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1. General analytical methods and chemicals

All starting materials were commercial and used as received. All solvents were dried over

CaH, and distilled before use.

Elemental analysis (CHN) of compounds was carried out using a Vario EL elemental

analyzer.

IR spectra were recorded on a Nicolet Avatar 360 FT-IR-spectrometer by using KBr pellets
(mgr = 250 mg) in the 4000—400 cm~' range.

UV-Vis spectra were recorded on a Shimadzu UV-2600 spectrophotometer. The samples

were dissolved in dry acetonitrile and measured in quartz cuvettes (d = 1 cm).

The ESI-MS spectra were recorded in the positive and negative ion modes using a 4000

QTRAP mass spectrometer system.

Thermogravimetric analysis was performed with a Mettler-Toledo TGA / SDTA 851e under

N, atmosphere and air with a heating rate of 10 K min-".
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2. Synthetic procedure

(nBugN)4[HV12,03,(Cl)] was  synthesised according to the literature'and
YbC34H190,Ng-2MeOH (C3,H6Ng = Pc) was synthesised similar to the protocol reported in

the literature.2

Ytterbium(lll)acetate hydrate (2 mmol, calculated on water-free basis) was grinding in a
mortar and dried for 2h under vacuum at 100 °C. After cooling down to room temperature
phthalonitrile (1.55 g, 12 mmol) was added and dried under vacuum at room temperature.
Next, dry n-Hexanol (15 mL) and dry 1,8-Diazabicyclo[5.4.0Jundec-7-en (0.9 mL, 6 mmol)
were successively added under N,. The suspension was heated up to 160°C, whereby the
suspension gradually clears up. After a few minutes the colour of solution changed to light
green and then to dark green. The reaction was stopped after 30 minutes, the heating
plate was removed and the solution was cooled down to room temperature under ambient
conditions. The resulting viscous solution was precipitated into 200 mL of hexane,
affording a nearly black / dark-blue solid. The solid was purified by column
chromatography. Using CH,Cl, and MeOH in a 99:1 ratio yields the side product YbPc,
(dark green). Using CH,CIl, and MeOH in a 95:5 ratio leads to the target product
YbPcOAc-2MeOH (dark blue).

Yield: 690 mg (43%).

Elemental analysis (%) calcd. for C3,H19NgO2Yb-2MeOH (M = 808.70 g mol-'): C 53.47,
H 3.37, N 13.86; Found: C 53.35, H 3.35, N 13.72.

FT-IR (KB, Vmad/cm=1): 3432 (m), 3086 (w), 2924(w), 2854 (w), 2231 (w), 1607 (w), 1570
(W), 1525 (vs), 1472 (m), 1455 (m), 1404 (m), 1361 (s), 1324 (s), 1161 (w), 1116 (m), 1081
(w), 1062 (m), 1040 (w), 1019 (w), 965 (w), 886 (w), 839 (w), 768 (s), 730 (vs), 639 (W),
558 (w), 526 (m), 503 (w), 435 ().

T K. Okaya, T. Kobayashi, Y. Koyama, Y. Hayashi and K. Isobe, Eur. J. Inorg. Chem., 2009, 5156.
2 M. Bouvet, P. Bassoul and J. Simon, Molecular Crystals and Liquid Crystals Science and Technology.
Section A. Molecular Crystals and Liquid Crystals, 1994, 252, 31.

S4



(nBusN)4[V1203,(CI)]YbC32H1¢Ng (mono*)

106.8 mg (0.05 mmol, 1 eq.) of (nBusN)4[HV12032(Cl)] and 37.2 mg (0.05 mmol, 1 eq.) of
YbPcOAc-2MeOH were dissolved in 5 mL of MeCN using an ultrasonic bath. The solution
was allowed to stand for 5 days at room temperature without stirring. The solution was
filtered off and the filtrate was dropped into 100 mL of Et,O. The resulting precipitate was
centrifuged 10 min with 9000 rpm and washed two times with 40 mL of Et,0. The obtained

green-blue solid was dried under vacuum.

