Experimental

Chemicals and Materials.

All chemicals were at least AR grade, kept at 4 °C in the dark until used without further treatment, which were purchased from Aladdin Reagents Co. Ltd. (Shanghai, China) or Kelong Chemical Reagent Co. Ltd. (Chengdu, China). Ultrapure water (18.25 M Ω ·cm) used for all experiments was obtained from a water purification system (PCWJ-10, Pure Technology Co. Ltd, Chengdu, China).

Instrumental

The powder X-ray diffraction (PXRD) patterns were carried out with an EMPYREAN (Panalytical Inc., Netherlands) with a Cu sealed tube. For the TG analysis, the obtained MOFs crystals were heated using a thermogravimetric analyzer (EXSTAR 6000, Seiko Instrument Inc., Japan). The morphology of the obtained MOFs crystals was characterized by scanning electron microscope (SEM) (Hitachi, Japan). GC-MS data were obtained from a GCMS-QP2010 Plus (Shimadzu Instrument Inc., Japan). The NMR data were collected from a nuclear magnetic resonance spectrometer (Bruker AV II-600 MHz). The electron paramagnetic resonance (EPR) spectra of the generated radicals spin-trapped by 5,5-dimethyl-1-pyrroline N-oxide (DMPO) were collected at room temperature by using a BRUKER spectrometer (EXM, Germany). The EDS spectra were obtained by using an energy dispersive spectrometer (AXIS Ultra DLD 800 X, Kratos, UK).

EPR Data Analysis

The EPR results were obtained from the supernant in the reactor after the synthesis process of MOF-5 by the proposed strategy. It was shown in Figure 4 that the combined signal of hydrogen radical with hyperfine of $a_N=14.7$ G, $a_{H\alpha}=a_{H\beta}=19.2$ G and dimethylaminoformyl radical (•DMF) with hyperfine of $a_N=14.3$ G, $a_{H\beta}=17.4$ G, in accordance with the previously reported, respectively (J. Magn. Reson., 1973, 9, 510; J. Catal., 2016, 339, 292).

Tables

MOFs	Metal ions (M)	Ligands (M)	Solvent	Voltage (V)	Current (A)	Reaction time (min)	Yield (%)
MOF-5	$Zn(NO_3)_2 \bullet 6H_2O$	Terephthalic acid	DMF	32	1 20	30	50
	0.144	(BDC) 0.065	DIVI	52	1.20	50	50
	$C_{\rm T}(\rm NO)$, 211 O	Benzenetricarboxyli		40	1.32	1	
HKUST-1	0.106	c acid	DMF				50
	0.106	(BTC) 0.061					
ZIF-8	Zn(NO ₃) ₂ •6H ₂ O	N-methyl Imidazole	DME	40	1 20	1	70
	0.118	0.853	DMF 40		1.28	1	70
UiO-66	ZrCl ₄ •6H ₂ O	BDC	DME	40	1 27	10	80
	0.150	0.104	DMF	40	1.27	10	80
Mn ₂ (BDC) ₃	MnCl ₂ •4H ₂ O	BDC		40	1.24	20	00
(DMF) ₃	0.059	0.125	DMF	40	1.24	30	80
Tb(BTC)(DMF)	Tb (NO ₃) ₃	BTC		40	1.00	1	70
	0.010	0.010	DMF	40	1.23	I	/0
UiO-66-NH ₂	ZrCl ₄ •6H ₂ O	NH ₂ -BDC				10	70
	0.150	0.104	DMF	40	1.27	10	/8

Table S1 Parameters for the exhibitive synthesis of MOFs using the proposed strategy

Note: for the preparation of Au@ZIF-8 or Ag@ZIF-8: 0.118 M $Zn(NO_3)_2$ •6H₂O and 0.853 M Nmethyl imidazole as precursors, reacting at 40 V and 1.28 A for 1 min, followed by the addition of 0.1 mL concentrated HAuCl₄ in H₂O or 25 mg•mL⁻¹ AgNO₃, and reaction for another 10 min.

