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Experimental Section
Synthesis process of materials

   Materials. All chemicals purchased from Aladdin were of analytical purity and 

used without further purification.

   Synthesis of MnO2 nanosheets on Diatomite (D). The diatomite@MnO2 was 

assembled by a facile hydrothermal method. 40 mg diatomite and 35 mL 0.05 M 

KMnO4 solution were added into a 50 mL autoclave. The Teflon-lined stainless steel 

autoclave was kept at 160 oC for 24 h in an oven. The samples were washed with 

distilled water and then dried at 60 oC for several hours. Finally, the MnO2@diatomite 

were obtained.

   Synthesis of FeOOH nanorods on Diatomite. The preparation of FeOOH nanorods 

are completed via a simple hydrothermal method which is a redox action from MnO2 

to FeOOH. Firstly, 80 mg D@MnO2 and 0.01 M 70 mL FeSO4•7H2O mixed solvent 

containing distilled water and ethylene glycol (VE/VD =1/7) were moved into a Teflon-

lined stainless steel autoclave and heated at 120 oC for 2 h in a rotating oven. Then, 

wash the solid precipitates with distilled water and dry at 60 oC for several hours. The 

D@α-Fe2O3 and D@γ-Fe2O3 were obtained by calcination in air at 350 oC and in N2 at 

500 oC for 2 h, respectively. The chemical reaction is shown in following Equation (1) 

and (2):

[Fe(H2O)6]2+ → [Fe(OH)(H2O)5]+ + H+                                  (1)

2Fe2+ + MnO2 + 4H+ → 2Fe3+ + Mn2+ + 2H2O                            (2)

   PPy coating on composites. The 200 mg samples (D@FeOOH, D@α-Fe2O3 and 

D@γ-Fe2O3) and 40 mg FeCl3•6H2O were dissolved into a number of distilled water. 

After tired evenly, the mixture was dried in a oven. Then, the solid-state mixture and 3 

mL pyrrole were transferred into two beaker, separately. The beakers were put into a 

sealed container and heated at 60 oC for 24 h by a water bath kettle. Finally, the 

D@FeOOH@PPy was collected by centrifugal washing.

Material characterization

High resolution TEM (HRTEM) images were obtained on a JEOL-2100F TEM 

(JEOL, Japan) with an acceleration voltage of 200 kV. The crystallographic information 

and chemical compositions of the as-prepared nanostructures were established by 

powder X-ray diffraction (XRD, D/max 2500, Cu Kα), and they were analyzed with the 

JADE 6.0 software. The structures and morphologies of the as-prepared nanostructures 



were measured by focused ion beam scanning electron microscopy (FIB/SEM, ZEISS 

AURIGA). The BET specific surface area was obtained by N2 adsorption/desorption 

isotherms at 77 K (ASAP 2020 sorptometer). XPS spectra were acquired on a Physical 

Electronics ESCA 5600 spectrometer with a monochromatic Al Kα X-ray source 

(power: 200 W/14 kV) and a multichannel detector (Omni IV).

Electrochemical measurement

Electrochemical measurements of the samples were tested by using an 

electrochemical workstation (CHI 660E) with a three-electrode and a two-electrode 

configuration in 1 M Na2SO4 electrolyte.

For three-electrode configuration, the active materials were used as a working 

electrode, and a Pt plate was used as a counter electrode, the standard calomel electrode 

(SCE) as a reference electrode. As for the working electrode, nickel foam (1×1.5 cm2) 

was used for a current collector with 1×1 cm2 slurry on it, which is consist of active 

materials, carbon black and polyvinylidenefluoride (weight ratio=7:2:1) in N-methl-2-

pyrrolidone (NMP). The nickel foam with slurry was heated to evaporate the dissolvent 

in a vacuum oven at 120 oC for 12 h. All the samples were regarded as negative 

electrode with a potential of -0.8~0 V.

For the tests with a two-electrode configuration, the D@MnO2@PPy was used as 

the positive material and the D@FeOOH@PPy was used as the negative material. The 

galvanostatic charge-discharge measurement has an expanding potential window of 1.6 

V.

The electrochemical properties of the three-electrode and two-electrode 

configuration were tested by cyclic voltammetry (CV) at scan rates of 10 to 200 mV s-

1 and galvanostatic charge-discharge (GCD) at current densities of 0.5 to 5 A g-1. The 

electrochemical impedance spectroscopy (EIS) experiments were carried out in the 

frequency range from 0.01 Hz to 100 kHz with a perturbation amplitude of 5 mV versus 

the open-circuit potential.

The specific capacitance Cm (F g-1) and energy/power density are calculated by the 

following Equation (3-5):

　　　　　　　　　　                                 (3)
𝐶𝑚=

𝐼 × ∆𝑡
𝑚 × ∆𝑉

E=0.5×Cm×△V2/3.6                          (4)
P=3600×E/△t                               (5)



where I (A) is the discharging current, △t (s) is the discharging time, △V (V) is the 

potential window, m is the weight of active materials, E is the energy density and P is 

the power density.

   The formula of mass loading between the positive and negative electrodes in two-

electrode configuration is calculated by the following Equation (6) and (7):
                        Q= C×△V×m                              (6)

                                                        

𝑚𝑝

𝑚𝑛
=
𝐶𝑛 × ∆𝑉𝑛
𝐶𝑝 × ∆𝑉𝑝

(7)
Where Q is quantity of electric charge, C is the specific capacitance, △V is the potential 

window, m is the weight of active materials, p is positive and n is negative.
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Fig. S1 The SEM image of (a) D@MnO2 nanosheets and (b) D@FeOOH nanorods materials.



Fig. S2 The SEM images and corresponding magnified images of (a) D@PPy, (b) D@α-
Fe2O3@PPy and (c) D@γ-Fe2O3@PPy.



Fig. S3 The EDS mapping of D@FeOOH@PPy: (i) C and O; (ii) O; (iii) C; (iv) Si; (v) Fe; (vi) N.



Fig. S4 The (a) Raman and (b) XRD of D@α-Fe2O3@PPy and D@γ-Fe2O3@PPy



Fig. S5 The XPS of D@FeOOH@PPy : (a) O 1s and (b) Si 2p



Fig. S6 The (a) CV curves at different scan rates and (b) CC curves at different current density of 
D@FeOOH.



Fig. S7 The (a) CV curves at different scan rates and (b) CC curves at different current density of 
D@FeOOH@PPy.



Fig. S8 The (a) CV curves at different scan rates and (b) CC curves at different current density of 
D@α-Fe2O3@PPy.



Fig. S9 The (a) CV curves at different scan rates and (b) CC curves at different current density of 
D@γ-Fe2O3@PPy.



Fig. S10 The (a) N2 adsorption/desorption isotherms and (b) Pore size distribution curves of 
D@FeOOH@PPy and D@FeOOH.



Fig. S11 The SEM image of D@FeOOH@PPy electrode material after 10000 cycles with low and 
high manganification.



Fig. S12 (a) CV curves of D@FeOOH@PPy//D@MnO2@PPy with different potential. (b) CV 

curves of D@FeOOH@PPy//D@MnO2@PPy with different scan rates. (c) CC curves of 

D@FeOOH@PPy//D@MnO2@PPy with different current densities. (d) The red LED lighted by the 

device.