Yield: 113 mg (80%). Elemental analysis (%) calcd. for (CgsH160CIN1203,V12Yb)-Et,0
(M =2814.36 g mol-'): C 41.58, H 5.93, N 5.84. Found: C, 41.45, H 5.98, N 5.43. FT-IR
(KBr, Vmax/cm=1): 3047 (w), 2960 (m), 2933 (m), 2872 (m), 2534 (w), 1634 (w), 1608 (w),
1586 (w), 1564 (w), 1483 (s), 1458 (m), 1407 (w), 1380 (w), 1329 (s), 1282 (m), 1159 (w),
1112 (s), 1078 (m), 1061 (s), 994 (vs), 886 (m), 827 (m), 767 (m), 743 (s), 733 (vs), 681 (s),
630 (m). UV-Vis (MeCN, A/nm): 222, 240, 337, 608, 644, 674. ESI-MS (MeCN, m/z):
[M+6BusN+H]J?* 1649.47 (calcd.), 1649.46 (exptl.); [M+5BusN+H]* 3056.65 (calcd.),
3056.63 (exptl.); [M+2BusN+H]?>~ 1164.90 (calcd.), 1164.90 (exptl.); [M+BusN+H]~ 2329.80
(calcd.), 2329.81 (exptl.) where M = V1,03,ClIYbC3,H16Ns.

(nB U4N)3[V12032(C|)] (ch32H16N8)2 (biS3_)

75 mg (0.035 mmol, 1 eq.) of (nBusN)4[HV12,03,(Cl)] and 62.7 mg (0.078 mmol, 2.2 eq.) of
YbPcOAc:-2MeOH were dissolved in 5 mL of MeCN using an ultrasonic bath. The solution
was allowed to stand for 2 days without stirring at 70°C. After cooling down to room
temperature, the solution was filtered off and the filtrate was dropped into 100 mL of Et,0.
The resulting precipitate was centrifuged and washed two times with 40 mL of Et,O. The

obtained blue solid was dried under vacuum.

Yield: 111 mg (91%). Elemental analysis (%) calcd. for (C112H140CIN419O3,V42Yb3)-4 Et,O
(M = 3552.46 g mol-"): C 43.26, H 5.11, N 7.49. Found: C 43.10, H 5.13, N 7.29. FT-IR
(KBr, Vmax/cm=1): 3047 (w), 2960 (m), 2931 (m), 2872 (m), 2534 (w), 1633 (w), 1607 (w),
1586 (w), 1563 (w), 1484 (s), 1457 (m), 1407 (w), 1379 (w), 1329 (s), 1281 (m), 1159 (w),
1112 (s), 1078 (m), 1061 (s), 995 (vs), 886 (m), 810 (m), 770 (m), 743 (s), 732 (vs), 676
(m), 629 (m), 614 (m). UV-VIS (MeCN, A/nm): 222, 240,336, 608, 642, 671. ESI-MS
(MeCN, m/z): [M+5Bu4N]* 3741.73 (calcd.), 3741.70 (exptl.); [M+6BusN]?>* 1992.01 (calcd.),
1992.00 (exptl.); [M+2Buy4N]>~ 1507.44 (calcd.), 1507.43 (exptl.); [M+BusN]J>~ 1386.30
(calcd.), 1386.31 (exptl.) where M = V1,03,ClIYb,Cg4H32N 6.
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3. Infrared spectra
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Figure S1. A comparison of IR spectra of mono#, bis3", (nBuysN)s[HV1203,(Cl)]
(abbreviated as V1,03,Cl) and YbPcOAc-2MeOH (abbreviated as YbPcOACc).
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4. UV-Vis spectra
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Figure S2. A comparison of UV-VIS spectra of mono*~ (¢ = 4 x 1079), bis®" (¢ = 4 x 1075),
(nBugN)4[HV12032(CI)] (abbreviated as V1203,Cl; ¢ = 1.2 x 10-%) and YbPcOAc-2MeOH
(abbreviated as YbPcOACc; ¢ = 2 x 10-°). All measurements were performed in MeCN.
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5. Electrospray ionisation mass spectrometry data of mono# and bis3-
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Figure S3. ESI-MS spectra of mono#- (in MeCN) obtained in the positive (top) and
negative (bottom) ion modes.