MOF	Measured BET $(m^2 \cdot g^{-1})$	Reported BET (m ² •g ⁻¹)	Reference
ZIF-8	1832	1470 <mark>/1630</mark>	[1]/ <mark>[2]</mark>
MOF-5	1680	~1300/1263	[3]/[4]
HKUST-1	1400	<mark>1880</mark>	[5]
UiO-66	966	855	[6]

Table S2 BET values of the obtained MOFs crystals and those reported previously

References:

- [1] Shi, Q.; Chen, Z.; Song, Z.; Li, J.; Dong, J. Angew. Chem. Int. Ed., 2011, 50(3), 672-675.
- Park, K. S.; Ni, Z.; Cote, A. P.; Choi, J. Y.; Huang, R.; Uribe-Remo, F. J.; Chae, H. K.; O'Keeffe, M.; Yaghi,
 O. M. PNAS, 2006, 103(27), 10186-10191.
- [3] Yoo, Y.; Lai, Z.; Jeong, H. K., Micropor. Mesopor. Mat., 2009, 123(1-3), 100-106.
- [4] Lu, C. M.; Liu, J.; Xiao, K.; Harris, A. T., Chem. Eng. J., 2010, 156(2), 465-470.
- [5] DeCoste, J. B.; Weston, M. H.; Fuller, P. E.; Tovar, T. M.; Peterson, G. W.; LeVan, D. M.; Farha, O. K. Angew. Chem. Int. Ed., 2014, 53, 14092-14095.
- [6] Kandiah, M.; Nilsen, M. H.; Usseglio, S.; Jakobsen, S.; Olsbye, U.; Tilset, M.; Lillerud, K. P. *Chem. Mater.*, 2010, 22, 6632–6640.

$Zn^{2+}[M]$	Solvent	Voltag	Voltag Current Reaction time		Size (µm)	Morphology
	e (V) (A)		(min)			
0.144	DMF	10	0.36	60	-	-
0.144	DMF	20	0.82	60	-	-
0.144	DMF	22	1.02	60	8±5	Cube with rough surface
0.144	DMF	24	1.08	60	10±5	Concave cube
0.144	DMF	26	1.12	60	13±5	Cube
0.144	DMF	30	1.16	30	20±5	Cube
0.144	DMF	32	1.20	30	25±5	Cube
0.144	DMF	38	1.25	30	30±5	Cube
0.144	DMF	40	1.29	30	30±5	Cube
0.144	DMF	32	1.20	10	5±2	Cube
0.144	DMF	32	1.20	60	35±10	Cube
0.072	DMF	32	1.18	30	20±5	Hexagonal plates

Table S3 Morphology and size of MOF-5 crystals obtained by using varied param

Note: -, no MOF-5 crystals obtained.

$Zn^{2+}[M]$	Solvent	Voltage (V)	Current (A)	Reaction time (min)	Yield (%)
0.118	DMF	30	1.12	1	-
0.118	DMF	42	1.32	1	72
0.118	DMF	40	1.28	1	70
0.118	DMF	40	1.28	3	78
0.118	DMF	40	1.28	10	88
1.18	DMF	40	1.28	1	80
11.8	DMF	40	1.28	1	76
0.118	Alcohol	42	1.44	1	75
0.118	Alcohol	40	1.40	1	70
0.118	Alcohol	30	1.32	1	62
0.118	Alcohol	30	1.32	3	70
0.118	Alcohol	30	1.32	10	86

Table S4 Yield of ZIF-8 crystals obtained with varied synthetic parameters

Note: -, none ZIF-8 crystals observed.

