Supplementary Information

Maxime Boudjelel,^a Sonia Mallet-Ladeira,^b Ghenwa Bouhadir^a and Didier Bourissou^a*

 ^a CNRS / Université Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069). 118 Route de Narbonne, 31062 Toulouse Cedex 09 (France)
^b Institut de Chimie de Toulouse (FR 2599). 118 Route de Narbonne, 31062 Toulouse Cedex 09 (France)

Corresponding Author: <u>dbouriss@chimie.ups-tlse.fr</u>

Contents

General comments	S3
Synthesis, analytical data and NMR spectra of the (Cp)Rh(P,B) complex 2	S4
Synthesis, analytical data and NMR spectra of the (Cp)Rh(P,B)(PMe ₃) complex 3	S12
Synthesis, analytical data and NMR spectra of the (Cp)Rh(P,B)(CNXyl) complex 4	S17
Synthesis, analytical data and NMR spectra of the (Cp)Rh(P,B)(CO) complex 5	S21
Crystallographic data	S25

General comments

All reactions and manipulations were carried out under an atmosphere of dry argon using standard Schlenk techniques or a glovebox. All solvents were sparged with argon and dried using an MBRAUN Solvent Purification System (SPS). All solvents were degassed using freeze pump technique. ¹H, ¹³C, ³¹P, ¹¹B and ¹⁹F NMR spectra were recorded on a Bruker Avance III HD 500 (equipped with a prodigy probe), Avance III HD 400, Avance II 300 and Avance I 300 spectrometers. Chemical shifts are expressed with a positive sign, in parts per million, calibrated to residual ¹H and ¹³C solvent signals. External BF₃.OEt₂, 85% H₃PO₄ and CFCl₃ were used as reference for ¹¹B, ³¹P and ¹⁹F NMR respectively. Mass spectra were recorded on a Waters LCT mass spectrometer. Elemental analyses were recorded on a ThermoFisher Flash 1112 hosted at Centre Régional de Mesures Physiques de l'Ouest. IR spectroscopy was recorded on a IR-TF Thermo ScientificTM NicoletTM iSTM 50 using a CaF₂ cuvette.

Ligand **1** was prepared following the reported procedure.¹ All others reagents were purchased from Sigma-Aldrich or Fluorochem and used as received. TICp was sublimed just before used.

The Fxyl and Xyl abbreviations are used for the 3,5-bis(trifluoromethyl)phenyl and 2,6dimethylphenyl substituent, respectively.

¹Boudjelel, M.; Carrizo, E. D. S.; Mallet–Ladeira, S.; Massou, S.; Miqueu, M.; Bouhadir, G.; Bourissou, D. *ACS Catal.* **2018**, *8*, 4459–4464.

1 (100 mg, 0.159 mmol) and [RhCl(C₂H₄)₂]₂ (31 mg, 0.080 mmol) were charged in a vial in the glovebox. The powders were dissolved in 5 mL of toluene and the reaction was left to stir in the glovebox for 12 hours. TlCp (43 mg, 0.160 mmol) was then added as a solid in the reaction medium. After 4 hours of stirring, the deep purple solution was removed from the white precipitate of Thallium Chloride using a PTFE filter (UptiDisc TM 0.20 µm), and the purple filtrate was left in a closed vial at room temperature. After 12 hours, the product started to crystallize. The vial was then cooled at -22°C. After 12 hours, crystals were collected and washed with 1 mL of toluene. Crystals were dried under high vacuum to retrieve 86 mg of a deep purple powder (68% yield). X-Ray quality crystals were obtained by slow evaporation of a concentrated pentane solution at room temperature.

HRMS (ES-MS⁺): exact mass (monoisotopic) calcd. for $[M]^+$ ($C_{33}H_{29}PF_{12}BRh$)⁺: 798.0969; found: 798.0980.

Elemental Analysis was obtained directly from the NMR sample used for the characterization of the compound, which explains the presence of 0.25 equivalent of CD_2Cl_2 . Anal. Calcd. for $C_{33}H_{29}BF_{12}PRh.0.25CD_2Cl_2$: C, 48.70; H, 3.56. Found: C, 48.78; H, 3.41.

m.p.: 120 °C.

