Rhodium(III)-catalyzed regioselective distal *ortho* C-H alkenylation of *N*-benzyl/furanylmethylpyrazoles directed by *N*-coordinating heterocycles

Hyewon Kim, Raju S. Thombal, Hari Datta Khanal, and Yong Rok Lee*

School of Chemical Engineering, Yeungnam University, Gyeongsan 712-749, Republic of

Korea

Supplementary Information

TABLE OF CONTENTS

General remarks	S2
General procedure for the synthesis of alkenylated compounds (3-10)	S2
Procedure for the synthesis of 1a-d7	S2-S3
Mechanistic investigations	S 3
i) H/D exchange experiment	S4-S5
ii) KIE experiments	S5-S6
iii) The reaction of extended tether	S6
Reaction mechanism	S7
References	S7
Characterization data of the synthesized compounds	S8-S21
¹ H NMR and ¹³ C NMR spectra of synthesized compounds	S22-S61
X-ray structures and data of compounds 3a and 4a	S62-S83

General remarks

All experiments were carried out under nitrogen unless stated otherwise. Merck precoated silica gel plates (Art. 5554) treated with a fluorescent indicator were used for analytical thin layer chromatography (TLC). Flash column chromatography was performed using silica gel 9385 (Merck). Melting points were determined using micro-cover glasses on a Fisher-Johns apparatus and are uncorrected. ¹H NMR and ¹³C NMR spectra were recorded on Varian VNS or DPX (600 or 300 MHz and 150 or 75 MHz, respectively) spectrometers. Chemical shifts for protons were reported as parts per million in δ scale using solvent residual peak (CHCl₃: 7.24 ppm) as an internal standard. Chemical shifts of ¹³C NMR spectra were reported in ppm from the central peak of CDCl₃ (77.00 ppm) on the δ scale, and *J* values are given in Hz. Multiplicities are abbreviated as follows: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet or overlap of nonequivalent resonances, and dd = doublet of doublets. Infrared (IR) spectra were recorded on a PerkinElmer Spectrum TwoTM IR spectrometer with frequencies expressed in cm⁻¹, and high-resolution mass spectrometry (HRMS) was carried out using a JEOL JMS-700 spectrometer at the Korea Basic Science Institute.

General procedure for the synthesis of alkenylated compounds (3-10)

A mixture of pyrazole derivatives 1 (0.5 mmol), acrylate 2 (1 mmol), $[RhCp*Cl_2]_2$ (2.5 mol%), AgSbF₆ (10 mol%), and AgOAc (30 mol%) was stirred in DCE (5 mL) at 80 °C for the described time. When the reaction was complete as indicated by TLC, the volatiles were removed *in vacuo* and the residue was purified by silica gel column chromatography (EtOAc/Hexanes) to obtain the desired products **3-10**.

Procedure for the synthesis of 1a-d7

Benzyl bromide- d_7 (6 mmol) was added to a vigorously stirred suspension of pyrazole (5 mmol) and NaH (60% dispersion on oil, 12 mmol) in anhydrous DMF (15 mL) at 0 °C. The mixture was stirred overnight at room temperature and quenched with a saturated solution of NH4Cl. Distilled water was added and the aqueous layer was extracted with EtOAc (3 X 15

mL). The combined organic phases were dried over anhydrous MgSO₄, filtered and concentrated to obtain a compound $1a-d_7$ as a colorless liquid.

Mechanistic investigations

To probe the reaction mechanism of the C-H alkenylation reaction, control experiments were performed. The reaction of 1-benzyl-1*H*-pyrazole (1a) with 2a using D₂O and CD₃CO₂D under standard reaction conditions provided 62 and 50% deuterated products at the *ortho*-positions of 1a' and 1a'', respectively (Scheme S1). The reaction of 1a and its deuterated analog 1a- d_7 with 2a under standard reaction conditions for 3 h provided a KIE value of 1.33, suggesting the C-H activation step is not a rate-determining step (Scheme S2).¹

i) H/D exchange experiment

Scheme S1. Deuterium labelling study.

1-Benzyl-1*H*-pyrazole (**1a**, 0.2 mmol), $[Cp*RhCl_2]_2$ (2.5 mol%), AgSbF₆ (10 mol%), AgOAc (30 mol%), and D₂O or CD₃CO₂D (4 equiv) were stirred in DCE (3 mL) at 80 °C for described time. Then, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography (EtOAc/Hexanes) to afford **1a'** or **1a''**. C2-H was deuterated in 62% with D₂O and 50% deuterated with CD₃COD (See the following ¹H NMR spectra).

ii) KIE experiments

Scheme S2. Kinetic isotope effect experiment.

In a two different set of reactions, the reaction of **1a** or **1a**- d_7 with **2a** was carried out at standard reaction condition for 3h. After that, both of the reaction mixtures were combined, and the solvent was removed under reduced pressure. The residue was purified by silica gel chromatography (EtOAc/Hexanes) to afford the product. The KIE was calculated from ¹H NMR analysis.

iii) Reaction of extended tether

Scheme S3. Reaction of extended tether.

To test the coordination ability of pyrazole in the current system, we have extended the tether and performed the reaction of 1-phenethyl-1H-pyrazole (1y) with 2a under standard reaction condition. However, reaction failed to produce desired product 11.

Reaction mechanism

Scheme S4. Proposed reaction mechanism.

References:

 (a) Kumar, P.; Kapur, M. Org. Lett. 2019, 21, 2134. (b) Pan, J.-L.; Liu, C.; Chen, C.; Liu, T.-Q.; Wang, M.; Sun, Z. l.; Zhang, S.-Yu. Org. Lett. 2019, 8, 2823.

Characterization data of synthesized compounds

Methyl (*E*)-3-(2-((1*H*-pyrazol-1-yl)methyl)phenyl)acrylate (3a)

The title compound was prepared according to the general procedure. The product was obtained as a white solid. Yield: 88% (107 mg); mp 58-60 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.93 (1H, d, J = 15.7 Hz), 7.53-7.50 (2H, m), 7.30-7.27 (3H, m), 6.98 (1H, dd, *J* = 6.6, 2.4 Hz), 6.31 (1H, d, *J* = 15.7 Hz), 6.22 (1H, s), 5.40 (2H, s), 3.74 (3H, s); ¹³C NMR (150 MHz, CDCl₃) δ 166.6, 140.6, 139.5, 135.2, 133.0, 130.2, 129.2, 129.0, 128.4, 126.8, 120.6, 105.9, 53.0, 51.5; IR (ATR) 2951, 1698, 1631, 1318, 1167, 758 cm⁻¹; HRMS m/z (M⁺) calcd for C₁₄H₁₄N₂O₂: 242.1055. Found: 242.1057.

Ethyl (*E*)-3-(2-((1*H*-pyrazol-1-yl)methyl)phenyl)acrylate (3b)

The title compound was prepared according to the general procedure. The product was obtained as a yellow liquid. Yield: 89% (114 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.93 (1H, d, J = 15.7 Hz), 7.55-7.52 (2H, m), 7.34 (1H, s), 7.30-7.29 (2H, m), 7.01 (1H, t, J = 3.4 Hz), 6.31 (1H, d, J = 15.7Hz), 6.25 (1H, s), 5.43 (2H, s), 4.22 (2H, q, *J* = 7.2 Hz), 1.29 (3H, t, *J* = 7.2

Hz); ¹³C NMR (150 MHz, CDCl₃) δ 166.3, 140.4, 139.5, 135.2, 133.2, 130.2, 129.1, 128.5, 126.9, 126.8, 121.1, 106.1, 60.5, 53.1, 14.1; IR (ATR) 2979, 1707, 1633, 1270, 1311, 1175, 757 cm⁻¹; HRMS m/z (M⁺) calcd for C₁₅H₁₆N₂O₂: 256.1212. Found: 256.1213.

tert-Butyl (*E*)-3-(2-((1*H*-pyrazol-1-yl)methyl)phenyl)acrylate (3c)

The title compound was prepared according to the general procedure. The product was obtained as a yellow liquid. Yield: 84% (119 mg); ¹H NMR (600 MHz, CDCl₃) δ7.83 (1H, d, *J* = 15.8 Hz), 7.55 (2H, s), 7.33-7.30 (3H, m), 7.05-7.03 (1H, m), 6.26-6.24 (2H, m), 5.47 (2H, s), 1.51 (9H, s); ¹³C NMR (150 MHz, CDCl₃) δ 165.7, 139.5, 139.4, 135.1, 133.5, 130.0, 129.4,

129.1, 128.5, 126.9, 123.2, 106.0, 80.7, 53.2, 28.1; IR (ATR) 2974, 1763, 1632, 1317, 1149, 755 cm⁻¹; HRMS m/z (M⁺) calcd for C₁₇H₂₀N₂O₂ : 284.1525. Found: 284.1523.

Phenyl (*E*)-3-(2-((1*H*-pyrazol-1-yl)methyl)phenyl)acrylate (3d)

The title compound was prepared according to the general procedure. The product was obtained as a yellow liquid. Yield: 87% (132 mg); ¹H NMR (600 MHz, CDCl₃) δ 8.08 (1H, d, *J* = 15.8 Hz), 7.60 (1H, d, *J* = 8.7 Hz), 7.49 (1H, s), 7.34-7.30 (5H, m), 7.18-7.16 (1H, m), 7.09 (2H, d, *J* = 8.0 Hz), 7.02 (1H, d, *J* = 5.3 Hz), 6.47 (1H, d, *J* = 15.7 Hz), 6.21 (1H, s), 5.44

(2H, s); ¹³C NMR (150 MHz, CDCl₃) δ 164.8, 150.6, 142.3, 139.6, 135.5, 133.0, 130.7, 129.4, 129.4, 128.7, 127.1, 125.8, 121.5, 120.2, 106.1, 53.2; IR (ATR) 3065, 1724, 1192, 1137, 972, 752 cm⁻¹; HRMS *m/z* (M⁺) calcd for C₁₉H₁₆N₂O₂: 304.1212. Found: 304.1208.

