Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2019

Supporting Information *for*

Elemental Sulfur-Promoted One-Pot Synthesis of

2-(2,2,2-Trifluoroethyl)benzoxazoles and their derivatives

Zhengyu Li,^a Jingnan Dong,^a Junwen Wang,^a Ding-Yah Yang^{b,*}, and Zhiqiang

Weng*,a

^{*a*} State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fujian 350108, China.

^b Department of Chemistry, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung City 40704, Taiwan.

E-mail: yang@thu.edu.tw (DYY); zweng@fzu.edu.cn (ZW)

Table of Contents

General information	2		
Table 1. The effect of the reaction temperature and time, and the addition of			
water for the synthesis of 3q	3		
Table 2. The effect of relative amounts of elemental sulfur and	4		
2-bromo-3,3,3-trifluoropropene (1) for the cyclization	4		
Table 3. The reaction of 2q with 1 mediated by other promoters	5		
General procedure of one-pot synthesis of 2-(2,2,2-trifluoroethyl)benzoxazoles,			
benzothiazoles and benzoimidazoles			
Scalability of the reaction	7		
Mechanistic Study	8		
Data for compounds	11		
Crystal structure analyses	29		
Copies of ¹ H NMR, ¹⁹ F NMR and ¹³ C NMR spectra			

General information

¹H NMR, ¹⁹F NMR and ¹³C NMR spectra were recorded using Bruker AVIII 400 spectrometer. ¹H NMR and ¹³C NMR chemical shifts were reported in parts per million (ppm) downfield from tetramethylsilane and ¹⁹F NMR chemical shifts were determined relative to CFCl₃ as the external standard and low field is positive. Coupling constants (*J*) are reported in Hertz (Hz). The residual solvent peak was used as an internal reference: ¹H NMR (chloroform δ 7.26) and ¹³C NMR (chloroform δ 77.0). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. HRMS were obtained on Waters GCT-TOF. Reagents were received from commercial sources. Solvents were freshly dried and degassed according to the published procedures prior to use. Column chromatography purifications were performed by flash chromatography using Merck silica gel 60.

Table 1. The effect of the reaction temperature and time, and the addition of water for the synthesis of $3q^a$

	Cl	NH ₂ +	Br conditions CI		_CF ₃		
		2q	1	3q			
Entry	Promoter (equiv)	Base (3.0 equiv)	Additive	Solvent	Temp (°C)	Time (h)	Yield $(\%)^{b}$
1	S ₈ (8)	NaHCO ₃	ADVN/B ₂ Pin ₂	DMF	100	15	87
2	S ₈ (8)	NaHCO ₃	ADVN/B ₂ Pin ₂	DMF	80	15	42
3	S ₈ (8)	NaHCO ₃	ADVN/B ₂ Pin ₂	DMF	100	6	56
4	S ₈ (8)	NaHCO ₃	H ₂ O ^c	DMF	100	15	56
5	S ₈ (8)	NaHCO ₃	ADVN/B2Pin2/H2O ^d	DMF	100	15	76
6	S ₈ (5)	K_2CO_3	-	DMF	100	15	0
7	S ₈ (5)	K ₃ PO ₄	-	DMF	100	15	0
8	S ₈ (5)	NEt ₃	-	DMF	100	15	0

^{*a*} Reaction conditions: **1** (0.70 mmol), **2q** (0.10 mmol), base (0.30 mmol), solvent (1.0 mL), under N₂ atmosphere; ^{*b*} The yield was determined by ¹⁹F NMR spectroscopy with PhOCF₃ as internal standard; ^{*c*} 1.0 equiv.; ^{*d*} ADVN : $B_2Pin_2: H_2O = 0.9: 0.7: 1.0$.

	NH ₂ +	CF ₃ NaHCO ₃ (3.0 CF ₃ Additive DMF, 100 °C	0 equiv)	
Entry	equiv of S ₂	equiv of 1	Additive	$\frac{\mathbf{Y}}{\mathbf{Y}}$
1	<u> </u>	1.0	/ tuttive	7
1	8.0	1.0	-	/
2	8.0	2.0	-	22
3	8.0	3.0	-	31
4	8.0	4.0	-	35
5	8.0	5.0	-	40
6	8.0	6.0	-	46
7	8.0	7.0	-	54
8	8.0	1.0	ADVN/B ₂ Pin ₂ ^c	8
9	8.0	2.0	ADVN/B ₂ Pin ₂ ^c	40
10	8.0	3.0	ADVN/B ₂ Pin ₂ ^c	55
11	8.0	4.0	ADVN/B ₂ Pin ₂ ^c	61
12	8.0	5.0	ADVN/B ₂ Pin ₂ ^c	67
13	8.0	6.0	ADVN/B ₂ Pin ₂ ^c	83
14	8.0	7.0	ADVN/B ₂ Pin ₂ ^c	87
15	2.0	7.0	ADVN/B ₂ Pin ₂ ^c	14
16	3.0	7.0	ADVN/B ₂ Pin ₂ ^c	25
17	4.0	7.0	ADVN/B ₂ Pin ₂ ^c	49
18	5.0	7.0	ADVN/B ₂ Pin ₂ ^c	64
19	6.0	7.0	ADVN/B ₂ Pin ₂ ^c	70
20	7.0	7.0	ADVN/B ₂ Pin ₂ ^c	79

Table 2. The effect of relative amounts of elemental sulfur and2-bromo-3,3,3-trifluoropropene (1) for the cyclization a

^{*a*} Reaction conditions: **1** (0.70 mmol), **2q** (0.10 mmol), base (0.30 mmol), solvent (1.0 mL), under N₂ atmosphere; ^{*b*} The yield was determined by ¹⁹F NMR spectroscopy with PhOCF₃ as internal standard; ^{*c*} ADVN (0.9 equiv), B_2Pin_2 (0.7 equiv).

OH NH2	+ CF ₃ NaHCO ₃ (3.0 equiv)		+ CI NH ₂
2q	1	3q	6q
Entry	Promoter (equiv)	Yield	(%) ^b
		3q	6q
1	I ₂ (5)	0	0
2	KI (5)	0	46
3	O_2	0	15

Table 3. The reaction of 2q with 1 mediated by other promoters

^{*a*} Reaction conditions: **1** (0.70 mmol), **2q** (0.10 mmol), base (0.30 mmol), solvent (1.0 mL), under N₂ atmosphere; ^{*b*} The yield was determined by ¹⁹F NMR spectroscopy with PhOCF₃ as internal standard.

General procedure of one-pot synthesis of 2-(2,2,2-trifluoroethyl)benzoxazoles, benzothiazoles, and benzoimidazoles

The 2-aminophenol derivatives (2), o-aminobenzenethiols, or benzene-1,2-diamines (0.30 mmol, 1.0 equiv), 2-bromo-3,3,3-trifluoropropene (1) (2.10 mmol, 7.0 equiv), 2.40 mmol, 8.0 equiv), NaHCO₃ (0.90 3.0 S_8 (mmol, equiv), 2,2'-azobis-(2,4-dimethylvaleronitrile) (ADVN) (0.27)mmol, 0.90 equiv), bis(pinacolato)diboron (B₂Pin₂) (0.21 mmol, 0.70 equiv), and DMF (3.0 mL) were added to a reaction tube equipped with a stir bar. The mixture was stirred at 100 $\,^{\circ}\mathrm{C}$ for 15 h under nitrogen atmosphere. After cooled down to room temperature, the reaction system was quenched with water (10 mL) and ethyl acetate (10 mL), and the organic layer was separated. The aqueous layer was extracted with ethyl acetate (3 \times 10 mL). The combined organic layers were washed with saturated brine $(3 \times 15 \text{ mL})$, and water (3 \times 15 mL), dried over MgSO₄. The solvent was removed by rotary evaporation and the resulting product 3 was purified by column chromatography over silica gel.

Scalability of the reaction of 2q with 1

The 2-amino-4-chlorophenol (6.0)0.868 (2q)mmol, g, 1.0 equiv), 2-bromo-3,3,3-trifluoropropene (1) (42.0 mmol, 4.2 mL, 7.0 equiv), S₈ (48.0 mmol, 1.74 g, 8.0 equiv), NaHCO₃ (18.0 mmol, 1.50 g, 3.0 equiv), ADVN (5.4 mmol, 1.32 g, 0.90 equiv), B₂Pin₂ (4.2 mmol, 0.96 g, 0.70 equiv), and DMF (40 mL) were added to a reaction tube equipped with a stir bar. The mixture was stirred at 100 $\,^\circ C$ for 15 h under nitrogen atmosphere. After cooled down to room temperature, the reaction system was quenched with water (150 mL) and ethyl acetate (100 mL), and the organic layer was separated. The aqueous layer was extracted with ethyl acetate (3 \times 70 mL). The combined organic layers were washed with saturated brine $(3 \times 300 \text{ mL})$, and water (3 \times 300 mL), dried over MgSO₄. The solvent was removed by rotary evaporation and the resulting product 3q (0.51 g, 36% yield) was purified by column chromatography over silica gel.