¹H NMR (300 MHz, CD₂Cl₂, 293K, δ): 0.58 (dd, 3H, ³*J*_{HP} = 17.0 Hz, ³*J*_{HH} = 7.0 Hz, CH_{3*i*Pr}), 1.08 (dd, 3H, ³*J*_{HP} = 13.0 Hz, ³*J*_{HH} = 7.0 Hz, CH_{3*i*Pr}), 1.31 (dd, 3H, ³*J*_{HP} = 17.0 Hz, ³*J*_{HH} = 7.0 Hz, CH_{3*i*Pr}), 1.43 (dd, 3H, ³*J*_{HP} = 15.0 Hz, ³*J*_{HH} = 7.0 Hz, CH_{3*i*Pr}), 2.16 (m, 1H, CH_{*i*Pr}), 2.85 (m, 1H, CH_{*i*Pr}), 3.53 (br s, 1H, H_A), 4.77 (s, 5H, Cp), 7.21-7.41 (m, 5H, H_{arom}+H_C), 7.77 (s br, 1H, H_J), 8.43 (s br, 1H, H_E), 8.53 (s br, 2H, H_H).

¹³C {¹H} NMR (100 MHz, CD₂Cl₂, 293K, δ): 17.32 (d, ²*J*_{CP} = 6.0 Hz, CH_{3*i*}Pr), 17.94 (d, ²*J*_{CP} = 3.0 Hz, CH_{3*i*}Pr), 18.22 (m, CH_{3*i*}Pr), 20.61 (d, ²*J*_{CP} = 3.0 Hz, CH_{3*i*}Pr), 25.27 (d, ¹*J*_{CP} = 26.0 Hz, CH_{*i*}Pr), 31.46 (d, ¹*J*_{CP} = 28.0 Hz, CH_{*i*}Pr), 61.43 (br d, ¹*J*_{CRh} = 9.0 Hz, C_A), 90.94 (dd, ¹*J*_{CRh} = 4.0 Hz, ²*J*_{CP} = 1.6 Hz, Cp), 118.18 (m, C_C), 119.91 (hept, ³*J*_{CF} = 3.8 Hz, C_J), 124.34 (q, ¹*J*_{CF} = 274.0 Hz, C_F), 124.54 (q, ¹*J*_{CF} = 272.0 Hz, C_G), 124.69 (q, ¹*J*_{CF} = 271.0 Hz, 2C_K), 124.96 (q, ²*J*_{CF} = 32.0 Hz, C_I), 130.26 (d, *J*_{CP} = 6.6 Hz, CH_{arom}), 132.11 (dd, ¹*J*_{CP} = 47.0 Hz, ²*J*_{CRh} = 1.4 Hz, C_{ipso}P), 132.57 (d, *J*_{CP} = 21.5 Hz, CH_{arom}), 135.67 (m, C_H), 137.18 (q, ²*J*_{CF} = 32.0 Hz, C_D), 143.16 (m, C_E). N.B.: C_{ipso}B quaternary carbon atoms were not observed.

¹¹B NMR signal was not observed.

³¹P{¹H} NMR (121 MHz, CD_2Cl_2 , 293K, δ): 79.62 (d, ¹J_{PRh} = 173 Hz).

¹⁹F NMR (376 MHz, CD₂Cl₂, 293K, δ): -64.20 (s, C_FF₃), -63.99 (s, C_GF₃), -63.06 (s, 2C_KF₃).

Figure S4. ¹H NMR spectrum of 2 (300 MHz, 293K) in CD₂Cl₂, aromatic region

Figure S5. ¹⁹F NMR spectrum of 2 (376 MHz, 293K) in CD₂Cl₂

Figure S7. ¹³C{¹H} spectrum of 2 (100 MHz, 293K) in CD₂Cl₂; aliphatic region

Figure S8. ¹³C{¹H} spectrum of 2 (100 MHz, 293K) in CD₂Cl₂; Cp region

1.0 130.5 130.0 129.5 129.0 128.5 128.0 127.5 127.0 126.5 126.0 125.5 125.0 124.5 124.0 123.5 123.0 122.5 122.0 121.5 121.0 120.5 120.0 119.5 119.0 118.5 118.0 117.5

Figure S9. ¹³C{¹H} spectrum of 2 (100 MHz, 293K) in CD₂Cl₂; aromatic region, zoom 1 Top ${}^{13}C{}^{1}H$, middle ${}^{13}C{}^{1}H,{}^{31}P$, bottom ${}^{13}C{}^{1}H,{}^{19}F$.

