Electronic Supporting Information

Receptors for sulfate that function across a wide pH range in mixed aqueous-DMSO media

Lei Qin^[a], James Wright^[a], Jakob D. E. Lane^[a], Stuart N. Berry^[a], Robert B. P. Elmes,^[a,b] Katrina A. Jolliffe*^[a]

> ^a School of Chemistry, The University of Sydney, NSW 2006, Australia. Email: <u>kate.jolliffe@sydney.edu.au</u>

^b Department of Chemistry, Maynooth University, National University of Ireland, Maynooth, Co., Kildare, Ireland.

Contents

General experimental	3
Synthesis and characterization of novel compounds	4
¹ H NMR Binding studies	31
References:	41

General experimental

¹H NMR spectra were recorded using a Bruker Avance III 600 spectrometer at a frequency of 600 MHz, Bruker Avance III 500 spectrometer at a frequency of 500 MHz or Bruker Avance III 400 spectrometer at a frequency of 400 MHz, and are reported as parts per million (ppm) with DMSO- d_6 ($\delta_{\rm H}$ 2.50 ppm), CDCl₃ ($\delta_{\rm H}$ 7.26 ppm) or CD₃CN ($\delta_{\rm H}$ 1.94 ppm) as an internal reference. The data are reported as chemical shift (δ), multiplicity (br = broad, s = singlet, d = doublet, dd = doublet of doublets, dt = doublet of triplets, t = triplet, m = multiplet, br s = broad singlet), coupling constant (J Hz) and relative integral. ¹³C NMR spectra were recorded using a Bruker Avance III 600 spectrometer at a frequency of 150 MHz, Bruker Avance III 500 spectrometer at a frequency of 125 MHz or Bruker Avance III 400 spectrometer at a frequency of 100.6 MHz and are reported as parts per million (ppm) with DMSO- d_6 (δ_C 39.52 ppm) or CDCl₃ (δ_c 77.16 ppm) or CD₃CN (δ_c 1.32 and 118.26 ppm) as an internal reference. High-resolution ESI spectra were recorded on a Bruker BioApex Qe 7T Fourier Transform Ion Cyclotron Resonance mass spectrometer (FTICR) with an Apollo Dual source, via syringe infusion. Analytical TLC was performed using precoated silica gel plates (Merck Kieselgel 60 F254). Tetrabutylammonium salts were used as supplied and were stored in a vacuum desiccator over silica drying beads and phosphorous pentoxide. Unless otherwise stated, all other reagents were commercially available and used as supplied.

Methyl 3,5-bis(azidomethyl)benzoate¹ and methyl 2,6-bis(bromomethyl)isonicotinate^{2,3} were prepared according to literature methods.

Synthesis and characterization of novel compounds

Scheme S1: Synthesis of the desired triethylene glycol monomethyl ether (TEG) appended MSQs 1-4.

Conditions: (i) Ph₃P, H₂O, THF, RT, (**9**, 89%; **10**, --^a); (ii) diethyl squarate, EtOH, RT, 16 hrs, (**11**, 68%; **12**, 76%); (iii) **7** or **8**, EtOH, RT, 16 hrs (**3**, 63%; **5**, 72%); (iv) Boc₂O, CH₂Cl₂, RT, 16 hrs, (**13**, 65%; **14**, --^a); (v) diethyl squarate, EtOH, RT, 16 hrs, (**15**, 60%; **16**, 60%); (vi) TFA/CH₂Cl₂, RT, 2 hrs; (vii) **11** or **12**, EtOH, RT, 48 hrs (**4**, 42%; **6**, 50%).

^a Due to the unstable nature of the amine **10**, compound was stored and characterised as the di(Boc) protected **17** or used immediately after synthesis.

3,5-Bis(azidomethyl)-*N*-(2-(2-(2-methoxyethoxy)ethyl)benzamide (7)