Mechanistic Study

(a).

The 2-amino-4-chlorophenol (**2q**) (0.30 mmol, 1.0 equiv), 2-bromo-3,3,3-trifluoropropene (**1**) (2.10 mmol, 7.0 equiv), S_8 (2.40 mmol, 8.0 equiv), NaHCO₃ (0.90 mmol, 3.0 equiv), ADVN (0.27 mmol, 0.90 equiv), B₂Pin₂ (0.21 mmol, 0.70 equiv), TEMPO (0.60 mmol, 2.0 equiv) and DMF (3.0 mL) were added to a reaction tube equipped with a stir bar. The mixture was stirred at 100 °C for 15 h under nitrogen atmosphere. The yield was determined by ¹⁹F NMR spectroscopy with PhOCF₃ as internal standard. The yield of the product **3q** was calculated to be 2%.

(b).

The 2-amino-4-chlorophenol (**2q**) (0.30 mmol, 1.0 equiv), 2-bromo-3,3,3-trifluoropropene (**1**) (2.10 mmol, 7.0 equiv), NaHCO₃ (0.90 mmol, 3.0 equiv), ADVN (0.27 mmol, 0.90 equiv), B_2Pin_2 (0.21 mmol, 0.70 equiv), and DMF (3.0 mL) were added to a reaction tube equipped with a stir bar. The mixture was stirred at 100 °C for 15 h under nitrogen atmosphere. The reaction mixture was diluted with ethyl acetate (3 × 10 mL), washed with saturated brine (3 × 15 mL), and water (3 × 15 mL), dried over MgSO₄. The solvent was removed by rotary evaporation and the resulting product **6q** was purified by column chromatography over silica gel.

(c).

The 5-chloro-2-((3,3,3-trifluoroprop-1-en-1-yl)oxy)aniline (**6q**) (0.15 mmol, 1.0 equiv), S₈ (1.20 mmol, 8.0 equiv), NaHCO₃ (0.45 mmol, 3.0 equiv), ADVN (0.14 mmol, 0.90 equiv), B₂Pin₂ (0.11 mmol, 0.70 equiv), and DMF (1.5 mL) were added to a reaction tube equipped with a stir bar. The mixture was stirred at 100 \degree for 15 h under nitrogen atmosphere. A ¹⁹F-NMR spectrum was acquired, and no trace of **3q** was detectable.

(d).

The 4-bromobenzene-1,2-diamine (0.30 mmol, 1.0 equiv), 2-bromo-3,3,3-trifluoropropene (1) (2.10 mmol, 7.0 equiv), S_8 (2.40 mmol, 8.0 equiv), NaHCO₃ (0.90 mmol, 3.0 equiv), ADVN (0.27 mmol, 0.90 equiv), B₂Pin₂ (0.21 mmol, 0.70 equiv), and DMF (3.0 mL) were added to a reaction tube equipped with a stir bar. The mixture was stirred at 100 °C for 15 h under nitrogen atmosphere. The reaction mixture was diluted with ethyl acetate (3 × 10 mL), washed with saturated brine (3 × 15 mL), and water (3 × 15 mL), dried over MgSO₄. The solvent was removed by rotary evaporation and the resulting product **5c** and **7c** was purified by column chromatography over silica gel.

(e).

The solution of *N*-(2-amino-4-bromophenyl)-3,3,3-trifluoropropanethioamide (**7c**) (10 mg, 0.030 mmol), in 1.5 mL CDCl₃ was added into a NMR tube. A ¹⁹F-NMR spectrum was acquired. The tube was kept at r.t. for 72 hours, a second ¹⁹F-NMR spectrum was acquired, and the yield of product **5c** was determined to be 40%. The solution was analyzed by GC-MS.

2-(2,2,2-Trifluoroethyl)benzoxazole (3a)

Purification by column chromatography (silica gel, *n*-pentane) gave final product **3a** as a light yellow liquid in 70% yield (42 mg). R_f (*n*-pentane) = 0.28. ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, J = 8.4 Hz, 1H), 7.59 (d, J = 8.2 Hz, 1H), 7.46 – 7.36 (m, 2H), 3.85 (q, J = 9.8 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.8 (t, J = 9.8 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 156.3 (q, J = 4.1 Hz), 151.1 (s), 140.8 (s), 125.8 (s), 124.8 (s), 123.7 (q, J = 278.6 Hz), 120.4 (s), 110.8 (s), 34.7 (q, J = 32.9 Hz). IR (ATR): v 2248, 1616, 1498, 1454, 1261, 1153, 813, 728, 497, 458, 428 cm⁻¹. GC-MS m/z 200 (M⁺). HRMS (ESI) m/z: calcd. for C₉H₇NOF₃ [M+H]⁺: 202.0474; found: 202.0472.

5-Methyl-2-(2,2,2-trifluoroethyl)benzoxazole (3b)

Purification by column chromatography (silica gel, *n*-pentane/ethyl acetate = 25:1) gave final product **3b** as a brownish yellow liquid in 65% yield (42 mg). R_f (*n*-pentane/ethyl acetate = 25:1) = 0.73. ¹H NMR (400 MHz, CDCl₃) δ 7.56 (s, 1H), 7.45 (d, J = 8.4 Hz, 1H), 7.22 (d, J = 8.2 Hz, 1H), 3.82 (q, J = 9.8 Hz, 2H), 2.50 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.8 (t, J = 9.8 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 156.3 (q, J = 4.0 Hz), 149.4 (s), 141.0 (s), 134.7 (s), 126.9 (s), 123.7 (q, J = 277.5 Hz), 120.2 (s), 110.2 (s), 34.7 (q, J = 32.9 Hz), 21.4 (s). IR (ATR): v 2927, 1617, 1578, 1542, 1500, 1484, 1419, 1368, 1334, 1259, 1244, 1147, 1094, 800, 594 cm⁻¹. GC-MS m/z 214 (M⁺). HRMS (ESI) m/z: calcd. for C₁₀H₉F₃NO [M+H]⁺: 216.0631; found: 216.0627.

6-Methyl-2-(2,2,2-trifluoroethyl)benzoxazole (3c)

Purification by column chromatography (silica gel, *n*-pentane) gave final product **3c** as a light yellow liquid in 66% yield (43 mg). R_f (*n*-pentane) = 0.20. ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, J = 8.1 Hz, 1H), 7.38 (s, 1H), 7.21 (d, J = 8.1 Hz, 1H), 3.81 (q, J = 9.8 Hz, 2H), 2.52 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.9 (t, J = 9.8 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 155.7 (q, J = 4.2 Hz), 151.5 (s), 138.7 (s), 136.3 (s), 126.1 (s), 123.8 (q, J = 277.6 Hz), 119.7 (s), 110.9 (s), 34.7 (q, J = 32.9 Hz), 21.8 (s). IR (ATR): v 3252, 2252, 1593, 1498, 1270, 1151, 813, 688, 421 cm⁻¹. GC-MS m/z 214 (M⁺). HRMS (ESI) m/z: calcd. for C₁₀H₉F₃NO [M+H]⁺: 216.0631; found: 216.0628.

4-Methyl-2-(2,2,2-trifluoroethyl)benzoxazole (3d)

Purification by column chromatography (silica gel, *n*-pentane/ethyl acetate = 20:1) gave final product **3d** as a brown solid in 83% yield (54 mg). M.p. 38.4–40.1 °C. R_f (*n*-pentane/ethyl acetate = 20:1) = 0.82. ¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, J = 8.1 Hz, 1H), 7.29 (t, J = 7.8 Hz, 1H), 7.18 (d, J = 7.4 Hz, 1H), 3.84 (q, J = 9.8 Hz, 2H), 2.65 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.8 (t, J = 9.8 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 155.5 (q, J = 4.1 Hz), 151.0 (s), 140.1 (s), 130.9 (s), 125.4 (s), 125.3 (s), 123.8 (q, J = 277.6 Hz), 108.1 (s), 34.7 (q, J = 33.0 Hz), 16.4 (s). IR (ATR): v 3328, 2973, 2881, 1379, 1274, 1087, 1046, 880, 807, 609, 474, 421 cm⁻¹. GC-MS m/z 214 (M⁺). HRMS (ESI) m/z: calcd. for C₁₀H₉F₃NO [M+H]⁺: 216.0631; found: 216.0628.