0 143.5 143.0 142.5 142.0 141.5 141.0 140.5 140.0 139.5 139.0 138.5 138.0 137.5 137.0 136.5 136.0 135.5 135.0 134.5 134.0 133.5 133.0 132.5 132.0

Figure S10. ¹³C{¹H} spectrum of 2 (100 MHz, 293K) in CD₂Cl₂; aromatic region, zoom 2 Top ¹³C{¹H}, middle ¹³C{¹H,³¹P}, bottom ¹³C{¹H,¹⁹F}.

Figure S11. $HSQC{^{1}H, ^{13}C}$ spectrum of 2 in CD_2Cl_2

Figure S12. HSQC $\{{}^{13}C;{}^{19}F\}$ (J_{XH} = 280 Hz) spectrum of 2 in CD₂Cl₂. Projection along x-axis: ${}^{19}F\{{}^{1}H\}$, projection along y-axis: ${}^{13}C\{{}^{1}H,{}^{19}F\}$. Zoom CF₃ region.

Figure S13. HSQC $\{{}^{13}C;{}^{19}F\}$ (J_{XH} = 10 Hz) spectrum of **2** in CD₂Cl₂. Projection along x-axis: ${}^{19}F\{{}^{1}H\}$, projection along y-axis: ${}^{13}C\{{}^{1}H,{}^{19}F\}$. Zoom C_FF₃ region.

Figure S14. HSQC $\{{}^{13}C;{}^{19}F\}$ (J_{XH} = 10 Hz) spectrum of **2** in CD₂Cl₂. Projection along x-axis: ${}^{19}F\{{}^{1}H\}$, projection along y-axis: ${}^{13}C\{{}^{1}H,{}^{19}F\}$. Zoom C_GF₃ region.

Figure S15. HSQC $\{{}^{13}C;{}^{19}F\}$ (J_{XH} = 10 Hz) spectrum of **2** in CD₂Cl₂. Projection along x-axis: ${}^{19}F\{{}^{1}H\}$, projection along y-axis: ${}^{13}C\{{}^{1}H,{}^{19}F\}$. Zoom C_KF₃ region.

Figure S16. VT NMR ${}^{19}F{}^{1}H$ study of two CF₃ area in toluene- d_8 .

Ethylene glycol was used as an external standard for the calibration of the temperature.² The free energy of activation was estimated using the following formula:

$\Delta G^{\neq} = RT_{c} \ln[RT_{c}\sqrt{2} / (\pi N_{A}h|v_{A}-v_{B}|)]$

with R (gas constant), T_c (coalescence temperature), N_A (Avogadro's number), h (Planck's constant) and $|v_A-v_B|$ (chemical shift difference). where T_c = 351 K and $|v_A-v_B| = 21$ Hz; therefore $\Delta G^{\neq} = 18.0$ kcal.mol⁻¹

² Ammann, C.; Meier, P.; Merbarch, A. J. Magn. Reson. 1982, 46, 319-321.

Synthesis of the (Cp)Rh(P,B)(PMe₃) complex 3

2 (20 mg, 0.025 mmol) was dissolved in 0.5 mL of C_6D_6 and charged in a pressure J. Young NMR tube. PMe₃ was added neat (38.6 µL, 0.375 mmol). The NMR tube was then left for 11 days. The excess of phosphine was removed under vacuum. Then the residue was re-dissolved in 0.5 mL of C_6D_6 and directly analysed by multinuclear NMR. X-Ray quality crystals were obtained by slow evaporation of a concentrated pentane solution.