Methyl 3,5-bis(azidomethyl)benzoate (150 mg, 0.609 mmol) was dissolved in THF (9 mL) then a solution of sodium hydroxide (24 mg, 0.609 mmol) in water (1 mL) was added and the reaction mixture was stirred overnight in the absence of light. The solvent was evaporated using a positive flow of N_{2(g)}, and the residue was re-dissolved in 2 mL of CH₂Cl₂. [HBTU]PF₆ (276 mg, 0.911 mmol, 1.2 eq.) and *i*Pr₂EtN (157 mg, 1.21 mmol, 2.0 eq.) were added to the solution and the mixture was stirred for 5 minutes. 2-(2-(2-Methoxy)ethoxy)ethoxy)ethan-1-amine (128 mg, 0.784 mmol, 1.3 eq.) was dissolved in 4 mL of CH_2Cl_2 and added dropwise (1 drop per second), then the reaction mixture was stirred for 24 h at room temperature. The solvent was removed in vacuo, and the mixture was purified using flash silica gel chromatography (3:1-9:1 EtOAc/hexane) to isolate the product 7 as a colorless oil (266 mg). Tetramethyl-urea by-product ($\delta_{\rm H}$ 2.81 ppm) was present and could not be separated from the product; however, based on ¹H NMR evidence the yield is approximately quantitative (229 mg, >95%). An infrared spectrum was not collected for this reason. $R_f = 0.48$ in 3:1 EtOAc/hexane. ¹H NMR (CDCl₃, 400 MHz) δ_H 3.33 (s, 3 H), 3.55-3.53 (m, 2 H), 3.68 - 3.64 (m, 10 H), 4.44 (s, 4 H), 6.93 (m, 1 H), 7.42 (s, 1 H), 7.73 (s, 2 H); ¹³C NMR (CDCl₃, 100 MHz, 298 K) δ_C 40.1, 54.3, 59.1, 70.2, 70.3, 70.5, 70.6, 71.9, 126.7, 130.5, 136.0, 136.9, 166.9; **HRMS** (ESI, MeOH) m/z: 400.1704 [M+Na]⁺ calcd. for C₁₆H₂₃N₇NaO₄⁺ 400.1704, 777.3515 $[2M+Na]^+$ calcd. for C₃₂H₄₆N₁₄NaO₈⁺ 777.3521.

Figure S2. ¹³C NMR of compound 7.

3,5-Bis(aminomethyl)-N-(2-(2-(2-methoxyethoxy)ethyl)benzamide (9)

Diazide 7 (115 mg, 0.305 mmol) was dissolved in THF (10 mL). Triphenylphosphine (493 mg, 1.88 mmol) was added and the reaction mixture was stirred in an unsealed flask for 2 h. Distilled water (2 mL) was added and the reaction was stirred in the dark for 18 h. The solvent was evaporated to dryness and the residue was purified using silica gel chromatography (4:1 CH₂Cl₂/CH₃OH – 4:1:0.01 CH₂Cl₂/CH₃OH/conc. NH₄OH_(aq)) and after removal of solvent from the appropriate fractions *in vacuo*, the product **9** was isolated as a colorless oil (88 mg, 89% yield). R_f= 0.2. ¹**H NMR** (CDCl₃, 400 MHz) $\delta_{\rm H}$ 2.22 (br. s, 4 H), 3.31 (s, 3 H), 3.52 - 3.50 (m, 2 H), 3.65 - 3.61 (m, 10 H), 3.89 (s, 4 H), 7.12 (m, 1 H), 7.39 (s, 2 H), 7.64 (s, 1 H); ¹³**C NMR** (CDCl₃, 100 MHz) $\delta_{\rm C}$ 39.9, 46.1, 59.0, 70.1, 70.3, 70.5, 70.6, 72.0, 124.7, 129.2, 135.3, 143.4, 167.7; **HRMS** (ESI, MeOH) *m/z*: 326.2070 [M+H]⁺ calcd. for C₁₆H₂₈N₃O₄⁺ 326.2074, 348.1890 [M+Na]⁺ calcd. for C₁₆H₂₇N₃NaO₄⁺ 348.1894, 364.1630 [M+K]⁺ calcd. for C₁₆H₂₇KN₃O₄⁺ 364.1633. **v**_{max} (**film**)/**cm**⁻¹: 3351 (broad), 3294 (broad), 3068, 2871, 1640, 1598, 1542, 1452, 1350, 1308, 1247, 1199.

3,5-Bis(((2-ethoxy-3,4-dioxocyclobut-1-en-1-yl)amino)methyl)-*N*-(2-(2-(2-methoxyethoxy) ethoxy)ethyl)benzamide (**11**)

The diamine **9** (71 mg, 0.218 mmol), was dissolved in ethanol (5 mL) and a solution of diethyl squarate (82 mg, 0.480 mmol) in ethanol (5 mL) was added dropwise (1 drop per second) then the reaction mixture was stirred at room temperature for 19 hours. The solvent was removed under reduced pressure and the mixture was purified using silica gel column chromatography (9:1 CH₂Cl₂/CH₃OH) to isolate the product **11** as a colorless oil (85 mg, 68% yield). R_f = 0.6. ¹H NMR (CDCl₃, 400 MHz) δ_H 1.49 - 1.36 (m, 6 H); 3.26 (s, 3 H), 3.52 - 3.47 (m, 2 H), 3.70 - 3.57 (m, 10 H), 4.90 - 4.54 (m, 8 H), 7.53 - 7.27 (m, 2 H), 7.70 (s, 2 H), 7.90 - 7.74 (m, 2 H); ¹³C NMR (CDCl₃, 100 MHz, 298 K) δ_C 16.0, 40.1, 48.2, 58.9, 69.8, 70.2, 70.3, 70.5, 70.7, 71.9, 126.3, 129.6, 130.3, 135.7, 138.5, 167.0, 172.7, 177.8, 183.4, 189.4; HRMS (ESI, MeOH) *m/z*: 596.2225 [M+Na]⁺ calcd. for C₂₈H₃₅N₃NaO₁₀⁺ 596.2215, 1169.4570 [M+Na]⁺ calcd. for C₅₆H₇₀N₆NaO₂₀⁺ 1169.4537. **v**_{max} (film)/cm⁻¹: 3489 (broad), 3230 (broad), 2980, 2932, 2874, 1803, 1703, 1588, 1530, 1493, cm⁻¹.