5-(*tert*-Butyl)-2-(2,2,2-trifluoroethyl)benzoxazole (3e)

Purification by column chromatography (silica gel, *n*-pentane) gave final product **3e** as a light yellow liquid in 57% yield (44 mg). R_f (*n*-pentane) = 0.28. ¹H NMR (400 MHz, CDCl₃) δ 7.80 (s, 1H), 7.55 – 7.42 (m, 2H), 3.83 (q, *J* = 9.8 Hz, 2H), 1.40 (s, 9H). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.9 (t, *J* = 9.8 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 156.4 (q, *J* = 4.1 Hz), 149.2 (s), 148.5 (s), 140.7 (s), 123.8 (q, *J* = 277.5 Hz), 123.6 (s), 116.8 (s), 110.0 (s), 35.0 (s), 34.7 (q, *J* = 32.9 Hz), 31.7 (s). IR (ATR): v 2963, 1670, 1579, 1482, 1425, 1365, 1259, 1245, 1146, 1124, 1092, 963, 863, 810, 623 cm⁻¹. GC-MS m/z 256 (M⁺). HRMS (ESI) m/z: calcd. for C₁₃H₁₅F₃NO [M+H]⁺: 258.1100; found: 258.1096.

5-Phenyl-2-(2,2,2-trifluoroethyl)benzoxazole (3f)

Purification by column chromatography (silica gel, *n*-pentane/ethyl acetate = 10:1) gave final product **3f** as a light yellow solid in 50% yield (42 mg). M.p. 47.6–49.3 °C. $R_{\rm f}$ (*n*-pentane/ethyl acetate = 10:1) = 0.65. ¹H NMR (400 MHz, CDCl₃) δ 7.98 (s, 1H), 7.72 – 7.57 (m, 4H), 7.50 (t, *J* = 7.2 Hz, 2H), 7.42 (d, *J* = 7.0 Hz, 1H), 3.87 (q, *J* = 9.6 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.7 (t, *J* = 9.6 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 156.9 (q, *J* = 4.3 Hz), 150.7 (s), 141.5 (s), 140.8 (s), 138.9 (s), 128.9 (s), 127.5 (s), 127.4 (s), 125.4 (s), 123.7 (q, *J* = 277.5 Hz), 118.8 (s), 110.8 (s), 34.7 (q, *J* = 32.9 Hz). IR (ATR): v 2928, 1620, 1577, 1468, 1452, 1420, 1367, 1259, 1201, 1148, 960, 925, 894, 859, 839, 817, 761, 698, 649, 632, 520 cm⁻¹. GC-MS m/z 276 (M⁺). HRMS (ESI) m/z: calcd. for C₁₅H₁₁F₃NO [M+H]⁺: 278.0787; found: 278.0786.

5-Methoxy-2-(2,2,2-trifluoroethyl)benzoxazole (3g)

Purification by column chromatography (silica gel, *n*-pentane/ethyl acetate = 25:1) gave final product **3g** as a brown solid in 71% yield (49 mg). M.p. 33.2–34.5 °C. R_f (*n*-pentane/ethyl acetate = 25:1) = 0.60. ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, J = 8.9 Hz, 1H), 7.24 (d, J = 2.2 Hz, 1H), 7.00 (dd, J = 8.9, 2.2 Hz, 1H), 3.87 (s, 3H), 3.81 (q, J = 9.8 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.8 (t, J = 9.8 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 157.5 (s), 157.0 (q, J = 4.1 Hz), 145.8 (s), 141.6 (s), 123.7 (q, J = 277.5 Hz), 114.6 (s), 111.0 (s), 103.0 (s), 56.0 (s), 34.7 (q, J = 32.9 Hz). IR (ATR): v 2943, 1614, 1577, 1533, 1483, 1439, 1369, 1343, 1260, 1243, 1148, 1093, 1026, 806, 640 cm⁻¹. GC-MS m/z 230 (M⁺). HRMS (ESI) m/z: calcd. for C₁₀H₉F₃NO₂ [M+H]⁺: 232.0580; found: 232.0576.

Methyl 2-(2,2,2-trifluoroethyl)benzoxazole-6-carboxylate (3h)

Purification by column chromatography (silica gel, *n*-pentane/ethyl acetate = 20:1) gave final product **3h** as a light yellow solid in 68% yield (53 mg). M.p. 63.6–65.8 °C. $R_{\rm f}$ (*n*-pentane/ethyl acetate = 20:1) = 0.50. ¹H NMR (400 MHz, CDCl₃) δ 8.27 (s, 1H), 8.12 (d, *J* = 8.4 Hz, 1H), 7.80 (d, *J* = 8.4 Hz, 1H), 3.98 (s, 3H), 3.88 (q, *J* = 9.7 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.6 (t, *J* = 9.7 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 166.4 (s), 159.0 (q, *J* = 4.1 Hz), 150.8 (s), 144.5 (s), 128.0 (s), 126.5 (s), 123.5 (q, *J* = 277.6 Hz), 120.1 (s), 112.6 (s), 52.5 (s), 34.8 (q, *J* = 33.1 Hz). IR (ATR): v 2955, 1718, 1610, 1574, 1497, 1436, 1319, 1284, 1261, 1240, 1220, 1148, 1077, 981, 513, 423 cm⁻¹. GC-MS m/z 258 (M⁺). HRMS (ESI) m/z: calcd. for C₁₁H₉F₃NO₃ [M+H]⁺: 260.0529; found: 260.0524.

1-(2-(2,2,2-Trifluoroethyl)benzoxazol-7-yl)ethanone (3i)

Purification by column chromatography (silica gel, *n*-pentane/ethyl acetate = 20:1) gave final product **3i** as a light yellow solid in 63% yield (47 mg). M.p. 61.7–63.6 °C. $R_{\rm f}$ (*n*-pentane/ethyl acetate = 20:1) = 0.36. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (t, J = 7.6 Hz, 2H), 7.51 (t, J = 7.9 Hz, 1H), 3.94 (q, J = 9.6 Hz, 2H), 2.84 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.7 (t, J = 9.6 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 194.5 (s), 156.9 (q, J = 4.1 Hz), 149.6 (s), 142.1 (s), 126.5 (s), 125.5 (s), 124.9 (s), 123.6 (q, J = 281.1 Hz), 122.1 (s), 34.7 (q, J = 33.2 Hz), 30.2 (s). IR (ATR): v 2254, 1618, 1498, 1279, 1155, 814, 543, 504, 478, 443, 421 cm⁻¹. GC-MS m/z 242 (M⁺). HRMS (ESI) m/z: calcd. for C₁₁H₉F₃NO₂ [M+H]⁺: 244.0580; found: 244.0576.

2-(2,2,2-Trifluoroethyl)benzoxazole-5-carboxylic acid (3j)

Purification by column chromatography (silica gel, *n*-pentane/ethyl acetate = 2:1) gave final product **3j** as a light yellow solid in 62% yield (46 mg). M.p. 148.1–150.2 °C. R_f (*n*-pentane/ethyl acetate = 2:1) = 0.32. ¹H NMR (400 MHz, CD₃OD) δ 8.40 (s, 1H), 8.18 (d, J = 8.6 Hz, 1H), 7.75 (d, J = 8.6 Hz, 1H), 4.13 (q, J = 10.1 Hz, 2H). ¹⁹F NMR (376 MHz, CD₃OD) δ -65.4 (t, J = 10.1 Hz, 3F). ¹³C NMR (101 MHz, CD₃OD) δ 167.6 (s), 158.9 (q, J = 4.5 Hz), 153.8 (s), 140.7 (s), 128.0 (s), 127.5 (s), 124.1 (q, J = 276.2 Hz), 121.6 (s), 110.4 (s), 33.4 (q, J = 32.8 Hz). IR (ATR): v 3371, 2489, 2077, 1691, 1626, 1578, 1439, 1367, 1261, 1237, 1171, 1114, 1086, 967, 900, 836, 774 cm⁻¹. GC-MS m/z 244 (M⁺). HRMS (ESI) m/z: calcd. for C₁₀H₇F₃NO₃ [M+H]⁺: 246.0373; found: 246.0372.