Benzyl (E)-3-(2-((1H-pyrazol-1-yl)methyl)phenyl)acrylate (3e)

The title compound was prepared according to the general procedure. The product was obtained as a beige solid. Yield: 85% (135 mg); mp 67-69 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.00 (1H, d, *J* = 15.7 Hz), 7.57 (1H, d, *J* = 7.5 Hz), 7.52 (1H, s), 7.40-7.36 (4H, m), 7.33-7.31 (4H, m), 7.04 (1H, d, *J* = 6.9 Hz), 6.39 (1H, d, *J* = 15.6 Hz), 6.24 (1H, s), 5.44

(2H, s), 5.23 (2H, s); ¹³C NMR (150 MHz, CDCl₃) δ 166.1, 141.0, 139.6, 135.8, 135.3, 133.1, 130.4, 129.3, 129.2, 128.6, 128.5, 128.2, 128.2, 126.9, 120.8, 106.0, 66.1, 53.2; IR (ATR) 2948, 1706, 1629, 1174, 748, 695 cm⁻¹; HRMS *m*/*z* (M⁺) calcd for C₂₀H₁₈N₂O₂: 318.1368. Found: 318.1369.

Ethyl (E)-3-(2-((4-methyl-1H-pyrazol-1-yl)methyl)phenyl)acrylate (3f)

The title compound was prepared according to the general procedure. The product was obtained as a yellow liquid. Yield: 72% (97 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.94 (1H, d, *J* = 15.7 Hz), 7.56 (1H, d, *J* = 9.1 Hz), 7.35 (1H, s), 7.32 (2H, t, *J* = 3.7 Hz), 7.09 (1H, s), 7.05 (1H, d, *J* = 8.1 Hz), 6.33 (1H, d, *J* = 15.7 Hz), 5.40 (2H, s), 4.25 (2H, q, *J* = 6.6 Hz), 2.03 (3H,

s), 1.32 (3H, t, J = 7.1 Hz); ¹³C NMR (150 MHz, CDCl₃) δ 166.4, 140.5, 139.6, 135.3, 133.2, 130.3, 129.3, 128.5, 128.3, 126.9, 121.3, 116.7, 60.6, 53.1, 14.2, 8.9; IR (ATR) 2930, 1707, 1633, 1311, 1270, 1172, 763 cm⁻¹; HRMS *m*/*z* (M⁺) calcd for C₁₆H₁₈N₂O₂: 270.1368. Found: 270.1371.

Methyl (E)-3-(2-((4-chloro-1H-pyrazol-1-yl)methyl)phenyl)acrylate (3g)

The title compound was prepared according to the general procedure. The product was obtained as a white solid. Yield: 91% (126 mg); mp 82-84 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.90 (1H, d, J = 15.7 Hz), 7.57-7.54 (1H, m), 7.41 (1H, s), 7.33-7.29 (2H, m), 7.25 (1H, s), 7.07-7.04 (1H, m), 6.32 (1H, d, J = 15.7 Hz), 5.34 (2H, s), 3.75 (3H, s); ¹³C NMR (150 MHz, CDCl₃) δ 166.6, 140.3, 137.9, 134.3, 133.2, 130.3, 129.3, 128.8, 127.1, 127.0, 120.9, 110.2,

53.8, 51.6; IR (ATR) 2949, 1695, 1248, 1032, 766 cm⁻¹; HRMS m/z (M⁺) calcd for C₁₄H₁₃ClN₂O₂: 276.0666. Found: 276.0664.

Benzyl (E)-3-(2-((4-chloro-1H-pyrazol-1-yl)methyl)phenyl)acrylate (3h)

The title compound was prepared according to the general procedure. The product was obtained as a viscous liquid. Yield: 79% (139 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.87 (1H, d, J = 15.7 Hz), 7.50-7.48 (1H, m), 7.32-7.25 (7H, m), 7.16-7.15 (2H, m), 7.01-7.00 (1H, m), 6.30 (1H, d, J = 15.7 Hz), 5.28 (2H, s), 5.14 (2H, s); ¹³C NMR (150 MHz, CDCl₃) δ

166.1, 140.7, 138.1, 135.8, 134.4, 134.3, 133.4, 130.5, 129.6, 129.0, 128.6, 128.3, 128.2, 127.2, 127.2, 121.1, 66.5, 54.0; IR (ATR) 3033, 2930, 1710, 1635, 1311, 1160, 972, 754 cm⁻¹; HRMS m/z (M⁺) calcd for C₂₀H₁₇ClN₂O₂: 352.0979. Found: 352.0983.

Ethyl (E)-3-(2-((4-bromo-1H-pyrazol-1-yl)methyl)phenyl)acrylate (3i)

The title compound was prepared according to the general procedure. The product was obtained as a yellow liquid. Yield: 92% (154 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.91 (1H, d, J = 15.7 Hz), 7.58-7.57 (1H, m), 7.47 (1H, s), 7.35-7.33 (2H, m), 7.29 (1H, s), 7.09-7.07 (1H, m), 6.33 (1H, d, J = 15.7 Hz), 5.39 (2H, s), 4.24 (2H, q, J = 7.1 Hz), 1.31 (3H, t, J = 7.1 Hz); ¹³C NMR (150 MHz, CDCl₃) δ 166.2, 140.1, 140.1, 134.3, 133.5, 130.3,

129.5, 129.3, 128.9, 127.1, 121.5, 93.5, 60.6, 53.9, 14.2; IR (ATR) 2979, 1706, 1633, 1310, 1271, 1176, 763 cm⁻¹; HRMS *m/z* (M⁺) calcd for C₁₅H₁₅BrN₂O₂: 334.0317. Found: 334.0320.

tert-Butyl (E)-3-(2-((4-bromo-1H-pyrazol-1-yl)methyl)phenyl)acrylate (3j)

The title compound was prepared according to the general procedure. The product was obtained as a ivory solid. Yield: 90% (163 mg); mp 62-64 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.80 (1H, d, J = 15.7 Hz), 7.56-7.55 (1H, m), 7.46 (1H, s), 7.32 (2H, t, J = 4.6 Hz), 7.29 (1H, s), 7.08-7.06 (1H, m), 6.25 (1H, d, J = 15.7 Hz), 5.37 (2H, s), 1.50 (9H, s); ¹³C NMR (150 MHz, CDCl₃) δ 165.5, 140.1, 139.1, 134.1, 133.7, 130.1, 129.4, 129.3, 128.9,

127.1, 123.4, 93.4, 80.7, 53.9, 28.1; IR (ATR) 2974, 2929, 1703, 1632, 1313, 1144, 983, 760 cm⁻¹; HRMS *m/z* (M⁺) calcd for C₁₇H₁₉BrN₂O₂: 362.0630. Found: 362.0632.

Methyl (E)-3-(2-((4-(4-fluorophenyl)-1H-pyrazol-1-yl)methyl)phenyl)acrylate (3k)

The title compound was prepared according to the general procedure. The product was obtained as a ivory liquid. Yield: 89% (150 mg); ¹H NMR (600 MHz, CDCl₃) δ 8.14 (1H, d, J = 16.0 Hz), 7.60 (1H, dd, J = 8.6, 5.8 Hz), 7.40 (1H, d, J = 2.3 Hz), 7.38-7.35 (2H, m), 7.33-7.28 (4H, m), 7.10 (1H, td, J = 8.3, 2.7 Hz), 6.38-6.35 (2H, m), 5.36 (2H, s), 3.756 (3H, s); ¹³C NMR (150 MHz, CDCl₃) δ 167.1, 162.2 (d, J = 246.0 Hz), 149.3, 143.3, 136.2, 134.7 (d, J = 7.5 Hz), 131.7 (d, J = 9 Hz), 130.3, 128.8, 128.1, 127.8, 119.7,

116.9 (d, J = 22.5 Hz), 113.3, 113.1, 107.1, 56.2, 51.6; IR (ATR) 2946, 1711, 1320, 1270, 1168, 715 cm⁻¹; HRMS m/z (M⁺) calcd for C₂₀H₁₇FN₂O₂: 336.1274. Found: 336.1276.

Phenyl (E)-3-(2-((4-(4-fluorophenyl)-1H-pyrazol-1-yl)methyl)phenyl)acrylate (3l)

The title compound was prepared according to the general procedure. The product was obtained as a white solid. Yield: 85% (170 mg); mp 123-125 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.38 (1H, d, *J* = 16.2 Hz), 7.66-7.63 (1H, m), 7.44-7.39 (4H, m), 7.31-7.25 (6H, m), 7.17-7.15 (3H, m), 6.59 (1H, d, *J* = 16.2 Hz), 6.42 (1H, s), 5.37 (2H, s); ¹³C NMR (150 MHz, CDCl₃) δ 165.0, 162.2 (d, *J* = 246.0 Hz), 150.7, 149.3, 145.1 (d, *J* = 3.0 Hz), 136.1, 134.4, 131.7 (d, *J* = 9.0 Hz), 130.3,

129.3, 128.8, 128.1, 127.7, 125.7, 121.6, 119.2, 117.2 (d, J = 22.5 Hz), 113.4, 113.2, 107.0, 56.2; IR (ATR) 3061, 1708, 1497, 1267, 1195, 969, 703 cm⁻¹; HRMS *m*/*z* (M⁺) calcd for C₂₅H₁₉FN₂O₂: 398.1431. Found: 398.1429.

Ethyl (*E*)-3-(2-((1*H*-pyrazol-1-yl)methyl)-3-methylphenyl)acrylate (3m)

The title compound was prepared according to the general procedure. The product was obtained as a yellow solid. Yield: 74% (100 mg); mp 42-44 $^{\circ}$ C. ¹H NMR (600 MHz, CDCl₃) δ 8.02 (1H, d, *J* = 15.8 Hz), 7.50 (1H, s), 7.44 (1H, d, *J* = 7.6 Hz), 7.28-7.24 (2H, m), 7.07 (1H, s), 6.30 (1H, d, *J* = 14.5 Hz), 6.17 (1H, s), 5.44 (2H, s), 4.21 (2H, q, *J* = 7.2 Hz), 2.31 (3H, s),

1.29 (3H, t, J = 7.2 Hz); ¹³C NMR (150 MHz, CDCl₃) δ 166.3, 141.7, 139.2, 139.1, 138.9, 135.3, 132.4, 128.9, 128.3, 125.2, 121.8, 105.5, 60.5, 49.2, 19.6, 14.2; IR (ATR) 2978, 1711, 1632, 1304, 1175, 745 cm⁻¹; HRMS m/z (M⁺) calcd for C₁₆H₁₈N₂O₂: 270.1368. Found: 270.1371.