Figure S6. ¹³C NMR of compound 11.

Tert-butyl (3-(aminomethyl)-5-((2-(2-(2-methoxyethoxy)ethyl)carbamoyl)benzyl)carbamate (13)

Diamine 9 (129 mg, 0.396 mmol, 1 eq.) was dissolved in 10 mL methanol, and the solution was cooled to 0 °C. 1 eq. of aqueous HCl (389 µL, 1.02 mol L⁻¹) was added to 3 mL distilled water and the dilute solution was added dropwise to the diamine solution and stirred at 0 °C for half an hour. Boc₂O (87 mg, 0.396 mmol, 1 eq.) was dissolved in 10 mL methanol and added dropwise (1 drop per second) to the protonated amine solution at 0 °C. The reaction was stirred overnight, warming to room temperature. Et₃N (40 mg, 0.396 mmol, 1 eq.) was then added and the mixture was stirred for 2 hours. The solvent was removed and the residue purified using silica gel column chromatography (9:1 CH₂Cl₂/CH₃OH - 9:1:0.02 CH₂Cl₂/CH₃OH/conc. NH₄OH_(aq) - 4:1:0.1 CH₂Cl₂/CH₃OH/conc. NH₄OH_(aq)) and after combining the appropriate fractions, the product 13 was isolated as a colorless oil (110 mg, 65% yield). $R_f = 0.1$ in 9:1 CH₂Cl₂/CH₃OH. ¹H NMR (CD₃CN, 400 MHz) δ_H 1.40 (s, 9 H), 3.23 (s, 3 H), 3.25 (br. s, 2 H), 3.43 - 3.41 (m, 2 H), 3.47 (m, 2 H), 3.62 - 3.51 (m, 8 H), 3.89 (s, 2 H), 4.19 (s, 2 H), 6.22 (s, 1 H), 7.36 (s, 1 H), 7.56 (s, 1 H), 7.73 (s, 2 H); ¹³C NMR (CD₃CN, 100 MHz, 298 K) δ_C 28.7, 40.5, 44.5, 53.6, 58.9, 70.2, 70.9, 71.0, 72.5, 79.7, 126.1, 126.4, 130.6, 135.8, 141.7, 157.2, 168.2; LRMS (ESI, MeOH) m/z: 448.3 [M+Na]⁺ calcd. for C₂₁H₃₅N₃NaO₆⁺ 448.2, 464.3 [M+K]⁺ calcd. for C₂₁H₃₅KN₃O₆⁺ 464.2, 873.4 $[2M+Na]^+$ calcd. for C₄₂H₇₀N₆NaO₁₂⁺ 873.5. v_{max} (film)/cm⁻¹: 3308 (broad), 2924, 1708, 1645, 1538.

Figure S7. ¹H NMR of compound 13.

Figure S8. ¹³C NMR of compound 13.

Di-*tert*-butyl ((((((3,4-dioxocyclobut-1-ene-1,2-diyl)bis(azanediyl))bis(methylene))bis(5-((2-(2-(2-methoxy)ethoxy)ethoxy)ethyl)carbamoyl)-3,1-phenylene))bis(methylene))dicarbamate (**15**)

MonoBoc-protected amine **13** (165 mg, 0.398 mmol) was dissolved in ethanol (5 mL) and a solution of diethyl squarate (23 mg, 0.136 mmol) in ethanol (5 mL) was added then the mixture was stirred for 2 days at room temperature. The solvent was removed under reduced pressure and the residue was purified using silica gel column chromatography (9:1 CH₂Cl₂/CH₃OH) and after isolating the appropriate fractions and solvent removal, the product **15** was isolated as a colorless oil (75 mg, 60% yield). $R_f = 0.32$. ¹H NMR (DMSO-*d*₆, 400 MHz) $\delta_H 1.38$ (s, 18 H), 3.21 (s, 3 H), 3.43 - 3.37 (m, 4 H), 3.56 - 3.47 (m, 16 H), 4.15 (d, *J* = 6 Hz, 4 H), 4.77 (s, 4 H), 7.33 (s, 2 H), 7.41 (t, *J* = 6 Hz, 2 H), 7.65 (s, 2 H), 7.67 (s, 2 H), 8.50 (t, J = 6 Hz, 2 H); ¹³C NMR (DMSO-*d*₆, 100 MHz) $\delta_C 28.2$, 43.3, 46.7, 58.0, 68.9, 69.6, 69.7, 71.3, 77.9, 124.8, 125.1, 128.6, 134.9, 138.9, 140.8, 155.8, 166.1, 182.6; HRMS (ESI, MeOH) *m/z*: 951.4682 [M+Na]⁺ calcd. for C₄₆H₆₈N₆NaO₁₄⁺ 951.4686, 751.3641 [M-2Boc+Na]⁺ calcd. for C₃₆H₅₂N₆NaO₁₀⁺ 751.3637, 487.2291 [M+2Na]²⁺ calcd. for C₄₆H₆₈N₆Na₂O₁₄²⁺ 487.2289. v_{max} (film)/cm⁻¹: 3229 (broad), 2980, 2931, 2873, 1802, 1702.

