Supporting Information

Highly Stereoselective Intramolecular Buchner Reactions of Diazoacetamides Catalyzed by Ru(II)-Pheox Complex

Thanh Nga Thi Phan, Masaya Tone, Hayato Inoue, Ikuhide Fujisawa, and Seiji Iwasa*

Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1–1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441–8580, JAPAN

CONTENTS:

1	Preparation of diazoacetamides	3
2	Analytical data for diazoacetamides	3
3	Asymmetric intramolecular reactions of N-diazo acetamides catalyzed by Ru(II)-Pheox	
	complexes	8
4	General procedure for catalytic asymmetric intramolecular Buchner reaction of	
	diazoacetamides	9
5	Analytical data for asymmetric intramolecular Buchner reaction products	10
6	X-ray crystal structure of 6-chloro-2-(4-chlorobenzyl)-3,8a-	
	dihydrocyclohepta[c]pyrrol-1(2H)-one (2d)	18
7	NMR spectral data	19
8	HPLC spectral data	48

General: All reactions were performed under an atmosphere of argon unless otherwise noted. Dichloromethane (DCM) was purchased from Kanto Chemical Co., Inc.. All reactions were monitored by thin layer chromatography (TLC), glass plates pre-coated with silica gel Merck KGaA 60 F_{254} , layer thickness 0.2 mm. The products were visualized by irradiation with UV light or by treatment with a solution of phosphomolybdic acid or by treatment with a solution of *p*-anisaldehyde. Flash column chromatography was performed using silica gel (Merck, Art. No. 7734). ¹H NMR (500 MHz, 400 MHz) and ¹³C NMR (125 MHz, 100 MHz) spectra were recorded on JEOL JNM-ECX500, JEOL JNM-ECS400 spectrometer. Chemical shifts are reported as δ values (ppm) relative to internal tetramethylsilane (0.00 ppm) in CDCl₃. Elemental analyses were measured on a Yanaco CHN CORDER MT-6. Optical rotations were performed with a JASCO P-1030 polarimeter at the sodium D line (1.0 mL sample cell). Enantiomeric excesses were determined by high-performance liquid chromatography (HPLC) analyses with a JASCO GULLIVER using Daicel CHIRALPAK or CHIRALCEL columns.

1. Preparation of diazoacetamides

Scheme S1. Synthesis of 2-diazo-N,N-bis(4-methoxybenzyl)acetamide (1b).

To a suspension of K_2CO_3 (1.66 g, 12 mmol) and bis(4methoxybenzyl)amine (2.27 g, 10 mmol) in DCM (20 mL) was added dropwise bromoacetyl bromide (0.95 mL, 11 mmol) at 0°C. The reaction mixture was stirred at room temperature for

30 minutes. The mixture was then extracted three times with DCM (20 mL x 3), dried over Na₂SO₄, and filtered. After evaporation of the solvent, the residue was obtained and used in the next step without purification. The resulting bromoacetamide and *N*,*N*'-ditosylhydrazine (5.1 g, 15 mmol) were dissolved in THF (20 mL) and cooled down to 0°C, then DBU (3 mL, 20 mmol) was added dropwise and stirred at 0°C for 30 minutes. After quenched with sat. NaHCO₃ aq. and extracted with diethyl ether (20 mL x 3) three times, the organic phase was dried over Na₂SO₄ and evaporated to give the crude product. Purification was performed with flash column chromatography on silica gel eluted with *n*–Hexane/EtOAc (1/5 (v/v)) to give 2-diazo-*N*,*N*-bis(4-methoxybenzyl)acetamide (1.66 g, 51% yield) as a yellow oil **1b**. ¹H NMR (500 MHz, CDCl₃) δ 7.13 (br s, 4H), 6.88 (d, *J* = 8.41 Hz, 4H), 4.98 (s, 1H), 4.35 (br s, 4H), 3.77 (s, 6H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 166.2, 158.9, 129.38, 128.2, 113.8, 55.1, 48.53, 46.64 ppm. IR (neat) v 3068, 2928, 2837, 2100, 1606, 1440, 814 cm⁻¹. HRMS (DART) calcd for C₁₈H₁₉N₃O₃ [M+H]⁺: 326.1504 found: 326.1504.

2. Analytical data for diazoacetamides

N,*N*-Dibenzyl-2-diazoacetamide (1a)

Same procedure as described above for **1b**. (48% yield). Yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.36–7.23 (m, 10H), 4.97 (s, 1H), 4.46 (br s, 4H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 166.61, 136.62, 128.72, 127.52,

126.56, 49.38, 47.00 ppm. IR (neat) v 3064, 2921, 2100, 1606, 1427, 727 cm⁻¹. HRMS (DART) calcd for $C_{16}H_{15}N_3O [M+H]^+$: 266.1293 found: 266.1293.

2-Diazo-N,N-bis(4-methylbenzyl)acetamide (1c)

Same procedure as described above for **1b**. (43% yield). Yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.15 (d, *J* = 7.64 Hz, 4H), 7.11 (br s, 4H), 4.96 (s, 1H), 4.39 (br s, 4H), 2.35 (s, 6H) ppm. ¹³C NMR

(125 MHz, CDCl₃) δ 166.59, 137.40, 133.88, 129.56, 127.07, 49.10, 47.12, 21.21 ppm. IR (neat) v 3052, 2921, 2104, 1603, 1432, 798 cm⁻¹. HRMS (DART) calcd for C₁₈H₁₉N₃O [M+H]⁺: 294.1606 found: 294.1606.

2-Diazo-N,N-bis(4-chlorobenzyl)acetamide (1d)

Same procedure as described above for **1b**. (63% yield). Yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.32 (d, *J* = 7.94 Hz, 4H), 7.14 (d, *J* = 7.94 Hz, 4H), 4.94 (s, 1H), 4.39 (br s, 4H) ppm. ¹³C NMR (125 MHz, 2000) MHz, 2000 MHz,

CDCl₃) δ 166.64, 135.15, 133.66, 129.11, 128.87, 49.06, 47.24 ppm. IR (neat) v 3072, 2925, 2109, 1606, 1432, 802 cm⁻¹. HRMS (DART) calcd for C₁₆H₁₃Cl₂N₃O [M+H]⁺: 334.0513 found: 334.0513.

