Electronic Supplementary Information

Nanoceria as a DNase I mimicking nanozyme

Fang Xu,^{a,b} Qinwei Lu,^a Po-Jung Jimmy Huang,^b and Juewen Liu^{b*}

^a Department of Pharmaceutical Engineering, School of Food and Biological Engineering,

Hefei University of Technology, Hefei 230009, China.

^b Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo,

Waterloo, Ontario N2L 3G1, Canada.

E-mail: liujw@uwaterloo.ca

Materials and Methods

Chemicals. All the DNA oligomers were purchased from Integrated DNA Technologies (IDT, Coralville, IA, USA), and their sequences and modifications are listed in **Table S1**. The DNase I and its reaction buffer (10×) was purchased from New England Biolabs. Nanoceria dispersion (catalog number: 289744, 20% dispersed in 2.5% acetic acid), and metal salts, and the other nanoparticles and their characterization were reported previously.^{1, 2} Trisodium phosphate and ethylenediaminetetraacetic acid (EDTA) were from Mandel Scientific, Inc. (Guelph, Ontario, Canada). The nanoceria sample was washed three times using ultracentrifugation. Milli-Q water was used for all the experiments.

DNA cleavage by nanoceria. Detailed characterization of nanoceria used in this work was reported in our previous studies.^{3, 4} Each DNA sample was dissolved in deionized water to a final concentration of 1.0 μ M in the presence of nanoceria (100 μ g/mL) under different temperatures (0-60°C). The cleavage products were separated using 15% denaturing polyacrylamide gel electrophoresis (dPAGE) and analyzed using a ChemDoc MP imaging system (Bio-Rad, USA). Cleavage by other metal oxide nanoparticles was performed using the same protocol.

DNA cleavage by DNase I. Each DNA sample was dissolved with $1 \times$ DNase I reaction buffer to a final concentration of 1.0 µM in the presence of DNase I (100 U/mL) at 37°C. The cleavage products were separated using 15% denaturing polyacrylamide gel electrophoresis (dPAGE) and analyzed using a ChemDoc MP imaging system (Bio-Rad, USA).

Mass spectrometry analysis of DNA cleavage products. For mass spectrometry studies, non-FAM-labeled A₅ and G₅ DNA were used. Each DNA was reacted at 1.0 μ M with 100 μ g/mL of CeO₂ for 4 h at 60°C in a total volume of 5 mL. After the reaction, the cleavage products were further concentrated and desalted using a Sep-Pak C₁₈ cartridge (eluted with CH₃OH/CH₃CN mixture, 9:1, v:v) and dried in a vacuum centrifuge instrument. The dried samples were then dissolved by 50 μ L Milli-Q water for mass spectrometry analysis. High resolution mass spectrometry analysis was performed using a Thermo Scientific Q-Exactive Orbitrap mass spectrometer (Thermo Scientific, USA) coupled with an electrospray ionization (ESI) source. To help the cleavage products to enter the gas phase, ammonium acetate (0.01M) was added. **Fluorescence analysis.** DNA adsorption by nanoceria was analyzed by monitoring the change of fluorescence intensity upon the adding of nanoceria. The initial concentration of DNA (FAM-A₁₅) was 1.0 μM. The fluorescence spectra of the FAM-A₁₅ samples were acquired after adding different concentrations of nanoceria. All fluorescence analysis was performed using a Cary Eclipse fluorometer (Varian, USA) by exciting at 485 nm.

Fig. S1. (A) A TEM micrograph and (B) DLS size distribution of the CeO₂ nanoparticles used in this work. The average size was around 5 nm and slight aggregation was observed.

Fig. S2. Polyacrylamide gel electrophoresis analysis of DNA (1.0μ M) cleavage after incubated with nanoceria (100μ g/mL) at different temperatures ($0-60^{\circ}$ C) for 4 h. (A) FAM-A₁₅; (B) FAM-G₁₅; (C) FAM-C₁₅; (D) FAM-T₁₅. The cleavage yield increased with increasing temperature.

Fig. S3. Polyacrylamide gel electrophoresis analysis of DNA (1.0 μ M) cleavage by nanoceria (100 μ g/mL) at 37°C after 72 h incubation. (**A**) FAM-A₁₅; (**B**) FAM-G₁₅; (**C**) FAM-C₁₅; (**D**) FAM-T₁₅.

Fig. S4. Polyacrylamide gel electrophoresis analysis of DNA (1.0 μ M) cleavage incubated by large CeO₂ particles (165 nm, 100 μ g/mL) at 60°C for 4 h. The initial concentration of DNA (FAM-A₁₅) was 1.0 μ M.