NB: Higher temperatures gave less clean reactions. The excess of phosphine permitted to accelerate the reaction. Attempts to purify the complex led to degradation.

HRMS (ES-MS⁺): exact mass (monoisotopic) calcd. for $[M]^+$ (C₃₆H₃₈P₂F₁₂BRh)⁺: 874.1412; found, 874.1409.

¹H NMR (400 MHz, C₆D₆, 293K, δ): 0.19 (dd, 9H, ²*J*_{HP} = 9.2 Hz, ³*J*_{RhH} = 0.8 Hz, PMe₃), 0.92 (dd, ³*J*_{HP} = 11.2 Hz, ³*J*_{HH} = 7.2 Hz, 3H, CH_{3*i*Pr}), 0.93 (dd, ³*J*_{HP} = 10.0 Hz, ³*J*_{HH} = 7.6 Hz, 3H, CH_{3*i*Pr}), 0.95 (dd, ³*J*_{HP} = 12.2 Hz, ³*J*_{HH} = 8.0 Hz, 3H, CH_{3*i*Pr}), 1.15 (dd, 3H, ³*J*_{HP} = 12.8 Hz, ³*J*_{HH} = 6.8 Hz, CH_{3*i*Pr}), 1.70 (pseudo-oct, 1H, ²*J*_{HP} = ³*J*_{HH} = 7.2 Hz, CH_{*i*Pr}), 2.31 (pseudo-oct, 1H, ²*J*_{HP} = ³*J*_{HH} = 7.2 Hz, CH_{*i*Pr}), 4.80 (s, 5H, Cp), 6.96 (m, 1H, H_{arom}), 7.09 (m, 1H, H_{arom}), 7.27 (t, 1H, *J*_{HH} = 6.8 Hz, H_{arom}), 7.39 (d, 1H, *J*_{HH} = 7.6 Hz, H_{arom}), 7.62 (s br, 1H, H_{Fxyl para}), 7.68 (s br, 1H, H_{Fxyl para}), 8.09 (s br, 2H, H_{Fxyl ortho}), 8.43 (s br, 2H, H_{Fxyl ortho})

¹³C{¹H} NMR (100 MHz, C₆D₆, 293K, δ): 19.99 (s, CH_{3*i*Pr}), 21.05 (d, ¹*J*_{CP} = 30.3 Hz, PMe₃), 21.13 (s, CH_{3*i*Pr}), 21.42 (s, CH_{3*i*Pr}), 23.57 (s, CH_{3*i*Pr}), 26.59 (d, ¹*J*_{CP} = 21.6 Hz, CH_{*i*Pr}), 35.60 (d, ¹*J*_{CP} = 22.2 Hz, CH_{*i*Pr}), 92.53 (m, Cp), 117.33 (m, CH_{para} Fxyl), 117.88 (m, CH_{para} Fxyl), 124.79 (d, *J*_{CP} = 6.2 Hz, CH_{arom}), 125.16 (q, ¹*J*_{CF} = 271.3 Hz, 4CF₃), 129.91 (s, CH_{arom}), 131.26 (s, CH_{arom}), 134.30 (s br, 2CH_{ortho} Fxyl), 135.23 (d, *J*_{CP} = 22.1 Hz, CH_{arom}), 135.46 (s br, 2CH_{ortho} Fxyl), 142.06 (d, ¹*J*_{CP} = 45.2 Hz, C_{ipso}P).

N.B.: $C_{ipso}B$ quaternary carbon atoms were not observed and C-CF₃ carbons are under the residual signal of benzene.

N.B.: Impurity signals in the aliphatic area are due to the use of an excess of PMe₃.

¹¹B NMR (128.4 MHz, C₆D₆, 293K, δ): 4.58 (s br)

³¹P{¹H} NMR (121 MHz, C₆D₆, 293K, δ): -2.45 (dd, ²*J*_{PP} = 50.3 Hz, ¹*J*_{PRh} = 179.9 Hz, PMe₃), 81.22 (dd, ²*J*_{PP} = 50.0 Hz, ¹*J*_{PRh} = 169.3 Hz, P*i*Pr₂)

¹⁹F{¹H} NMR (282.4 MHz, C₆D₆, 293K, δ): -62.46 (s, 2CF₃), -62.33 (s, 2CF₃).