Ethyl (E)-3-(2-((1H-pyrazol-1-yl)methyl)-5-methylphenyl)acrylate (3n)

The title compound was prepared according to the general procedure. The product was obtained as a yellow liquid. Yield: 78% (105 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.92 (1H, d, *J* = 15.5 Hz), 7.52 (1H, d, *J* = 1.8 Hz), 7.38 (1H, s), 7.30 (1H, d, *J* = 2.4), 7.14 (1H, d, *J* = 7.8 Hz), 6.97 (1H, d, *J* = 7.8 Hz), 6.32 (1H, d, *J* = 15.6 Hz), 6.23 (1H, t, *J* = 2.4 Hz),

5.41 (2H, s), 4.22 (2H, q, J = 6.6 Hz), 2.32 (3H, s), 1.30 (3H, t, J = 7.2 Hz); ¹³C NMR (150 MHz, CDCl₃) δ 166.5, 140.6, 139.5, 138.4, 133.1, 132.3, 131.1, 129.5, 129.2, 127.5, 120.9, 105.9, 60.5, 52.9, 21.0, 14.2; IR (ATR) 2924, 1707, 1633, 1312, 1268, 1174, 750 cm⁻¹; HRMS m/z (M⁺) calcd for C₁₆H₁₈N₂O₂: 270.1368. Found: 270.1370.

Ethyl (E)-3-(2-((1H-pyrazol-1-yl)methyl)-3-bromophenyl)acrylate (30)

The title compound was prepared according to the general procedure. The product was obtained as a white solid. Yield: 67% (112 mg); mp 69-71 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.11 (1H, d, *J* = 15.7 Hz), 7.63 (1H, d, *J* = 8.0 Hz), 7.51 (2H, d, *J* = 7.3 Hz), 7.32 (1H, d, *J* = 2.4 Hz), 7.22 (1H, t, *J* = 7.9 Hz), 6.28 (1H, d, *J* = 15.8 Hz), 6.20 (1H, t, *J* = 2.2 Hz), 5.59 (2H, d, *J*

= 5.6 Hz), 4.23 (2H, q, J = 7.1 Hz), 1.29 (3H, t, J = 7.0 Hz); ¹³C NMR (150 MHz, CDCl₃) δ 165.9, 141.1, 139.2, 137.8, 134.4, 133.2, 130.3, 129.1, 126.8, 126.7, 123.1, 105.6, 60.7, 52.2, 14.2; IR (ATR) 2982, 1696, 1625, 1269, 1183, 1040, 963, 746 cm⁻¹; HRMS *m/z* (M⁺) calcd for C₁₅H₁₅BrN₂O₂: 334.0317. Found: 334.0319.

Ethyl (*E*)-3-(2-((1*H*-pyrazol-1-yl)methyl)-5-bromophenyl)acrylate (3p)

The title compound was prepared according to the general procedure. The product was obtained as a yellow solid. Yield: 69% (115 mg); mp 68-70 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.83 (1H, d, J = 15.6 Hz), 7.66 (1H, s), 7.51(1H, s), 7.41 (1H, d, J = 8.2 Hz), 7.33 (1H, s), 6.86 (1H, d, J = 8.2 Hz), 6.31 (1H, d, J = 15.7 Hz), 6.25 (1H, s), 5.36 (2H, s),

4.23 (2H, q, J = 7.3 Hz), 1.30 (3H, t, J = 7.1 Hz); ¹³C NMR (150 MHz, CDCl₃) δ 165.9, 139.9, 138.9, 135.1, 134.3, 133.0, 130.6, 129.7, 129.3, 123.7, 122.4, 106.2, 60.7, 52.6, 14.1; IR (ATR) 2977, 1710, 1634, 1309, 1173, 975, 753 cm⁻¹; HRMS *m/z* (M⁺) calcd for C₁₅H₁₅BrN₂O₂: 334.0317. Found: 334.0320.

Ethyl (E)-3-(2-((1H-pyrazol-1-yl)methyl)-5-chlorophenyl)acrylate (3q)

The title compound was prepared according to the general procedure. The product was obtained as a yellow semi-solid. Yield: 66% (96 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.85 (1H, d, *J* = 15.7 Hz), 7.52-7.51 (2H, m), 7.33 (1H, d, *J* = 2.3 Hz), 7.26 (1H, dd, *J* = 8.4, 1.8 Hz), 6.93 (1H, d, *J* = 8.3 Hz), 6.31 (1H, d, *J* = 15.8 Hz), 6.24 (1H, t, *J* = 3.0 Hz), 5.38 (2H,

s), 4.22 (2H, q, J = 7.2 Hz), 1.29 (3H, t, J = 7.2 Hz); ¹³C NMR (150 MHz, CDCl₃) δ 165.9, 139.8, 139.0, 134.8, 134.4, 133.7, 130.4, 130.0, 129.4, 126.8, 122.4, 106.2, 60.7, 52.5, 14.1; IR (ATR) 2979, 1709, 1634, 1310, 1175, 750 cm⁻¹; HRMS *m/z* (M⁺) calcd for C₁₅H₁₅ClN₂O₂: 290.0822. Found: 290.0823.

Ethyl (*E*)-3-(2-((1*H*-pyrazol-1-yl)methyl)-5-fluorophenyl)acrylate (3r)

The title compound was prepared according to the general procedure. The product was obtained as a white solid. Yield: 65% (89 mg); mp 76-78 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.88 (1H, d, *J* = 15.9 Hz), 7.52 (1H, s), 7.32 (1H, s), 7.24 (1H, d, *J* = 9.6 Hz), 7.02 (2H, d, *J* = 7.5 Hz), 6.31 (1H, d, *J* = 15.7 Hz), 6.24 (1H, s), 5.39 (2H, s), 4.23 (2H, q, *J* = 7.2

Hz), 1.30 (3H, t, J = 7.2 Hz); ¹³C NMR (150 MHz, CDCl₃) δ 166.0, 163.4 (d, J = 246.0 Hz), 139.3, 139.3, 135.3 (d, J = 7.5 Hz), 131.2 (d, J = 9.0 Hz), 129.2, 122.3, 117.1 (d, J = 22.5 Hz), 113.6, 113.4, 106.1, 60.7, 52.5, 14.2; IR (ATR) 2980, 1697, 1322, 1191, 751 cm⁻¹; HRMS m/z (M⁺) calcd for C₁₅H₁₅FN₂O₂: 274.1118. Found: 274.1115.

Ethyl (*E*)-3-(2-((1*H*-pyrazol-1-yl)methyl)-3,5-dichlorophenyl)acrylate (3s)

The title compound was prepared according to the general procedure. The product was obtained as a white solid. Yield: 63% (102 mg); mp 85-87 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.09 (1H, d, J = 15.8 Hz), 7.50 (1H, s), 7.45 (2H, s), 7.35 (1H, s), 6.31 (1H, d, J = 15.7 Hz), 6.21 (1H, s), 5.51 (2H, s), 4.24 (2H, q, J = 7.1 Hz), 1.30 (3H, t, J = 7.1 Hz);

¹³C NMR (150 MHz, CDCl₃) δ 165.6, 139.9, 139.6, 138.8, 136.8, 135.4, 130.5, 130.4, 129.2, 126.2, 124.1, 105.7, 60.9, 49.0, 14.2; IR (ATR) 2982, 1713, 1307, 1179, 859, 754 cm⁻¹; HRMS m/z (M⁺) calcd for C₁₅H₁₄Cl₂N₂O₂: 324.0432. Found: 324.0428.

Ethyl (E)-3-(3-((1H-pyrazol-1-yl)methyl)naphthalen-2-yl)acrylate (3u)

The title compound was prepared according to the general procedure. The product was obtained as a white solid. Yield: 89% (136 mg); mp 115-117 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.03 (1H, s), 7.98 (1H, d, *J* = 15.7 Hz), 7.81-7.79 (1H, m), 7.73-7.71 (1H, m), 7.56 (1H, s), 7.48-7.46 (3H, m), 7.36 (1H, s), 6.43 (1H, d, *J* = 15.6 Hz), 6.27 (1H, s),

5.57 (2H, s), 4.26 (2H, q, J = 7.1 Hz), 1.33 (3H, t, J = 7.1 Hz); ¹³C NMR (150 MHz, CDCl₃) δ 166.3, 140.9, 139.6, 133.6, 132.7, 132.3, 131.4, 129.4, 128.4, 128.0, 127.7, 127.3, 127.1, 126.8, 121.3, 106.0, 60.5, 53.9, 14.2; IR (ATR) 2984, 1696, 1309, 1183, 756 cm⁻¹; HRMS m/z (M⁺) calcd for C₁₉H₁₈N₂O₂: 306.1368. Found: 306.1369.

Ethyl (E)-3-(1-((1H-pyrazol-1-yl)methyl)naphthalen-2-yl)acrylate (3v)

The title compound was prepared according to the general procedure. The product was obtained as a white solid. Yield: 71% (109 mg); mp 98-100 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.30 (1H, d, J = 15.7 Hz), 8.10 (1H, d, J = 7.1 Hz), 7.87-7.82 (2H, m), 7.70 (1H, d, J = 8.7 Hz), 7.54-7.50 (3H, m), 7.05 (1H, s), 6.51 (1H, d, J = 15.7 Hz), 6.14 (1H, s),

5.92 (2H, s), 4.27 (2H, q, J = 7.1 Hz), 1.33 (3H, t, J = 7.1 Hz); ¹³C NMR (150 MHz, CDCl₃) 166.4, 141.1, 139.1, 134.3, 132.6, 132.4, 130.0, 130.0, 128.6, 128.5, 127.7, 127.1, 124.3, 123.7, 122.6, 105.9, 60.7, 48.3, 14.3; IR (ATR) 2987, 1704, 1272, 1038, 743 cm⁻¹; HRMS m/z (M⁺) calcd for C₁₉H₁₈N₂O₂: 306.1368. Found: 306.1365.

Methyl (E)-3-(2-((1H-indazol-1-yl)methyl)phenyl)acrylate (4a)

The title compound was prepared according to the general procedure. The product was obtained as a white solid. Yield: 91% (133 mg); mp 123-125 $^{\circ}$ C. ¹H NMR (600 MHz, CDCl₃) δ 8.06 (1H, d, *J* = 15.7 Hz), 7.99 (1H, s), 7.68 (1H, d, *J* = 8.1 Hz), 7.50 (1H, d, *J* = 7.6 Hz), 7.28-7.16 (4H, m), 7.08 (1H, t, *J* = 7.3 Hz), 6.77 (1H, d, *J* = 7.6 Hz), 6.29 (1H, d, *J* = 15.7 Hz), 5.66

(2H, s), 3.73 (3H, s); ¹³C NMR (150 MHz, CDCl₃) δ 166.8, 141.0, 139.6, 135.7, 133.7, 132.9, 130.2, 128.2, 128.1, 126.9, 126.5, 124.2, 121.1, 120.7, 120.6, 109.0, 51.7, 50.2; IR (ATR) 2953, 1700, 1273, 1208, 735 cm⁻¹; HRMS *m/z* (M⁺) calcd for C₁₈H₁₆N₂O₂: 292.1212. Found: 292.1210.