Table S1. Experimental and calculated m/z values for different fragments of mono*-.

Fragment ion mlz exptl. mj/z calcd.
[(BugN)s[HV1203,CIYb(Pc)]* 3056.63 3056.65
[(BugN)4[HV1203,ClYb(Pc)]* 2814.35 2814.37
[(BusN)e[HV1203,CITYb(Pc)]?* 1649.46 1649.47
[(BugN)3[HV1203,ClYb(Pc)]~ 2572.09 2572.08
[(BugN),[HV1203,CIYb(Pc)] 2329.81 2329.80
[(BugN),[HV1203,ClYb(Pc)]? 1164.90 1164.90
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calculated isotopic patterns of [(BusN)2[V1203,ClYb(Pc)]?
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Figure S5. Experimental and calculated isotopic patterns of [(BusN)s[HV12,03,Cl]Yb(Pc)]?*

fragment in mono*-.
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Figure S6. ESI-MS spectra of bis3~ (MeCN) obtained in the positive (top) and negative
(bottom) ion modes.

Table S2. Experimental and calculated m/z values for different fragments of bis3-.

Fragment ion miz exptl. mi/z calcd.
[(BugN)s[V42,03,CI](YbPc),]* 3741.70 3741.73
[(BugN)s[HV1203,CI](YbPc)]* 3056.63 3056.65
[(BugN)e[V12032Cl(YbPc),]?* 1992.00 1992.01

[(BugN)s[HV1203,Cl](YbPc))?* 1649.46 1649.47
[(BugN)3[V+1203,CI](YbPc),]~ 325717 325717
[(BusN)2[V12032Cl](YbPc),]~ 3014.89 3014.88

[(BusN)[H2V1203,CI(YbPc),] 2774.61 2774.61
[(BugN)3[HV1203,CI](YbPc)]~ 2572.10 2572.08

[(BusN)2[H2V1203,Cl(YbPc)] 2330.81 2330.80
[(BugN)o[V12032Cl(YbPc),]?~ 1507.43 1507 .44
[(BugN)[V12032CI(YbPc),]?~ 1386.30 1386.30

[(BugN),[HV1203,Cl(YbPc))? 1164.90 1164.90
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6. Single-crystal X-ray diffraction data of mono* and bis3-

Table S3. Crystal data and structure refinement details for compounds.

mono*- bis3-
CCDC 1950768 1950769
Empirical formula C230H409CloN27075V4 YD, C120H152CIN2303,V42Y D,
Chemical formula 2[(C16H32N)4(YbC32H16NgV1203,Cl)]  (C16H32N)3(Yb2CesH32N16V1203,Cl)
(CH3CN)5((CH3CH;)20)s (CH3CN),
Formula weight 6343.04 3421.52
Crystal colour green blue
Crystal system orthorhombic tetragonal
T/K 100(2) 100(2)
Wavelength A 0.71073 (MoKa) 0.71073 (MoKa)
space group (No.) Pbca (61) I-4 (82)
alA 30.109(6) 14.840(3)
b/A 29.594(6) 14.840(3)
clA 33.020(7) 35.452(8)
al® 90 90
B/° 90 90
y/° 90 90
VA3 29422(10) 7808(4)
V4 4 2
Rint 0.1834 0.1157
Absorp. Coeff. y / mm-™ 1.443 1.951
R [F?> 20 (F?)] 0.0671 0.0777
WRy(F?) 0.2284 0.2347
Dcacs. / g cm™3 1.432 1.418
GOF 0.744 1.016
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Table S4. Selected bond lengths (A).