Figure S17. ³¹P NMR spectrum of **3** (121 MHz, 293K) in C₆D₆

Figure S18. ¹H NMR spectrum of 3 (400 MHz, 293K) in C₆D₆

0.22 0.21 0.20 0.19 0.18 0.17 0.16 0.15 0.14

Figure S19. ¹H NMR spectrum of **3** (400 MHz, 293K) in C₆D₆, PMe₃ region. Top ¹H, bottom ¹H{ 31 P} O2p = 0 ppm.

Figure S20. ¹H NMR spectrum of **3** (400 MHz, 293K) in C₆D₆, aliphatic region. Top ¹H, bottom ¹H{³¹P} O2p = 80 ppm.

Figure S21. ¹H NMR spectrum of 3 (400 MHz, 293K) in C₆D₆, aromatic region

Figure S22. ¹³C NMR spectrum of 3 (100 MHz, 293K) in C_6D_6

° *C*-CF₃ carbons, * *C*F₃ carbons.

Figure S24. ¹³C NMR spectrum of **3** (100 MHz, 293K) in C₆D₆, aromatic region

Figure S25. ¹¹B NMR spectrum of 3 (128.4 MHz, 293K) in C₆D₆

Figure S26. ¹⁹F NMR spectrum of 3 (282.4 MHz, 293K) in C₆D₆

Figure S27. HSQC of 3 in C_6D_6 , CH_{arom} region

Figure S28. HSQC of 3 in C_6D_6 , aliphatic region

Synthesis of the (Cp)Rh(P,B)(CNXyl) complex 4

2 (20 mg, 0.025 mmol) and CNXyl (4 mg, 0.030 mmol) were dissolved in 0.5 mL of toluene and charged in a J. Young NMR tube. After 12 hours, the clear yellow solution was evaporated to afford a fluffy yellow solid. The solid was washed with 0.2 mL of pentane in order to remove the excess of CNXyl. After drying under vacuum, 19.7 mg of a yellow powder were obtained (85% yield). X-Ray quality crystals were obtained by slow evaporation of a concentrated pentane solution at room temperature.

HRMS (ES-MS⁺): exact mass (monoisotopic) calcd. for $[M]^+$ (C₄₂H₃₈PF₁₂BNRh)⁺: 929.1705; found, 929.1691.

m.p.: 166 °C (decomp.).

IR (DCM): $v_{\rm NC} = 2019 \text{ cm}^{-1}$

¹H NMR (400 MHz, C₆D₆, 293K, δ): 0.79 (dd, 3H, ³*J*_{HP} = 15.6 Hz, ³*J*_{HH} = 7.2 Hz, CH_{3*i*Pr}), 0.82 (dd, 3H, ³*J*_{HP} = 13.2 Hz, ³*J*_{HH} = 7.2 Hz, CH_{3*i*Pr}), 0.87 (dd, 3H, ³*J*_{HP} = 13.2 Hz, ³*J*_{HH} = 6.8 Hz, CH_{3*i*Pr}), 0.91 (pseudo t, 3H, ³*J*_{HP} = 13.2 Hz, ³*J*_{HH} = 6.4 Hz, CH_{3*i*Pr}), 1.56 (s, 6H, CH₃ Xyl), 1.97 (m, 1H, CH_{*i*Pr}), 2.19 (m, 1H, CH_{*i*Pr}), 5.11 (s, 5H, Cp), 6.56 (d, 2H, *J*_{HH} = 7.6 Hz, H_{arom}), 6.68 (m, 1H, H_{arom}), 6.92 (m, 1H, H_{arom}), 7.05 (m, 2H, H_{arom}), 7.43 (m, 1H, H_{arom}), 7.52 (s br, 1H, H_{Fxyl para}), 7.62 (s br, 1H, H_{Fxyl para}), 8.05 (s br, 2H, H_{Fxyl ortho}), 8.27 (s br, 2H, H_{Fxyl ortho}).