2-Diazo-N,N-bis(4-bromobenzyl)acetamide (1e)

Same procedure as described above for **1b**. (55% yield). Yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.47 (d, *J* = 8.03 Hz, 4H), 7.08 (d, *J* = 8.03 Hz, 4H), 4.94 (s, 1H), 4.4 (br s, 4H) ppm. ¹³C NMR (125 MHz,

CDCl₃) δ 166.5, 135.73, 131.82, 128.70, 121.48, 48.93, 47.08 ppm. IR (neat) v 3069, 2918, 2103, 1623, 1438, 797 cm⁻¹. HRMS (DART) calcd for C₁₆H₁₃Br₂N₃O [M+H]⁺: 421.9503 found: 421.9503.

2-Diazo-N,N-bis(4-fluorobenzyl)acetamide (1f)

Same procedure as described above for **1b**. (69% yield). Yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.17 (t, *J* = 8.03 Hz, 4H), 7.03 (t, *J* = 8.03 Hz, 4H), 4.96 (s, 1H), 4.4 (br s, 4H) ppm. ¹³C NMR (125 MHz, CDCl₃)

δ 166.52, 163.25, 161.29, 132.41, 128.83, 115.80, 48.82, 47.09 ppm. IR (neat) v 3072, 2921, 2109, 1599, 1440, 818 cm⁻¹. HRMS (DART) calcd for C₁₆H₁₃F₂N₃O [M+H]⁺: 302.1108 found: 302.1104.

2-Diazo-N,N-bis(3-methoxybenzyl)acetamide (1g)

Same procedure as described above for **1b**. (60% yield). Yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.26 (t, *J* = 8.03 Hz, 2H), 6.84–6.75 (m, 6H), 4.96 (s, 1H), 4.76–4.13 (br s, 4H), 3.79 (s,

6H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 166.55, 160.02, 138.41, 129.84, 119.63, 113.25, 112.90, 55.20, 49.51, 47.00 ppm. IR (neat) v 3064, 2937, 2104, 1599, 1427, 782 cm⁻¹. HRMS (DART) calcd for C₁₈H₁₉N₃O₃ [M+H]⁺: 326.1509 found: 326.1504.

2-Diazo-N-(4-methoxybenzyl)-N-(4-nitrobenzyl)acetamide (1h)

Same procedure as described above for **1b**. (33% yield). Yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.18 (d, *J* = 8.03 Hz, 2H), 7.38 (d, *J* = 8.03 Hz, 2H), 7.11 (d, *J* = 8.03 Hz, 2H), 6.88 (d, *J* = 8.03

Hz, 2H), 5.04 (br s, 1H), 4.6 (br s, 2H), 4.32 (br s, 2H), 3.81 (s, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 166.73, 159.46, 147.48, 145.05, 128.49, 127.95, 124.06, 114.47, 55.45, 49.85, 48.95, 47.32 ppm. IR (neat) v 3076, 2933, 2109, 1606, 1440, 822 cm⁻¹. HRMS (DART) calcd for C₁₇H₁₆N₄O₄ [M+H]⁺: 341.1249 found: 341.1249.

2-Diazo-N-benzyl-N-methylacetamide (1i)

Same procedure as described above for **1b**. (22% yield). Yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.35 (t, *J* = 7.64 Hz, 2H), 7.29 (d, *J* = 7.64 Hz, 1H), 7.23 (d, *J* = 7.64 Hz, 2H), 4.99 (s, 1H), 4.55 (br s, 2H), 2.85 (br s, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 166.22, 137.05, 128.83, 127.60, 126.64, 51.43, 46.62,

34.59 ppm. IR (neat) v 3068, 2921, 2104, 1610, 1404, 727 cm⁻¹. HRMS (DART) calcd for $C_{10}H_{11}N_3O [M+H]^+$: 190.0982 found: 190.0980.

2-Diazo-N-(4-methoxybenzyl)-N-methylacetamide (1j)

Same procedure as described above for **1b**. (43% yield). Yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.16 (d, *J* = 8.03 Hz, 2H), 6.87 (d, *J* = 8.03 Hz, 2H), 4.98 (s, 1H), 4.45 (br s, 2H), 3.8 (s, 3H), 2.83 (br s, 3H) ppm. ¹³C

NMR (125 MHz, CDCl₃) δ 166.11, 159.22, 129.13, 128.82, 114.26, 55.41, 51.24, 46.6, 34.22 ppm. IR (neat) v 3068, 2933, 2104, 1606, 1455, 814 cm⁻¹. HRMS (DART) calcd for C₁₁H₁₃N₃O₂ [M+H]⁺: 220.1087 found: 220.1086.

2-Diazo-*N*-(4-methylbenzyl)-*N*-methylacetamide (1k)

CI

Same procedure as described above for **1b**. (42% yield). Yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.13 (dd, J = 17.76, 8.02 Hz, 4H), 4.97 (s, 1H), 4.45 (br s, 2H), 2.86 (br s, 3H), 2.34 (s, 3H) ppm. ¹³C NMR (125 MHz,

CDCl₃) δ 166.29, 136.18, 131.98, 129.38, 121.61, 50.89, 46.7, 34.33, 23.14 ppm. IR (neat) v 3072, 2921, 2100, 1606, 1399, 798 cm⁻¹. HRMS (DART) calcd for C₁₁H₁₃N₃O [M+H]⁺: 204.1137 found: 204.1137.

2-Diazo-N-(4-chlorobenzyl)-N-methylacetamide (11)

Same procedure as described above for **1b**. (46% yield). Yellow powder. ¹H NMR (500 MHz, CDCl₃) δ 7.31 (d, *J* = 8.03 Hz, 2H), 7.17 (d, *J* = 8.03 Hz, 2H), 4.97 (s, 1H), 4.49 (br s, 2H), 2.83 (br s, 3H) ppm. ¹³C NMR (125 MHz, 2H), 4.97 (s, 1H), 4.49 (br s, 2H), 2.83 (br s, 3H) ppm. ¹³C NMR (125 MHz, 2H), 4.97 (s, 1H), 4.49 (br s, 2H), 2.83 (br s, 3H) ppm. ¹³C NMR (125 MHz, 2H), 4.97 (s, 1H), 4.49 (br s, 2H), 2.83 (br s, 3H) ppm. ¹³C NMR (125 MHz, 2H), 4.97 (s, 1H), 4.49 (br s, 2H), 2.83 (br s, 3H) ppm. ¹³C NMR (125 MHz, 2H), 4.97 (s, 1H), 4.49 (br s, 2H), 4.97 (s, 3H) ppm. ¹³C NMR (125 MHz, 2H), 4.97 (s, 1H), 4.49 (br s, 2H), 4.97 (s, 3H) ppm. ¹³C NMR (125 MHz, 2H), 4.97 (s, 1H), 4.49 (br s, 2H), 4.97 (s, 3H) ppm. ¹³C NMR (125 MHz, 4Hz) (s, 2H), 4.97 (s, 3Hz) ppm. ¹³C NMR (125 MHz), 4.97 (s, 2Hz) (s, 2Hz

CDCl₃) δ 166.24, 135.68, 133.40, 128.97, 128.67, 50.77, 46.64, 34.40 ppm. IR (neat) v 3072, 2916, 2100, 1606, 1404, 791 cm⁻¹. HRMS (DART) calcd for C₁₀H₁₀ClN₃O [M+H]⁺: 224.0590 found: 224.0590.