Bonds mono#*” Bonds bis3-

Yb01 O00R 2.306(7) Yb01 NOOM! 2.26(4)
Yb01 0013 2.328(7) Yb01 NOOM 2.26(4)
Yb01 OO00F 2.334(6) Yb01 0008 2.35(2)
Yb01 0011 2.340(6) Yb01 0008 2.35(2)
Yb01 NOOW 2.352(8) Yb01 o071 2.35(2)
Yb01 NO00Z 2.358(7) Yb01 007 2.335(2)
Yb01 NO1D 2.353(8) Yb01 NOOE 2.42(3)
Yb01 NO1G 2.355(8) Yb01 NOOE 2.42(3)
VOOD 001B 1.987(7) V004 0009 2.03(2)
VOOD 0014 1.925(7) V004 ooocC 1.90(3)
V0oOoD 0012 1.826(7) V004 007 1.84(2)
VOOD 0019 1.774(7) V004 Oo00oD 1.80(2)
V0OOoD 0017 1.576(8) V004 o0B 1.59(2)
VooC 001B 1.936(8) V003 006 1.62(2)
VooC 0012 1.810(7) V003 007 1.87(2)
VooC O00K 1.814(8) V003 0008 1.86(2)
VooC 0016 1.603(7) V003 ooocC 1.88(2)
VooC 000Q 1.940(7) V003 0009 1.93(2)
V00B 000y 1.923(7) V002 ooocC 1.979(2)
V00B O00K 1.815(8) V002 0008 1.84(2)
V0OOB O01E 1.784(6) V002 0009 1.84(2)
V00B 000X 1.592(7) V002 Oo00oD 1.78(2)
V0OOB 000Q 1.982(7) V002 O0A 1.58 (2)
VOOA 0013 1.886(6)

VOOA 0011 1.885(7)

VOOA 0014 1.877(7)

VOOA 0018 1.856(6)

VOOA O0oP 1.586(7)

V009 0015 1.923(7)

V009 O00H 1.817(6)

V009 0000 1.810(7)

V009 ool 1.585(7)

V009 ooov 1.938(7)

V008 O00R 1.892(6)

V008 OO00F 1.882(7)

V008 o000y 1.869(6)

V008 O01A 1.855(6)

V008 ooL 1.589(7)

V007 0015 1.981(6)

V007 O01A 1.948(7)

V007 O01E 1.804(6)

V007 O00H 1.802(7)

V007 Oooou 1.577(8)

V006 OON 1.796(7)

V006 0014 2.010(7)

V006 001B 1.882(7)

V006 0013 1.836(6)
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V006 0010 1.589(7

(7)
V005 0018 1.955(7)
V005 00J 1.589(7)
V005 0000 1.803(7)
V005 0019 1.811(7)
V005 000V 1.975(7)
V004 0011 1.838(6)
V004 0018 1.986(7)
V004 000T 1.785(7)
V004 000S 1.591(6)
V004 000V 1.898(7)
V003 O01A 2.000(6)
V003 0015 1.905(7)
V003 O00R 1.839(6)
V003 000T 1.790(7)
V003 00G 1.590(7)
V002 000Y 1.994(7)
V002 000Q 1.891(7)
V002 OO00F 1.836(6)
V002 OON 1.789(7)
V002 OO0M 1.588(7)
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Figure S9. Molecular structures of mono*- (top) and bis3- (bottom).
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Figure S$10. Photographs of characteristic needle-shaped crystals of mono#- (top) and
square-shaped crystals of bis3- (bottom).
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7. Bond valence sum calculations

L (Ry-R
BVS = Zexp
B
n=20

The following parameters for R, with B = 0.37 were used:34

VWV—(u-0)/ VV= (u3-O)/ VV=Orerm Ry =1.803 A
VV—(u-0)/ VV—(u5-O) Ro=1.784 A
VV=Orerm Ro=1.735A
Yb'-O Ro=1.989 A
Yb'-N Ro=2.092 A
Yb''-O Ro=1.954 A
Yb!'-N Ro=2.064 A

Table S5. Acquired BVS data for mono*- and bis3".

Compound Obtained valence sum (min—max)
mono*~ (V) 5.06 (4.99-5.13)
mono*- (Yb'") 2.81

bis3~ (VY) 5.04 (4.80-5.26)

bis3~ (Yb') 2.80

3 |. D. Brown, The Chemical Bond in Inorganic Chemistry: The Bond Valence Model, Oxford University
Press, New York, 2002.
4 For bond valence parameters, see www.iucr.org.
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8. Thermogravimetric data of mono*- and bis3-
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Figure S11. TGA curves of mono*- and bis3~ measured under nitrogen atmosphere and
in dry air.