¹³C {¹H} NMR (100 MHz, C₆D₆, 293K, δ): 18.08 (s, 2 CH₃ Xyl), 18.19 (d, ²*J*_{CP} = 3.8 Hz, CH_{3*i*Pr}), 20.19 (d, ²*J*_{CP} = 2.3 Hz, CH_{3*i*Pr}), 20.33 (d, ²*J*_{CP} = 2.8 Hz, CH_{3*i*Pr}), 20.92 (s, CH_{3*i*Pr}), 24.51 (d, ¹*J*_{CP} = 28.0 Hz, CH_{*i*Pr}), 30.81 (d, ¹*J*_{CP} = 21.0 Hz, CH_{*i*Pr}), 92.29 (m, Cp), 117.95 (m, CH_{para} Fxyl), 118.19 (m, CH_{para} Fxyl), 124.75 (d, *J*_{CP} = 7.0 Hz, CH_{arom}), 124.89 (q, ¹*J*_{CF} = 271.0 Hz, CF₃), 125.02 (q, ¹*J*_{CF} = 271.0 Hz, CF₃), 129.39 (q, ²*J*_{CF} = 31.5 Hz, *C*-CF₃), 129.50 (q, ²*J*_{CF} = 31.5 Hz, *C*-CF₃), 130.14 (m, 2CH_{arom}), 133.78 (d, *J*_{CP} = 21.0 Hz, CH_{arom}), 133.81 (s, C_{quat} Xyl), 134. 37 (m, 2 CH_{ortho} Fxyl), 134.98 (m, 2CH_{ortho} Fxyl), 140.91 (dd, ¹*J*_{CP} = 51.5 Hz, ²*J*_{CRh} = 3.0 Hz, C_{ipso}B), 167.05 (br, C_{ipso}B).

N.B.: Two aromatic CH carbon atoms are under the residual signal of C_6D_6 .

¹¹B NMR (128.4 MHz, C₆D₆, 293K, δ): 8.75.

³¹P{¹H} NMR (121 MHz, C₆D₆, 293K, δ): 84.46 (d, ¹J_{PRh} = 173.0 Hz).

¹⁹F NMR (282.4 MHz, C₆D₆, 293K, δ): -62.56 (s, 2CF₃), -62.29 (s, 2CF₃).

Figure S29. ${}^{31}P{}^{1}H$ NMR spectrum of 4 (128 MHz, 293K) in C₆D₆

Figure S30. ¹H NMR spectrum of **4** (400 MHz, 293K) in C₆D₆

Figure S32. ¹H NMR spectrum of 4 (300 MHz, 293K) in C₆D₆; aromatic region

Figure S33. ${}^{13}C{}^{1}H$ spectrum of 4 (100 MHz, 293K) in C₆D₆

Figure S34. ${}^{13}C{}^{1}H$ spectrum of 4 (100 MHz, 293K) in C₆D₆; aliphatic region

° *C*-CF₃ carbons, * *C*F₃ carbons.

Figure S35. ${}^{13}C{}^{1}H$ spectrum of 4 (100 MHz, 293K) in C₆D₆; aromatic region

Figure S36. ¹³C{¹H} spectrum of 4 (100 MHz, 293K) in in C_6D_6 ; quaternary carbons region

Figure S37. ¹¹B NMR spectrum of 4 (128.4 MHz, 293K) in C₆D₆

Figure S38. ¹⁹F spectrum of **4** (282.4 MHz, 293K) in C₆D₆

Synthesis of the (Cp)Rh(P,B)(CO) complex 5

2 (20 mg, 0.025 mmol) was dissolved in 0.5 mL of C_6D_6 and charged in a pressure J. Young NMR tube. The reaction mixture was degassed via freeze pump thaw three times, then submitted to 3.5 bar of CO. The NMR tube was then heated to 75°C for one hour, and the solution became clear yellow. It was then degassed by freeze-pump-thaw and directly analysed by multinuclear NMR.

NB: The complex is stable enough to remove the excess of CO under vacuum, but it gives back 30% of the starting complex after 12 hours under dynamic vacuum.