2-(2,2,2-Trifluoroethyl)benzoxazole-6-carboxylic acid (3k)

Purification by column chromatography (silica gel, *n*-pentane/ethyl acetate = 5:1) gave final product **3k** as a light yellow solid in 58% yield (43 mg). M.p. 145.0–147.0 °C. R_f (*n*-pentane/ethyl acetate = 5:1) = 0.30. ¹H NMR (400 MHz, CD₃OD) δ 8.28 (s, 1H), 8.12 (d, J = 8.4 Hz, 1H), 7.81 (d, J = 8.3 Hz, 1H), 4.14 (q, J = 10.1 Hz, 2H). ¹⁹F NMR (376 MHz, CD₃OD) δ -65.3 (t, J = 10.2 Hz, 3F). ¹³C NMR (101 MHz, CD₃OD) δ 167.5 (s), 160.1 (q, J = 4.2 Hz), 150.7 (s), 144.2 (s), 128.6 (s), 126.3 (s), 124.1 (q, J = 276.4 Hz), 119.3 (s), 112.1 (s), 33.5 (q, J = 32.7 Hz). IR (ATR): v 3372, 2924, 2495, 2077, 1679, 1609, 1572, 1435, 1360, 1274, 1238, 1189, 1115, 1044, 1021, 971, 895, 848, 778, 750, 551, 430 cm⁻¹. GC-MS m/z 244 (M⁺). HRMS (ESI) m/z: calcd. for C₁₀H₇F₃NO₃ [M+H]⁺: 246.0373; found: 246.0372.

2-(2,2,2-Trifluoroethyl)benzoxazole-5-carbonitrile (31)

Purification by column chromatography (silica gel, *n*-pentane/ethyl acetate = 10:1) gave final product **3l** as a light yellow solid in 72% yield (49 mg). M.p. 51.2–52.8 °C. $R_{\rm f}$ (*n*-pentane/ethyl acetate = 10:1) = 0.69. ¹H NMR (400 MHz, CDCl₃) δ 8.10 (s, 1H), 7.77 – 7.61 (m, 2H), 3.89 (q, J = 9.6 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.6 (t, J = 9.6 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 158.7 (q, J = 4.1 Hz), 153.3 (s), 141.2 (s), 129.8 (s), 125.2 (s), 123.4 (q, J = 277.7 Hz), 118.3 (s), 112.3 (s), 109.1 (s), 34.6 (q, J = 33.3 Hz). IR (ATR): v 2960, 2231, 1626, 1577, 1471, 1417, 1368, 1336, 1258, 1242, 1183, 1095, 963, 861, 818, 741, 618, 527, 487, 430 cm⁻¹. GC-MS m/z 225 (M⁺). HRMS (ESI) m/z: calcd. for C₁₀H₆F₃N₂O [M+H]⁺: 227.0427; found: 227.0425.

5-Nitro-2-(2,2,2-trifluoroethyl)benzoxazole (3m)

Purification by column chromatography (silica gel, *n*-pentane/ethyl acetate = 20:1) gave final product **3m** as a brownish yellow solid in 42% yield (31 mg). M.p. 69.3-70.8 °C. R_f (*n*-pentane/ethyl acetate = 20:1) = 0.45. ¹H NMR (400 MHz, CDCl₃) δ 8.69 (s, 1H), 8.40 (d, J = 9.0 Hz, 1H), 7.72 (d, J = 8.9 Hz, 1H), 3.92 (q, J = 9.6 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.5 (t, J = 9.6 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 159.5 (q, J = 4.1 Hz), 154.5 (s), 145.6 (s), 141.2 (s), 123.4 (q, J = 277.9 Hz), 121.9 (s), 117.0 (s), 111.2 (s), 34.8 (q, J = 33.4 Hz). IR (ATR): v 3110, 1623, 1578, 1533, 1500, 1438, 1348, 1260, 1240, 1149, 1096, 1063, 963, 829, 737, 690 cm⁻¹. GC-MS m/z 245 (M⁺). HRMS (ESI) m/z: calcd. for C₉H₆F₃N₂O₃ [M+H]⁺: 247.0325; found: 247.0320.

5-Chloro-7-nitro-2-(2,2,2-trifluoroethyl)benzoxazole (3n)

Purification by column chromatography (silica gel, *n*-pentane/ethyl acetate = 20:1) gave final product **3n** as a brownish yellow solid in 38% yield (32 mg). M.p. $68.6-70.0 \ C. R_f$ (*n*-pentane/ethyl acetate = 20:1) = 0.63. ¹H NMR (400 MHz, CDCl₃) δ 8.26 (s, 1H), 8.10 (s, 1H), 3.98 (q, J = 9.4 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.5 (t, J = 9.4 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 160.0 (q, J = 4.1 Hz), 144.9 (s), 142.6 (s), 133.2 (s), 130.7 (s), 127.0 (s), 123.2 (q, J = 277.7 Hz), 122.1 (s), 34.6 (q, J = 33.6 Hz). IR (ATR): v 3094, 1612, 1540, 1519, 1452, 1415, 1351, 1327, 1299, 1252, 1206, 1153, 1023, 949, 910, 877, 851, 762, 629, 588 cm⁻¹. GC-MS m/z 279 (M⁺). HRMS (EI) m/z: calcd. for C₉H₄F₃N₂O₃Cl: 279.9863; found: 279.9868.

5-Fluoro-2-(2,2,2-trifluoroethyl)benzoxazole (30)

Purification by column chromatography (silica gel, *n*-pentane/ethyl acetate = 25:1) gave final product **30** as a light yellow liquid in 78% yield (51 mg). $R_{\rm f}$ (*n*-pentane/ethyl acetate = 25:1) = 0.70. ¹H NMR (400 MHz, CDCl₃) δ 7.52 (dd, J = 8.9, 4.1 Hz, 1H), 7.46 (d, J = 8.1 Hz, 1H), 7.16 (t, J = 9.0 Hz, 1H), 3.84 (q, J = 9.7 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.8 (t, J = 9.7 Hz, 3F), -117.1 (td, J = 8.7, 4.2 Hz, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 160.2 (d, J = 241.6 Hz), 158.1 (q, J = 4.0 Hz), 147.5 (d, J = 1.2 Hz), 141.6 (d, J = 13.2 Hz), 123.6 (q, J = 277.5 Hz), 113.7 (d, J = 26.4 Hz), 111.2 (d, J = 10.0 Hz), 106.9 (d, J = 25.8 Hz), 34.7 (q, J = 33.2 Hz). IR (ATR): v 3027, 2161, 1578, 1479, 1261, 1244, 1151, 1133, 1095, 970, 857, 807, 635, 607, 536, 434 cm⁻¹. GC-MS m/z 218 (M⁺). HRMS (ESI) m/z: calcd. for C₉H₆F₄NO [M+H]⁺: 220.0380; found: 220.0377.

6-Fluoro-2-(2,2,2-trifluoroethyl)benzoxazole (3p)

Purification by column chromatography (silica gel, *n*-pentane/ethyl acetate = 25:1) gave final product **3p** as a light yellow liquid in 67% yield (44 mg). $R_{\rm f}$ (*n*-pentane/ethyl acetate = 25:1) = 0.73. ¹H NMR (400 MHz, CDCl₃) δ 7.71 (dd, J = 8.7, 4.8 Hz, 1H), 7.31 (d, J = 7.8 Hz, 1H), 7.15 (t, J = 9.1 Hz, 1H), 3.83 (q, J = 9.7 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.9 (t, J = 9.7 Hz, 3F), -114.0 (td, J = 8.7, 5.0 Hz, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 161.0 (d, J = 245.4 Hz), 156.9 (q, J = 4.1 Hz), 151.1 (d, J = 14.7 Hz), 137.1 (d, J = 1.6 Hz), 123.6 (q, J = 277.6 Hz), 120.8 (d, J = 10.2 Hz), 113.0 (d, J = 24.8 Hz), 98.9 (d, J = 28.3 Hz), 34.6 (q, J = 33.1 Hz). IR (ATR): v 3350, 2963, 1723, 1622, 1587, 1485, 1440, 1369, 1341, 1277, 1258, 1125, 1101, 958, 839, 629 cm⁻¹. GC-MS m/z 218 (M⁺). HRMS (ESI) m/z: calcd. for C₉H₆F₄NO [M+H]⁺: 220.0380; found: 220.0377.

5-Chloro-2-(2,2,2-trifluoroethyl)benzoxazole (3q)

Purification by column chromatography (silica gel, *n*-pentanep) gave final product **3q** as a brown solid in 85% yield (60 mg). M.p. 32.7–34.1 °C. R_f (*n*-pentane) = 0.48. ¹H NMR (400 MHz, CDCl₃) δ 7.74 (s, 1H), 7.48 (d, J = 8.7 Hz, 1H), 7.36 (d, J = 8.7 Hz, 1H), 3.83 (q, J = 9.7 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.7 (t, J = 9.7 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 157.7 (q, J = 4.1 Hz), 149.7 (s), 141.9 (s), 130.4 (s), 126.2 (s), 123.6 (q, J = 277.5 Hz), 120.4 (s), 111.6 (s), 34.6 (q, J = 33.1 Hz). IR (ATR): v 2958, 1605, 1573, 1453, 1419, 1365, 1331, 1299, 1243, 1145, 1118, 1054, 800, 732, 631, 424 cm⁻¹. GC-MS m/z 234 (M⁺). HRMS (ESI) m/z: calcd. for C₉H₆F₃NOC1 [M+H]⁺: 236.0085; found: 236.0081.