Ethyl (E)-3-(2-((1H-indazol-1-yl)methyl)phenyl)acrylate (4b)

The title compound was prepared according to the general procedure. The product was obtained as a white solid. Yield: 90% (138 mg); mp 79-81 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.13 (1H, d, *J* = 15.7 Hz), 8.08 (1H, s), 7.76 (1H, d, *J* = 8.2 Hz), 7.59 (1H, d, *J* = 7.7 Hz), 7.36-7.15 (4H, m), 7.16 (1H, t, *J* = 7.3 Hz), 6.84 (1H, d, *J* = 7.5 Hz), 6.37 (1H, d, *J* = 15.7

Hz), 5.75 (2H, s), 4.28 (2H, q, J = 7.1 Hz), 1.34 (3H, t, J = 7.2 Hz); ¹³C NMR (150 MHz, CDCl₃) δ 166.4, 140.6, 139.6, 135.6, 133.7, 132.9, 130.1, 128.1, 128.1, 126.9, 126.5, 124.2, 121.1, 121.1, 120.7, 109.0, 60.5, 50.2, 14.2; IR (ATR) 2985, 1700, 1628, 1310, 1178, 756 cm⁻¹; HRMS *m/z* (M⁺) calcd for C₁₉H₁₈N₂O₂: 306.1368. Found: 306.1365.

Ethyl (*E*)-3-(2-((5-phenyl-1*H*-indazol-1-yl)methyl)phenyl)acrylate (4c)

The title compound was prepared according to the general procedure. The product was obtained as a white solid. Yield: 90% (172 mg); mp 94-96 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.14 (1H, d, J = 15.8 Hz), 8.11 (1H, s), 7.92 (1H, s), 7.61-7.57 (4H, m), 7.43 (2H, t, J = 7.8 Hz), 7.36-7.24 (4H, m), 6.89 (1H, d, J = 7.4 Hz), 6.38 (1H, d, J = 15.7 Hz), 5.75 (2H, s), 4.27 (2H, q, J = 7.1 Hz), 1.33 (3H, t, J = 7.1 Hz); ¹³C

NMR (150 MHz, CDCl₃) δ 166.4, 141.2, 140.6, 139.1, 135.5, 134.3, 134.0, 132.9, 130.1, 128.7, 128.2, 128.1, 127.2, 126.9, 126.8, 126.6, 124.9, 121.2, 119.2, 109.3, 60.5, 50.4, 14.2; IR (ATR) 2957, 1710, 1631, 1313, 1181, 981, 758 cm⁻¹; HRMS *m/z* (M⁺) calcd for C₂₅H₂₂N₂O₂: 382.1681. Found: 382.1682.

Ethyl (E)-3-(2-((5-bromo-1H-indazol-1-yl)methyl)phenyl)acrylate (4d)

The title compound was prepared according to the general procedure. The product was obtained as a white liquid. Yield: 92% (177 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.06 (1H, d, J = 15.7 Hz), 7.99 (1H, s), 7.87 (1H, s), 7.58 (1H, d, J = 7.2 Hz), 7.39 (1H, d, J = 8.8 Hz), 7.30 (1H, t, J = 7.6 Hz), 7.26 (1H, t, J = 7.8 Hz), 7.17 (1H, d, J = 8.9 Hz), 6.85 (1H, d, J = 7.6 Hz), 6.34 (1H, d, J = 16.2 Hz), 5.71 (2H, s), 4.26

(2H, q, J = 7.4 Hz), 1.33 (3H, t, J = 7.1 Hz); ¹³C NMR (150 MHz, CDCl₃) δ 166.3, 140.5, 138.3, 135.1, 133.0, 132.9, 130.2, 129.6, 128.3, 128.2, 127.1, 125.8, 123.5, 121.3, 113.9, 110.5, 60.6, 50.6, 14.2; IR (ATR) 2979, 1706, 1482, 1308, 1172, 1037, 793 cm⁻¹; HRMS *m/z* (M⁺) calcd for C₁₉H₁₇BrN₂O₂: 384.0473. Found: 384.0475.

Methyl (E)-3-(2-((2H-indazol-2-yl)methyl)phenyl)acrylate (4e)

The title compound was prepared according to the general procedure. The product was obtained as a ivory solid. Yield: 94% (137 mg); mp 94-97 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.01 (1H, d, J = 15.8 Hz), 7.81 (1H, s), 7.71 (1H, d, J = 8.8 Hz), 7.60 (2H, d, J = 8.3 Hz), 7.36-7.32 (2H, m), 7.28-7.25 (1H, m), 7.09-7.04 (2H, m), 6.36 (1H, d, J = 15.7 Hz), 5.74 (2H, s), 3.77 (3H, s); ¹³C NMR (150 MHz, CDCl₃) δ 166.7, 148.8, 140.5, 134.4, 133.4, 130.5,

129.6, 129.0, 127.1, 126.2, 123.0, 122.0, 121.9, 121.2, 120.1, 117.4, 54.6, 51.8; IR (ATR) 3063, 1693, 1436, 1278, 757, 730 cm⁻¹; HRMS m/z (M⁺) calcd for C₁₈H₁₆N₂O₂: 292.1212. Found: 292.1208.

Ethyl (E)-3-(2-((2H-indazol-2-yl)methyl)phenyl)acrylate (4f)

The title compound was prepared according to the general procedure. The product was obtained as a hazelnut solid. Yield: 92% (141 mg); mp 57-59 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.99 (1H, d, J = 15.7 Hz), 7.81 (1H, s), 7.70 (1H, d, J = 7.8 Hz), 7.59 (2H d, J = 8.0 Hz), 7.34-7.32 (2H, m), 7.28 (1H, d, J = 6.4 Hz), 7.09-7.03 (2H, m), 6.35 (1H, d, J = 15.5 Hz), 5.73 (2H, s), 4.22 (2H, q, J = 7.2 Hz), 1.29 (3H, t, J = 7.1 Hz); ¹³C NMR (75

MHz, CDCl₃) δ 166.3, 148.6, 140.1, 134.2, 133.4, 130.4, 129.5, 128.9, 128.9, 127.0, 126.2, 123.1, 121.9, 121.6, 120.1, 117.3, 60.6, 54.6, 14.2; IR (ATR) 2927, 1704, 1267, 1159, 1036, 755 cm⁻¹; HRMS *m/z* (M⁺) calcd for C₁₉H₁₈N₂O₂: 306.1368. Found: 306.1369.

Methyl (E)-3-(2-((5-phenyl-2H-indazol-2-yl)methyl)phenyl)acrylate (4g)

The title compound was prepared according to the general procedure. The product was obtained as a yellow viscous liquid. Yield: 89% (164 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.03 (1H, d, J = 15.7 Hz), 7.86 (1H, s), 7.79-7.76 (2H, m), 7.60-7.55 (4H, m), 7.42 (2H, t, J = 7.8 Hz), 7.36-7.31 (3H, m), 7.12 (1H, d, J = 6.6 Hz), 6.37 (1H, d, J = 15.7 Hz), 5.75 (2H, s), 3.78 (3H, s); ¹³C NMR (150 MHz, CDCl₃) δ 166.7, 148.1, 141.5, 140.4, 135.1, 134.2, 134.2, 133.3, 130.5, 129.6, 129.0, 128.6, 127.1, 127.1, 126.9, 126.9, 126.8,

123.6, 122.4, 121.2, 117.9, 117.7, 54.6, 51.7; IR (ATR) 3027, 1710, 1316, 1273, 1169, 976 cm⁻¹; HRMS *m/z* (M⁺) calcd for C₂₄H₂₀N₂O₂: 368.1525. Found: 368.1527.

Ethyl (E)-3-(2-((5-bromo-2H-indazol-2-yl)methyl)phenyl)acrylate (4h)

The title compound was prepared according to the general procedure. The product was obtained as a yellow viscous liquid. Yield: 92% (177 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.95 (1H, d, J = 15.7 Hz), 7.75 (1H, s), 7.72 (1H, s), 7.59-7.56 (2H, m), 7.36-7.29 (3H, m), 7.10 (1H, d, J = 7.3 Hz), 6.33 (1H, d, J = 15.7 Hz), 5.70 (2H, s), 4.22 (2H, q, J = 7.2 Hz), 1.29 (3H, t, J = 7.1 Hz); ¹³C NMR (150 MHz, CDCl₃) δ 166.2, 147.1,

140.0, 133.9, 133.5, 130.4, 129.7, 129.6, 129.1, 127.1, 123.1, 122.5, 122.2, 121.7, 119.2, 115.3, 60.6, 54.8, 14.2; IR (ATR) 2931, 1707, 1311, 1270, 1175, 1036 cm⁻¹; HRMS m/z (M⁺) calcd for C₁₉H₁₇BrN₂O₂: 384.0473. Found: 384.0475.

Methyl (E)-3-(2-((2H-benzo[d][1,2,3]triazol-2-yl)methyl)phenyl)acrylate (5a)

The title compound was prepared according to the general procedure. The product was obtained as a orange solid. Yield: 84% (123 mg); mp 109-111 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.23 (1H, d, *J* = 15.8 Hz), 7.84 (2H, dd, *J* = 6.6, 3.1 Hz), 7.59-7.57 (1H, m), 7.35-7.32 (4H, m), 7.26-7.24 (1H, m), 6.37 (1H, d, *J* = 15.7 Hz), 6.00 (2H, s), 3.79 (3H, s); ¹³C NMR (150 MHz, CDCl₃) δ 166.8, 144.5, 141.0, 133.8, 133.5, 130.3, 130.0, 129.1, 127.1,

126.4, 121.2, 118.1, 57.3, 51.8; IR (ATR) 2924, 1709, 1632, 1318, 1168, 763 cm⁻¹; HRMS m/z (M⁺) calcd for C₁₇H₁₅N₃O₂: 293.1164. Found: 293.1165.

