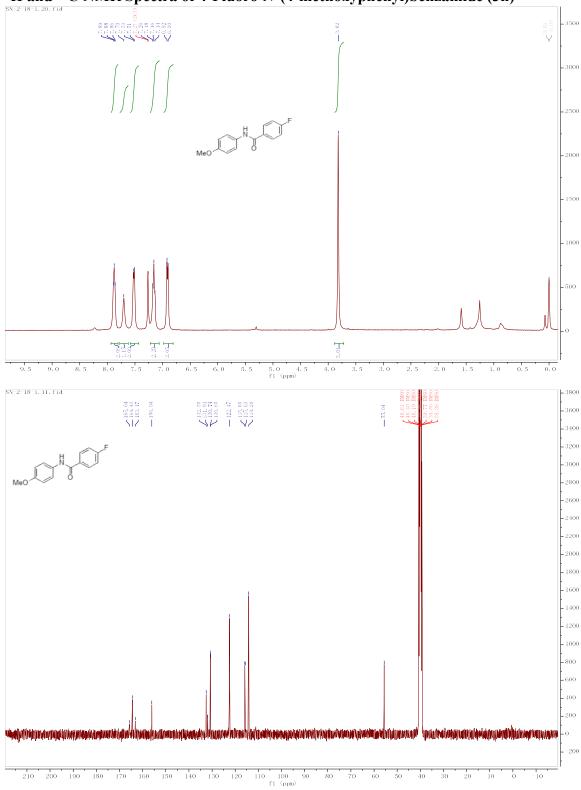


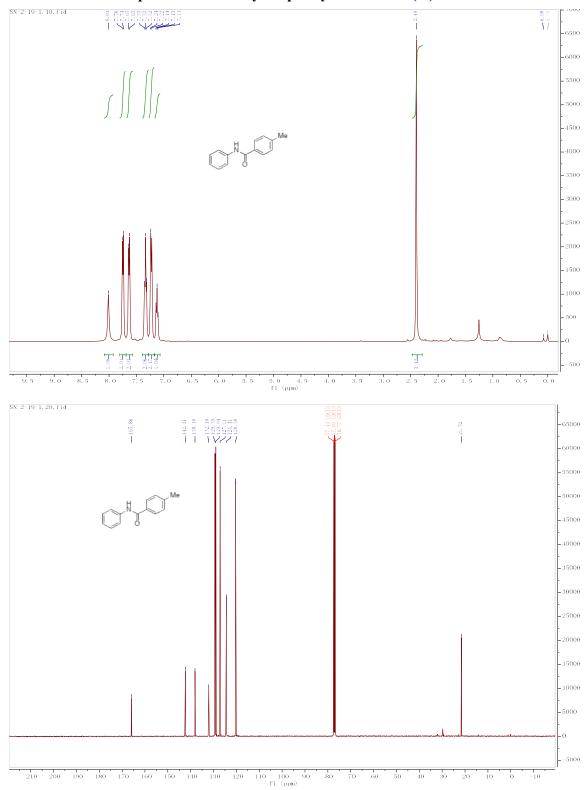


¹H and ¹³C NMR Spectra of 3,4-Dimethyl-*N-p*-tolylbenzamide (3d)

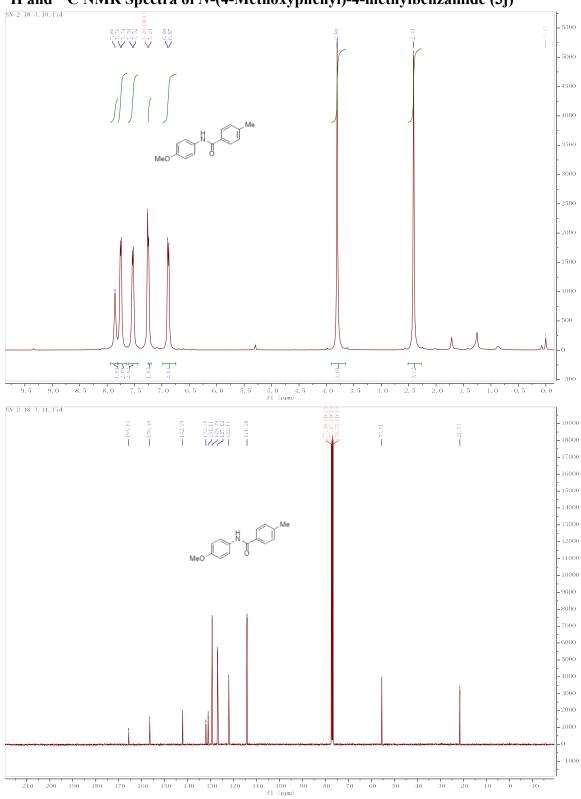


¹H and ¹³C NMR Spectra of 2,5-Dimethyl-*N-p*-tolylbenzamide (3e)