6-Chloro-2-(2,2,2-trifluoroethyl)benzoxazole (3r)

Purification by column chromatography (silica gel, *n*-pentane/ethyl acetate = 20:1) gave final product **3r** as a light yellow solid in 75% yield (52 mg). M.p. 41.7–42.9 °C. $R_{\rm f}$ (*n*-pentane/ethyl acetate = 20:1) = 0.72. ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, J = 8.5 Hz, 1H), 7.61 (s, 1H), 7.39 (d, J = 8.5 Hz, 1H), 3.83 (q, J = 9.7 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.7 (t, J = 9.7 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 157.0 (q, J = 3.5 Hz), 151.3 (s), 139.6 (s), 131.7 (s), 125.7 (s), 123.5 (q, J = 275.7 Hz), 121.0 (s), 111.5 (s), 34.6 (q, J = 33.2 Hz). IR (ATR): v 3352, 2966, 1615, 1578, 1497, 1464, 1429, 1367, 1261, 1243, 1148, 1095, 1053, 928, 814, 688 cm⁻¹. GC-MS m/z 234 (M⁺). HRMS (ESI) m/z: calcd. for C₉H₆F₃NOCl [M+H]⁺: 236.0085; found: 236.0081.

5,7-Dichloro-2-(2,2,2-trifluoroethyl)benzoxazole (3s)

Purification by column chromatography (silica gel, *n*-pentane/ethyl acetate = 20:1) gave final product **3s** as a light yellow solid in 52% yield (42 mg). M.p. 103.4–105.1 °C. R_f (*n*-pentane/ethyl acetate = 20:1) = 0.68. ¹H NMR (400 MHz, CDCl₃) δ 7.68 (s, 1H), 7.45 (s, 1H), 3.87 (q, J = 9.5 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.6 (t, J = 9.5 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 158.1 (q, J = 4.1 Hz), 146.6 (s), 142.6 (s), 130.8 (s), 126.4 (s), 123.4 (q, J = 277.8 Hz), 119.1 (s), 116.8 (s), 34.6 (q, J = 33.2 Hz). IR (ATR): v 2962, 1693, 1591, 1574, 1528, 1459, 1422, 1258, 1153, 1074, 992, 948, 853, 816, 632 cm⁻¹. GC-MS m/z 268 (M⁺). HRMS (ESI) m/z: calcd. for C₉H₅F₃NOCl₂ [M+H]⁺: 269.9695; found: 269.9691.

5-Bromo-2-(2,2,2-trifluoroethyl)benzoxazole (3t)

Purification by column chromatography (silica gel, *n*-pentane/ethyl acetate = 20:1) gave final product **3t** as a light yellow solid in 39% yield (33 mg). M.p. 54.2–56.1 °C. $R_{\rm f}$ (*n*-pentane/ethyl acetate = 20:1) = 0.60. ¹H NMR (400 MHz, CDCl₃) δ 7.93 (s, 1H), 7.54 (d, *J* = 8.6 Hz, 1H), 7.47 (d, *J* = 8.4 Hz, 1H), 3.84 (q, *J* = 9.6 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.7 (t, *J* = 9.6 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 157.5 (q, *J* = 3.9 Hz), 150.1 (s), 142.4 (s), 129.0 (s), 123.6 (q, *J* = 277.6 Hz), 123.5 (s), 117.7 (s), 112.1 (s), 34.7 (q, *J* = 33.1 Hz). IR (ATR): v 2928, 2101, 2062, 2028, 1997, 1964, 1570, 1449, 1421, 1368, 1329, 1259, 1150, 1096, 1044, 961, 921, 890, 866, 840, 803, 683, 631, 588, 465, 426 cm⁻¹. GC-MS m/z 278 (M⁺). HRMS (ESI) m/z: calcd. for C₉H₆F₃NOBr [M+H]⁺: 279.9579; found: 279.9583.

7-Bromo-2-(2,2,2-trifluoroethyl)benzoxazole (3u)

Purification by column chromatography (silica gel, *n*-pentane/ethyl acetate = 20:1) gave final product **3u** as a light yellow solid in 68% yield (57 mg). M.p. 318.9–320.0 °C. R_f (*n*-pentane/ethyl acetate = 20:1) = 0.73. ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 8.0 Hz, 1H), 7.57 (d, J = 7.9 Hz, 1H), 7.30 (t, J = 7.9 Hz, 1H), 3.88 (q, J = 9.6 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.7 (t, J = 9.6 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 156.6 (q, J = 3.9 Hz), 149.4 (s), 141.5 (s), 129.0 (s), 126.1 (s), 123.5 (q, J = 277.6 Hz), 119.5 (s), 102.7 (s), 34.6 (q, J = 33.2 Hz). IR (ATR): v 3328, 2973, 2881, 1593, 1379, 1274, 1087, 1046, 880, 807, 609, 474, 421 cm⁻¹. GC-MS m/z 278 (M⁺). HRMS (ESI) m/z: calcd. for C₉H₆F₃NOBr [M+H]⁺: 279.9579; found: 279.9576.

2-(2,2,2-Trifluoroethyl)naphtho[2,3-d]oxazole (3v)

Purification by column chromatography (silica gel, *n*-pentane/ethyl acetate = 10:1) gave final product **3v** as a light yellow solid in 36% yield (27 mg). M.p. 116.4–117.3 °C. R_f (*n*-pentane/ethyl acetate = 10:1) = 0.77. ¹H NMR (400 MHz, CDCl₃) δ 8.24 (s, 1H), 8.04 (d, J = 7.6 Hz, 1H), 8.02 – 7.94 (m, 2H), 7.65 – 7.46 (m, 2H), 3.90 (q, J = 9.6 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.5 (t, J = 9.6 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 158.6 (q, J = 3.7 Hz), 149.7 (s), 140.5 (s), 131.9 (s), 131.4 (s), 128.7 (s), 128.0 (s), 126.0 (s), 125.0 (s), 124.0 (q, J = 347.7 Hz), 118.1 (s), 106.8 (s), 34.9 (q, J = 33.0 Hz). IR (ATR): v 2940, 2288, 2165, 2050, 1982, 1617, 1579, 1505, 1443, 1421, 1367, 1308, 1270, 1257, 1241, 1202, 1162, 1142, 1089, 956, 920, 898, 875, 858, 843, 749, 623, 473 cm⁻¹. GC-MS m/z 250 (M⁺). HRMS (ESI) m/z: calcd. for C₁₃H₉F₃NO [M+H]⁺: 252.0631; found: 252.0631.

6-Methyl-2-(2,2,2-trifluoroethyl)oxazolo[5,4-b]pyridine (3w)

Purification by column chromatography (silica gel, *n*-pentane/ethyl acetate = 10:1) gave final product **3w** as a light yellow liquid in 39% yield (25 mg). R_f (*n*-pentane/ethyl acetate = 10:1) = 0.50. ¹H NMR (400 MHz, CDCl₃) δ 8.25 (s, 1H), 7.90 (s, 1H), 3.85 (q, J = 9.5 Hz, 2H), 2.52 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.6 (t, J = 9.5 Hz,3F). ¹³C NMR (101 MHz, CDCl₃) δ 158.4 (s), 156.9 (q, J = 4.5 Hz), 146.0 (s), 132.4 (s), 131.3 (s), 129.2 (s), 123.5 (q, J = 277.6 Hz), 35.0 (q, J = 33.1 Hz), 18.4 (s). IR (ATR): v 2931, 2283, 2202, 2160, 2049, 2034, 1996, 1979, 1620, 1570, 1419, 1366, 1264, 1231, 1151, 946, 880, 842, 779, 635, 596, 460, 445 cm⁻¹. GC-MS m/z 215 (M⁺). HRMS (ESI) m/z: calcd. for C₉H₈F₃N₂O [M+H]⁺: 217.0583; found: 217.0584.

6-Bromo-2-(2,2,2-trifluoroethyl)oxazolo[5,4-*b*]pyridine (3x)

Purification by column chromatography (silica gel, *n*-pentane/ethyl acetate = 20:1) gave final product **3x** as a light yellow solid in 28% yield (23 mg). M.p. 90.7–91.2 °C. $R_{\rm f}$ (*n*-pentane/ethyl acetate = 20:1) = 0.50. ¹H NMR (400 MHz, CDCl₃) δ 8.50 (s, 1H), 8.25 (s, 1H), 3.88 (q, *J* = 9.8 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.5 (t, *J* = 9.8 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 158.6 (q, *J* = 4.7 Hz), 146.6 (s), 133.9 (s), 131.7 (s), 123.3 (q, *J* = 277.9 Hz), 116.8 (s), 107.4 (s), 35.0 (q, *J* = 32.2 Hz). GC-MS m/z 279 (M⁺). HRMS (ESI) m/z: calcd. for C₈H₅F₃N₂OBr [M+H]⁺: 280.9532; found: 280.9533.