Figure S10. ¹³C NMR of compound 15.

[2]MSQ-3

Diamine **9** (48.2 mg, 0.15 mmol) was dissolved in EtOH (10 mL) then added to a solution of **11** (85.0 mg, 0.15 mmol) and Et₃N (0.3 mL) in EtOH (10 mL) and the mixture was stirred at room temperature for 16 hours. The resulting precipitate was collected by filtration and washed with cold 1:1 (v/v) EtOH/H₂O (3 × 3 mL) to yield compound [2]MSQ-**3** (76 mg, 63%) as a colorless solid. **M.p.** 216 – 224 °C (decomp.); ¹**H NMR** (400 MHz, DMSO-*d*₆): 3.21 (s, 6 H), 3.38 – 3.60 (m, 24 H), 4.42 – 5.17 (m, 8 H), 7.18 – 7.53 (m, 2 H), 7.54 – 7.79 (m, 4 H), 7.97 (br s, 2 H), 8.56 (br s, 2 H); ¹³C NMR (100 MHz, DMSO-*d*₆): 46.6, 58.6, 69.3, 70.0, 70.1, 70.2, 71.7, 125.1, 135.0, 140.9, 166.3, 167.9, 182.9, 3 signals obscured or overlapped; **HRMS** (ESI, MeOH) calcd. for C₄₀H₅₀N₆O₁₂Na [M + Na]⁺ 829.3379, found 829.3379; **v**_{max} (film)/cm⁻¹: 3276 (broad), 2921, 1670, 1628, 1597.

Compound **15** (102.0 mg, 0.11 mmol) was dissolved in a solution of TFA/CH₂Cl₂ (1:1 v/v, 5 mL) before the reaction mixture was stirred at room temperature for 2 hours and then concentrated under reduced pressure. The resulting oil was then added to a solution of **11** (63.1 mg, 0.11 mmol) and Et₃N (0.5 mL) in EtOH (200 mL) and stirred at room temperature for 48 hrs. The solvent was removed under reduced pressure to give a yellow oil. Subjection of this material to flash silica gel chromatography (5/95 v/v methanol/dichloromethane elution) and concentration of the appropriate fractions (R_f 0.3) gave the compound [3]MSQ-**4** (56 mg, 42%) as a beige solid. **M.p.** 232 – 234 °C (decomp.); **¹H NMR** (600 MHz, DMSO-*d*₆): 3.22 (s, 9 H), 3.38 – 3.44 (m, 12 H), 3.45 – 3.68 (m, 24 H), 4.76 (s, 12 H), 7.44 (s, 3 H), 7.74 (br s, 12 H), 8.56 (t, *J* = 5.5 Hz, 3 H); ¹³C **NMR** (150 MHz, DMSO-*d*₆): 47.1, 58.5, 69.3, 70.0, 70.1, 70.2, 71.7, 126.3, 129.7, 135.7, 140.0, 166.4, 167.8, 183.1, 2 signals obscured or overlapped; **HRMS** (ESI, MeOH) calcd. for C₆₀H₇₅N₉O₁₈Na₂ [M + 2 Na]²⁺/2 627.7507, found 627.7504; **v**_{max} (**film**)/cm⁻¹: 3394 (broad), 3127, 1510, 1492.

Figure S14. ¹³C NMR of compound [3]MSQ-4.