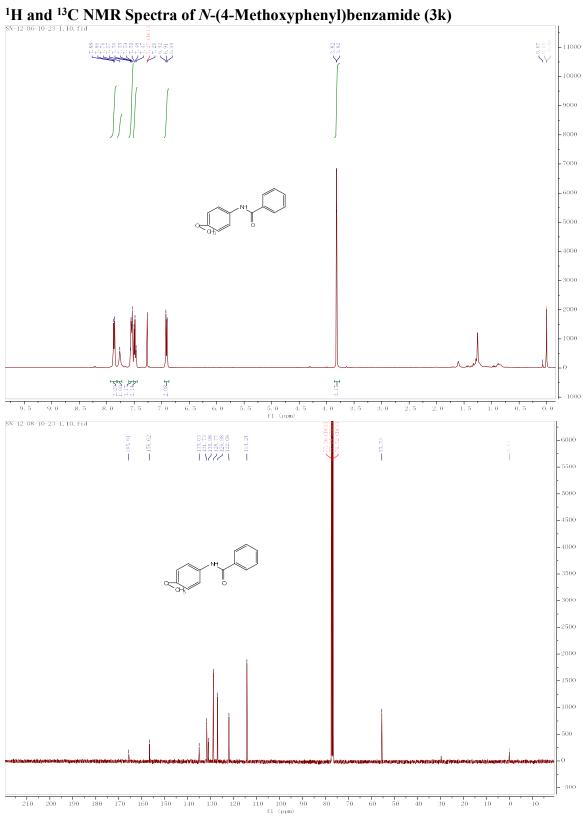


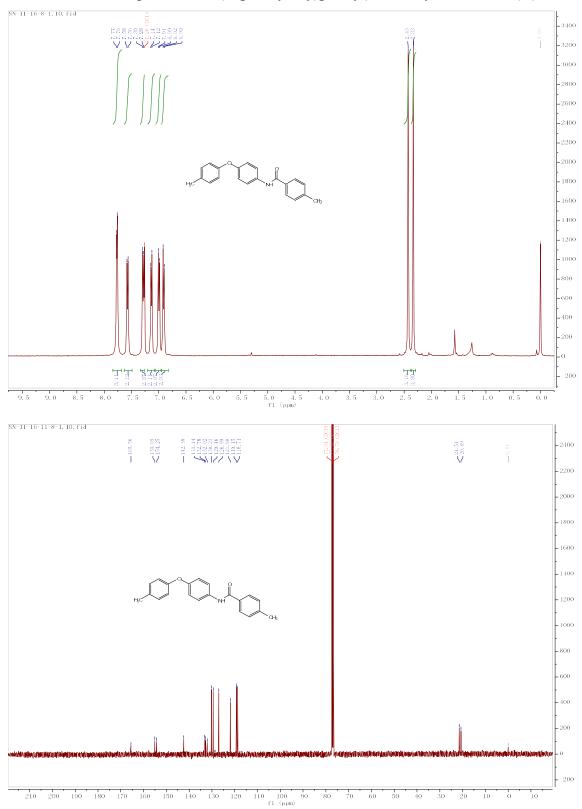

||- 11000

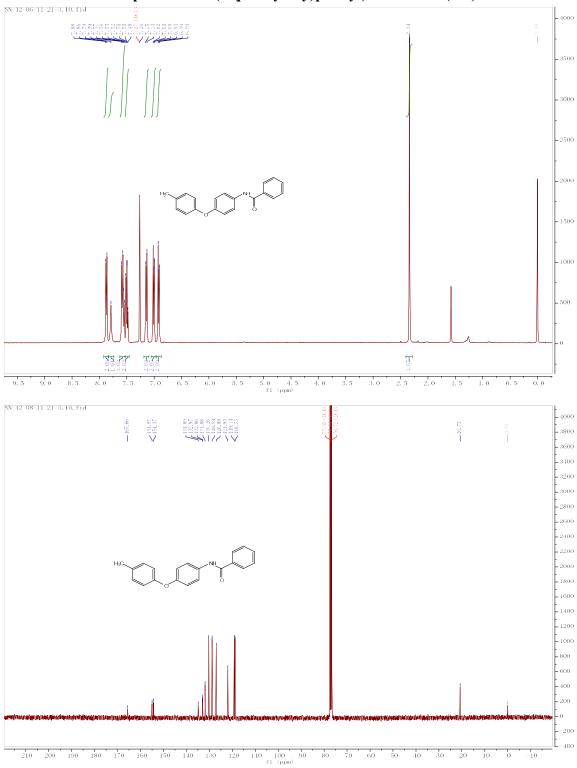
¹H and ¹³C NMR Spectra of 4-Chloro-*N*-(3-methoxy-4-methylphenyl)benzamide (3g)



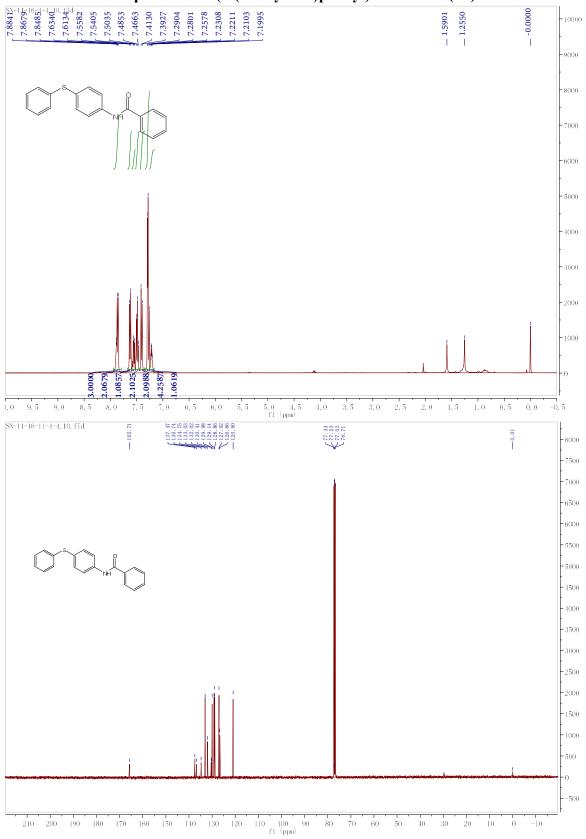
¹H and ¹³C NMR Spectra of 4-Fluoro-*N*-(4-methoxyphenyl)benzamide (3h)