2-Diazo-N-(4-bromobenzyl)-N-methylacetamide (1m)

Same procedure as described above for **1b**. (47% yield). Yellow powder. ¹H NMR (500 MHz, CDCl₃) δ 7.46 (d, *J* = 8.03 Hz, 2H), 7.11 (d, *J* = 8.03 Hz, 2H), 4.97 (s, 1H), 4.47 (br s, 2H), 2.84 (br s, 3H) ppm. ¹³C NMR (125 MHz, 2H), 4.97 (s, 1H), 4.47 (br s, 2H), 2.84 (br s, 2H) ppm. ¹³C NMR (125 MHz, 2H), 4.97 (s, 1H), 4.47 (br s, 2H), 2.84 (br s, 3H) ppm. ¹³C NMR (125 MHz, 2H), 4.97 (s, 1H), 4.47 (br s, 2H), 2.84 (br s, 3H) ppm. ¹³C NMR (125 MHz, 2H), 4.97 (s, 1H), 4.47 (br s, 2H), 4.97 (s, 2H), 4.97

CDCl₃) δ 166.23, 136.19, 131.89, 129.37, 121.47, 50.98, 46.63, 34.39 ppm. IR (neat) v 3072, 2925, 2104, 1610, 1399, 746 cm⁻¹. HRMS (DART) calcd for C₁₀H₁₀BrN₃O [M+H]⁺: 268.0084 found: 268.0085.

2-Diazo-N-(4-flourobenzyl)-N-methylacetamide (1n)

Same procedure as described above for **1b**. (25% yield). Yellow powder. ¹H NMR (500 MHz, CDCl₃) δ 7.2 (t, *J* = 8.03 Hz, 2H), 7.01 (t, *J* = 8.03 Hz, 2H), 4.98 (s, 1H), 4.49 (br s, 2H), 2.82 (br s, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃)

 $\overline{\delta}$ 166.29, 163.33, 161.37, 129.35, 115.84, 50.79, 46.69, 34.35 ppm. IR (neat) v 3072, 2925, 2104, 1606, 1408, 818 cm⁻¹. HRMS (DART) calcd for C₁₀H₁₀FN₃O [M+H]⁺: 208.0886 found: 208.0886.

2-Diazo-N-(4-nitrobenzyl)-N-methylacetamide (10)

Same procedure as described above for **1b**. (20% yield). Yellow powder. ¹H NMR (500 MHz, CDCl₃) δ 8.10 (d, *J* = 8.41 Hz, 2H), 7.34 (d, *J* = 8.41 Hz, 2H), 5.04 (s, 1H), 4.59 (br s, 2H), 3.37 (s, 2H), 2.81 (br s, 3H) ppm. ¹³C

NMR (125 MHz, CDCl₃) δ 166.49, 147.52, 144.94, 128.37, 124.13, 51.04, 46.77, 34.8 ppm. IR (neat) v 3072, 2928, 2109, 1606, 1479, 727 cm⁻¹. HRMS (DART) calcd for C₁₀H₁₀N₄O₃ [M+H]⁺: 235.0839 found: 235.0831.

3. Asymmetric intramolecular reactions of *N*-diazoacetamides catalyzed by Ru(II)-Pheox complexes.

Table S1. Catalyst screening experiments.

[a] The ratio was determined ¹H NMR from the reaction mixture. [b] Isolated yield. [c] Determined by chiral HPLC analysis.

Table S2. Optimization of the reaction conditions.

 $R^1 = -C_6H_4(4-OCH_3)$

Entry	Solvent	Time [min]	Yield [%][a]	2b ee [%] ^[b]
1	DCM	2	99	99
2	Toluene	30	98	99
3	Acetone	2	86	99
4	THF	2	99	98
5	Acetonitrile	60	97	98
6	DMF	60	99	96
7	DMSO	5 h	n.r.	_
8	Methanol	2	99	94

[a] Isolated yield. [b] Determined using chiral HPLC analysis

4. General procedure for catalytic asymmetric intramolecular Buchner reaction of diazoacetamides

Scheme S2. Catalytic asymmetric intramolecular Buchner reaction of diazoacetamides.

To a stirred mixture of Ru(II)-Pheox catalyst (1.30 mg, 0.002 mmol) in DCM (1.0 mL) was slowly added a solution of diazoacetamides (0.2 mmol) in DCM (2.0 mL) (for 2 minutes with *N*,*N*-bisaryl-2-diazo-acetamides or 4 hours with *N*-aryl-2-diazo-*N*-methylacetamides) under argon atmosphere at room temperature. After the addition completed, the progress of the reaction was monitored by TLC. Upon completion, the solvent was removed and the residue was purified by flash column chromatography on silica gel eluted with *n*-Hexane/ EtOAc or *n*-Hexane/IPA to give the desired product. The regioselective ratios were determined from the crude ¹H NMR spectra, and the ee values were determined by chiral HPLC analysis.