2,6-Bis(azidomethyl)-N-(2-(2-(2-methoxyethoxy)ethyl)isonicotinamide (8)

A solution of NaOH (61 mg, 1.5 mmol) in water (2 mL) was added to a solution of methyl 2,6bis(azidomethyl)isonicotinate (371 mg, 1.5 mmol) in THF (15 mL). The resulting mixture was stirred for 16 hours at room temperature and then neutralized by additional of HCl (aq.) (1 M). The solvent was removed under reduced pressure to give a colorless solid which was dissolved in CH₂Cl₂ (10 mL) then HBTU (626 mg, 1.65 mmol), followed by DIPEA (213 mg, 1.65 mmol) were added. The mixture was stirred for 3 minutes and then 2-(2-(2-methoxyethoxy)ethoxy)ethan-1amine (269 mg, 1.65 mmol) was added dropwise and the mixture was stirred at room temperature for 16 hours. The solvent was removed under reduced pressure to give a yellow oil. Subjection of this material to flash silica gel chromatography (1:1 v/v ethyl acetate/hexane elution) and concentration of the appropriate fractions (R_f 0.4) gave the compound **8** (500 mg, 62%) as a beige oil. ¹**H NMR** (400 MHz, CDCl₃): 3.28 (s, 3 H), 3.52 (t, J = 5.0 Hz, 2 H), 3.62 – 3.67 (m, 8 H), 4.54 (s, 4 H), 4.50 (t, J = 5.0 Hz, 2 H), 7.26 (s, 1 H), 7.66 (s, 2 H); ¹³**C NMR** (100 MHz, CDCl₃): 40.2, 55.2, 58.9, 69.5, 70.3 70.5, 70.6, 71.9, 118.7, 144.1, 156.9, 165.0; **HRMS** (ESI, MeOH) calcd. for C₁₅H₂₂N₈O₄Na [M + Na]⁺ 401.1654, found 401.1657; **v**_{max} (film)/cm⁻¹: 3019 (broad), 2104, 1721, 1608, 1450.

Figure S16. ¹³C NMR of compound 8.

Di-*tert*-butyl ((4-((2-(2-(2-methoxy)ethoxy)ethyl)carbamoyl)-pyridine- 2,6diyl)bis(methylene)) -dicarbamate (17)

Ph₃P (144 mg, 0.55 mmol) was added to a solution of compound **8** (95 mg, 0.25 mmol) in THF (5 mL) and the resulting solution was stirred at room temperature for 2 hours, then 0.1 mL water was added and the mixture was stirred at room temperature for 16 hours. The solvent was removed under reduced pressure to give a yellow oil. The resulting oil was then dissolved in CH₂Cl₂ (5 mL) and Boc₂O (120 mg, 0.55 mmol) was added at room temperature. The resulting mixture was stirred at room temperature for 16 hours. The solvent was then removed under reduced pressure to give a yellow oil. Subjection of this material to flash silica gel chromatography (5:95 v/v methanol/dichloromethane elution) and concentration of the appropriate fractions (R_f 0.4) gave the compound **17** (116 mg, 88%) as a beige solid. **M.p.** 102 – 108 °C; ¹**H** NMR (500 MHz, CDCl₃): 1.49 (s, 18 H), 3.32 (s, 3 H), 3.35 – 3.61 (m, 2 H), 3.62 – 3.71 (m, 10 H), 4.52 (s, 2 H), 4.55 (s, 2 H), 5.63 (br s, 2 H), 7.55 (br s, 1 H), 7.64 (s, 2 H); ¹³C NMR (125 MHz, CDCl₃): 28.4, 40.0, 45.6, 58.8, 69.7, 70.2, 70.4, 70.5, 71.8, 79.7, 117.7, 143.6, 156.0, 158.1, 165.6; **HRMS** (ESI, MeOH) calcd. for C₂₅H₄₂N₄O₈Na [M + Na]⁺ 549.2895, found 549.2896; ν_{max} (film)/cm⁻¹: 3019 (broad), 2104, 1721, 1608, 1450.

Figure S18. ¹³C NMR of compound S3.

2,6-Bis(((2-ethoxy-3,4-dioxocyclobut-1-en-1-yl)amino)methyl)-*N*-(2-(2-(2-(2-methoxy)ethoxy) -ethyl)isonicotinamide (12)

A solution of **8** (110 mg, 0.29 mmol) in THF (15 ml) was added to a solution of Ph₃P (168 mg, 0.64 mmol) at room temperature for 2 hours and to the resulting mixture was added 1 ml water and the reaction mixture was stirred at room temperature for 16 hours. The solvent was removed under reduced pressure to give a yellow oil, which was added to a solution of diethyl squarate (110 mg, 0.64 mmol) in EtOH (10 mL) at room temperature and stirred at room temperature for 24 hours. The solvent was removed under reduced pressure to give a yellow oil. Subjection of this material to flash silica gel chromatography (5/95 v/v methanol/dichloromethane elution) and concentration of the appropriate fractions (R_f 0.4) gave the compound **12** (125 mg, 76%) as a beige solid. **M.p.** 52 -58 °C; ¹H NMR (500 MHz, CDCl₃): 1.43 (t, *J* = 7.1 Hz, 6 H), 3.26 (s, 3 H), 3.46 – 3.54 (m, 2 H), 3.56 – 3.71 (m, 10 H), 4.75 – 5.05 (m, 8 H), 7.47 (s, 1 H), 7.64 (s, 2 H), 7.75 (br s, 2H); ¹³C NMR (125 MHz, CDCl₃): 15.8, 40.1, 48.7, 58.7, 69.4, 69.8, 70.1, 70.2, 70.4, 71.8, 118.3, 144.0, 156.6, 164.9, 172.7, 177.9, 183.4, 189.1; **HRMS** (ESI, MeOH) calcd. for C₂₇H₃₄N₄O₁₀Na [M + Na]⁺ 597.2167, found 597.2169; **v**_{max} (film)/cm⁻¹: 3345 (broad), 2900, 2021, 1736, 1207.