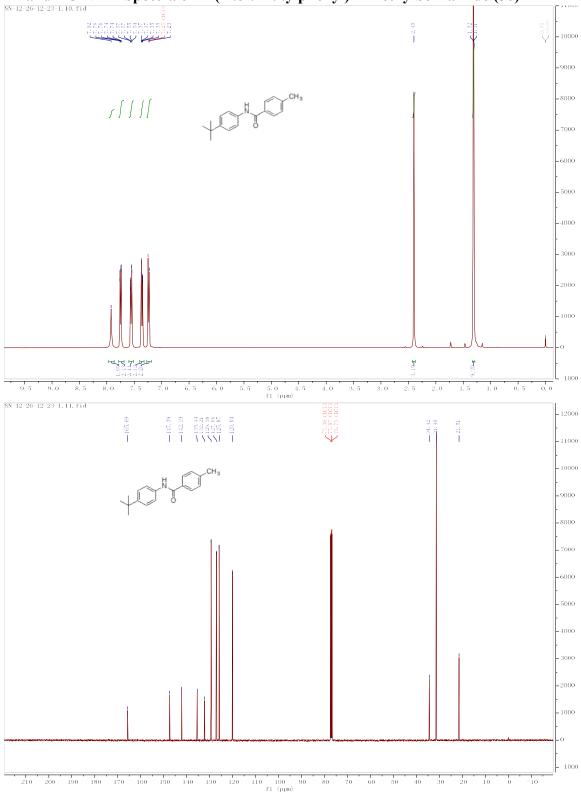


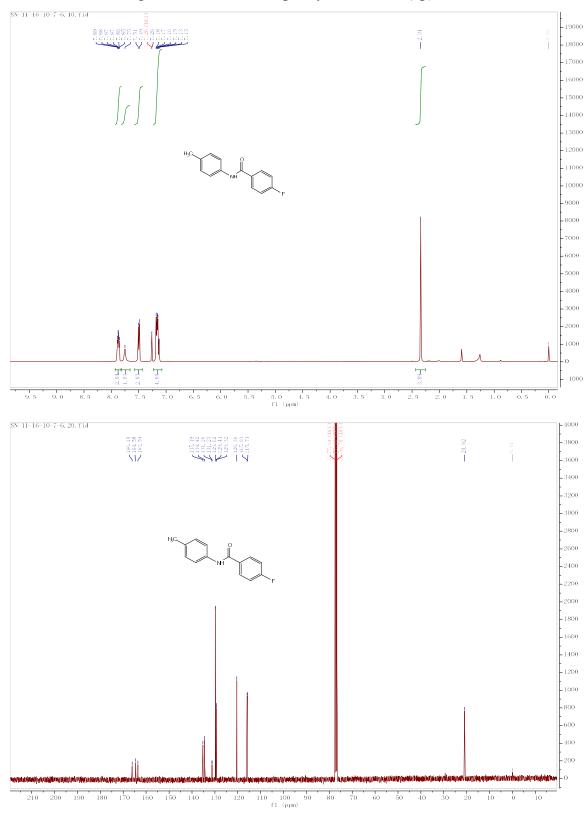

¹H and ¹³C NMR Spectra of 4-Methyl-*N*-phenylbenzamide (3i)



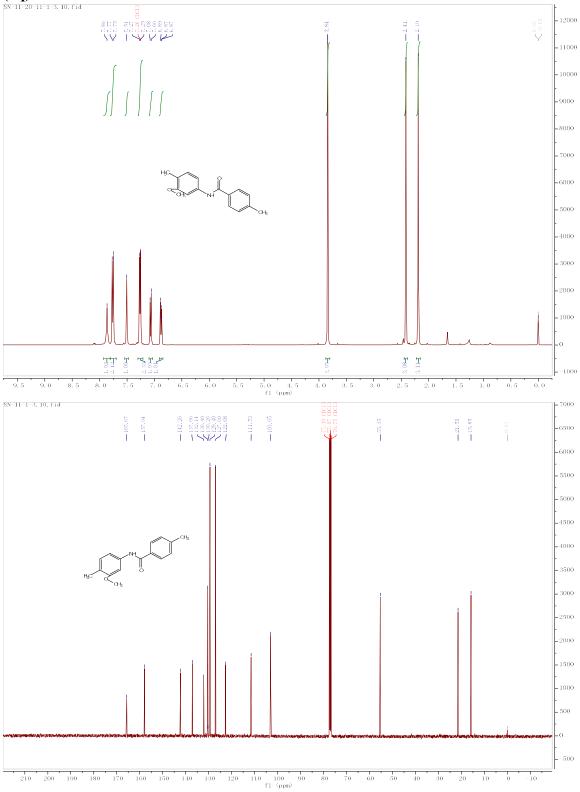
¹H and ¹³C NMR Spectra of *N*-(4-Methoxyphenyl)-4-methylbenzamide (3j)

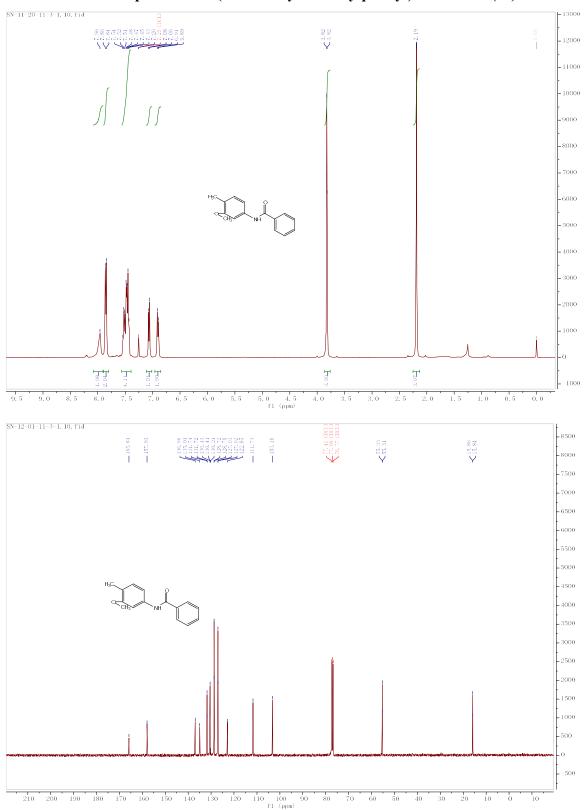


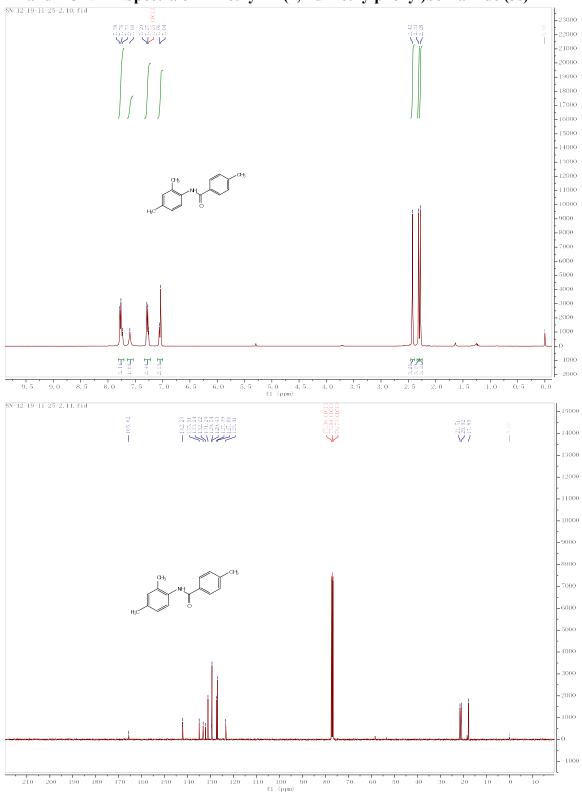

¹H and ¹³C NMR Spectra of *N*-(4-(*p*-Tolyloxy)phenyl)-4-methylbenzamide (3l)