5. Analytical data for asymmetric intramolecular Buchner reaction products

(S)-2-Benzyl-3,8a-dihydrocyclohepta[c]pyrrol-1(2H)-one (2a)

This compound was prepared according to the typical procedure for asymmetric Buchner ring expansion reaction of N,N-dibenzyl-2-diazoacetamide **1a** (53.1 mg, 0.2 mmol). The resulting mixture was purified by silica gel column chromatography with *n*-Hexane/Et₂O as an eluent to

give 2-phenyl-3,8a-dihydro cyclohepta[c]pyrrol-1(2H)-one **2a** as colorless oil (92% yield, 43.7 mg, 0.184 mmol), 78% ee. [α]^{27.6}_D = +144.3 (c 0.7, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.38–7.23 (m, 5H), 6.47 (t, *J* = 3.25 Hz, 2H), 6.22–6.17 (m, 1H), 6.08 (ddd, *J* = 4.59, 4.20, 2.29 Hz, 1H), 5.33 (dd, *J* = 9.56, 3.82 Hz, 1H), 4.60 (d, *J* = 14.52 Hz, 1H), 4.54 (d, *J* = 14.52 Hz, 1H), 4.08 (d, *J* = 17.2 Hz, 1H), 4.04 (d, *J* = 17.2 Hz, 1H), 3.15 (s, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 174.25, 136.10, 130.50, 130.04, 129.30, 128.96, 128.32, 127.93, 127.17, 120.80, 119.70, 50.70, 46.70, 46.47 ppm. IR (neat) v 3027, 2924, 1683, 1422, 1272, 764 cm⁻¹. The ee value was determined by chiral HPLC analysis. Column (Chiral IA-3), UV detector 220 nm, eluent: Hex/IPA = 10/1, Flow rate = 1.0 mL/min, tR = 14.2 min (major product), tR = 15.9 min (minor product). HRMS (DART) calcd for C₁₆H₁₆N₁O₁ [M+H]⁺: 238.1231 found: 238.1231.

(S)-6-Methoxy-2-(4-methoxybenzyl)-3,8a-dihydrocyclohepta[c]pyrrol-1(2H)-one (2b)

This compound was prepared according to the typical procedure for asymmetric Buchner ring expansion reaction of 2-diazo-N,Nbis(4-methoxybenzyl)acetamide **1b** (65.1 mg, 0.2mmol). The resulting mixture was purified by silica gel column chromatography with n-Hexane/EtOAc as an eluent to give 6-

methoxy-2-(4-methoxybenzyl)-3,8a-dihydrocyclohepta[c]pyrrol-1(2H)-one (**2b**) as white solid (99% yield, 58.9 mg, 0.198 mmol), 99% ee. $[\alpha]^{26.3}$ _D = -25.34 (c 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.19 (d, *J* = 8.41 Hz, 2H), 6.86 (d, *J* = 8.41 Hz, 2H), 6.05 (dt, *J* = 10.32, 2.29 Hz, 1H), 5.98 (ddd, *J* = 4.97, 4.20, 2.29 Hz, 1H), 5.67 (d, *J* = 8.41 Hz, 1H), 5.51 (dd, *J* = 10.32, 4.2 Hz, 1H), 5.53 (d, *J* = 14.52 Hz, 1H), 4.46 (d, *J* = 14.52 Hz, 1H), 4.03 (d, *J* = 14.91 Hz, 1H), 3.98 (d, *J* = 14.91 Hz, 1H), 3.79 (s, 3H), 3.62 (s, 3H), 3.20 (s, 1H) ppm.¹³C NMR (125 MHz, CDCl₃) δ 173.78, 159.28, 159.24, 129.59, 128.10, 125.15, 123.26, 123.23, 117.71, 114.17, 102.82, 55.34, 54.77, 50.32, 45.98, 45.95 ppm. IR (neat) v 2992, 2933, 1690, 1511, 1439, 806 cm⁻¹. The ee value was

determined by chiral HPLC analysis. Column (Chiral IA-3), UV detector 220 nm, eluent: Hex/IPA = 10/1, Flow rate = 1.0 mL/min, tR = 23.1 min (major product), tR = 33.6 min (minor product). HRMS (DART) calcd for C₁₈H₁₉NO₃ [M+H]⁺: 206.0929 found: 206.0929.

(S)-6-Methyl-2-(4-methylbenzyl)-3,8a-dihydrocyclohepta[c]pyrrol-1(2H)-one (2c)

This compound was prepared according to the typical procedure for asymmetric Buchner ring expansion reaction of 2-diazo-N,N-bis(4-methylbenzyl)acetamide **1c** (58.7 mg, 0.2 mmol). The resulting mixture was purified by silica gel column chromatography with n-Hexane/EtOAc as an eluent to give 6-methyl-2-(4-methylbenzyl)-

3,8a-dihydrocyclohepta[c]pyrrol-1(2H)-one **2c** as colorless oil (93% yield, 49.4 mg, 0.186 mmol), 97% ee. [α]^{23.9}_D = +40.65 (c 0.5, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.15 (d, *J* = 8.59 Hz, 2H), 7.13 (d, *J* = 8.59 Hz, 2H), 6.26 (d, *J* = 5.73 Hz, 1H), 6.02 (d, *J* = 9.74 Hz, 1H), 5.95 (d, *J* = 5.73 Hz, 1H), 5.31 (dd, *J* = 9.74, 4.01 Hz, 1H), 4.54 (d, *J* = 14.89 Hz, 1H), 4.49 (d, *J* = 14.89 Hz, 1H), 4.04 (d, *J* = 15.75 Hz, 1H), 3.99 (d, *J* = 15.75 Hz, 1H), 3.12 (s, 1H), 2.33 (s, 3H), 2.02 (s, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 174.25, 139.37, 137.54, 133.08, 130.34, 129.55, 128.30, 127.11, 126.89, 120.00, 119.31, 50.47, 46.37, 46.15, 24.80, 21.21 ppm. IR (neat) v 3020, 2917, 1686, 1435, 1268, 806 cm⁻¹. The ee value was determined by chiral HPLC analysis. Column (Chiral IA-3), UV detector 220 nm, eluent: Hex/IPA = 30/1, Flow rate = 1.0 mL/min, tR = 34.1 min (major product), tR = 38.1 min (minor product). HRMS (DART) calcd for C₁₈H₂₀N₁O₁ [M+H]⁺: 266.1544 found: 266.1544.