Cu ²⁺ [M]	Solvent	Voltag e (V)	Current (A)	Reaction time (min)	Size (µm)	Yield (%)
0.106	DMF	40	1.32	1	1±0.5	50
0.106	DMF	40	1.32	5	2±1	61
0.106	DMF	40	1.32	10	3±1	72
0.106	DMF	40	1.32	30	4±1	90
0.106	Alcohol	40	1.40	1	1±0.5	72
0.106	Alcohol	40	1.40	5	3±1	90
0.106	Alcohol	40	1.40	10	4±1	90
0.106	Alcohol	40	1.40	30	6±1	92
0.106	DMSO	40	1.42	5	2±0.5	85
0.106	Methanol	40	1.42	5	2±0.5	86
0.106	Propanol	40	1.44	5	2±0.5	90
0.106	Ethylene glycol	40	1.38	5	1±0.5	82
0.106	Tetrachloromethane	40	1.32	5	no crystals	-

Table S5 Size and yield of HKUST-1 crystals obtained with varied parameters

MOFs	Concentration*	Solvent	Voltage (V)	Reaction time (min)	H ₂
MOF-5	5-fold	DMF	40	15	less
HKUST-1	5-fold	DMF	40	15	less
ZIF-8	5-fold	DMF	40	15	less
HKUST-1	5-fold	Alcohol	36	15	Plenty
ZIF-8	5-fold	Alcohol	36	15	Plenty
Blank		Alcohol	36	15	No
Blank		DMF	36	15	less

Table S6 Verification of H_2 generation during MOFs synthesis with specific conditions

* 5-fold concentrations of metal ions and organic linkers for the plasma-induced synthesis described in this work.

MOFs	Threshold value (V)
ZIF-8	40
MOF-5	24
HKUST-1	20
UiO-66	30

Table S7 The threshold value of DBD input voltage for the synthesis of MOFs

Figures

Figure S1 (a) thermal gravity analysis (TGA) of MOF-5; (b) powder X-ray diffraction (PXRD) patterns of MOF-5 heated at varied temperature.

Figure S2 TGA of HKUST-1 (a), ZIF-8 (b), UiO-66 (c), and $Mn_2(BDC)_3(DMF)_3$ (d).

Figure S3 FESEM images of MOF-5 synthesized with different conditions: (a) V: 30 V; I: 1.16 A; P: 34.8 W; and t: 30 min; (b) V: 38 V; I: 1.25 A; P: 37.5 W; and t: 30 min; (c) V: 38 V; I: 1.25 A; P: 37.5 W; and t: 40 min; (d) V: 38 V; I: 1.25 A; P: 37.5 W; and t: 80 min; (e) V: 30 V; I: 1.16 A; P: 34.8 W; and t: 60 min; (f) V: 34 V; I: 1.02 A; P: 34.8 W; and t: 60 min; (g) V: 32 V; I: 1.16 A; P: 37.1 W; and t: 60 min; (h) V: 32 V; I: 0.5 A; P: 16 W; and t: 60 min.

Figure S4 Photograph of a self-designed system to verify the gaseous by-product.

Figure S5 NMR spectra obtained from the supernate in the reactor after (a) and before (b) the MOFs synthesis procedure using the proposed strategy.

Figure S6 FESEM images (a-d) and PXRD spectra (e) of the obtained MOF-5 crystals with the morphology in a layer-by-layer deposition manner (synthetic conditions: 38 V, 30 min).

Figure S7 SEM images of the product collected after MOF-5 precursors reacted for 10 min (a), 20 min (b) and 30 min (c) under the synthetic conditions: 28 V, 1.13 A.

Figure S8 Scheme about the incorporation of Au or Ag nanoparticles into nanoZIF-8 crystals (a)&(b); FESEM images Au@ZIF-8 (c) and Ag@ZIF-8 (e), along with the according EDS spectra (d&f).

Figure S9 FESEM images of (a) HKUST-1, (b) MOF-5 and (c) $Mn_2(BDC)_3(DMF)_3$ synthesized in non-flow (i) and continuous flow (ii) manner, respectively.