Ethyl (E)-3-(2-((2H-benzo[d][1,2,3]triazol-2-yl)methyl)phenyl)acrylate (5b)

The title compound was prepared according to the general procedure. The product was obtained as a ivory solid. Yield: 85% (131 mg); mp 89-91 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.21 (1H, d, *J* = 15.8 Hz), 7.84 (2H, dd, *J* = 6.6, 3.1 Hz), 7.59-7.58 (1H, m), 7.35-7.33 (4H, m), 7.25-7.23 (1H, m), 6.36 (1H, d, *J* = 15.7 Hz), 6.00 (2H, s), 4.25 (2H, q, *J* = 7.2 Hz), 1.32 (3H, t, *J* = 7.1 Hz); ¹³C NMR (150 MHz, CDCl₃) δ 166.3, 144.5, 140.7, 133.9,

133.4, 130.2, 130.0, 129.1, 127.1, 126.4, 121.7, 118.1, 60.6, 57.4, 14.2; IR (ATR) 2986, 1702, 1636, 1313, 1180, 746 cm⁻¹; HRMS m/z (M⁺) calcd for C₁₈H₁₇N₃O₂: 307.1321. Found: 307.1321.

Diethyl (E)-(2-((1H-pyrazol-1-yl)methyl)styryl)phosphonate (6a)

The title compound was prepared according to the general procedure. The product was obtained as a brown liquid. Yield: 86% (138 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.69 (1H, dd, J = 22.8, 17.4 Hz), 7.52-7.50 (1H, m), 7.47 (1H, s), 7.30-7.29 (3H, m), 7.04-7.02 (1H, m), 6.20 (1H, s), 6.14 (1H, t, J =17.4 Hz), 5.39 (2H, s), 4.08-3.99 (4H, m), 1.28 (6H, t, J = 7.1 Hz);

¹³C NMR (150 MHz, CDCl₃) δ 144.5 (d, $J_{C-P} = 7.5$ Hz), 139.4, 134.6, 133.9 (d, $J_{C-P} = 21.0$ Hz), 130.2, 129.4 (d, $J_{C-P} = 6.0$ Hz), 128.6, 128.1 (d, $J_{C-P} = 49.5$ Hz), 126.7, 117.4 (d, $J_{C-P} = 189.0$ Hz), 105.9, 61.9 (d, $J_{C-P} = 6.0$ Hz), 53.1, 16.2 (d, $J_{C-P} = 6.0$ Hz); IR (ATR) 2981, 1614, 1392, 1240, 1023, 963, 748 cm⁻¹; HRMS *m/z* (M⁺) calcd for C₁₆H₂₁N₂O₃P: 320.1290. Found: 320.1292.

(E)-4-Bromo-1-(2-(2-(phenylsulfonyl)vinyl)benzyl)-1H-pyrazole (6b)

The title compound was prepared according to the general procedure. The product was obtained as a white solid. Yield: 88% (177 mg); mp 96-98 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.91 (1H, d, J = 15.2 Hz), 7.85 (2H, d, J = 7.3 Hz), 7.59 (1H, t, J = 7.4 Hz), 7.52 (2H, t, J = 7.6 Hz), 7.48 (1H, d, J = 7.7 Hz), 7.42 (1H, s), 7.38 (1H, t, J = 7.5 Hz), 7.34-7.31 (2H, m), 7.18 (1H, d, J = 7.6 Hz), 6.77 (1H, d, J = 15.2 Hz), 5.38 (2H, s); ¹³C

NMR (150 MHz, CDCl₃) δ 140.2, 140.0, 138.2, 134.7, 133.4, 131.5, 131.2, 130.2, 130.1, 129.3, 129.2, 129.2, 127.6, 127.6, 93.5, 54.0; IR (ATR) 3047, 1600, 1300, 1140, 1077, 848, 748 cm⁻¹; HRMS *m/z* (M⁺) calcd for C₁₈H₁₅BrN₂O₂S: 402.0038. Found: 402.0036.

Diethyl (E)-(2-((5-phenyl-1H-indazol-1-yl)methyl)styryl)phosphonate (7a)

The title compound was prepared according to the general procedure. The product was obtained as a yellow liquid. Yield: 88% (196 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.10 (1H, s), 7.96-7.90 (2H, m), 7.61-7.57 (4H, m), 7.43 (2H, t, *J* = 7.7 Hz), 7.38 (1H, d, *J* = 8.7 Hz), 7.34-7.25 (3H, m), 6.94 (1H, d, *J* = 7.6 Hz), 6.22 (1H, t, *J* = 17.4 Hz), 5.74 (2H, s), 4.12-4.03 (4H, m), 1.32 (6H, t, *J* = 6.2 Hz); ¹³C NMR (150 MHz, CDCl₃)

 δ 144.7 (d, $J_{C-P} = 7.5$ Hz), 141.1, 139.1, 134.9, 134.5, 133.9, 133.7 (d, $J_{C-P} = 24.0$ Hz), 130.2, 129.3, 128.7, 128.4, 128.3, 127.2, 126.8 (d, $J_{C-P} = 4.5$ Hz), 126.8, 124.8, 119.1, 118.6 (d, $J_{C-P} = 189.0$ Hz), 109.4, 61.9 (d, $J_{C-P} = 4.5$ Hz), 50.4, 16.3 (d, $J_{C-P} = 6.0$ Hz); IR (ATR) 2981, 1720, 1616, 1483, 1239, 1023, 962, 794 cm⁻¹; HRMS m/z (M⁺) calcd for C₂₆H₂₇N₂O₃P: 446.1759. Found: 446.1758.

(E)-5-Bromo-1-(2-(2-(phenylsulfonyl)vinyl)benzyl)-1H-indazole (7b)

The title compound was prepared according to the general procedure. The product was obtained as a yellow solid. Yield: 82% (185 mg); mp 123-125 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.06 (1H, d, J = 15.2 Hz), 7.93 (1H, d, J = 1.0 Hz), 7.86 (1H, d, J = 1.7 Hz), 7.78 (2H, d, J = 7.2 Hz), 7.59 (1H, t, J = 7.5 Hz), 7.51-7.46 (3H, m), 7.41 (1H, dd, J = 8.9, 1.8 Hz), 7.33-7.27 (2H, m), 7.22 (1H, d, J = 8.9 Hz), 7.03 (1H, d, J = 7.5

Hz), 6.76 (1H, d, J = 15.1 Hz), 5.68 (2H, s); ¹³C NMR (150 MHz, CDCl₃) δ 140.2, 138.6, 138.2, 135.6, 133.4, 133.0, 131.2, 131.1, 130.0, 129.8, 129.3, 129.2, 128.7, 127.6, 127.6, 125.8, 123.6, 114.0, 110.5, 50.7; IR (ATR) 2922, 1614, 1446, 1305, 1143, 1083, 750 cm⁻¹; HRMS m/z (M⁺) calcd for C₂₂H₁₇BrN₂O₂S: 452.0194. Found: 452.0193.

Ethyl(*E*)-3-(2-((1*H*-pyrazol-1-yl)methyl)-3-((*E*)-3-methoxy-3-oxoprop-1-en-1yl)phenyl)acrylate (8)

The title compound was prepared according to the general procedure. The product was obtained as a white solid. Yield: 71% (120 mg); mp 88-90 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.07-8.01 (2H, m), 7.57 (2H, d, J =7.8 Hz), 7.49 (1H, s), 7.39 (1H, t, J = 7.8 Hz), 7.20 (1H, s), 6.31-6.27 (2H, m), 6.18 (1H, d, J = 1.8 Hz), 5.49 (2H, s), 4.21 (2H, q, J = 7.2 Hz), 3.75 (3H, s), 1.28 (3H, t, J = 7.2 Hz); ¹³C NMR (150 MHz, CDCl₃) δ 166.5, 166.1, 141.3, 141.0, 139.6, 136.1, 136.0, 132.4, 129.3, 128.8, 128.7, 128.7, 122.7, 122.2, 105.8, 77.2, 51.8, 48.6, 14.1; IR (ATR) 2992, 2954, 1705, 1626, 1312, 1165, 739 cm⁻¹; HRMS *m/z* (M⁺) calcd for C₁₉H₂₀N₂O₄Na: 363.1321. Found: 363.1318.

Ethyl (E)-3-(3-((1H-pyrazol-1-yl)methyl)furan-2-yl)acrylate (9a)

The title compound was prepared according to the general procedure. The product was obtained as a yellow liquid. Yield: 86% (106 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.53 (1H, d, J = 1.8 Hz,), 7.42 (2H, m), 7.35 (1H, d, J = 2.2 Hz), 6.36-6.34 (2H, m), 6.26 (1H, s), 5.26 (2H, s), 4.23 (2H, q, J = 7.1 Hz); 1.30 (3H, t, J = 7.1 Hz); ¹³C NMR (150 MHz, CDCl₃) δ 166.8, 147.6,

144.6, 139.6, 128.9, 127.7, 124.0, 117.1, 112.8, 106.2, 60.5, 46.3, 14.2; IR (ATR) 2974, 1748, 1224, 1022, 760 cm⁻¹; HRMS *m/z* (M⁺) calcd for C₁₃H₁₄N₂O₃: 246.1004. Found: 246.1003.

Diethyl (E)-(2-(3-((1H-pyrazol-1-yl)methyl)furan-2-yl)vinyl)phosphonate (9b)

The title compound was prepared according to the general procedure. The product was obtained as a brown liquid. Yield: 62% (96 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.46 (1H, s), 7.35 (2H, d, *J* = 6.2 Hz), 7.21 (1H, dd, *J* = 22.8, 17.4 Hz), 6.30 (1H, s), 6.21 (1H, s), 6.11 (1H, t, *J* = 17.4 Hz), 5.19 (2H, s), 4.07-4.01 (4H, m), 1.27 (6H, t, *J* = 7.1 Hz); ¹³C NMR (150 MHz,

CDCl₃) δ 147.3 (d, $J_{C-P} = 24.0$ Hz), 144.2, 139.3, 131.9 (d, $J_{C-P} = 7.5$ Hz), 128.9, 123.1, 112.6, 112.4 (d, $J_{C-P} = 192.0$ Hz), 106.0, 61.7 (d, $J_{C-P} = 6.0$ Hz), 46.0, 16.1 (d, $J_{C-P} = 7.5$ Hz); IR (ATR) 3064, 1630, 1290, 1132, 745, 557 cm⁻¹; HRMS m/z (M⁺) calcd for C₁₄H₁₉N₂O₄P: 310.1082. Found: 310.1084.