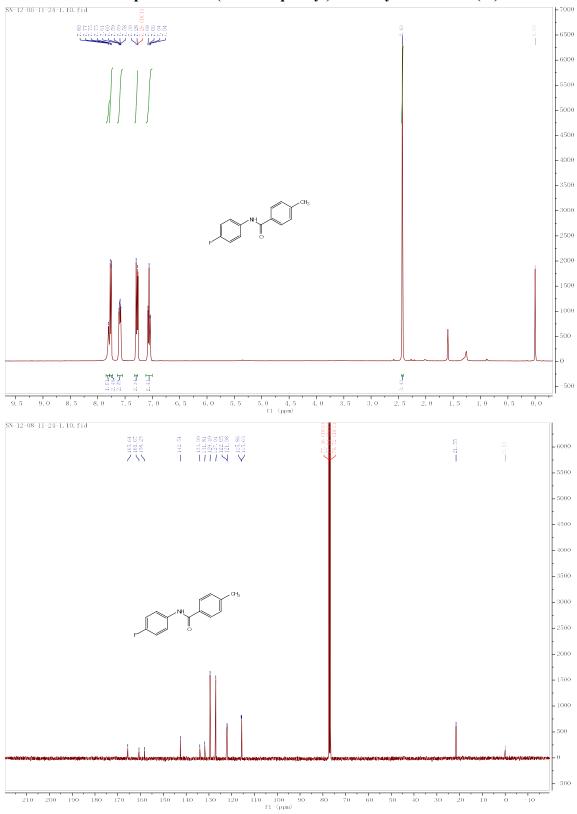

¹H and ¹³C NMR Spectra of *N*-(4-(*p*-Tolyloxy)phenyl)benzamide (3m)

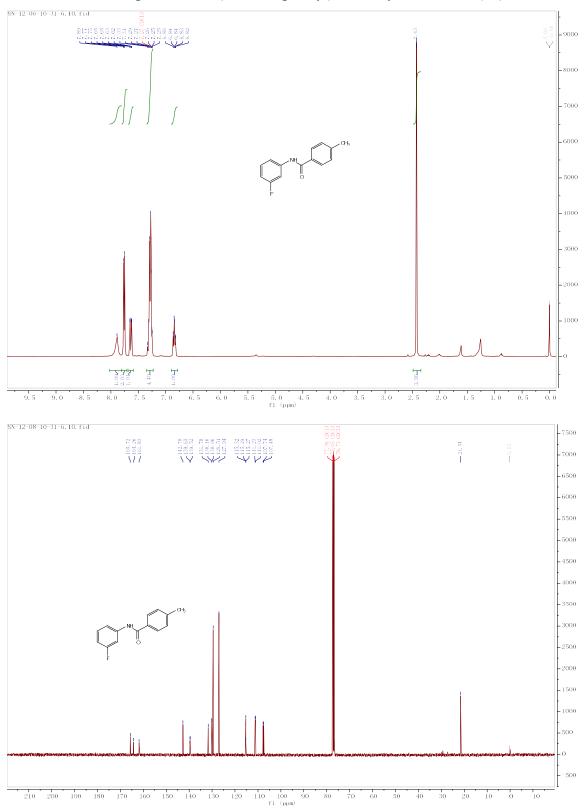
¹H and ¹³C NMR Spectra of *N*-(4-(Phenylthio)phenyl)benzamide (3n)

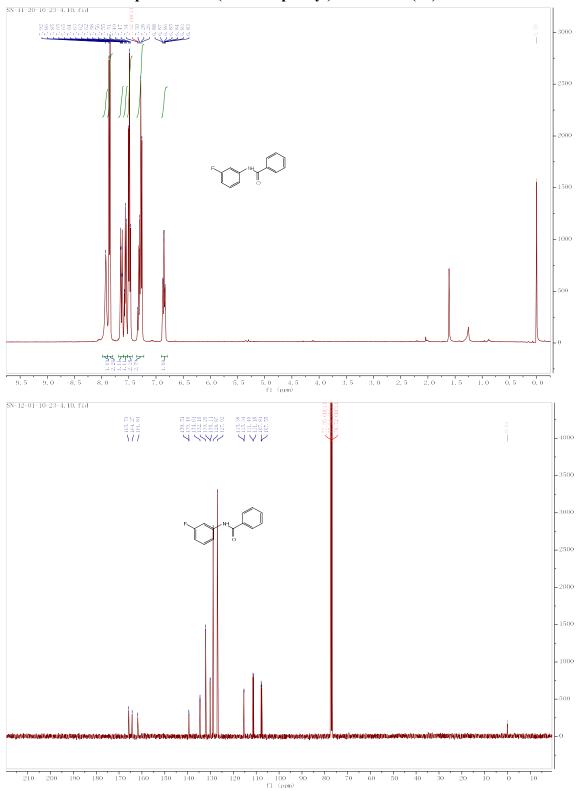


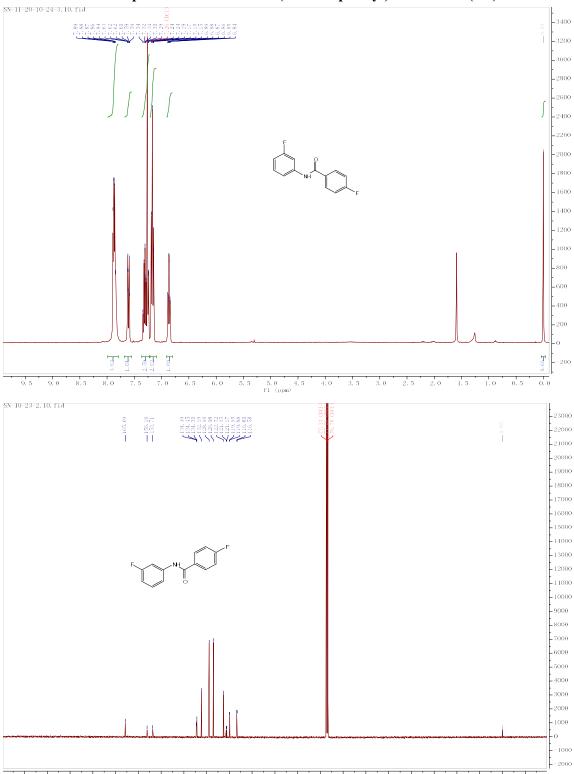

¹H and ¹³C NMR Spectra of *N*-(4-*tert*-Butylphenyl)-4-methylbenzamide (30)