Figure S20. ¹³C NMR of compound 12.

Compound **17** (47 mg, 0.09 mmol) was dissolved in a solution of TFA/CH₂Cl₂ (1:1, v/v, 3 mL) and the reaction mixture was stirred at room temperature for 2 hours then concentrated under reduced pressure. The resulting oil was then added to a solution of **12** (52 mg, 0.09 mmol) and Et₃N (0.3 mL) in EtOH (10 mL) and stirred at room temperature for 16 hours. The resulting precipitate was collected by filtration and washed with EtOH (3 mL) then Et₂O (2×5 ml) to yield compound [2]MSQ-**5** (52 mg, 72%) as a colourless solid. **M.p.** 236 – 246 °C (decomp.); ¹H NMR (500 MHz, DMSO-*d*₆): 3.32 (s, 6 H), 3.42 – 3.56 (m, 24 H), 5.06 (s, 8 H), 7.70 (s, 4 H), 8.20 (br s, 4 H), 8.81 (br s, 2 H); ¹³C NMR (125 MHz, DMSO-*d*₆): 58.5, 69.1, 70.12, 70.14, 70.2, 71.8, 118.5, 14.5, 156.4, 164.9, 167.6, 183.3, 2 signals obscured or overlapped; HRMS (ESI, MeOH) calcd. for C₃₈H₄₈N₈O₁₂Na [M + Na]⁺ 831.3284, found 831.3268; **v**_{max} (film)/cm⁻¹: 3332 (broad), 2910, 2005, 1723, 1304.

Figure S22. ¹³C NMR of compound [2]MSQ-5.

Di-*tert*-butyl ((((((3,4-dioxocyclobut-1-ene-1,2-diyl)bis(azanediyl))-bis(methylene))bis(4-((2-(2-(2-methoxyethoxy)ethoxy)ethyl)carbamoyl)pyridine-6,2-diyl))bis(methylene))dicarbamate (16)

Ph₃P (73 mg, 0.27 mmol) was added to a solution of compound 8 (48 mg, 0.13 mmol) in THF (3 mL) and the resulting solution was stirred at room temperature for 2 hours then 0.1 mL water was added and the mixture was stirred at room temperature for 16 hours. The solvent was removed under reduced pressure to give a yellow oil, which was then added to a solution of Boc₂O (26 mg, 0.12 mmol) in CH₂Cl₂ (8 mL) at room temperature and the resulting mixture was stirred at room temperature for 16 hours. The solvent was removed under reduced pressure to give a yellow oil. The subjection of this material to flash silica gel chromatography (0.2/7.8/92 v/v aqueous ammonia)/methanol/dichloromethane elution) and concentration of the appropriate fractions ($R_f 0.5$) gave compound 14. Due to the instability of compound 14, it was dried in vacuum for 1 hour and then immediately added to a solution of diethyl squarate (11 mg, 0.065 mmol) and Et₃N (0.1 mL) in EtOH (5 mL) at room temperature. The resulting solution was stirred at room temperature for 16 hours. The solvent was removed under reduced pressure to give a yellow oil. The subjection of this material to flash silica gel chromatography (5/95 v/v methanol/dichloromethane elution) and concentration of the appropriate fractions ($R_f 0.4$) gave the compound 16 (31 mg, 60%) as a beige oil. ¹H NMR (500 MHz, CDCl₃): 1.42 (s, 18 H), 3.34 (s, 6 H), 3.52 – 3.57 (m, 4 H), 3.59 – 3.64 (m, 20 H), 4.42 (s, 4 H), 4.83 (s, 4 H), 6.00 (s, 2 H), 7.53 (s, 4 H), 7.84 (br s, 4 H); ¹³C NMR (125 MHz, CDCl₃): 28.4, 40.1, 45.7, 49.0, 58.8, 69.5, 70.1, 70.3, 70.4, 71.8, 79.8, 118.2, 143.7, 156.3, 157.3, 159.3, 165.7, 168.2, 183.2, 1 signal obscured or overlapped; HRMS (ESI, MeOH) calcd. for C₄₄H₆₆N₈O₁₄Na [M + Na]⁺ 953.4591, found 953.4602; v_{max} (film)/cm⁻¹: 3321 (broad), 2219, 1697, 1601, 1420.

Figure S24. ¹³C NMR of compound 16.