Table S6. Acquired TGA data for mono#- and bis3-.

Compound Fragments Aw% (exptl.) Aw% (calcd.)

mono* (Ny) -Et,0, —4(BuyN) 36.75 37.10

mono*- (air) -Et,0, —-4(BusN), —Pc, —Cl 55.58 56.57
bis3~ (N,) -4(Et,0), -3(BuyN) 28.82 28.54
bis3- (air) -Et,0, -3(BusN), —Pc, —ClI 59.67 58.67
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9. Magnetochemical analysis of mono* and bis3-

Assuming only the lowest multiplet and C,, symmetry of the molecules a following effective

Hamiltonian for mono#-can be proposed:

H:HZ+HCF (1)

With the Zeeman part defined as:
Hy=-uplgB,

where J (J = 7/2) is a vector operator standing for a total (orbital and spin) moment, B is a
vector of external magnetic field and g is a g-factor tensor with non-zero values gy = 9y,
9yy = 9y and g,, = g,. The crystal field part Hcr should contain up to 9 different Stevens

operators.® It is assumed that the z-axis is along the line connecting Yb3* and CI- centers.

Hamiltonian (1) has together 12 parameters (3 in the Zeeman part and 9 in the crystal field
part) that should be determined by fitting the experimental data. This is indeed too many to
expect unique solution, especially that we have in disposition only the results for a powder

sample. Therefore, the fits were made with smaller number of parameters. It appears that

already with three parameters (9 1’91 and D) one can obtain a good fit for the unique set
of optimal parameters. Thus, to obtain the results presented in this study the following

simplified Hamiltonian has been used:
2
H= _ﬂBgJ.(]xBx-l_]yBy)_”Bgll]ZBZ+D]z (2)

With more parameters (we tried up to 6) the fits become a bit better, but there is no unique
set of optimal parameters. It seems that despite formally lower symmetry (C,,) mono*-can
be simulated with the formula corresponding to higher C4, symmetry. Since measurements
were made for a powder sample and the molecule is highly anisotropic the theoretical
results have been averaged over possible orientations of the magnetic field with respect to

molecular axes. To this end for each value of T (for susceptibility) and B (for magnetisation)

5 C. Gorller-Walrand and K. Binnemans, Rationalization of Crystal-Field Parametrization, In Handbook on
the Physics and Chemistry of Rare Earths, 1996, 23, 121.
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400 orientations of the magnetic field vector uniformly distributed over the hemisphere

have been considered. Fits have been performed with the help of evolutionary algorithm.

The same procedure has been applied to bis3- resulting in similar conclusions. Here
Hamiltonian (1) and (2) must be multiplied by factor 2 to account for two non-interacting
Yb3* centers. The results are presented in Figs. 2 and S10, and in Table S7. The fits for
bis3- are slightly worse than for mono#-. In both cases magnetisation in high field is

underestimated by the theory. A point that needs explanation.

Table S7. Optimal parameters of fits.

Compound 9. g D/K goodness of fit in %
mono*- 1.16 2.35 170 2.88
bis3- 1.15 1.81 90 4.1
7 —

O experiment OR8]

T/ 10~ m’mol "’

| | 1
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Figure S12. Molar susceptibility (B = 0.1 T) and magnetisation (T = 2 K) for polycrystalline
powder sample of bis3- (circles) with theoretical fits (solid lines).
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10. Computational details

All DFT calculations were carried out with the ORCA program package.® Structures were
optimised with the B3LYP functional”-8° where dispersion forces were considered by the
3rd version of Grimme’s empirical dispersion correction in combination with Becke-Johnson
damping.'®"" The Ahlrichs basis set TZVP'2 of triple-{ quality and polarization functions on
all atoms were chosen for N, O, Cl and V, while the smaller double- basis set def2-SV(P)'3
was employed for C and H. For Yb, the def2-TZVP basis set was chosen including a
relativistic pseudopotential.’'* To speed up the calculation, the RIJCOSX approach was
employed.'%16.17.18 Solvation effects of acetonitrile were considered by the Conductor-like
Polarizable Continuum Model (C-PCM)."®