¹H and ¹³C NMR Spectra of 4-Fluoro-*N-p*-tolylbenzamide (3p)

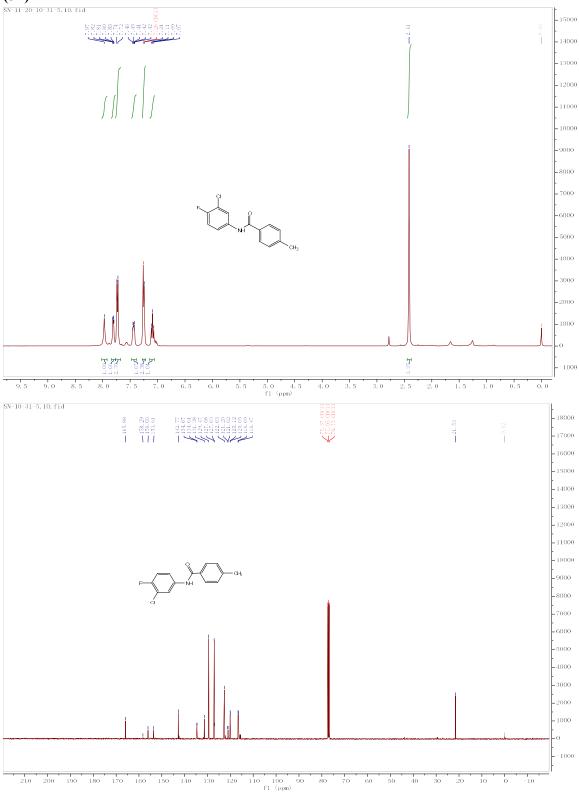



¹H and ¹³C NMR Spectra of *N*-(3-Methoxy-4-methylphenyl)benzamide (3r)

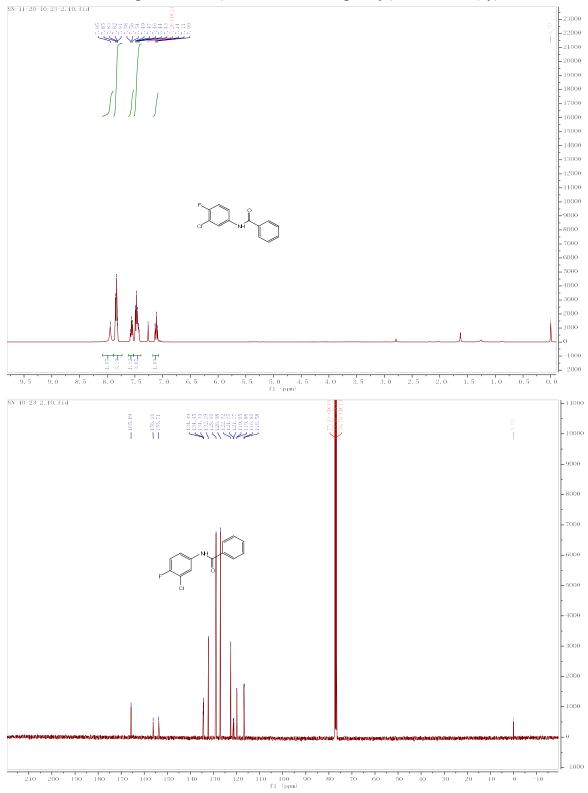

¹H and ¹³C NMR Spectra of 4-Methyl-*N*-(2,4-dimethylphenyl)benzamide (3s)


¹H and ¹³C NMR Spectra of *N*-(4-Fluorophenyl)-4-methylbenzamide (3t)

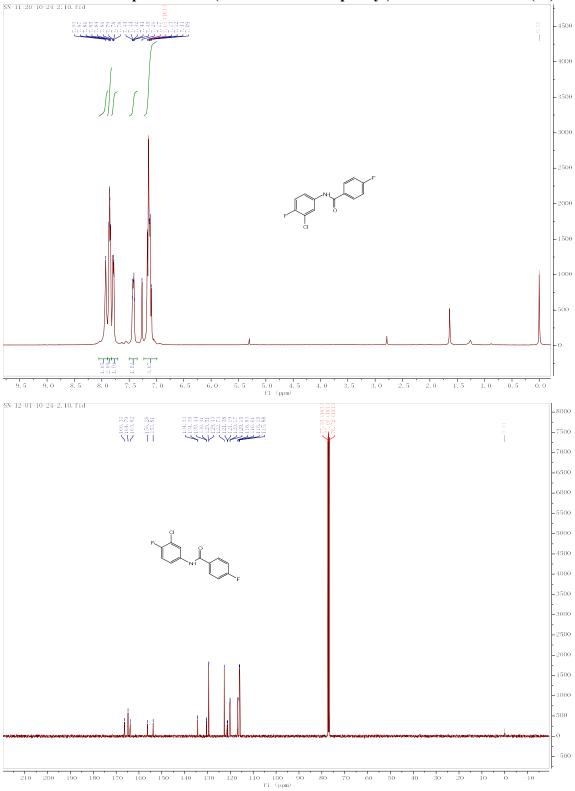
¹H and ¹³C NMR Spectra of *N*-(3-Fluorophenyl)-4-methylbenzamide (3u)