Compound **16** (74 mg, 0.08 mmol) was dissolved in a solution of TFA/CH₂Cl₂ (1:1, v/v, 3 mL) and the reaction mixture was stirred at room temperature for 2 hours then concentrated under reduced pressure. The resulting oil was then added to a solution of **12** (46 mg, 0.08 mmol) and Et₃N (0.5 mL) in EtOH (20 mL) and stirred at room temperature for 48 hrs. The solvent was then removed under reduced pressure to give a yellow oil. Subjection of this material to flash silica gel chromatography (5/95 v/v methanol/dichloromethane elution) and concentration of the appropriate fractions (R_f 0.3) gave the compound [3]MSQ-**6** (48 mg, 50%) as a beige solid. **M.p.** 256 – 270 °C (decomp.); ¹**H NMR** (500 MHz, DMSO-*d*₆): 3.22 (s, 9 H), 3.40 – 3.49 (m, 12 H), 3.51 – 3.63 (m, 24 H), 4.92 (s, 12 H), 7.74 (s, 6 H), 8.00 (br s, 6 H), 8.91 (s, 3 H); ¹³**C NMR** (125 MHz, DMSO-*d*₆): 48.8, 58.6, 69.3, 70.2, 70.3, 70.4, 71.9, 118.8, 143.9, 158.8, 165.1, 168.6, 183.5, 1 signal obscured or overlapped; **HRMS** (ESI, MeOH) calcd. for C₅₇H₇₂N₁₂O₁₈Na [M + Na]⁺ 1258.4872, found 1258.4877; **v**_{max} (film)/cm⁻¹: 3420 (broad), 2857, 1994, 1756, 1286.

Figure S26. ¹³C NMR of compound [3]MSQ-6.

¹H NMR Binding studies

Both salt and receptor were dried under high vacuum for 48 hours prior to use. A 0.3 - 1.0 mM stock solution of the receptor was accurately prepared in the stated solvents (Milli-Q H₂O and DMSO-*d*₆ mixtures) using a volumetric flask. Solutions of tetrabutylammonium (TBA) salts to be titrated were prepared in separate 2 mL vials, by addition of 200 µL of the required receptor solution to the pre-weighed TBA salts using auto pipettes. The concentration of anions solution was approximately 70 times that of the host. In each case, 550 µL of host solution in an NMR tube was titrated with aliquots of anion stock solution, and after each addition, the ¹H NMR spectrum was recorded on a Bruker Avance III 400 or Bruker Avance III 600 spectrometer after thorough mixing at 300 K. Typically, additions were performed in the following order: $10 \times 1.5 \mu L$, $2 \times 7.5 \mu L$, $4 \times 14 \mu L$ (total 86 μL). Typically, a total of at least 12 equiv. of anion was added to the receptor solutions. Titrations were performed in triplicate to give *K*_a values. Non-linear curve fitting of the experimentally obtained titration isotherms (equivalents of anion versus chemical shift of NH, aromatic CH and methylene CH protons) using the program HypNMR2008 (Hyperquad[®]) enabled the calculation of association constants (*K*_a/M⁻¹) using a 1:1 global fits model.

Figure S27. a) ¹H NMR titration; b) Binding isotherms of [2]MSQ-3 (1.0 mM) with 0.0 - 12.0 equiv. (TBA)₂SO₄ in 1:9 (v/v) H₂O-DMSO-*d*₆ mixture. (*K*_a > 10⁴ M⁻¹)

Figure S28. a) ¹H NMR titration; b) Binding isotherms of [2]MSQ-3 (0.8 mM) with 0.0 - 12.0 equiv. (TBA)₂SO₄ in 1:2 (v/v) H₂O-DMSO-*d*₆ mixture. (*K*_a = 3170 M⁻¹)

Figure S29. a) ¹H NMR titration; b) Binding isotherms of [2]MSQ-5 (1.0 mM) with 0.0 - 12.0 equiv. (TBA)₂SO₄ in 1:9 (v/v) H₂O-DMSO-*d*₆ mixture. ($K_a > 10^4$ M⁻¹)

Figure S30. a) ¹H NMR titration; b) Binding isotherms of [3]MSQ-4 (1.0 mM) with 0.0 - 12.0 equiv. (TBA)₂SO₄ in 1:2 (v/v) H₂O-DMSO-*d*₆ mixture. (*K*_a > 10⁴ M⁻¹)

Figure S31. a) ¹H NMR titration; b) Binding isotherms of [3]MSQ-4 (1.0 mM) with 0.0 - 12.0 equiv. (TBA)₂SO₄ in 1:1 (v/v) H₂O-DMSO-*d*₆ mixture. (*K*_a = 1340 M⁻¹)

Figure S32. a) ¹H NMR titration; b) Binding isotherms of [3]MSQ-6 (1.0 mM) with 0.0 - 12.0 equiv. (TBA)₂SO₄ in 1:1 (v/v) H₂O-DMSO-*d*₆ mixture. (*K*_a = 4870 M⁻¹).