6 F. Neese, F. WIREs Comput. Mol. Sci., 2012, 2, 73.
7 A.D. Becke, Phys. Rev. A, 1988, 38, 3098.
8 C.Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785.
° A.D. Becke, J. Chem. Phys., 1993, 98, 5648.
10 S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.
1 S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem., 2011, 32, 1456.
12 A, Schafer, C. Huber and R. Ahlrichs, J. Chem. Phys., 1994, 100, 5829.
3 F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297.
4 M. Dolg, H. Stoll and H. Preuss, J. Chem. Phys., 1989, 90, 1730.
B. I. Dunlap, J. W. D. Connolly and J. R. Sabin, J. Chem. Phys., 1979, 71, 3396.
6 E. J. Baerends, D. E. Ellis and P. Ros, Chem. Phys., 1973, 2, 41.
F. Weigend, Phys. Chem. Chem. Phys., 2006, 8, 1057.
F. Neese, F. Wennmohs, A. Hansen and U. Becker, Chem. Phys., 2009, 356, 98.
19 V. Barone, M. Cossi and J. Tomasi, J. Comput. Chem., 1998, 19, 404.
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11. EGaln measurement

The electrical measurement with EGaln was performed under ambient conditions. In the
measurement, the sample was grounded and the EGaln was biased. At least three
samples were examined for SAMs of mono# and bis3-. The potential windows included
the following: 0V -1V —- -1V — 0V, steps of 0.05 V. A total of 5 trace/retrace cycles
were recorded for each junctions, and shorts occurred during the measurement (short

upon contact with a bias of 1 V or during the cycle) were counted for a failure of junction.

12. Atomic Force Microscopy measurements

PeakForce Tapping AFM and PFQNM AFM measurements were performed on a Bruker
AFM multimode MMAFM-2 model. Pure SAMs of mono#- and bis3- were characterised by
AFM on both morphology and surface adhesion. PeakForce Tapping AFM was performed
with a ScanAsyst-Air probe (resonant frequency 70 kHz, spring constant 0.4 N/m, Bruker)
to characterise the surface morphology of the samples at a scan rate of 0.7 Hz and 768
samples per line. The data were analysed with Nanoscope Analysis 1.5 provided by
Bruker. Measurements of adhesion were performed in the PFQNM mode. The samples
were contacted with a silicon nitride tip with a nominal radius of 1 nm (SAA-HPI-SS, Bruker,
resonant frequency 55 kHz, spring constant 0.25 N/m). The deflection sensitivity, spring
constant of the cantilever and tip radius were calibrated both before and after the
measurement. Samples were scanned at 1 um and 500 um at a rate of 0.7 Hz and 640

samples per line. Adhesion of the samples were measured under a force load of 0.3 nN.
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Figure S13. AFM height (a) and adhesion (b) images of SAMs of mono#- (left) and bis3-
(right) on Au™S scanned at 1 um. The interaction between the AFM tip and the Au substrate
results in stronger adhesion, while the complexes exhibit weaker adhesion to the tip and
appear as dark spots in the image.

13. Ellipsometry

The ellipsometry measurements were carried out in air, on a V-Vase Rotating Analyzer
equipped with a HS-190 monochromator ellipsometer from J. A. Woollam Co., Inc, at an
incident angle of 65°, 70° and 75° with respect to the surface normal. A two-layer model
consisting of a bottom Au layer, for which optical constants were calculated from freshly
prepared template-stripped Au surfaces, and a Cauchy layer was used for the fit of the
measurement on the SAMs. A chosen value of A, =1.45, B,=C,=0 and k = 0.01 at all
wavelengths was used to fit the thickness. For every SAM, we measured six different
spots in total (either two spots per sample for three samples or three spots per sample for
two samples were measured) and report the thicknesses as the average with the standard
deviation as the error bars.
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