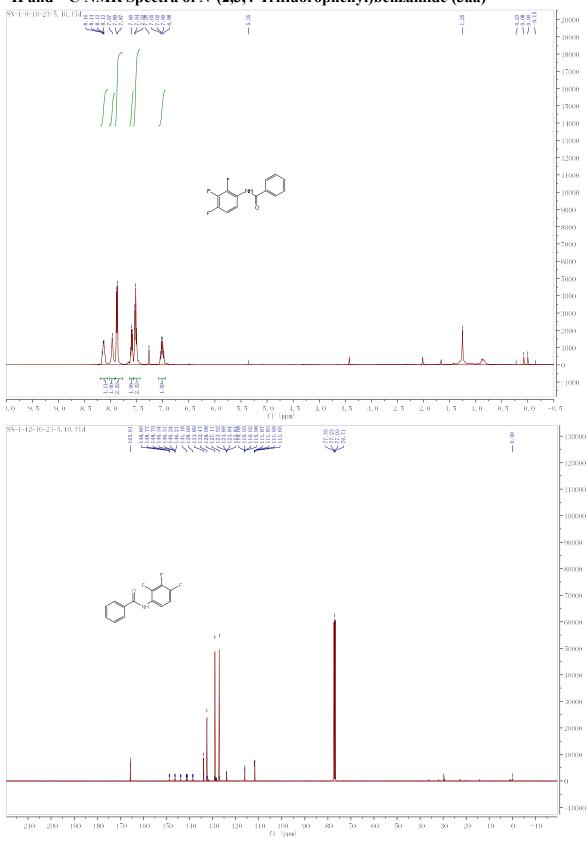
¹H and ¹³C NMR Spectra of *N*-(3-Fluorophenyl)benzamide (3v)



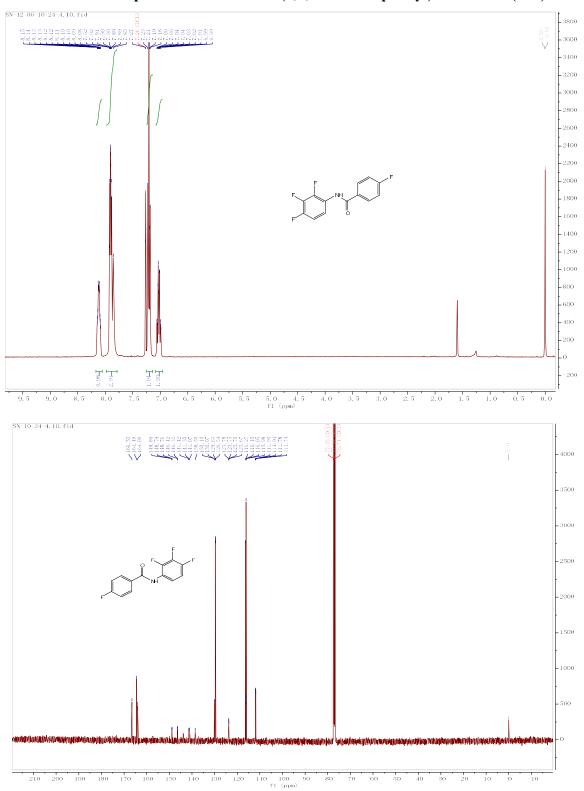
¹H and ¹³C NMR Spectra of 4-Fluoro-*N*-(3-fluorophenyl)benzamide (3w)


210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

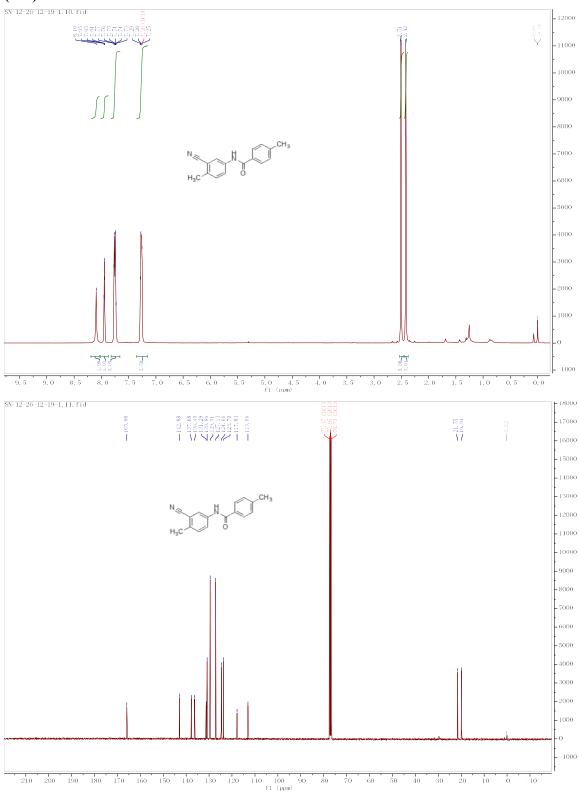
¹H and ¹³C NMR Spectra of *N*-(3-Chloro-4-fluorophenyl)-4-methylbenzamide (3x)

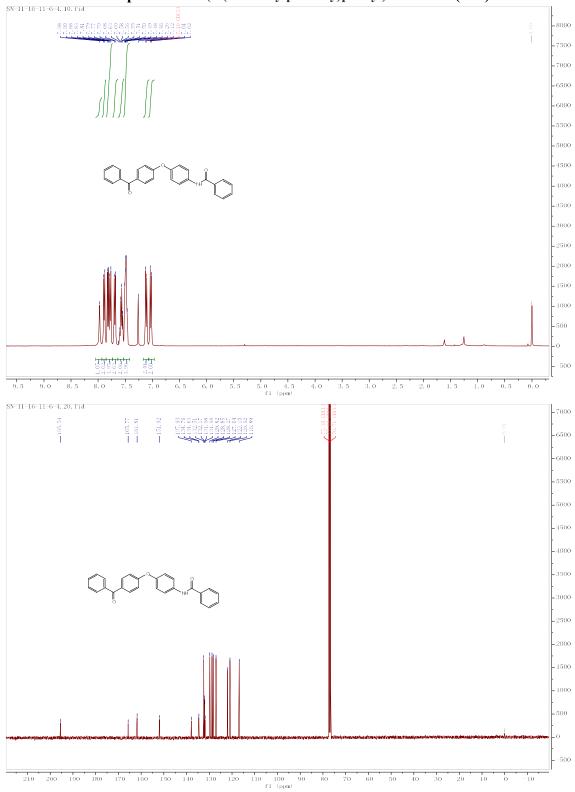


¹H and ¹³C NMR Spectra of *N*-(3-Chloro-4-fluorophenyl)benzamide (3y)