HRMS (CI-CH₄): exact mass (monoisotopic) calcd. for $[M+H]^+$ (C₃₄H₃₀BF₁₂OPRh)⁺: 827.0991; found, 827.1010.

IR (DCM): $v_{CO} = 2011 \text{ cm}^{-1}$

¹H NMR (500 MHz, C₆D₆, 293K, δ): 0.64 (dd, 3H, ³*J*_{HP} = 16.5 Hz, ³*J*_{HH} = 7.5 Hz, CH_{3*i*Pr}), 0.69 (dd, 3H, ³*J*_{HP} = 17.0 Hz, ³*J*_{HH} = 7.0 Hz, CH_{3*i*Pr}), 0.70 (dd, 3H, ³*J*_{HP} = 15.0 Hz, ³*J*_{HH} = 7.0 Hz, CH_{3*i*Pr}), 0.78 (dd, 3H, ³*J*_{HP} = 16.0 Hz, ³*J*_{HH} = 7.0 Hz, CH_{3*i*Pr}), 1.90 (m, 2H, CH_{*i*Pr}), 4.71 (s, 5H, CP), 6.90 (m, 2H, H_{arom}), 7.02 (m, 1H, H_{arom}), 7.14 (m, 1H, H_{arom}), 7.61 (s br, 1H, H_{Fxyl para}), 7.75 (s br, 1H, H_{Fxyl para}), 8.05 (s br, 2H, H_{Fxyl ortho}), 8.18 (s br, 2H, H_{Fxyl ortho}).

¹³C{¹H} NMR (125.8 MHz, C₆D₆, 293K, δ): 18.60 (s, CH_{3*i*Pr}), 19.41 (s, CH_{3*i*Pr}), 19.61 (s, CH_{3*i*Pr}), 19.93 (d, ²*J*_{CP} = 3.0 Hz CH_{3*i*Pr}), 26.51 (d, ¹*J*_{CP} = 30.0 Hz, CH_{*i*Pr}), 32.56 (d, ¹*J*_{CP} = 23.0 Hz, CH_{*i*Pr}), 93.34 (m, Cp), 118.81 (m, CH_{para} Fxyl), 118.96 (m, CH_{para} Fxyl), 124.79 (q, ¹*J*_{CF} = 272.0 Hz, CF₃), 124.93 (q, ¹*J*_{CF} = 273.0 Hz, CF₃), 125.84 (d, *J*_{CP} = 5.9 Hz, CH_{arom}), 129.70 (m, CH_{arom}), 129.86 (q, ²*J*_{CF} = 32.0 Hz, C-CF₃), 130.38 (q, ²*J*_{CF} = 32.0 Hz, C-CF₃), 130.72 (d, *J*_{CP} = 2.4 Hz, CH_{arom}), 134.20 (d, *J*_{CP} = 22.0 Hz, CH_{arom}), 134.77 (m, CH_{ortho} Fxyl), 135.09 (m, CH_{ortho} Fxyl), 138.66 (dd, ¹*J*_{CP} = 51.3 Hz, ²*J*_{CRh} = 2.6 Hz, C_{ipso}P), 192.36 (dd, ¹*J*_{CRh} = 81.6 Hz, ²*J*_{CP} = 21.0 Hz, CO). N.B.: C_{ipso}B quaternary carbon atoms were not observed.

¹¹B NMR (128.4 MHz, CD₂Cl₂, 293K, δ): 14.01 (s br).

³¹P{¹H} NMR (121 MHz, CD₂Cl₂, 293K, δ): 84.26 (d, ¹*J*_{PRh} = 169.0 Hz).

¹⁹F NMR (282.4 MHz, CD₂Cl₂, 293K, δ): -62.59 (s, CF₃), -62.41 (s, CF₃).

