Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information

Experimental Section

Synthesis process of materials

Materials. All chemicals purchased from Aladdin were of analytical purity and used without further purification.

Synthesis of MnO_2 nanosheets on Diatomite (D). The diatomite@MnO₂ was assembled by a facile hydrothermal method. 40 mg diatomite and 35 mL 0.05 M KMnO₄ solution were added into a 50 mL autoclave. The Teflon-lined stainless steel autoclave was kept at 160 °C for 24 h in an oven. The samples were washed with distilled water and then dried at 60 °C for several hours. Finally, the MnO₂@diatomite were obtained.

Synthesis of FeOOH nanorods on Diatomite. The preparation of FeOOH nanorods are completed via a simple hydrothermal method which is a redox action from MnO₂ to FeOOH. Firstly, 80 mg D@MnO₂ and 0.01 M 70 mL FeSO₄•7H₂O mixed solvent containing distilled water and ethylene glycol ($V_E/V_D = 1/7$) were moved into a Teflonlined stainless steel autoclave and heated at 120 °C for 2 h in a rotating oven. Then, wash the solid precipitates with distilled water and dry at 60 °C for several hours. The D@ α -Fe₂O₃ and D@ γ -Fe₂O₃ were obtained by calcination in air at 350 °C and in N₂ at 500 °C for 2 h, respectively. The chemical reaction is shown in following Equation (1) and (2):

$$[Fe(H_2O)_6]^{2+} \rightarrow [Fe(OH)(H_2O)_5]^+ + H^+$$

$$\tag{1}$$

$$2Fe^{2+} + MnO_2 + 4H^+ \to 2Fe^{3+} + Mn^{2+} + 2H_2O$$
⁽²⁾

PPy coating on composites. The 200 mg samples (D@FeOOH, D@ α -Fe₂O₃ and D@ γ -Fe₂O₃) and 40 mg FeCl₃•6H₂O were dissolved into a number of distilled water. After tired evenly, the mixture was dried in a oven. Then, the solid-state mixture and 3 mL pyrrole were transferred into two beaker, separately. The beakers were put into a sealed container and heated at 60 °C for 24 h by a water bath kettle. Finally, the D@FeOOH@PPy was collected by centrifugal washing.

Material characterization

High resolution TEM (HRTEM) images were obtained on a JEOL-2100F TEM (JEOL, Japan) with an acceleration voltage of 200 kV. The crystallographic information and chemical compositions of the as-prepared nanostructures were established by powder X-ray diffraction (XRD, D/max 2500, Cu K α), and they were analyzed with the JADE 6.0 software. The structures and morphologies of the as-prepared nanostructures

were measured by focused ion beam scanning electron microscopy (FIB/SEM, ZEISS AURIGA). The BET specific surface area was obtained by N_2 adsorption/desorption isotherms at 77 K (ASAP 2020 sorptometer). XPS spectra were acquired on a Physical Electronics ESCA 5600 spectrometer with a monochromatic Al K α X-ray source (power: 200 W/14 kV) and a multichannel detector (Omni IV).

Electrochemical measurement

Electrochemical measurements of the samples were tested by using an electrochemical workstation (CHI 660E) with a three-electrode and a two-electrode configuration in 1 M Na_2SO_4 electrolyte.

For three-electrode configuration, the active materials were used as a working electrode, and a Pt plate was used as a counter electrode, the standard calomel electrode (SCE) as a reference electrode. As for the working electrode, nickel foam $(1 \times 1.5 \text{ cm}^2)$ was used for a current collector with $1 \times 1 \text{ cm}^2$ slurry on it, which is consist of active materials, carbon black and polyvinylidenefluoride (weight ratio=7:2:1) in N-methl-2-pyrrolidone (NMP). The nickel foam with slurry was heated to evaporate the dissolvent in a vacuum oven at 120 °C for 12 h. All the samples were regarded as negative electrode with a potential of -0.8~0 V.

For the tests with a two-electrode configuration, the $D@MnO_2@PPy$ was used as the positive material and the D@FeOOH@PPy was used as the negative material. The galvanostatic charge-discharge measurement has an expanding potential window of 1.6 V.

The electrochemical properties of the three-electrode and two-electrode configuration were tested by cyclic voltammetry (CV) at scan rates of 10 to 200 mV s⁻¹ and galvanostatic charge-discharge (GCD) at current densities of 0.5 to 5 A g⁻¹. The electrochemical impedance spectroscopy (EIS) experiments were carried out in the frequency range from 0.01 Hz to 100 kHz with a perturbation amplitude of 5 mV versus the open-circuit potential.

The specific capacitance C_m (F g⁻¹) and energy/power density are calculated by the following Equation (3-5):

$$C_m = \frac{I \times \Delta t}{m \times \Delta V}$$

$$E = 0.5 \times C_m \times \Delta V^2 / 3.6$$
(3)
(4)

$$P=3600 \times E/\Delta t$$
 (5)

where I (A) is the discharging current, Δt (s) is the discharging time, ΔV (V) is the potential window, m is the weight of active materials, E is the energy density and P is the power density.

The formula of mass loading between the positive and negative electrodes in twoelectrode configuration is calculated by the following Equation (6) and (7):

$$Q = C \times \Delta V \times m$$

$$\frac{m_p}{m_n} = \frac{C_n \times \Delta V_n}{C_p \times \Delta V_p}$$
(6)

(7)

Where Q is quantity of electric charge, C is the specific capacitance, ΔV is the potential window, m is the weight of active materials, p is positive and n is negative.

Fig. S1 The SEM image of (a) $D@MnO_2$ nanosheets and (b) D@FeOOH nanorods materials.

Fig. S2 The SEM images and corresponding magnified images of (a) D@PPy, (b) D@ α -Fe₂O₃@PPy and (c) D@ γ -Fe₂O₃@PPy.

Fig. S3 The EDS mapping of D@FeOOH@PPy: (i) C and O; (ii) O; (iii) C; (iv) Si; (v) Fe; (vi) N.

Fig. S4 The (a) Raman and (b) XRD of $D@\alpha$ -Fe₂O₃@PPy and $D@\gamma$ -Fe₂O₃@PPy

Fig. S5 The XPS of D@FeOOH@PPy : (a) O 1s and (b) Si 2p $% \mathcal{B}(\mathcal{B})$

Fig. S6 The (a) CV curves at different scan rates and (b) CC curves at different current density of D@FeOOH.

Fig. S7 The (a) CV curves at different scan rates and (b) CC curves at different current density of D@FeOOH@PPy.

Fig. S8 The (a) CV curves at different scan rates and (b) CC curves at different current density of $D@\alpha$ -Fe₂O₃@PPy.

Fig. S9 The (a) CV curves at different scan rates and (b) CC curves at different current density of $D@\gamma$ -Fe₂O₃@PPy.

Fig. S10 The (a) N_2 adsorption/desorption isotherms and (b) Pore size distribution curves of D@FeOOH@PPy and D@FeOOH.

Fig. S11 The SEM image of D@FeOOH@PPy electrode material after 10000 cycles with low and high manganification.

Fig. S12 (a) CV curves of D@FeOOH@PPy//D@MnO₂@PPy with different potential. (b) CV curves of D@FeOOH@PPy//D@MnO₂@PPy with different scan rates. (c) CC curves of D@FeOOH@PPy//D@MnO₂@PPy with different current densities. (d) The red LED lighted by the device.