(E)-1-((2-(2-(phenylsulfonyl)vinyl)furan-3-yl)methyl)-1H-pyrazole (9c)

The title compound was prepared according to the general procedure. The product was obtained as an orange liquid. Yield: 72% (113 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.90 (2H, d, J = 7.3 Hz), 7.59 (1H, t, J = 7.4 Hz), 7.53-7.51 (3H, m), 7.39-7.35 (3H, m), 6.77 (1H, d, J = 14.8 Hz), 6.36 (1H, d, J = 1.9 Hz), 6.28 (1H, s), 5.27 (2H, s); ¹³C NMR (150 MHz, CDCl₃) δ 145.4, 145.3, 140.6, 139.9, 133.3, 129.3, 129.1, 127.5, 126.5, 125.9, 125.7, 113.1,

106.4, 46.36; IR (ATR) 2974, 1707, 1268, 1172, 1040, 752 cm⁻¹; HRMS m/z (M+H)⁺ calcd for C₁₆H₁₅N₂O₃S: 315.0803. Found: 315.0801.

Diethyl (*E*)-(2-(3-((1*H*-pyrazol-1-yl)methyl)thiophen-2-yl)vinyl)phosphonate (10a); Diethyl (*E*)-(2-(4-((1*H*-pyrazol-1-yl)methyl)thiophen-3-yl)vinyl)phosphonate (10a')

The title compounds were prepared according to the general procedure. The product was obtained as a regioisomeric mixture (66:34). Combined yield: 73% (119 mg). For major isomer; ¹H NMR (600 MHz, CDCl₃) δ 7.64 (1H, dd, J = 22.2, 16.8 Hz), 7.50 (1H, s), 7.35 (1, s), 7.24 (1H, d, J = 4.8 Hz), 6.81 (1H, d, J = 5.4 Hz), 6.24 (1H, s), 6.01 (1H, t, J = 16.8 Hz), 5.36 (2H, s), 4.10-4.02 (4H,

m), 1.31 (3H, t, J = 7.2 Hz); ¹³C NMR (150 MHz, CDCl₃) δ 139.3 (d, $J_{C-P} = 15.6$ Hz), 137.8, 137.7 (d, $J_{C-P} = 7.6$ Hz), 135.4, 129.4 (d, $J_{C-P} = 1.8$ Hz), 127.5, 114.3 (d, $J_{C-P} = 192.0$ Hz), 106.2, 61.9 (d, $J_{C-P} = 5.5$ Hz), 48.5, 16.3 (d, $J_{C-P} = 6.4$ Hz); IR (ATR) 2982, 1607, 1231, 1080, 960, 754 cm⁻¹; HRMS m/z (M+H)⁺ calcd for C₁₄H₁₉N₂O₃PSNa: 349.0752. Found: 349.0749.

¹H NMR and ¹³C NMR spectra of synthesized compounds

-150.69 -150.69 132.67 132.67 132.53 -106.19 -106.19 -25.76

110 100 f1 (ppm)

110 100 f1 (ppm)

88,240 88,240 88,240 89,240 1,4448
1,4448 1,4448 1,4448
1,4448 1,4448 1,4448
1,4448 1,4448
1,4448 1,4448
1,4448 1,4448
1,4448 1,4448
1,4448 1,4448
1,4448 1,4448
1,4448 1,4448
1,4448 1,4448
1,4448 1,4448
1,4448 1,4448
1,4448 1,4448
1,4448 1,4448
1,4448 1,4448
1,4448 1,4448
1,4448

S35

S41

S48

-3.781

110 100 f1 (ppm) 200 190

Crystal refinement data for compound 3a: Empirical Formula- $C_{14}H_{14}N_2O_2$, M = 242.27, Triclinic, Space group P-1, a = 8.868(5) Å, b = 8.948(5) Å, c = 10.107(6) Å, V = 637.1(6) Å³, Z = 2, T = 173(2) K, $\rho_{calcd} = 1.263 \text{ Mg/m}^3$, $2\Theta_{max} = 25.24^0$, Refinement of 164 parameters on 2984 independent reflections out of 12629 collected reflections ($R_{int} = 0.0434$) led to $R_1 = 0.0664$ [I >2 σ (I)], w $R_2 = 0.1336$ (all data) and S = 1.095 with the largest difference peak and hole of 0.200 and -0.174 e.Å⁻³ respectively. The crystal structure has been deposited at the Cambridge Crystallographic Data Centre (CCDC 1944051). The data can be obtained free of charge via the Internet at www.ccdc.cam.ac.uk/data request/cif.

Figure S1. X-ray Structure of compound 3a.

Table 1. Crystal data and structure refinement for 71a_re_a.					
Identification code	71a_re_a				
Empirical formula	$C_{14}H_{14}N_2O_2$				
Formula weight	242.27				
Temperature	173(2) K				
Wavelength	0.71073 Å				
Crystal system	Triclinic				
Space group	P-1				
Unit cell dimensions	a = 8.868(5) Å	α= 84.918(4)°.			
	b = 8.948(5) Å	$\beta = 66.058(4)^{\circ}.$			
	c = 10.107(6) Å	$\gamma = 61.274(4)^{\circ}.$			
Volume	637.1(6) Å ³				
Z	2				
Density (calculated)	1.263 Mg/m ³				
Absorption coefficient	0.086 mm ⁻¹				
F(000)	256				
Crystal size	0.200 x 0.200 x 0.200 mm ³				
Theta range for data collection	2.790 to 28.449°.				
Index ranges	-11<=h<=11, -11<=k<=11, -13<=l<=13				
Reflections collected	12629				
Independent reflections	2984 [R(int) = 0.0434]				
Completeness to theta = 25.242°	99.7 %				
Absorption correction	Semi-empirical from equivaler	nts			
Max. and min. transmission	0.7456 and 0.6507				
Refinement method	Full-matrix least-squares on F ²				
Data / restraints / parameters	2984 / 0 / 164				
Goodness-of-fit on F ²	1.095				
Final R indices [I>2sigma(I)]	R1 = 0.0664, wR2 = 0.1336				
R indices (all data)	R1 = 0.1219, wR2 = 0.1556				
Extinction coefficient	n/a				
Largest diff. peak and hole	0.200 and -0.174 e.Å ⁻³				

	x	v	Z	U(ea)
		, 	_	- (- 1)
N(1)	12(2)	5777(2)	6475(2)	49(1)
C(1)	7807(4)	-1226(4)	755(3)	100(1)
O(1)	7189(2)	-234(2)	2113(2)	89(1)
O(2)	10170(2)	-1353(2)	1790(2)	94(1)
N(2)	-634(3)	7431(2)	6219(2)	60(1)
C(2)	8516(3)	-384(3)	2500(2)	62(1)
C(5)	5109(3)	2965(3)	5957(2)	47(1)
C(4)	5946(3)	1811(3)	4608(2)	53(1)
C(3)	7750(3)	716(3)	3855(2)	61(1)
C(8)	3546(3)	5183(3)	8503(2)	64(1)
C(7)	5396(3)	3884(3)	7993(2)	65(1)
C(6)	6175(3)	2800(3)	6728(2)	59(1)
C(9)	2461(3)	5377(3)	7760(2)	56(1)
C(10)	3203(3)	4281(3)	6505(2)	45(1)
C(11)	1998(3)	4499(3)	5703(2)	53(1)
C(12)	-1339(3)	5539(3)	7537(2)	59(1)
C(13)	-2958(3)	7093(3)	7994(2)	63(1)
C(14)	-2447(3)	8210(3)	7152(3)	63(1)

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for 71a_re_a. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

N(1)-C(12)	1.339(3)
N(1)-N(2)	1.350(2)
N(1)-C(11)	1.458(2)
C(1)-O(1)	1.453(3)
C(1)-H(1A)	0.9800
C(1)-H(1B)	0.9800
C(1)-H(1C)	0.9800
O(1)-C(2)	1.330(3)
O(2)-C(2)	1.205(3)
N(2)-C(14)	1.329(3)
C(2)-C(3)	1.465(3)
C(5)-C(6)	1.402(3)
C(5)-C(10)	1.412(3)
C(5)-C(4)	1.472(3)
C(4)-C(3)	1.317(3)
C(4)-H(4)	0.9500
C(3)-H(3)	0.9500
C(8)-C(7)	1.377(3)
C(8)-C(9)	1.386(3)
C(8)-H(8)	0.9500
C(7)-C(6)	1.383(3)
C(7)-H(7)	0.9500
C(6)-H(6)	0.9500
C(9)-C(10)	1.388(3)
C(9)-H(9)	0.9500
C(10)-C(11)	1.520(3)
C(11)-H(11A)	0.9900
C(11)-H(11B)	0.9900
C(12)-C(13)	1.365(3)
C(12)-H(12)	0.9500
C(13)-C(14)	1.379(3)
С(13)-Н(13)	0.9500
C(14)-H(14)	0.9500

Table 3. Bond lengths [Å] and angles $[\circ]$ for $71a_{re_a}$.