(S)-6-Chloro-2-(4-chlorobenzyl)-3,8a-dihydrocyclohepta[c]pyrrol-1(2H)-one (2d)

This compound was prepared according to the typical procedure for asymmetric Buchner ring expansion reaction of N,N-bis(4-chlorobenzyl)-2-diazoacetamide **1d** (66.8 mg, 0.2 mmol). The resulting mixture was purified by silica gel column chromatography with n-Hexane/EtOAc as an eluent to give 6-chloro-2-(4-chlorobenzyl)-3,8a-

dihydrocyclohepta[c]pyrrol-1(2H)-one **2d** as white solid (96% yield, 58.8 mg, 0.192 mmol), 96% ee. $[\alpha]^{26.3}_{D} = +90.26$ (c 1.3, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.31 (d, J = 8.41 Hz, 2H), 7.20 (d, J = 8.41 Hz, 2H), 6.68 (d, J = 6.50 Hz, 1H), 6.20 (d, J = 9.94 Hz, 1H), 6.02 (ddd, J = 4.59, 4.20, 2.29 Hz, 1H), 5.37 (dd, J = 9.94, 4.20 Hz, 1H), 4.56 (d, J = 14.91 Hz, 1H), 4.49 (d, J = 14.91

Hz, 1H), 4.06 (d, J = 15.29 Hz, 1H), 4.01 (d, J = 15.29 Hz, 1H), 3.26 (s, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 173.23, 135.22, 134.34, 133.95, 129.68, 129.23, 129.18, 129.06, 128.64, 122.35, 118.45, 50.48, 46.04, 45.92 ppm. IR (neat) v 3029, 2909, 1694, 1491, 1268, 811 cm⁻¹. The ee value was determined by chiral HPLC analysis. Column (Chiral IA-3), UV detector 220 nm, eluent: Hex/IPA = 10/1, Flow rate = 1.0 mL/min, tR = 17.108 min (major product), tR = 15.908 min (minor product). HRMS (DART) calcd for C₁₆H₁₄Cl₂N₁O₁ [M+H]⁺: 306.0452 found: 306.0452.

(S)-6-Bromo-2-(4-bromobenzyl)-3,8a-dihydrocyclohepta[c]pyrrol-1(2H)-one (2e)

This compound was prepared according to the typical procedure for asymmetric Buchner ring expansion reaction of N,N-bis(4-bromobenzyl)-2-diazoacetamide **1e** (84.6 mg, 0.2 mmol). The resulting mixture was purified by silica gel column chromatography with n-Hexane/EtOAc as an eluent to give 6-bromo-2-(4-bromobenzyl)-3,8a-

dihydrocyclohepta[c]pyrrol-1(2H)-one **2e** as white solid (95% yield, 75.1 mg, 0.190 mmol), 95% ee. $[\alpha]^{27.4}{}_{\rm D}$ = +107.77 (c 0.6, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.47 (d, *J* = 8.60 Hz, 2H), 7.13 (d, *J* = 8.60 Hz, 2H), 6.90 (d, *J* = 6.50 Hz, 1H), 6.32 (d, *J* = 9.94 Hz, 1H), 5.97 (ddd, *J* = 4.59, 4.20, 2.29 Hz, 1H), 5.27 (dd, *J* = 9.94, 4.59 Hz, 1H), 4.54 (d, *J* = 14.71 Hz, 1H), 4.47 (d, *J* = 14.71 Hz, 1H), 4.03 (d, *J* = 15.29 Hz, 1H), 3.98 (d, *J* = 15.29 Hz, 1H), 3.27 (s, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 173.19, 134.90, 132.38, 132.16, 131.07, 130.03, 129.97, 124.71, 122.33, 122.07, 119.31, 50.50, 46.16, 45.98 ppm. IR (neat) v 3032, 2909, 1690, 1483, 1264, 798 cm⁻¹. The ee value was determined by chiral HPLC analysis. Column (Chiral IA-3), UV detector 220 nm, eluent: Hex/IPA = 10/1, Flow rate = 1.0 mL/min, tR = 19.9 min (minor product), tR = 27.5 min (major product). HRMS (DART) calcd for C₁₆H₁₄Br₂N₁O₁ [M+H]⁺: 393.9442 found: 393.9442.

(S)-6-Fluoro-2-(4-fluorobenzyl)-3,8a-dihydrocyclohepta[c]pyrrol-1(2H)-one (2f)

This compound was prepared according to the typical procedure for asymmetric Buchner ring expansion reaction of 2-diazo-N,N-bis(4-fluorobenzyl)acetamide **1f** (60.3 mg, 0.2 mmol). The resulting mixture was purified by silica gel column chromatography with n-Hexane/EtOAc as an eluent to give 6-fluoro-2-(4-fluorobenzyl)-3,8a-

dihydrocyclohepta[c]pyrrol-1(2H)-one **2f** as yellow oil (90% yield, 49.2 mg, 0.180 mmol), 90% ee. $[\alpha]^{24.0}{}_{\rm D}$ = +63.71 (c 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.24 (dd, *J* = 8.59, 5.15 Hz, 2H), 7.03 (d, *J* = 8.59 Hz, 2H), 6.28–6.15 (m, 2H), 6.04–5.99 (m, 1H), 5.49 (m, 1H), 4.57 (d, *J* = 14.60 Hz, 1H), 4.49 (d, *J* = 14.60 Hz, 1H), 4.08 (d, *J* = 15.75 Hz, 1H), 4.00 (d, *J* = 15.75 Hz, 1H), 3.26 (s, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 173.34, 162.81, 160.93, 130.08, 123.67, 122.34, 116.61, 115.99, 115.82, 110.85, 110.63, 50.57, 46.23, 46.03 ppm. IR (neat) v 3044, 2919, 1689, 1415, 1224, 754 cm⁻¹. The ee value was determined by chiral HPLC analysis. Column (Chiral IA-3), UV detector 220 nm, eluent: Hex/IPA = 10/1, Flow rate = 1.0 mL/min, tR = 13.9 min (major product), tR = 14.7 min (minor product). HRMS (DART) calcd for C₁₆H₁₄F₂N₁O₁ [M+H]⁺: 274.1043 found: 274.1043.

(S)-5-Methoxy-2-(3-methoxybenzyl)-3,8a-dihydrocyclohepta[c]pyrrol-1(2H)-one (2g)