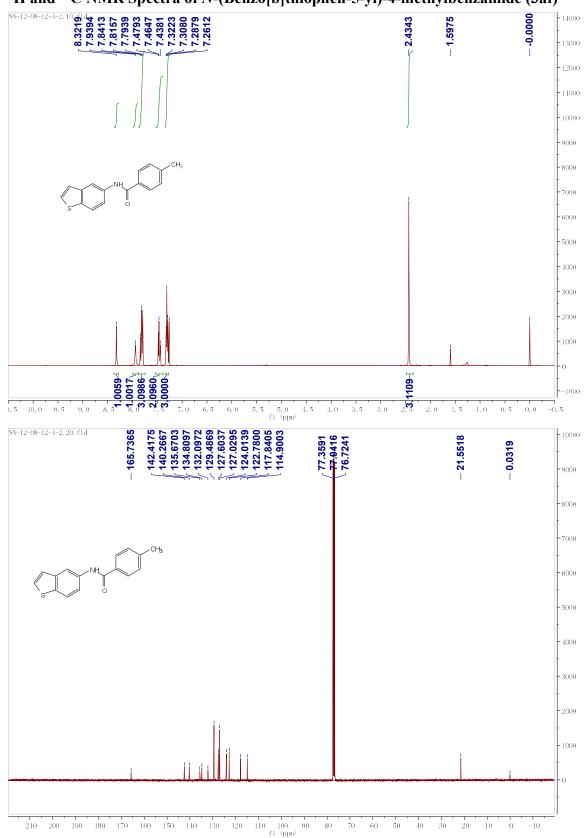


¹H and ¹³C NMR Spectra of *N*-(3-Chloro-4-fluorophenyl)-4-fluorobenzamide (3z)

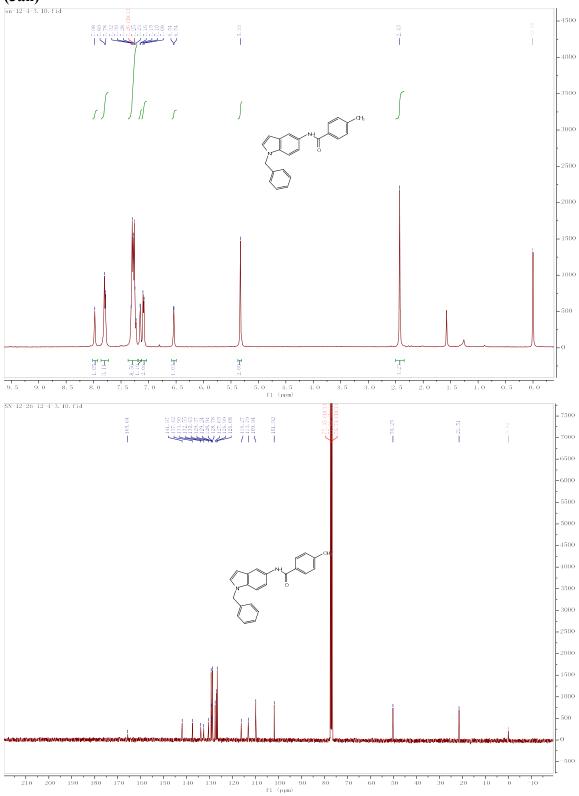

r r Chluniy

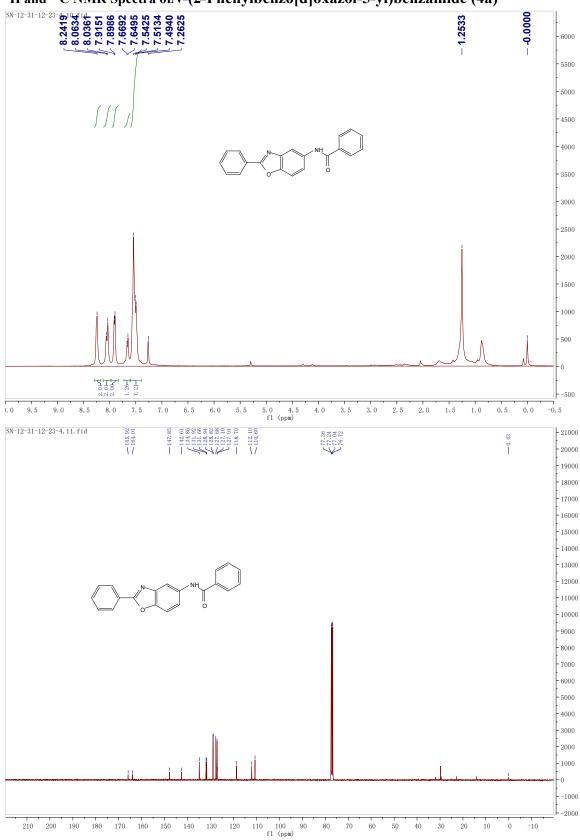

¹H and ¹³C NMR Spectra of *N*-(2,3,4-Trifluorophenyl)benzamide (3aa)


¹H and ¹³C NMR Spectra of 4-Fluoro-*N*-(2,3,4-trifluorophenyl)benzamide (3ab)

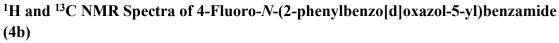

¹H and ¹³C NMR Spectra of *N*-(3-Cyano-4-methylphenyl)-4-methylbenzamide (3ac)