C(12)-N(1)-N(2)	112.02(17)
C(12)-N(1)-C(11)	126.97(19)
N(2)-N(1)-C(11)	120.90(17)
O(1)-C(1)-H(1A)	109.5
O(1)-C(1)-H(1B)	109.5
H(1A)-C(1)-H(1B)	109.5
O(1)-C(1)-H(1C)	109.5
H(1A)-C(1)-H(1C)	109.5
H(1B)-C(1)-H(1C)	109.5
C(2)-O(1)-C(1)	117.52(19)
C(14)-N(2)-N(1)	103.87(18)
O(2)-C(2)-O(1)	121.9(2)
O(2)-C(2)-C(3)	124.9(2)
O(1)-C(2)-C(3)	113.21(18)
C(6)-C(5)-C(10)	118.14(19)
C(6)-C(5)-C(4)	121.30(19)
C(10)-C(5)-C(4)	120.56(18)
C(3)-C(4)-C(5)	127.0(2)
C(3)-C(4)-H(4)	116.5
C(5)-C(4)-H(4)	116.5
C(4)-C(3)-C(2)	124.9(2)
C(4)-C(3)-H(3)	117.6
C(2)-C(3)-H(3)	117.6
C(7)-C(8)-C(9)	119.8(2)
C(7)-C(8)-H(8)	120.1
C(9)-C(8)-H(8)	120.1
C(8)-C(7)-C(6)	119.9(2)
C(8)-C(7)-H(7)	120.1
C(6)-C(7)-H(7)	120.1
C(7)-C(6)-C(5)	121.5(2)
C(7)-C(6)-H(6)	119.3
C(5)-C(6)-H(6)	119.3
C(8)-C(9)-C(10)	121.3(2)
C(8)-C(9)-H(9)	119.4
C(10)-C(9)-H(9)	119.4
C(9)-C(10)-C(5)	119.41(18)

C(9)-C(10)-C(11)	120.81(18)
C(5)-C(10)-C(11)	119.78(17)
N(1)-C(11)-C(10)	113.78(16)
N(1)-C(11)-H(11A)	108.8
C(10)-C(11)-H(11A)	108.8
N(1)-C(11)-H(11B)	108.8
C(10)-C(11)-H(11B)	108.8
H(11A)-C(11)-H(11B)	107.7
N(1)-C(12)-C(13)	107.2(2)
N(1)-C(12)-H(12)	126.4
C(13)-C(12)-H(12)	126.4
C(12)-C(13)-C(14)	104.6(2)
C(12)-C(13)-H(13)	127.7
C(14)-C(13)-H(13)	127.7
N(2)-C(14)-C(13)	112.3(2)
N(2)-C(14)-H(14)	123.9
C(13)-C(14)-H(14)	123.9

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
N(1)	45(1)	49(1)	50(1)	4(1)	-22(1)	-18(1)
C(1)	81(2)	103(2)	84(2)	-39(2)	-18(2)	-26(2)
O(1)	54(1)	99(1)	82(1)	-39(1)	-14(1)	-17(1)
O(2)	50(1)	85(1)	93(1)	-18(1)	-14(1)	-2(1)
N(2)	56(1)	52(1)	68(1)	13(1)	-27(1)	-23(1)
C(2)	45(1)	51(1)	66(1)	4(1)	-15(1)	-13(1)
C(5)	45(1)	49(1)	49(1)	9(1)	-21(1)	-24(1)
C(4)	44(1)	53(1)	59(1)	4(1)	-22(1)	-20(1)
C(3)	46(1)	62(2)	63(1)	2(1)	-22(1)	-19(1)
C(8)	72(2)	76(2)	52(1)	0(1)	-28(1)	-40(1)
C(7)	68(2)	86(2)	63(1)	15(1)	-39(1)	-45(1)
C(6)	48(1)	66(2)	66(1)	12(1)	-29(1)	-26(1)
C(9)	50(1)	60(1)	50(1)	0(1)	-20(1)	-22(1)
C(10)	44(1)	49(1)	43(1)	7(1)	-19(1)	-22(1)
C(11)	43(1)	59(1)	47(1)	-4(1)	-19(1)	-15(1)
C(12)	54(1)	57(1)	63(1)	16(1)	-25(1)	-26(1)
C(13)	45(1)	66(2)	62(1)	4(1)	-15(1)	-20(1)
C(14)	53(1)	49(1)	73(2)	0(1)	-25(1)	-14(1)

Table 4. Anisotropic displacement parameters (Å²x 10³) for 71a_re_a. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	х	у	Z	U(eq)
H(1A)	6705	-1125	661	150
H(1B)	8664	-2436	756	150
H(1C)	8468	-786	-69	150
H(4)	5094	1863	4240	63
H(3)	8618	633	4218	73
H(8)	3014	5945	9361	77
H(7)	6136	3733	8510	78
H(6)	7461	1924	6374	70
H(9)	1186	6277	8116	67
H(11A)	2517	4837	4733	64
H(11B)	2088	3378	5543	64
H(12)	-1198	4486	7903	71
H(13)	-4167	7348	8730	76
H(14)	-3293	9400	7229	76

Table 5. Hydrogen coordinates ($x\;10^4$) and isotropic displacement parameters (Ųx 10 ³) for 71a_re_a.

Table 6. Torsion angles [°] for 71a_re_a.

C(12)-N(1)-N(2)-C(14)	-0.7(2)
C(11)-N(1)-N(2)-C(14)	-177.14(18)
C(1)-O(1)-C(2)-O(2)	-2.8(4)
C(1)-O(1)-C(2)-C(3)	177.8(2)
C(6)-C(5)-C(4)-C(3)	-10.8(3)
C(10)-C(5)-C(4)-C(3)	168.8(2)
C(5)-C(4)-C(3)-C(2)	-178.8(2)
O(2)-C(2)-C(3)-C(4)	177.9(2)
O(1)-C(2)-C(3)-C(4)	-2.8(3)
C(9)-C(8)-C(7)-C(6)	1.3(4)
C(8)-C(7)-C(6)-C(5)	-1.4(3)
C(10)-C(5)-C(6)-C(7)	0.2(3)
C(4)-C(5)-C(6)-C(7)	179.8(2)
C(7)-C(8)-C(9)-C(10)	0.1(3)
C(8)-C(9)-C(10)-C(5)	-1.3(3)
C(8)-C(9)-C(10)-C(11)	179.69(19)
C(6)-C(5)-C(10)-C(9)	1.1(3)
C(4)-C(5)-C(10)-C(9)	-178.45(18)
C(6)-C(5)-C(10)-C(11)	-179.83(18)
C(4)-C(5)-C(10)-C(11)	0.6(3)
C(12)-N(1)-C(11)-C(10)	-83.7(3)
N(2)-N(1)-C(11)-C(10)	92.2(2)
C(9)-C(10)-C(11)-N(1)	-7.5(3)
C(5)-C(10)-C(11)-N(1)	173.51(18)
N(2)-N(1)-C(12)-C(13)	0.8(2)
C(11)-N(1)-C(12)-C(13)	176.96(19)
N(1)-C(12)-C(13)-C(14)	-0.5(3)
N(1)-N(2)-C(14)-C(13)	0.4(3)
C(12)-C(13)-C(14)-N(2)	0.1(3)

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for 71a_re_a [Å and $^\circ].$

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)

Crystal refinement data for compound 4a: Empirical Formula- C_{18} H₁₆ N₂ O₂, M = 292.33, Triclinic, Space group P-1, a = 7.423(5) Å, b = 10.929(7) Å, c = 10.931(7) Å, V = 730.2(8) Å³, Z = 2, T = 173(2) K, $\rho_{calcd} = 1.330$ Mg/m³, $2\Theta_{max} = 25.24^{\circ}$, Refinement of 200 parameters on 3554 independent reflections out of 16840 collected reflections (R_{int} = 0.0512) led to R₁ = 0.0576 [I >2 σ (I)], wR₂ = 0.1104 (all data) and S = 1.062 with the largest difference peak and hole of 0.196 and -0.216 e.Å⁻³ respectively. The crystal structure has been deposited at the Cambridge Crystallographic Data Centre (CCDC 1944054). The data can be obtained free of charge via the Internet at www.ccdc.cam.ac.uk/data request/cif.

Figure S2. X-ray Structure of compound 4a.
Table 1. Crystal data and structure refinement	for 105_re_a.	
Identification code	105_re_a	
Empirical formula	$C_{18}H_{16}N_2O_2$	
Formula weight	292.33	
Temperature	173(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 7.423(5) Å	α= 106.755(4)°.
	b = 10.929(7) Å	$\beta = 107.442(4)^{\circ}.$
	c = 10.931(7) Å	$\gamma = 108.018(4)^{\circ}$.
Volume	730.2(8) Å ³	
Ζ	2	
Density (calculated)	1.330 Mg/m ³	
Absorption coefficient	0.088 mm ⁻¹	
F(000)	308	
Crystal size	0.200 x 0.150 x 0.120 n	nm ³
Theta range for data collection	2.979 to 28.489°.	
Index ranges	-9<=h<=9, -14<=k<=14	l, -14<=l<=14
Reflections collected	16840	
Independent reflections	3454 [R(int) = 0.0512]	
Completeness to theta = 25.242°	99.7 %	
Absorption correction	Semi-empirical from eq	uivalents
Max. and min. transmission	0.7456 and 0.6159	
Refinement method	Full-matrix least-square	es on F ²
Data / restraints / parameters	3454 / 0 / 200	
Goodness-of-fit on F ²	1.062	
Final R indices [I>2sigma(I)]	R1 = 0.0576, wR2 = 0.1	104
R indices (all data)	R1 = 0.1008, wR2 = 0.1	248
Extinction coefficient	n/a	
Largest diff. peak and hole	0.196 and -0.216 e.Å ⁻³	

	Х	У	Z	U(eq)
O(1)	4932(2)	5852(1)	1751(1)	45(1)
C(1)	2579(3)	3092(2)	210(2)	46(1)
N(1)	7609(2)	1658(1)	6084(1)	32(1)
N(2)	9099(2)	1287(2)	5814(2)	38(1)
O(2)	4081(2)	3656(1)	1663(1)	39(1)
C(2)	5184(3)	5076(2)	2318(2)	32(1)
C(5)	8380(2)	5186(2)	5906(2)	28(1)
C(4)	6882(3)	4755(2)	4451(2)	31(1)
C(3)	6718(3)	5584(2)	3777(2)	33(1)
C(7)	11164(3)	7032(2)	8162(2)	38(1)
C(6)	9761(3)	6617(2)	6789(2)	36(1)
C(8)	11247(3)	6027(2)	8681(2)	38(1)
C(9)	9915(3)	4612(2)	7827(2)	34(1)
C(10)	8471(3)	4171(2)	6445(2)	28(1)
C(11)	6999(3)	2602(2)	5535(2)	34(1)
C(12)	6897(3)	1039(2)	6875(2)	29(1)
C(13)	5401(3)	1114(2)	7385(2)	34(1)
C(14)	5013(3)	322(2)	8132(2)	39(1)
C(15)	6068(3)	-522(2)	8382(2)	38(1)
C(16)	7552(3)	-579(2)	7896(2)	35(1)
C(17)	7991(3)	212(2)	7121(2)	31(1)
C(18)	9326(3)	426(2)	6431(2)	37(1)

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for 105_re_a. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

O(1)-C(2)	1.2128(19)
C(1)-O(2)	1.447(2)
C(1)-H(1A)	0.9800
C(1)-H(1B)	0.9800
C(1)-H(1C)	0.9800
N(1)-C(12)	1.370(2)
N(1)-N(2)	1.370(2)
N(1)-C(11)	1.454(2)
N(2)-C(18)	1.328(2)
O(2)-C(2)	1.346(2)
C(2)-C(3)	1.470(2)
C(5)-C(6)	1.405(2)
C(5)-C(10)	1.407(2)
C(5)-C(4)	1.474(2)
C(4)-C(3)	1.333(2)
C(4)-H(4)	0.9500
C(3)-H(3)	0.9500
C(7)-C(8)	1.383(3)
C(7)-C(6)	1.386(2)
C(7)-H(7)	0.9500
C(6)-H(6)	0.9500
C(8)-C(9)	1.381(2)
C(8)-H(8)	0.9500
C(9)-C(10)	1.397(2)
C(9)-H(9)	0.9500
C(10)-C(11)	1.526(2)
C(11)-H(11A)	0.9900
C(11)-H(11B)	0.9900
C(12)-C(13)	1.397(3)
C(12)-C(17)	1.418(2)
C(13)-C(14)	1.375(2)
С(13)-Н(13)	0.9500
C(14)-C(15)	1.415(3)
C(14)-H(14)	0.9500

Table 3. Bond lengths [Å] and angles [°] for 105_re_a.