This compound was prepared according to the typical procedure for asymmetric Buchner ring expansion reaction of 2-diazo-N,Nbis(3-methoxybenzyl)acetamide **1g** (65.1 mg, 0.2 mmol). The resulting mixture was purified by silica gel column

chromatography with *n*–Hexane/EtOAc as an eluent to give 5-methoxy-2-(3-methoxybenzyl)-3,8a-dihydrocyclohepta[c]pyrrol-1(2H)-one **2g** as colorless oil (87% yield, 51.8 mg, 0.174 mmol), 74% ee. [α]^{26.7}_D = -196.62 (c 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.25 (t, *J* = 8.03 Hz, 1H), 6.87–6.77 (m, 3H), 6.12 (ddd, *J* = 7.07, 4.87, 2.29 Hz, 1H), 5.94 (ddd, *J* = 4.59, 2.29, 1.91, Hz, 1H), 5.65 (dd, *J* = 6.88, 1.91 Hz, 1H), 5.17 (dd, *J* = 9.56, 3.44 Hz, 1H), 4.55 (d, *J* = 14.91 Hz, 1H), 4.52 (d, *J* = 14.91 Hz, 1H), 4.07 (d, *J* = 15.86 Hz, 1H), 4.04 (d, *J* = 15.86 Hz, 1H), 3.79 (s, 3H), 3.63 (s, 3H), 3.22 (s, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 174.18, 160.14, 158.96, 137.55, 131.68, 129.94, 125.65, 120.50, 117.97, 115.75, 113.80, 113.37, 102.80, 55.36, 54.76, 50.45, 46.59, 46.02 ppm. IR (neat) v 3005, 2928, 1690, 1427, 1260, 703 cm⁻¹. The ee value was determined by chiral HPLC analysis. Column (Chiral IA-3), UV detector 220 nm, eluent: Hex/IPA = 10/1, Flow rate = 1.0 mL/min, tR = 20.7 min (major product), tR = 25.8 min (minor product). HRMS (DART) calcd for C₁₆H₁₄F₂N₁O₁ [M+H]⁺: 298.1443 found: 298.1443.

(S)-6-Methoxy-2-(4-nitrobenzyl)-3,8a-dihydrocyclohepta[c]pyrrol-1(2H)-one (2h)

This compound was prepared according to the typical procedure for asymmetric Buchner ring expansion reaction of 2-diazo-N-(4-methoxybenzyl)-N-(4-nitrobenzyl)acetamide **1h** (65.1 mg, 0.2mmol). The resulting mixture was purified by silica gel column chromatography with *n*-Hexane/EtOAc as an eluent to give 6-

methoxy-2-(4-nitrobenzyl)-3,8a-dihydrocyclohepta[c]pyrrol-1(2H)-one (**2h**) as yellow oil (84% yield, 52.5 mg, 0.168 mmol), 99% ee. [α]^{22.7}_D = -40.09 (c 1.0, CHCl₃). ¹HNMR (500 MHz, CDCl₃) δ 8.20 (d, *J* = 8.87 Hz, 2H), 7.43 (d, *J* = 8.87 Hz, 2H), 6.05 (dt., *J* = 10.31, 2.29 Hz, 1H), 6.04 (ddd., *J* = 4.58, 4.58, 2.29 Hz, 1H), 5.69 (d, *J* = 6.87 Hz, 1H), 5.50 (dd, *J* = 10.31, 4.01 Hz, 1H), 4.70 (d, *J* = 15.46 Hz, 1H), 4.63 (d, *J* = 15.46 Hz, 1H), 4.11 (d, *J* = 14.03 Hz, 1H), 4.04 (d, *J* = 14.03 Hz, 1H), 3.64 (s, 3H) , 3.24 (s, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 174.43, 159.58, 147.71, 143.67, 128.85, 125.55, 124.18, 122.87, 122.30, 118.34, 102.81, 54.87, 50.70, 46.09, 45.54 ppm. IR (neat) v 3002, 2921, 1696, 1413, 1217, 702 cm⁻¹. The ee value was determined by chiral HPLC analysis. Column (Chiral IA-3), UV detector 220 nm, eluent: Hex/IPA = 10/1, Flow rate = 1.0 mL/min, tR = 45.2 min (major product), tR = 59.3 min (minor product). HRMS (DART) calcd for C₁₇H₁₇N₂O₄ [M+H]⁺: 313.1188 found: 313.1188.

(S)-2-Methyl-3,8a-dihydrocyclohepta[c]pyrrol-1(2H)-one (2i)

This compound was prepared according to the typical procedure for asymmetric Buchner ring expansion reaction of *N*,*N*-dibenzyl-2-diazoacetamide **1i** (37.8 mg, 0.2 mmol). The resulting mixture was purified

by silica gel column chromatography with *n*–Hexane/IPA as an eluent to give 2-methyl-3,8adihydrocyclohepta[c]pyrrol-1(2H)-one (**2i**) as white powder (22 % yield, 7.1 mg, 0.044 mmol), 71% ee. $[\alpha]^{22.8}_{D}$ = +91.67 (c 0.3, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 6.49 (ddd, *J* = 12.23, 10.32, 5.35 Hz, 2H), 6.20–6.15(m, 2H), 5.28 (*J* = 10.32, 4.2 Hz, 1H), 4.23 (d, *J* = 15.29, 1H), 4.19 (d, *J* = 15.29, 1H), 3.08 (s, 1H), 2.97 (s, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 172.93, 130.53, 130.05, 127.10, 121.22, 120.93, 119.52, 53.42, 46.10, 29.70 ppm. IR (neat) v 3020, 2920, 1690, 1432, 1276, 703 cm⁻¹. The ee value was determined by chiral HPLC analysis. Column (Chiral ID-3), UV detector 220 nm, eluent: Hex/IPA = 5/1, Flow rate = 1.0 mL/min, tR = 19.6 min (major product), tR = 16.2 min (minor product). HRMS (DART) calcd for C₁₀H₁₁N₁O₁ [M+H]⁺: 162.0910 found: 162.0918.

(S)-6-Methoxy-2-methyl-3,8a-dihydrocyclohepta[c]pyrrol-1(2H)-one (2j)

This compound was prepared according to the typical procedure for asymmetric Buchner ring expansion reaction of N,N-dibenzyl-2-diazoacetamide **1j** (44.0 mg, 0.2 mmol). The resulting mixture was

purified by silica gel column chromatography with *n*–Hexane/IPA as an eluent to give 6-methoxy-2-methyl-3,8a-dihydrocyclohepta[c]pyrrol-1(2H)-one (**2j**) as white powder (76% yield, 29.0 mg, 0.152 mmol), 99% ee. [α]^{23.2}_D = -9.5 (c 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 6.06–6.04 (m, 2H), 5.70 (d, *J* = 7.02 Hz, 1H), 5.47 (dd, *J* = 10.38, 4.27 Hz, 1H), 4.19 (d, *J* = 14.65 Hz, 1H), 4.13 (d, *J* = 14.65 Hz, 1H), 3.64 (s, 3H), 3.15 (s, 1H), 2.96 (s, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 174.08, 159.45, 125.18, 123.51, 123.40, 117.67, 102.84, 54.89, 53.28, 45.75, 29.72 ppm. IR (neat) v 3011, 2956, 1697, 1433, 1218, 717 cm⁻¹. The ee value was determined by chiral HPLC analysis. Column (Chiral ID-3), UV detector 220 nm, eluent: Hex/IPA = 5/1, Flow rate = 1.0 mL/min, tR = 31.8 min (major product), tR = 29.9 min (minor product). HRMS (DART) calcd for C₁₁H₁₃N₁O₂ [M+H]⁺: 192.1029 found: 192.1024.