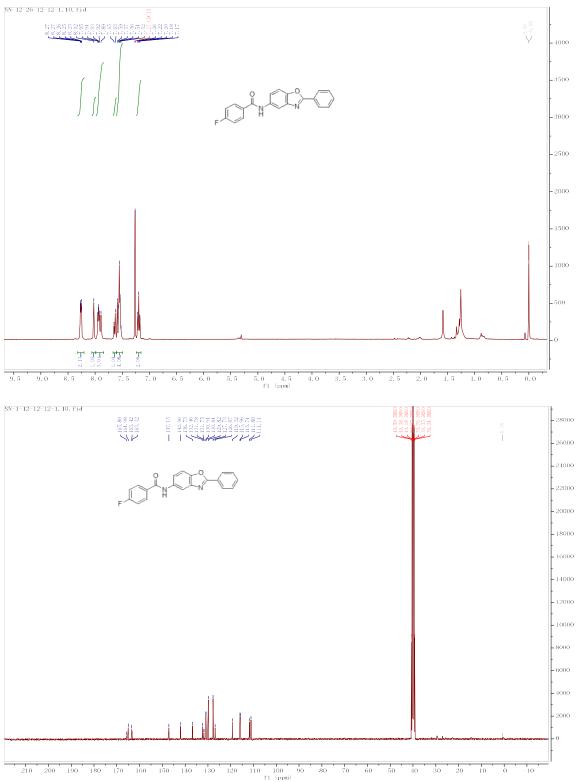
¹H and ¹³C NMR Spectra of *N*-(4-(4-Benzoylphenoxy)phenyl)benzamide (3ad)


¹H and ¹³C NMR Spectra of *N*-(Benzo[d][1,3]dioxol-6-yl)-3,4-dimethylbenzamide (3ae)

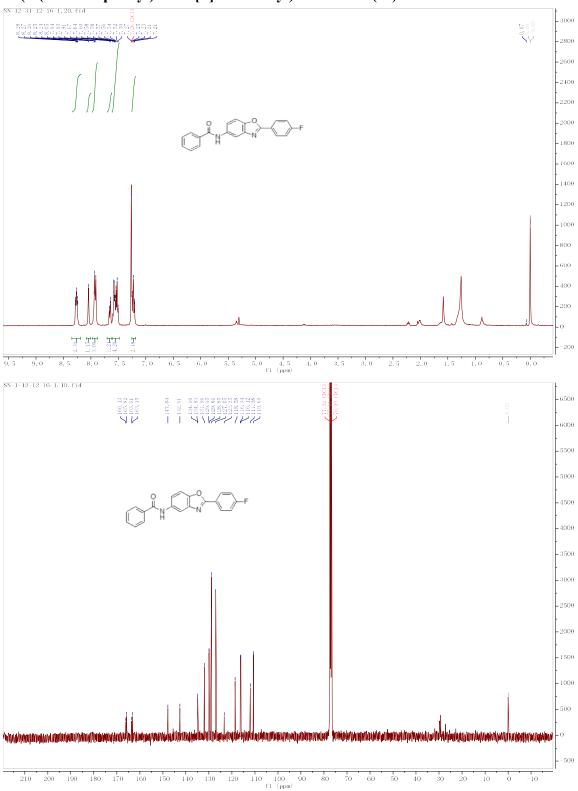

¹H and ¹³C NMR Spectra of *N*-(Benzo[b]thiophen-5-yl)-4-methylbenzamide (3af)

(3ag) ^{SN-12-19-12-12-4, 10, fid} 6.34 - 1000 - 900 - 800 Me - 700 - 600 - 500 400 300 - 200 - 100 . o <mark>Ъ,</mark> **मून** Å Ţ Ţ Ъ. Т Ţ 5.0 4.5 f1 (ppm) 2.5 1.5 1.0 7.5 6.5 2.0 0.0 8, 0 4.0 3.5 3, 0 0.5 9.5 9.0 8.5 7.0 6, 0 5.5 SN-1-1-12-12-4.10.fid ₹77. 35 CDC13 ₹77. 03 CDC13 132,83 132,83 132,24 123,49 123,49 121,02 -28000 $rac{165,73}{Z_{160,82}}$ - 151.73 $< \frac{142}{142} \frac{12}{10}$ 116.59 112.53 112.53 110.68 A 29.69 29.19 21.48 21.48 ____102.08 _____13.82 -26000 -24000 -Me -22000 H.N. K) 20000 18000 16000 -14000 - 12000 - 10000 -8000 -6000 - 4000 -2000 -0 -2000 190 180 170 160 150 140 130 120 110 100 90 80 70 60 f1 (ppm) 30 20 50 40 10 10 210 200 0

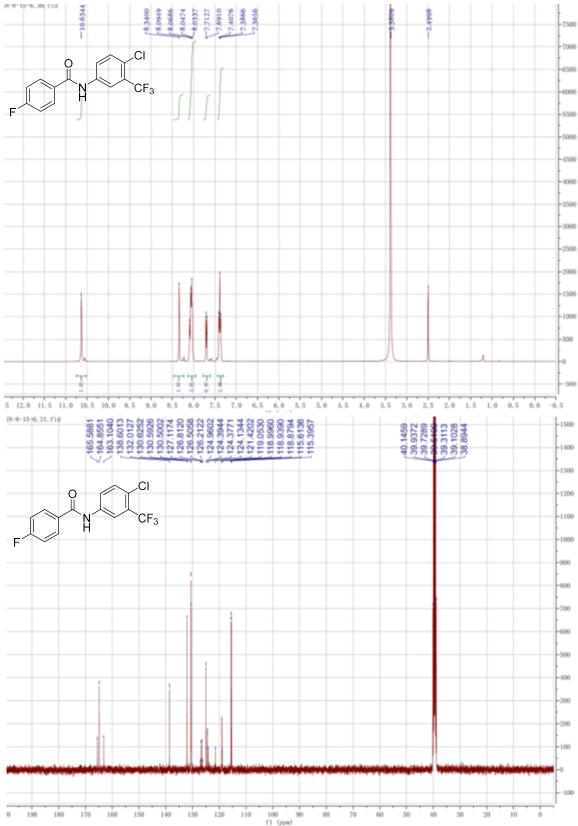

¹H and ¹³C NMR Spectra of *N*-(2-Butylbenzofuran-5-yl)-4-methylbenzamide (3ag)



¹H and ¹³C NMR Spectra of *N*-(1-Benzyl-1H-indol-5-yl)-4-methylbenzamide (3ah)



¹H and ¹³C NMR Spectra of N-(2-Phenylbenzo[d]oxazol-5-yl) benzamide (4a)



¹H and ¹³C NMR Spectra of *N*-(2-(4-Fluorophenyl)benzo[d]oxazol-5-yl)benzamide (4c)