Figure S39. ${}^{31}P{}^{1}H$ NMR spectrum of 5 (128 MHz, 293K) in C₆D₆

Figure S40. ¹H NMR spectrum of 5 (500 MHz, 293K) in C_6D_6

* Pentane

Figure S42. ¹H NMR spectrum of 5 (500 MHz, 293K) in C₆D₆; aromatic region

Figure S45. ${}^{13}C{}^{1}H$ spectrum of 5 (125.8 MHz, 293K) in C₆D₆; aromatic region

Figure S47. ¹¹B NMR spectrum of 5 (128.4 MHz, 293K) in C_6D_6

³⁰ ²⁰ ¹⁰ ⁰ ⁻¹⁰ ⁻²⁰ ⁻³⁰ ⁻⁴⁰ ⁻⁵⁰ ⁻⁶⁰ ⁻⁷⁰ ⁻⁸⁰ ⁻⁹⁰ ⁻¹⁰⁰ ⁻¹¹⁰ ⁻¹²⁰ ⁻¹³⁰ ⁻¹⁴⁰ ⁻¹⁵⁰ ⁻¹⁶⁰ ⁻¹⁷⁰ ⁻¹⁸⁰ ⁻¹⁹⁰ ⁻²⁰⁰ Figu re S48. ¹⁹F spectrum of 5 (282.4 MHz, 293K) in C_6D_6

Crystallographic data

Crystallographic data were collected at low temperature (193(2)) on a Bruker-AXS APEXII QUAZAR diffractometer equipped with a 30W air-cooled microfocus source (MoK_{α} radiation, $\lambda = 0.71073$ Å). Phi- and omega- scans were used. An empirical absorption correction was employed.² The structures were solved by intrinsic phasing method³ and refined by the least-squares method on F².⁴ All non-hydrogen atoms were refined with anisotropic displacement parameters and the hydrogen atoms were refined isotropically. The hydrogen atoms were refined at calculated positions using the riding model.

CCDC 1938717 (2), 1938718 (3) and 1938719 (4) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.

2: $C_{33}H_{29}BF_{12}PRh$, M = 798.25, monoclinic, $P2_1/n$, a = 13.0614(9) Å, b = 12.3133(6) Å, c = 20.7087(13) Å, $\alpha = \gamma = 90^{\circ}$, $\beta = 105.427(4)^{\circ}$, V = 3210.6(3) Å³, Z = 4, crystal size 0.10 x 0.04 x 0.02 mm³, 35921 reflections collected (8274 independent, $R_{int} = 0.0844$), 554 parameters, R1 [I>2 σ (I)] = 0.0472, wR2 [all data] = 0.1196, largest diff. peak and hole: 0.752 and -0.655 eÅ⁻³.

3: C₃₆H₃₈BF₁₂P₂Rh, M = 874.32, monoclinic, $P2_1/n$, a = 14.0294(5) Å, b = 17.6591(7) Å, c = 15.1340(6) Å, $\alpha = \gamma = 90^{\circ}$, $\beta = 105.427(4)^{\circ}$, V = 3738.8(2) Å³, Z = 4, crystal size 0.10 x 0.08 x 0.06 mm³, 36863 reflections collected (6553 independent, R_{int} = 0.0566), 551 parameters, R1 [I>2 σ (I)] = 0.0387, wR2 [all data] = 0.0954, largest diff. peak and hole: 0.686 and -0.507 eÅ⁻³.

4: $C_{42}H_{38}BF_{12}NPRh$, M = 929.42, monoclinic, $P2_1/c$, a = 11.1009(10) Å, b = 19.504(2) Å, c = 18.980(2) Å, $\alpha = \gamma = 90^{\circ}$, $\beta = 100.359(3)^{\circ}$, V = 4042.6(7) Å³, Z = 4, crystal size 0.14 x 0.06 x 0.04 mm³, 94983 reflections collected (9997 independent, $R_{int} = 0.0654$), 594 parameters, R1 [I>2 σ (I)] = 0.0356, wR2 [all data] = 0.0891, largest diff. peak and hole: 0.642 and -0.506 eÅ⁻³.

² Bruker, *SADABS*, Bruker AXS Inc., Madison, Wisconsin, USA.

³ G. M. Sheldrick *Acta Cryst.* **2015**, A71, 3–8.

⁴G. M. Sheldrick Acta Cryst. A 2008, 64, 112–122.