(S)-2,6-Dimethyl-3,8a-dihydrocyclohepta[c]pyrrol-1(2H)-one (2k)

This compound was prepared according to the typical procedure for asymmetric Buchner ring expansion reaction of N,N-dibenzyl-2-diazoacetamide **1k** (40.6 mg, 0.2 mmol). The resulting mixture was

purified by silica gel column chromatography with *n*–Hexane/IPA as an eluent to give 2,6dimethyl-3,8a-dihydrocyclohepta[c]pyrrol-1(2H)-one (**2k**) as white powder (67% yield, 23.4 mg, 0.134 mmol), 99% ee. [α]^{23.3}_D = +32.6 (c 0.55, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 6.30 (d, *J* = 6.12 Hz, 1H), 6.05–6.01 (m, 2H), 5.28 (dd, *J* = 9.94, 4.20 Hz, 1H), 4.20 (d, *J* = 15.67 Hz, 1H), 4.15 (d, *J* = 15.67 Hz, 1H), 3.07 (s, 1H), 2.96 (s, 3H), 2.03 (s, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 174.35, 139.41, 130.25, 127.08, 126.82, 120.07, 119.13, 53.23, 45.78, 29.62, 24.82 ppm. IR (neat) v 2921, 2857, 1681, 1400, 1255, 735 cm⁻¹. The ee value was determined by chiral HPLC analysis. Column (Chiral ID-3), UV detector 220 nm, eluent: Hex/IPA = 5/1, Flow rate = 1.0 mL/min, tR = 17.7 min (major product), tR = 15.9 min (minor product). HRMS (DART) calcd for C₁₁H₁₃N₁O₁ [M+H]⁺: 176.1070 found: 176.1075.

(S)-6-Chloro-2-methyl-3,8a-dihydrocyclohepta[c]pyrrol-1(2H)-one (2l)

This compound was prepared according to the typical procedure for asymmetric Buchner ring expansion reaction of N,N-dibenzyl-2-diazoacetamide **11** (44.7 mg, 0.2 mmol). The resulting mixture was

purified by silica gel column chromatography with *n*–Hexane/IPA as an eluent to give 6-chloro-2-methyl-3,8a-dihydrocyclohepta[c]pyrrol-1(2H)-one (**2l**) as white powder (61% yield, 23.9 mg, 0.122 mmol), 92% ee. [α]^{24.1}_D = +42.9 (c 0.1, CHCl₃). ¹HNMR (500 MHz, CDCl₃) δ 6.70 (d, *J* = 6.88 Hz, 1H), 6.19 (dt, *J* = 9.94, 1.91 Hz, 1H), 6.08 (ddd, *J* = 4.59, 4.20, 1.91 Hz, 1H), 5.34 (dd, *J* = 9.94, 4.2 Hz, 1H), 4.22 (d, *J* = 15.67 Hz, 1H), 4.16 (d, *J* = 15.67 Hz, 1H), 3.20 (s, 1H), 2.97 (s, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 173.23, 135.24, 129.69, 128.92, 128.62, 122.69, 118.17, 53.26, 45.77, 29.73 ppm. IR (neat) v 3036, 2920, 1694, 1486, 1268, 774 cm⁻¹. The ee value was determined by chiral HPLC analysis. Column (Chiral ID-3), UV detector 220 nm, eluent: Hex/IPA = 5/1, Flow rate = 1.0 mL/min, tR = 32.6 min (major product), tR = 20.8 min (minor product). HRMS (DART) calcd for C₁₀H₁₀Cl₁N₁O₁ [M+H]⁺: 196.0527 found: 196.0529.

(S)-6-Bromo-2-methyl-3,8a-dihydrocyclohepta[c]pyrrol-1(2H)-one (2m)

This compound was prepared according to the typical procedure for asymmetric Buchner ring expansion reaction of N,N-dibenzyl-2-diazoacetamide **1m** (53.6 mg, 0.2 mmol). The resulting mixture was

purified by silica gel column chromatography with *n*–Hexane/IPA as an eluent to give 6-bromo-2-methyl-3,8a-dihydrocyclohepta[c]pyrrol-1(2H)-one (**2m**) as white powder (43% yield, 20.8 mg, 0.086 mmol), 96% ee. [α]^{24.0}_D = +34.5 (c 0.1, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 6.93 (d, *J* = 6.5 Hz, 1H), 6.31 (d, *J* = 9.94 Hz, 1H), 6.03 (ddd, *J* = 4.59, 4.20, 2.29, 1H), 5.25 (dd, *J* = 9.94, 4.20 Hz, 1H), 4.18 (d, *J* = 15.67 Hz, 1H), 4.13 (d, *J* = 15.67 Hz, 1H), 3.22 (s, 1H), 2.96 (s, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 173.16, 132.36, 130.86, 130.40, 124.66, 122.63, 118.99, 53.24, 45.82, 29.65 ppm. IR (neat) v 3032, 2924, 1686, 1399, 1275, 774 cm⁻¹. The ee value was determined by chiral HPLC analysis. Column (Chiral ID-3), UV detector 220 nm, eluent: Hex/IPA = 5/1, Flow rate = 1.0 mL/min,tR = 33.0 min (major product), tR = 23.4 min (minor product). HRMS (DART) calcd for C₁₀H₁₀Br₁N₁O₁ [M+H]⁺: 240.0023 found: 240.0024.