2,6-Bis(2,2,2-trifluoroethyl)benzo[1,2-d:5,4-d']bis(oxazole) (3y)

Purification by column chromatography (silica gel, *n*-pentane/ethyl acetate = 10:1) gave final product **3y** as a light yellow solid in 61% yield (59 mg). M.p. 87.3–88.6 °C. $R_{\rm f}$ (*n*-pentane/ethyl acetate = 10:1) = 0.42. ¹H NMR (400 MHz, CDCl₃) δ 8.12 (s, 1H), 7.77 (s, 1H), 3.88 (q, J = 9.6 Hz, 4H). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.7 (t, J = 9.6 Hz, 6F). ¹³C NMR (101 MHz, CDCl₃) δ 157.4 (q, J = 5.1 Hz), 149.3 (s), 138.7 (s), 123.6 (q, J = 277.7 Hz), 111.1 (s), 93.8 (s), 34.8 (q, J = 33.2 Hz). IR (ATR): v 2926, 1621, 1590, 1431, 1375, 1255, 1106, 954, 877, 837, 673, 627, 529 cm⁻¹. GC-MS m/z 323 (M⁺). HRMS (ESI) m/z: calcd. for C₁₂H₇F₆N₂O₂ [M+H]⁺: 325.0406; found: 325.0405.

5,5'-(Perfluoropropane-2,2-diyl)bis(2-(2,2,2-trifluoroethyl)benzoxazole) (3z)

Purification by column chromatography (silica gel, *n*-pentane/ethyl acetate = 10:1) gave final product **3z** as a light yellow solid in 70% yield (116 mg). M.p. 67.8–69.2 °C. R_f (*n*-pentane/ethyl acetate = 10:1) = 0.73. ¹H NMR (400 MHz, CDCl₃) δ 7.93 (s, 2H), 7.57 (d, J = 8.8 Hz, 2H), 7.41 (d, J = 8.8 Hz, 2H), 3.86 (q, J = 9.6 Hz, 4H). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.6 (s, 6F), -63.7 (t, J = 9.6 Hz, 6F). ¹³C NMR (101 MHz, CDCl₃) δ 157.7 (q, J = 4.0 Hz), 151.1 (s), 140.9 (s), 130.5 (s), 128.0 (s), 124.1 (q, J = 287.4 Hz), 122.9 (s), 120.8 (q, J = 277.6 Hz), 110.7 (s), 65.4 – 64.1 (m), 34.6 (q, J = 33.2 Hz). IR (ATR): v 2960, 1624, 1580, 1482, 1421, 1368, 1337, 1244, 1203, 1187, 1126, 964, 858, 811, 679, 637, 535, 484, 435 cm⁻¹. GC-MS m/z 479 (M⁺). HRMS (ESI) m/z: calcd. for C₂₁H₁₁F₁₂N₂O₂ [M+H]⁺: 551.0623; found: 551.0630.

2-(2,2,2-Trifluoroethyl)-4*H*-benzo[*d*][1,3]oxazine (3aa)

Purification by column chromatography (silica gel, *n*-pentane/ethyl acetate = 5:1) gave final product **3aa** as a brownish yellow solid in 53% yield (34 mg). M.p. 107.0-108.5 °C. R_f (*n*-pentane/ethyl acetate = 5:1) = 0.55. ¹H NMR (400 MHz, CD₃OD) δ 7.59 (d, J = 7.1 Hz, 1H), 7.45 – 7.27 (m, 3H), 4.62 (s, 2H), 3.79 (q, J = 10.2 Hz, 2H). ¹⁹F NMR (376 MHz, CD₃OD) δ -65.6 (t, J = 10.2 Hz, 3F). ¹³C NMR (101 MHz, CD₃OD) δ 192.0 (q, J = 3.4 Hz), 137.4 (s), 136.6 (s), 127.7 (s), 127.5 (s), 127.4 (s), 126.2 (s), 124.2 (q, J = 277.4 Hz), 60.1 (s), 49.5 (q, J = 28.6 Hz). IR (ATR): v 3326, 2483, 2084, 1657, 1493, 1432, 1344, 1255, 1189, 1140, 1043, 754 cm⁻¹. GC-MS m/z 214 (M⁺). HRMS (EI) m/z: calcd. for C₁₀H₉F₃NO [M+H]⁺: 216.0631; found: 216.0631.

2-(2,2,2-Trifluoroethyl)benzo[d]thiazole (4a)

Purification by column chromatography (silica gel, *n*-pentane/ethyl acetate = 20:1) gave final product **4a** as a light yellow liquid in 80% yield (52 mg). R_f (*n*-pentane/ethyl acetate = 20:1) = 0.44. ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, *J* = 8.1 Hz, 1H), 7.93 (d, *J* = 8.0 Hz, 1H), 7.55 (t, *J* = 7.6 Hz, 1H), 7.47 (t, *J* = 7.5 Hz, 1H), 3.99 (q, *J* = 10.0 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.5 (t, *J* = 10.1 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 158.3 (q, *J* = 3.4 Hz), 152.7 (s), 135.7 (s), 126.5 (s), 125.9 (s), 124.2 (q, *J* = 277.5 Hz), 123.5 (s), 121.6 (s), 39.1 (q, *J* = 31.7 Hz). IR (ATR): v 2930, 1518, 1458, 1434, 1356, 1314, 1285, 1251, 1180, 1141, 1079, 1013, 929, 866, 836, 760, 555, 430 cm⁻¹. GC-MS m/z 216 (M⁺). HRMS (ESI) m/z: calcd. for C₉H₇F₃NS [M+H]⁺: 218.0246; found: 218.0246.

5-Chloro-2-(2,2,2-trifluoroethyl)benzo[d]thiazole (4b)

Purification by column chromatography (silica gel, *n*-pentane/ethyl acetate = 10:1) gave final product **4b** as a brownish yellow solid in 85% yield (64 mg). M.p. 75.6–77.0 °C. $R_{\rm f}$ (*n*-pentane/ethyl acetate = 10:1) = 0.69. ¹H NMR (400 MHz, CDCl₃) δ 8.05 (s, 1H), 7.79 (d, J = 8.5 Hz, 1H), 7.40 (d, J = 8.6 Hz, 1H), 3.97 (q, J = 9.9 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.4 (t, J = 10.0 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 160.2 (q, J = 3.5 Hz), 153.6 (s), 134.0 (s), 132.6 (s), 126.4 (s), 124.1 (q, J = 277.6 Hz), 123.3 (s), 122.3 (s), 39.1 (q, J = 31.7 Hz). IR (ATR): v 3052, 1595, 1562, 1509, 1435, 1357, 1282, 1250, 1177, 1144, 1069, 941, 838, 806, 688, 613, 581, 560, 542, 433 cm⁻¹. GC-MS m/z 250 (M⁺). HRMS (ESI) m/z: calcd. for C₉H₆F₃NSCl [M+H]⁺: 251.9856; found: 251.9857.

2,6-Bis(2,2,2-trifluoroethyl)benzo[1,2-d:4,5-d']bis(thiazole) (4c)

Purification by column chromatography (silica gel, *n*-pentane/ethyl acetate = 10:1) gave final product **4c** as a light yellow solid in 87% yield (93 mg). M.p. 169.6–170.8 °C. R_f (*n*-pentane/ethyl acetate = 10:1) = 0.46. ¹H NMR (400 MHz, CDCl₃) δ 8.60 (s, 2H), 4.03 (q, J = 9.9 Hz, 4H). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.2 (t, J = 9.9 Hz, 6F). ¹³C NMR (101 MHz, CDCl₃) δ 160.3 (q, J = 3.3 Hz), 151.0 (s), 135.1 (s), 124.1 (q, J = 277.6 Hz), 116.0 (s), 39.4 (q, J = 31.9 Hz). IR (ATR): v 3070, 2924, 2257, 1597, 1528, 1455, 1420, 1376, 1278, 1249, 1161, 1119, 1086, 1049, 923, 883, 835, 685, 639 cm⁻¹. GC-MS m/z 355 (M⁺). HRMS (ESI) m/z: calcd. for C₁₂H₇F₆N₂S₂ [M+H]⁺: 356.9949; found: 356.9948.