Figure S33. a) ¹H NMR titration of [3]MSQ-4 (0.3 mM) with 0.0 - 10.0 equiv. (TBA)₂SO₄ in 97:3 (v/v) H₂O-DMSO-*d*₆ mixture. (No binding observed)

Figure S34. a) ¹H NMR titration of [3]MSQ-6 (0.3 mM) with 0.0 - 10.0 equiv. (TBA)₂SO₄ in 97:3 (v/v) H₂O-DMSO-*d*₆ mixture. (No binding observed)

Figure S35. ¹H NMR titration of [3]MSQ-6 (0.3 mM) with 0.0 - 20.0 equiv. (TBA)₂SO₄ in 97:3 (v/v) H₂O-DMSO-*d*₆ mixture, pH 3.2 (HNO₃). (No binding observed)

Figure S36. ¹H NMR titration of [3]MSQ-6 (1.0 mM) with 0.0 - 12.0 equiv. TBAH₂PO₄ in 1:1 (v/v) H₂O-DMSO-*d*₆ mixture. (No binding observed)

Figure S37. ¹H NMR screen of anion binding to [3]MSQ-6 (1.0 mM) in 1:1 (v/v) H₂O-DMSO d_6 mixture. From top, spectra obtained after addition of 5 equiv. each of TBAOAc, TBANO₃, TBAHCO₃, TBACl and bottom 6 only. (No binding observed)

Figure S38. a) ¹H NMR titration; b) Binding isotherms of [3]MSQ-6 (1.0 mM) with 0.0 - 12.0 equiv. (TBA)₂SeO₄ in 1:1 (v/v) H₂O-DMSO-*d*₆ mixture. (*K*_a = 950 M⁻¹)

Figure S39. a) ¹H NMR titration; b) Binding isotherms of [3]MSQ-6 (1.0 mM) with 0.0 - 12.0 equiv. (TBA)₂CrO₄ in 1:1 (v/v) H₂O-DMSO-*d*₆ mixture. (*K*_a < 10 M⁻¹)

Figure S40. a) ¹H NMR titration; b) Binding isotherms of [3]MSQ-6 (1.0 mM) with 0.0 - 12.0 equiv. (TBA)₂SO₄ in 1:1 (v/v) H₂O-DMSO-*d*₆ mixture (pH 3.2) with 20 mM Tris buffer in the presence of 2.5 mM phosphates, 10 mM Cl⁻, 250 mM NO₃⁻. (*K*_a = 8910 M⁻¹).

Figure S41. a) ¹H NMR titration; b) Binding isotherms of [3]MSQ-6 (1.0 mM) with 0.0 - 12.0 equiv. (TBA)₂SO₄ in 1:1 (v/v) H₂O-DMSO-*d*₆ mixture (pH 14.1) with 2.5 mM phosphates, 15 mM Cl⁻, 250 mM NO₃⁻. (*K*_a = 610 M⁻¹)

Figure S42. a) ¹H NMR titration; b) Binding isotherms of [3]MSQ-6 (1.0 mM) with 0.0 - 12.0 equiv. (TBA)₂SO₄ in 1:1 (v/v) H₂O-DMSO-*d*₆ mixture (pH 7.4) with 20 mM Tris buffer with 1.5 mM H₂PO₄^{-/}/HPO₄²⁻, 106 mM Cl⁻, 28 mM H₂CO₃/HCO₃⁻. (*K*_a = 2490 M⁻¹)

Figure S43. a) ¹H NMR titration; b) Binding isotherms of [3]MSQ-4 (0.8 mM) with 0.0 - 12.0 equiv. (TBA)₂SO₄ in 2:1 (v/v) H₂O-DMSO-*d*₆ mixture. (*K*_a = 130 M⁻¹)

Figure S44. a) ¹H NMR titration; b) Binding isotherms of [3]MSQ-6 (0.8 mM) with 0.0 - 12.0 equiv. (TBA)₂SO₄ in 2:1 (v/v) H₂O-DMSO-*d*₆ mixture. (*K*_a = 480 M⁻¹). As a reuslt of peak broadening the signal attibuted to the squaramide protons was not observed between additions of 0.2 to 6.0 equiv of (TBA)₂SO₄.

References:

- 1. H. Y. Kuchelmeister and C. Schmuck, *Eur. J. Org. Chem.*, 2009, **2009**, 4480-4485.
- 2. *EU, US Pat.*, CA2078585A1, DE59203209D1, EP0533131A1, EP0533131B1, 1992.
- 3. S. G. Gouin, M. Roger, N. Leygue, D. Deniaud, K. Julienne, E. Benoist, C. Picard, J. Kovensky and C. Galaup, *Bioorg. Med. Chem. Lett.*, 2012, **22**, 2684-2688.