Fig. S5. Gel micrographs showing cleavage of DNA (FAM-A₁₅) by heat treated (A) 100 μ g/mL CeO₂ at 60°C, and (B) DNase I (100 U/mL) at 37°C for 4 h. Before the test, both the CeO₂ and DNase I solutions were heated at 90°C for 10 min. The initial concentration of DNA (FAM-A₁₅) was 1.0 μ M. The DNase I sample showed no cleavage indicating that it was deactivated by the heat treatment.

Fig. S6. Gel micrographs showing cleavage of a random sequenced 24-mer single-stranded DNA (A) and its duplex (B) by CeO₂ (100 μ g/mL) at 37°C. The initial concentrations of single-stranded DNA and double stranded DNA were 1.0 μ M. (C) Quantification of DNA cleavage yields of the single-stranded DNA (left) and double-stranded DNA (right) at different incubation times.

Fig. S7. Effect of EDTA (0-50 mM) on the FAM-A₁₅ DNA cleavage yield by nanoceria at 60° C for 2 h. The initial concentration of the DNA was 1.0 μ M. All experiments were performed in triplicate.

DNA	Sequences (from 5'to 3') and modifications
FAM-A ₅	FAM-AAAAA
FAM-G ₅	FAM-GGGGG
FAM-C ₅	FAM-CCCCC
FAM-T ₅	FAM-TTTTT
FAM-A ₁₅	FAM-AAAAAAAAAAAAAAAA
FAM-G ₁₅	FAM-GGGGGGGGGGGGGGGG
FAM-C ₁₅	FAM-CCCCCCCCCCCC
FAM-T ₁₅	FAM-TTTTTTTTTTTTTT
FAM-A ₂₀	FAM-AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
FAM-A ₃₀	FAM-AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
FAM-A45	FAM-AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
FAM-A72	FAM-AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
	АЛАААААААААААААААААААА
FAM-A90	FAM-AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
	АААААААААА АААААААААААААААААААААААААААА

Table S1. The sequences of DNA used in this work

	Possible cleavage pro	MS analysis	
No.	Chemical molecular formula	Theoretical mass	Experimental results
1	ИС <u>и</u>	[M-H ⁺]=1582.29956 [M-2H ⁺]/2=790.64614 [M-3H ⁺]/3=526.76166	[M-2H ⁺]/2=790.64655 [M-3H ⁺]/3=526.76094
2	$\begin{array}{c} & & & \\ & & & \\ H O &$	[M-H ⁺]=1333.21337 [M-2H ⁺]/2=666.10304 [M-3H ⁺]/3=443.732937	Not detected
3		[M-H ⁺]=1253.24704 [M-2H ⁺]/2=626.11988 [M-3H ⁺]/3=417.07749	[M-2H ⁺]/2=626.11970
4		[M-H ⁺]=1004.16085 [M-2H ⁺]/2=501.57678	Not detected
5		[M-H ⁺] =924.19452 [M-2H ⁺]/2=461.59362	[M-H ⁺]=924.19459 [M-2H ⁺]/2=461.59359
6	HO = P - OH	[M-H ⁺] =675.10883 [M-2H ⁺]/2 =337.05052	Not detected

Table S2. Main DNA cleavage products of G5

	Possible cleavage products of DNA-A ₅		MS analysis
No.	Chemical molecular formula	Theoretical exact mass	Experimental results
1		[M-H ⁺]=1502.32498 [M-2H ⁺]/2=750.65885 [M-3H ⁺]/3=500.10347	[M-2H ⁺]/2=750.65886
2		[M-H ⁺]=1269.23371 [M-2H ⁺]/2=634.11321	Not detected
3		[M-H ⁺]=1189.26738 [M-2H ⁺]/2=594.13005	[M-2H ⁺]/2=594.12949
4		[M-H ⁺]=956.17610 [M-2H ⁺]/2=477.58441	Not detected
5	$HO \qquad HO \qquad$	[M-H ⁺]=876.20977 [M-2H ⁺]/2=437.60125	[M-2H ⁺]/2=437.13792

Table S3. Main DNA cleavage products of A5

References

- 1. B. Liu and J. Liu, ACS Appl. Mater. Interfaces, 2015, 7, 24833-24838.
- 2. B. Liu, L. Ma, Z. Huang, H. Hu, P. Wu and J. Liu, *Mater. Horizons*, 2018, **5**, 65-69.
- 3. B. Liu, Z. Sun, P.-J. J. Huang and J. Liu, J. Am. Chem. Soc., 2015, 137, 1290-1295.
- 4. Y. Zhao, Y. Wang, A. Mathur, Y. Wang, V. Maheshwari, H. Su and J. Liu, *Nanoscale*, 2019.