2-(2,2,2-Trifluoroethyl)-1*H*-benzo[*d*]imidazole (5a)

Purification by column chromatography (silica gel, *n*-pentane/ethyl acetate = 5:1) gave final product **5a** as a brownish yellow solid in 81% yield (49 mg). M.p. 173.9-175.4 °C. R_f (*n*-pentane/ethyl acetate = 5:1) = 0.40. ¹H NMR (400 MHz, CD₃OD) δ 7.59 (dd, J = 5.9, 3.0 Hz, 2H), 7.28 (dd, J = 5.9, 3.0 Hz, 2H), 3.89 (q, J = 10.4 Hz, 2H). ¹⁹F NMR (376 MHz, CD₃OD) δ -66.1 (t, J = 10.4 Hz, 3F). ¹³C NMR (101 MHz, CD₃OD) δ 144.0 (q, J = 3.9 Hz), 138.2 (s), 124.7 (q, J = 276.6 Hz), 122.7 (s), 114.6 (s), 33.7 (q, J = 31.8 Hz). IR (ATR): v 3367, 2914, 2749, 2524, 2227, 1624, 1542, 1513, 1438, 1424, 1294, 1271, 1197, 1178, 1148, 1132, 1104, 1083, 1045, 1006, 980, 805, 744, 616, 434 cm⁻¹. GC-MS m/z 199 (M⁺). HRMS (ESI) m/z: calcd. for C₉H₈F₃N₂ [M+H]⁺: 201.0634; found: 201.0609.

7-Methyl-2-(2,2,2-trifluoroethyl)-1*H*-benzo[*d*]imidazole (5b)

Purification by column chromatography (silica gel, *n*-pentane/ethyl acetate = 5:1) gave final product **5b** as a brown solid in 83% yield (53 mg). M.p. 264.2-266.4 °C. R_f (*n*-pentane/ethyl acetate = 5:1) = 0.60. ¹H NMR (400 MHz, CDCl₃) δ 8.49 (s, 1H), 7.46 (d, *J* = 7.8 Hz, 1H), 7.24 (t, *J* = 7.6 Hz, 1H), 7.15 (d, *J* = 7.2 Hz, 1H), 3.96 (q, *J* = 10.0 Hz, 2H), 2.62 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.0 (t, *J* = 10.0 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 142.7 (q, *J* = 4.2 Hz), 136.8 (s), 136.6 (s), 125.5 (s), 124.5 (s), 124.2 (q, *J* = 277.4 Hz), 124.1 (s), 112.3 (s), 34.2 (q, *J* = 32.4 Hz), 17.0 (s). IR (ATR): v 2923, 2855, 1622, 1537, 1453, 1381, 1351, 1305, 1254, 1148, 1091, 1022, 914, 841, 785, 750, 631, 596, 517 cm⁻¹. GC-MS m/z 213 (M⁺). HRMS (ESI) m/z: calcd. for C₁₀H₁₀F₃N₂ [M+H]⁺: 215.0791; found: 215.0788.

6-Bromo-2-(2,2,2-trifluoroethyl)-1*H*-benzo[*d*]imidazole (5c)

Purification by column chromatography (silica gel, *n*-pentane/ethyl acetate = 5:1) gave final product **5c** as a light brown solid in 79% yield (66 mg). M.p. 152.2–153.4 °C. R_f (*n*-pentane/ethyl acetate = 5:1) = 0.48. ¹H NMR (400 MHz, CD₃OD) δ 7.03 (s, 1H), 6.96 (d, J = 8.2 Hz, 1H), 6.83 (d, J = 8.3 Hz, 1H), 3.77 (q, J = 10.2 Hz, 2H). ¹⁹F NMR (376 MHz, CD₃OD) δ -65.6 (t, J = 10.2 Hz, 3F). ¹³C NMR (101 MHz, CD₃OD) δ 191.6 (q, J = 3.2 Hz), 144.5 (s), 128.4 (s), 124.2 (q, J = 277.2 Hz), 123.7 (s), 121.6 (s), 119.9 (s), 118.9 (s), 49.3 (q, J = 28.7 Hz). IR (ATR): v 3881, 3703, 3596, 3536, 2685, 2604, 2559, 2396, 2291, 2171, 2109, 2066, 1971, 1929, 1886, 1719, 1055, 970, 922, 894, 726, 590, 555, 494, 454, 429 cm⁻¹. GC-MS m/z 277 (M⁺). HRMS (ESI) m/z: calcd. for C₉H₇F₃N₂Br [M+H]⁺: 278.9739; found: 278.9740.

5-Chloro-2-((3,3,3-trifluoroprop-1-en-1-yl)oxy)aniline (6q)

Purification by column chromatography (silica gel, *n*-pentane/ethyl acetate = 50:1) gave final product **6q** as a brownish yellow liquid in 63% yield (44 mg). R_f (*n*-pentane) = 0.28. ¹H NMR (400 MHz, CDCl₃) δ 6.84 (d, J = 8.5 Hz, 1H), 6.77 (s, 1H), 6.69 (t, J = 8.1 Hz, 2H), 5.07 (p, J = 7.6 Hz, 1H), 3.93 (br, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -57.6 (d, J = 7.9 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 149.8 (q, J = 5.3 Hz), 142.6 (s), 138.6 (s), 130.6 (s), 122.8 (q, J = 269.3 Hz), 118.0 (s), 117.5 (s), 115.8 (s), 99.5 (q, J = 35.3 Hz). IR (ATR): v 1676, 1619, 1499, 1419, 1265, 1199, 1154, 1123, 1039, 850, 813, 726, 449 cm⁻¹.GC-MS m/z 236 (M⁺). HRMS (ESI) m/z: calcd. for C₉H₈ClF₃NO [M+H]⁺: 238.0241; found: 238.0236.

N-(2-Amino-4-bromophenyl)-3,3,3-trifluoropropanethioamide (7c)

Purification by column chromatography (silica gel, *n*-pentane/ethyl acetate = 5:1) gave final product **7c** as a light brown solid in 5% yield (5 mg). M.p. 145.0-146.8 °C. $R_{\rm f}$ (*n*-pentane/ethyl acetate = 5:1) = 0.40. ¹H NMR (400 MHz, CDCl₃) δ 8.57 (s, 1H), 7.10 (d, J = 8.5 Hz, 1H), 7.06 – 6.91 (m, 2H), 3.80 (q, 10.1 Hz, 2H), NH₂ was not observed. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.8 (t, J = 10.1 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 190.8 (q, J = 3.1 Hz), 143.1 (s), 128.4 (s), 125.0 (s), 123.2 (q, J = 46.6 Hz), 122.3 (s), 122.0 (s), 120.3 (s), 50.9 (q, J = 28.8 Hz). IR (ATR): v 3149, 2923, 1697, 1621, 1494, 1401, 1344, 1252, 1144, 896, 806, 756, 682, 624 cm⁻¹. GC-MS m/z 311 (M⁺). HRMS (ESI) m/z: calcd. for C₉H₉BrF₃N₂S [M+H]⁺: 312.9616; found: 312.9615.

Crystal structure analyses

The suitable crystals of **3i** (CCDC 1921974) and **7c** (CCDC 1922077) were mounted on quartz fibers and X-ray data collected on a Bruker AXS APEX diffractometer, equipped with a CCD detector at -50 °C, using MoK α radiation (λ 0.71073 Å). The data was corrected for Lorentz and polarisation effect with the **SMART** suite of programs and for absorption effects with SADABS.¹ Structure solution and refinement were carried out with the SHELXTL suite of programs.¹ The structure was solved by direct methods to locate the heavy atoms, followed by difference maps for the light non-hydrogen atoms.

References:

 SHELXTL version 5.03; Bruker Analytical X-ray Systems, Madison, WI, 1997.

ORTEP diagrams

ORTEP diagram of compound 3i. Thermal ellipsoids are drawn at 40% probability

ORTEP diagram of compound 7c. Thermal ellipsoids are drawn at 40% probability

Copies of ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra

¹⁹F NMR spectrum of **3a** in CDCl₃

¹H NMR spectrum of **3a** in CDCl₃

¹³C NMR spectrum of **3a** in CDCl₃

^{19}F NMR spectrum of 3b in CDCl₃

 $\begin{pmatrix} -63. & 81 \\ -63. & 84 \\ -63. & 86 \\ -63. & 86 \\ \end{pmatrix}$

¹H NMR spectrum of **3b** in CDCl₃

¹³C NMR spectrum of **3b** in CDCl₃

CF3	110, 16	35. 18 34. 85 34. 52 34. 52 -21. 44
		H.