C(15)-C(16)	1.369(3)
С(15)-Н(15)	0.9500
C(16)-C(17)	1.409(2)
С(16)-Н(16)	0.9500
C(17)-C(18)	1.419(3)
C(18)-H(18)	0.9500
O(2)-C(1)-H(1A)	109.5
O(2)-C(1)-H(1B)	109.5
H(1A)-C(1)-H(1B)	109.5
O(2)-C(1)-H(1C)	109.5
H(1A)-C(1)-H(1C)	109.5
H(1B)-C(1)-H(1C)	109.5
C(12)-N(1)-N(2)	111.56(13)
C(12)-N(1)-C(11)	129.10(15)
N(2)-N(1)-C(11)	119.34(14)
C(18)-N(2)-N(1)	106.03(14)
C(2)-O(2)-C(1)	115.83(13)
O(1)-C(2)-O(2)	122.96(16)
O(1)-C(2)-C(3)	123.68(16)
O(2)-C(2)-C(3)	113.36(13)
C(6)-C(5)-C(10)	118.27(15)
C(6)-C(5)-C(4)	120.94(15)
C(10)-C(5)-C(4)	120.79(15)
C(3)-C(4)-C(5)	127.16(16)
C(3)-C(4)-H(4)	116.4
C(5)-C(4)-H(4)	116.4
C(4)-C(3)-C(2)	124.12(16)
C(4)-C(3)-H(3)	117.9
C(2)-C(3)-H(3)	117.9
C(8)-C(7)-C(6)	119.99(16)
C(8)-C(7)-H(7)	120.0
C(6)-C(7)-H(7)	120.0
C(7)-C(6)-C(5)	121.32(16)
C(7)-C(6)-H(6)	119.3
C(5)-C(6)-H(6)	119.3
C(9)-C(8)-C(7)	119.61(16)

C(9)-C(8)-H(8)	120.2
C(7)-C(8)-H(8)	120.2
C(8)-C(9)-C(10)	121.40(16)
C(8)-C(9)-H(9)	119.3
C(10)-C(9)-H(9)	119.3
C(9)-C(10)-C(5)	119.40(15)
C(9)-C(10)-C(11)	120.16(14)
C(5)-C(10)-C(11)	120.44(14)
N(1)-C(11)-C(10)	113.93(14)
N(1)-C(11)-H(11A)	108.8
C(10)-C(11)-H(11A)	108.8
N(1)-C(11)-H(11B)	108.8
C(10)-C(11)-H(11B)	108.8
H(11A)-C(11)-H(11B)	107.7
N(1)-C(12)-C(13)	131.20(15)
N(1)-C(12)-C(17)	106.34(15)
C(13)-C(12)-C(17)	122.45(15)
C(14)-C(13)-C(12)	116.41(16)
C(14)-C(13)-H(13)	121.8
С(12)-С(13)-Н(13)	121.8
C(13)-C(14)-C(15)	122.29(18)
C(13)-C(14)-H(14)	118.9
C(15)-C(14)-H(14)	118.9
C(16)-C(15)-C(14)	121.19(17)
C(16)-C(15)-H(15)	119.4
C(14)-C(15)-H(15)	119.4
C(15)-C(16)-C(17)	118.31(16)
C(15)-C(16)-H(16)	120.8
C(17)-C(16)-H(16)	120.8
C(16)-C(17)-C(12)	119.33(16)
C(16)-C(17)-C(18)	136.34(16)
C(12)-C(17)-C(18)	104.32(15)
N(2)-C(18)-C(17)	111.74(16)
N(2)-C(18)-H(18)	124.1
C(17)-C(18)-H(18)	124.1

Symmetry transformations used to generate equivalent atoms:

	T T 11	т т ² 2	1133	1123	1113	T 112
	0	022	033	023	013	012
O(1)	63(1)	45(1)	46(1)	33(1)	24(1)	33(1)
C(1)	50(1)	53(1)	32(1)	23(1)	10(1)	21(1)
N(1)	37(1)	27(1)	31(1)	14(1)	10(1)	13(1)
N(2)	41(1)	37(1)	38(1)	19(1)	17(1)	17(1)
O(2)	43(1)	37(1)	33(1)	21(1)	9(1)	15(1)
C(2)	38(1)	36(1)	37(1)	23(1)	20(1)	21(1)
C(5)	29(1)	27(1)	29(1)	13(1)	13(1)	11(1)
C(4)	33(1)	27(1)	33(1)	14(1)	14(1)	12(1)
C(3)	37(1)	29(1)	37(1)	18(1)	17(1)	15(1)
C(7)	36(1)	27(1)	34(1)	4(1)	10(1)	5(1)
C(6)	39(1)	27(1)	40(1)	15(1)	16(1)	13(1)
C(8)	34(1)	39(1)	26(1)	8(1)	6(1)	10(1)
C(9)	36(1)	34(1)	30(1)	16(1)	11(1)	14(1)
C(10)	28(1)	26(1)	28(1)	11(1)	12(1)	10(1)
C(11)	40(1)	28(1)	28(1)	15(1)	6(1)	12(1)
C(12)	34(1)	21(1)	22(1)	7(1)	5(1)	7(1)
C(13)	39(1)	27(1)	31(1)	9(1)	10(1)	15(1)
C(14)	45(1)	35(1)	33(1)	12(1)	18(1)	16(1)
C(15)	48(1)	34(1)	30(1)	17(1)	16(1)	14(1)
C(16)	43(1)	29(1)	31(1)	15(1)	9(1)	15(1)
C(17)	34(1)	25(1)	26(1)	9(1)	6(1)	10(1)
C(18)	39(1)	35(1)	38(1)	18(1)	13(1)	17(1)

Table 4. Anisotropic displacement parameters (Å2x 103) for 105_re_a. The anisotropic displacement factorexponent takes the form: $-2\pi^2$ [h² a*²U¹¹ + ... + 2 h k a* b* U¹²]

	Х	У	Z	U(eq)
H(1A)	1835	2059	-161	69
H(1B)	3314	3334	-358	69
H(1C)	1571	3502	163	69
H(4)	5929	3780	3937	37
H(3)	7652	6564	4272	39
H(7)	12068	8008	8747	46
H(6)	9733	7314	6438	43
H(8)	12214	6307	9620	45
H(9)	9983	3925	8186	41
H(11A)	5571	2442	5450	41
H(11B)	6943	2356	4574	41
H(13)	4690	1680	7225	41
H(14)	4001	343	8492	46
H(15)	5740	-1058	8896	45
H(16)	8267	-1138	8077	42
H(18)	10267	5	6412	45

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for 105_re_a.

Table 6. Torsion angles [°] for 105_re_a.

C(12)-N(1)-N(2)-C(18)	0.21(17)
C(11)-N(1)-N(2)-C(18)	-179.73(14)
C(1)-O(2)-C(2)-O(1)	1.2(2)
C(1)-O(2)-C(2)-C(3)	-178.56(14)
C(6)-C(5)-C(4)-C(3)	4.3(3)
C(10)-C(5)-C(4)-C(3)	-175.34(17)
C(5)-C(4)-C(3)-C(2)	179.78(16)
O(1)-C(2)-C(3)-C(4)	173.91(18)
O(2)-C(2)-C(3)-C(4)	-6.4(2)
C(8)-C(7)-C(6)-C(5)	1.1(3)
C(10)-C(5)-C(6)-C(7)	-0.8(3)
C(4)-C(5)-C(6)-C(7)	179.51(16)
C(6)-C(7)-C(8)-C(9)	-0.5(3)
C(7)-C(8)-C(9)-C(10)	-0.3(3)
C(8)-C(9)-C(10)-C(5)	0.5(3)
C(8)-C(9)-C(10)-C(11)	-179.13(16)
C(6)-C(5)-C(10)-C(9)	0.0(2)
C(4)-C(5)-C(10)-C(9)	179.69(15)
C(6)-C(5)-C(10)-C(11)	179.68(15)
C(4)-C(5)-C(10)-C(11)	-0.6(2)
C(12)-N(1)-C(11)-C(10)	97.4(2)
N(2)-N(1)-C(11)-C(10)	-82.63(19)
C(9)-C(10)-C(11)-N(1)	-15.0(2)
C(5)-C(10)-C(11)-N(1)	165.35(15)
N(2)-N(1)-C(12)-C(13)	-179.76(16)
C(11)-N(1)-C(12)-C(13)	0.2(3)
N(2)-N(1)-C(12)-C(17)	-0.32(17)
C(11)-N(1)-C(12)-C(17)	179.62(14)
N(1)-C(12)-C(13)-C(14)	178.51(16)
C(17)-C(12)-C(13)-C(14)	-0.9(2)
C(12)-C(13)-C(14)-C(15)	0.3(2)
C(13)-C(14)-C(15)-C(16)	0.6(3)
C(14)-C(15)-C(16)-C(17)	-0.8(2)
C(15)-C(16)-C(17)-C(12)	0.2(2)

C(15)-C(16)-C(17)-C(18)	-178.60(19)
N(1)-C(12)-C(17)-C(16)	-178.85(14)
C(13)-C(12)-C(17)-C(16)	0.7(2)
N(1)-C(12)-C(17)-C(18)	0.29(17)
C(13)-C(12)-C(17)-C(18)	179.79(15)
N(1)-N(2)-C(18)-C(17)	-0.02(19)
C(16)-C(17)-C(18)-N(2)	178.74(18)
C(12)-C(17)-C(18)-N(2)	-0.17(19)

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for 105_re_a [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)