(S)-6-Fluoro-2-methyl-3,8a-dihydrocyclohepta[c]pyrrol-1(2H)-one (2n)

This compound was prepared according to the typical procedure for asymmetric Buchner ring expansion reaction of N,N-dibenzyl-2-diazoacetamide **1n** (41.4 mg, 0.2 mmol). The resulting mixture was

purified by silica gel column chromatography with *n*–Hexane/IPA as an eluent to give 6-fluoro-2methyl-3,8a-dihydrocyclohepta[c]pyrrol-1(2H)-one (**2n**) as colorless oil (44% yield, 15.6 mg, 0.088 mmol), 92% ee. [α]^{20.3}_D = -172.16 (c 0.6, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 6.25 (dd, *J* = 17.97, 8.03 Hz, 1H), 6.18 (tdd, *J* = 8.98, 2.29, 2.29 Hz, 1H), 6.09–6.05 (m, 1H), 5.46 (ddt, *J* = 9.94, 4.97, 4.97 Hz, 1H), 4.23 (d, *J* = 15.29 Hz, 1H), 4.14 (d, *J* = 15.29 Hz, 1H), 3.17 (s, 1H), 2.97 (s, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 173.34, 128.10, 125.86, 123.86, 122.17, 116.23, 110.58, 53.35, 45.99, 29.74 ppm. IR (neat) v 3040, 2921, 1690, 1435, 1276, 715 cm⁻¹. The ee value was determined by chiral HPLC analysis. Column (Chiral ID-3), UV detector 220 nm, eluent: Hex/IPA = 5/1, Flow rate = 1.0 mL/min, tR = 23.7 min (major product), tR = 17.6 min (minor product). HRMS (DART) calcd for C₁₀H₁₀F₁N₁O₁ [M+H]⁺: 180.0825 found: 180.0829. 6. X-ray crystal structure of dihydrocyclohepta[c]pyrrol-1(2H)-one (2d)

(S)-6-Chloro-2-(4-chlorobenzyl)-3,8a-

Figure S1. X-ray analysis of (S)-6-chloro-2-(4-chlorobenzyl)-3,8a-dihydrocyclohepta[c]pyrrol-1(2H)-one (2d).

Crystal data and structure refinement for iw1202 Identification code: iw1202 Formula: C16H13Cl2NO

Temperature (K): 120

Density (CCDC): 1.478

Space group: $P 2_1 2_1 2_1$

Unit cell dimensions:

a = 5.7469(12) Å	$\alpha = 90^{\circ}$
b = 10.807(2) Å	$eta=90^{ m o}$
c = 22.158(5) Å	$\gamma=90^{\rm o}$
Volume: 1376.16 Å ³	
Z: 4	
R-Factor: 2.62	

7. NMR Spectral Data

8. HPLC Spectral Data

PEAK	RT [min]	AREA [µV-sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	14.175	4998378	299334	89.146	89.343
2	15.867	608581	35704	10.854	10.657

PEAK	RT [min]	AREA [µV-sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	14.375	7722581	454495	50.284	52.250
2	15.992	7635293	415356	49.716	47.750

PEAK	RT [min]	AREA [µV-sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	23.125	6146103	196853	99.840	99.845
2	33.617	9858	305	0.160	0.155

PEAK	RT [min]	AREA [µV-sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	23.133	4234078	137212	50.121	56.990
2	33.325	4123603	103552	49.879	43.010

PEAK	RT [min]	AREA [µV-sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	34.125	295038	8787	1.361	2.064
2	38.108	21383869	416923	98.639	97.936

PEAK	RT [min]	AREA [µV-sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	33.967	15960801	394027	49.677	53.750
2	37.217	16168539	339041	50.323	46.250

PEAK	RT [min]	AREA [µV-sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	15.908	123785	7090	1.851	2.148
2	17.108	6565407	323049	98.149	97.852

PEAK	RT [min]	AREA [µV-sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	15.917	4998114	261500	49.299	52.029
2	17.217	5140338	241108	50.701	47.971

PEAK	RT [min]	AREA [µV-sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	19.992	342399	15821	2.722	4.406
2	27.533	12237527	343240	97.278	95.594

PEAK	RT [min]	AREA [µV-sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	20.133	1689569	71715	50.168	58.329
2	27.642	1678278	51234	49.832	41.671

PEAK	RT [min]	AREA [µV-sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	13.992	13211783	769810	95.041	95.032
2	14.775	689306	40241	4.959	4.968

PEAK	RT [min]	AREA [µV-sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	14.008	98046	6202	49.186	51.143
2	14.717	101291	5925	50.814	48.857

PEAK	RT [min]	AREA [µV-sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	20.700	29448287	876831	86.893	87.930
2	25.808	4441998	120360	13.107	12.070

PEAK	RT [min]	AREA [µV-sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	21.033	16376122	503364	50.237	55.731
2	25.667	16221879	399841	49.763	44.269

PEAK	RT [min]	AREA [µV-sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	45.267	10518585	151022	99.593	99.630
2	59.375	43024	561	0.407	0.370

PEAK	RT [min]	AREA [µV-sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	46.208	6857632	94333	50.173	53.968
2	59.725	6810218	80461	49.827	46.032

PEAK	RT [min]	AREA [µV-sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	16.192	306518	16310	14.422	17.682
2	19.617	1818808	75934	85.578	82.318

PEAK	RT [min]	AREA [µV-sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	16.025	3954021	205833	50.172	56.646
2	19.417	3926904	157533	49.828	43.354

PEAK	RT [min]	AREA [µV-sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	29.942	15701	530	0.078	0.174
2	31.783	20074522	304757	99.922	99.826

PEAK	RT [min]	AREA [µV-sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	29.742	2845125	55576	50.019	50.264
2	32.675	2842914	54992	49.981	49.736

PEAK	RT [min]	AREA [µV-sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	15.850	28737	1989	0.368	0.677
2	17.692	7782124	291612	99.632	99.323

PEAK	RT [min]	AREA [µV-sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	15.967	4407082	192794	49.790	52.096
2	18.017	4444247	177287	50.210	47.904

PEAK	RT [min]	AREA [µV-sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	20.758	445946	13306	3.909	7.211
2	32.642	10963663	171225	96.091	92.789

PEAK	RT [min]	AREA [µV-sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	20.275	7136884	215242	50.024	64.095
2	32.442	7129926	120577	49.976	35.905

PEAK	RT [min]	AREA [µV-sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	23.383	463948	12299	1.772	3.767
2	32.983	25721764	341184	98.228	96.233

PEAK	RT [min]	AREA [µV-sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	24.050	11156150	264719	50.414	61.992
2	35.133	10973026	162302	49.586	38.008

PEAK	RT [min]	AREA [µV-sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	17.558	677713	21987	3.961	5.259
2	23.700	16432700	396131	96.039	94.741

PEAK	RT [min]	AREA [µV-sec]	HEIGHT [µV]	AREA%	HEIGHT%
1	17.550	1055700	47015	50.449	60.178
2	24.317	1036894	31112	49.551	39.822