^{19}F NMR spectrum of 3c in CDCl_3

¹H NMR spectrum of **3c** in CDCl₃

¹³C NMR spectrum of **3c** in CDCl₃

^{19}F NMR spectrum of 3d in CDCl_3

¹H NMR spectrum of 3d in CDCl₃

^{13}C NMR spectrum of **3d** in CDCl₃

O CE-	000000000000000000000000000000000000	1 39692
		4 12 12 12
Y N	151 151 151 151 151 151 151 151 151 151	35. 34. 16.
2	WY INH	

¹⁹F NMR spectrum of **3e** in CDCl₃

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹H NMR spectrum of **3e** in CDCl₃

^{13}C NMR spectrum of **3e** in CDCl₃

¹⁹F NMR spectrum of **3f** in CDCl₃

 $\underbrace{ \begin{array}{c} -63.70\\ -63.72\\ -63.75\\ -63.75 \end{array} }$ CF3 P

¹H NMR spectrum of **3f** in CDCl₃

¹³C NMR spectrum of **3f** in CDCl₃

¹⁹F NMR spectrum of **3g** in CDCl₃

¹H NMR spectrum of **3g** in CDCl₃

^{13}C NMR spectrum of 3g in CDCl_3

^{19}F NMR spectrum of 3h in CDCl_3

¹H NMR spectrum of **3h** in CDCl₃

MeOpC on CE	232019400000000000000000000000000000000000	0 4	0 0 13 1
013	n a a a a a a a a a a a a a a a a a a a	<u>ت</u> دي	N 03 103 CN
L N	112222221221256	52.	34.5
		0	~~~

¹⁹F NMR spectrum of **3i** in CDCl₃

¹H NMR spectrum of **3i** in CDCl₃

¹³C NMR spectrum of **3i** in CDCl₃

^{19}F NMR spectrum of **3j** in CD₃OD

HO2C N ÇF3

-65.37 -65.40 -65.42

¹H NMR spectrum of 3j in CD₃OD

13 C NMR spectrum of **3j** in CD₃OD

^{19}F NMR spectrum of 3k in CD₃OD

¹H NMR spectrum of 3k in CD₃OD

13 C NMR spectrum of **3k** in CD₃OD

^{19}F NMR spectrum of **3l** in CDCl₃

 $\begin{pmatrix} -63.56 \\ -63.58 \\ -63.61 \\ -63.61 \end{pmatrix}$ NC. CF3 Ť

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹H NMR spectrum of **3l** in CDCl₃

¹³C NMR spectrum of **3l** in CDCl₃

NC CF3	158.76 158.75 158.63 158.63 158.63 158.63 158.63 158.75 158.75 121.23 122.52 122.52 122.52 122.52 122.52 122.52 122.53 122.52 122.52 122.52 122.52 122.52 122.52 122.53 122.53 123.53 124.53 125.52 122.53 122.53 122.53 122.53 122.53 122.53 122.53 122.53 122.53 123.53 124.53 125.54 125.55 125.55 125.55 125.55 125.55 125.55 125.55 12	35. 12 34. 79 34. 13

¹⁹F NMR spectrum of **3m** in CDCl₃

¹H NMR spectrum of 3m in CDCl₃

^{13}C NMR spectrum of 3m in CDCl_3

¹⁹F NMR spectrum of **3n** in CDCl₃

¹H NMR spectrum of **3n** in CDCl₃

¹³C NMR spectrum of **3n** in CDCl₃

550, 05 550, 05 550, 08 550, 08 550, 08 333, 16 24, 55 24,	5, 05 4, 72 4, 05 4, 05

¹⁹F NMR spectrum of **30** in CDCl₃

¹H NMR spectrum of **30** in CDCl₃

¹³C NMR spectrum of **30** in CDCl₃

¹⁹F NMR spectrum of **3p** in CDCl₃

E	1215	286992
CF3	$\infty \infty \infty$	000 0 4 4
Ľ_∕_N″	83 83	111111

¹H NMR spectrum of 3p in CDCl₃

^{13}C NMR spectrum of 3p in CDCl_3

[162.20 [159.76 [156.92 [156.88 [156.84 [156.80 [156.80 [151.14]		735, 11 -34, 78 -34, 45 -34, 45
	L'ALLY	

^{19}F NMR spectrum of 3q in CDCl₃

¹H NMR spectrum of **3q** in CDCl₃

^{13}C NMR spectrum of 3q in CDCl_3

^{19}F NMR spectrum of 3r in CDCl₃

 $\begin{pmatrix} -63. 73 \\ -63. 76 \\ -63. 78 \\ -63. 78 \end{pmatrix}$ CI ÇF3 -0 -N

^{19}F NMR spectrum of 3s in CDCl_3

¹H NMR spectrum of **3s** in CDCl₃

¹³C NMR spectrum of **3s** in CDCl₃

^{19}F NMR spectrum of 3t in CDCl₃

 $\begin{pmatrix} -63. \ 67 \\ -63. \ 70 \\ -63. \ 73 \\ -63. \ 73 \end{pmatrix}$ Br ÇF3

¹H NMR spectrum of **3t** in CDCl₃

^{19}F NMR spectrum of 3u in CDCl_3

^1H NMR spectrum of 3u in CDCl_3

^{13}C NMR spectrum of 3u in CDCl_3

¹⁹F NMR spectrum of **3v** in CDCl₃

¹H NMR spectrum of 3v in CDCl₃

13 C NMR spectrum of **3v** in CDCl₃

^{19}F NMR spectrum of 3w in CDCl_3

¹H NMR spectrum of 3w in CDCl₃

¹³C NMR spectrum of **3w** in CDCl₃

^{19}F NMR spectrum of 3x in CDCl₃

Br. CF3

 $\frac{-63}{-63}$. 42 $\frac{-63}{-63}$. 45 -63. 48

¹H NMR spectrum of **3x** in CDCl₃

^{19}F NMR spectrum of **3y** in CDCl₃

¹H NMR spectrum of 3y in CDCl₃

¹³C NMR spectrum of **3y** in CDCl₃

 ^{19}F NMR spectrum of 3z in CDCl_3

¹H NMR spectrum of **3z** in CDCl₃

^{13}C NMR spectrum of 3z in CDCl₃

^{19}F NMR spectrum of **3aa** in CD₃OD

 $\left\{ \begin{matrix} -65.56 \\ -65.59 \\ -65.61 \end{matrix} \right.$

¹H NMR spectrum of **3aa** in CD₃OD

 $\begin{array}{c} 7.60\\ 7.358\\ 7.341\\ 7.346\\ 7.336\\ 7.346\\ 7.336\\ 7.348\\ 3.78\\ 3.76\\ 3.76\end{array}$

^{13}C NMR spectrum of **3aa** in CD₃OD

^{19}F NMR spectrum of 4a in CDCl_3

 $\begin{cases} -64. 44 \\ -64. 47 \\ -64. 49 \end{cases}$

¹H NMR spectrum of 4a in CDCl₃

¹³C NMR spectrum of **4a** in CDCl₃

CF3	355 235 235 235 235 235 235 235 235 235	39, 59 39, 59 38, 96 38, 64
	158. 158. 125. 125. 125. 125. 127. 127. 127.	

^{19}F NMR spectrum of **4b** in CDCl₃

 $\left\{ \begin{array}{c} -64.39\\ -64.42\\ -64.45 \end{array} \right.$ ÇF3 CI N

¹H NMR spectrum of **4b** in CDCl₃

-3 -4

-2

^{13}C NMR spectrum of **4b** in CDCl₃

^{19}F NMR spectrum of 4c in CDCl_3

¹H NMR spectrum of **4c** in CDCl₃

¹³C NMR spectrum of **4c** in CDCl₃

F ₃ C N S CF ₃	160.30 160.26 160.23 160.19 150.98	∠135.07 ∠128.20 7125.44 −122.68 ∼119.92 ×115.97	39, 88 57 39, 25 39, 25 38, 93
	1	2-21/2	

¹⁹F NMR spectrum of **5a** in CD₃OD

¹H NMR spectrum of 5a in CD₃OD

^{19}F NMR spectrum of 5b in CDCl_3

^1H NMR spectrum of 5b in CDCl_3

^{19}F NMR spectrum of 5c in CD₃OD

--65.55 --65.57 --65.60 CF3 Br

¹H NMR spectrum of 5c in CD₃OD

^{13}C NMR spectrum of 5c in CD₃OD

$^{19}\mathrm{F}$ NMR spectrum of 6q in CDCl_3

 $\begin{pmatrix} -57.62 \\ -57.64 \end{pmatrix}$

0 CF3

¹H NMR spectrum of **6q** in CDCl₃

¹³C NMR spectrum of **6q** in CDCl₃

^{19}F NMR spectrum of 7c in CDCl_3

¹H NMR spectrum of 7c in CDCl₃

¹³C NMR spectrum of **7c** in CDCl₃

