Supporting Information

Visible Light Induced Redox Neutral Fragmentation of Diol Derivatives

Kang Chen, Johanna Schwarz, Tobias A. Karl, Anamitra Chatterjee and Burkhard König

Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany

Table of Contents

1. 0	General information	3
2. S	ynthesis and characterization of starting materials	4
2	2.1. General procedure for the synthesis of unbranched lignin model substrates	4
2	2.2. Characterization of unbranched lignin model substrates	4
2	2.3. Synthesis and characterization of substrate 1i	7
2	2.4. General procedures for the synthesis of acetylated aromatic substrates	8
2	2.5. Characterization of acetylated aromatic substrates	9
2	e.6. Synthesis and characterization of aromatic substrates with other leaving groups	.10
2	2.7. Synthesis and characterization of unprotected and full protected diol derivatives	.11
2	2.8. Procedure for the preparation of NaOP(O)(OBu) ₂	.12
3. C	Optimization of reaction conditions for photocatalytic C–O cleavage	.13
3	3.1. Optimization for [Ir(ppy) ₂ (dtbpy)]PF ₆ system	.13
3	3.2. Optimization for 4CzIPN system	.15
4. 0	Seneral procedures for photocatalytic reactions	.18
4	1.1. Visible light-induced C–O cleavage of benzylic diol derivatives via 4CzIPN catalysis	.18
4	I.2. Visible light-induced C–O cleavage of benzylic diol derivatives via $[Ir(ppy)_2(dtbpy)]PF_6$ catalys	sis .18
5. N	Aechanistic investigations	.22
5	5.1. Control experiments for clarification of the mechanism	.22
5	5.2. Cyclic voltammetry measurements	.23
5	5.3. Fluorescence quenching experiments	.25

5.4. GC analysis of cruc	de reaction mixture	27
6. Characterization of iso	lated products	28
6.1. Characterization o	f ketones	28
6.2. Characterization o	f phenols and other leaving fragments	30
7. ¹ H- and ¹³ C-NMR spect	ra	32
8. References		50

1. General information

Commercially available reagents and solvents were used without further purification. Dry solvents were used for all photoreactions. Industrial grade of solvents was used for automated flash column chromatography. All NMR spectra were measured at room temperature using a Bruker Avance 300 (300 MHz for ¹H, 75 MHz for ¹³C) or a Bruker Avance 400 (400 MHz for ¹H, 101 MHz for ¹³C)^[1] NMR spectrometer. All chemical shifts are reported in δ -scale as parts per million [ppm] (multiplicity, coupling constant *J*, number of protons) relative to the solvent residual peaks as the internal standard.^[2] The spectra were analyzed by first order and coupling constants *J* are given in Hertz [Hz]. Abbreviations used for signal multiplicity: ¹H-NMR: br = broad, s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, dt = doublet of triplets and m = multiplet; ¹³C-NMR: (+) = primary/tertiary, (-) = secondary, (C_q) = quaternary carbon.

The mass spectrometrical measurements were performed at the Central Analytical Laboratory of the University of Regensburg. All mass spectra were recorded on a Finnigan MAT 95, ThermoQuest Finnigan TSQ 7000, Finnigan MAT SSQ 710 A or an Agilent Q-TOF 6540 UHD instrument. GC measurements were performed on a GC 7890 from Agilent Technologies. Data acquisition and evaluation was done with Agilent ChemStation Rev.C.01.04. GC-MS measurements were performed on a 7890A GC system from Agilent Technologies with an Agilent 5975 MSD Detector. Data acquisition and evaluation was done with MSD ChemStation E.02.02.1431. A capillary column HP-5MS/30 m x 0.25 mm/0.25 μ M film and helium as carrier gas (flow rate of 1 mL/min) were used. The injector temperature (split injection: 40:1 split) was 280 °C, detection temperature 300 °C (FID). GC measurements were performed and investigated via integration of the signal obtained. The GC oven temperature program was adjusted as follows: initial temperature 40 °C was kept for 3 min, the temperature was increased at a rate of 15 °C/min over a period of 16 min until 280 °C was reached and kept for 5 min, the temperature (300 °C) was reached and kept for 5 min. Naphthalene was chosen as internal standard.

Analytical TLC was performed on silica gel coated alumina plates (MN TLC sheets ALUGRAM[®] Xtra SIL G/UV254). UV light (254 or 366 nm) was used for visualization. If necessary, potassium permanganate was used for chemical staining. Purification by column chromatography was performed with silica gel 60 M (40-63 µm, 230-440 mesh, Merck) or pre-packed Biotage[®] SNAP Ultra HP-Sphere columns (25 µm spherical silica gel) on a Biotage[®] Isolera[™] Spektra One device.

UV-vis absorption spectroscopy was performed on a Varian Cary BIO 50 UV-vis/NIR spectrometer with a 10 mm Hellma[®] quartz fluorescence cuvette at room temperature. Fluorescence spectra were recorded on a HORIBA FluoroMax[®]-4 Spectrofluorometer with a 10 mm Hellma[®] quartz fluorescence cuvette at room temperature. FluorEssence Version 3.5.1.20 was used as software. Fluorescence measurements were performed under nitrogen atmosphere.

For irradiation with blue light, OSRAM Oslon SSL 80 LDCQ7P-1U3U (blue, λ_{max} = 455 nm, I_{max} = 1000 mA, 1.12 W) was used.

2. Synthesis and characterization of starting materials

Compound **1p** is commercially available.

2.1. General procedure for the synthesis of unbranched lignin model substrates^[3]

 R_1 , R_2 , R_3 = H or OMe R_4 , R_5 , R_3 = H or OMe or Me

A 250 mL round-bottom flask was equipped with a reflux condenser and charged with the respective phenol (16.5 mmol, 1.1 equiv.), K₂CO₃ (22.5 mmol, 1.5 equiv.) and acetone (150 mL). The mixture was stirred at rt and the corresponding aromatic 2-bromo-ketone (15.0 mmol, 1.0 equiv.) was added in portions. The resulting suspension was stirred at reflux for 4 h. Then, the suspension was filtered and concentrated in vacuo. If necessary, the crude product was purified by column chromatography.

In a 100 mL round-bottom flask, the ketone from step 1 (5.0 mmol, 1.0 equiv.) and a THF/water mixture (25 mL, v/v = 4/1) were mixed. NaBH₄ (6.0 mmol, 1.2 equiv.) was added in one portion and the reaction mixture was stirred at rt for 2 h. Then, an aqueous saturated NH₄Cl solution (30 mL) was added. The crude product was extracted with EA (3×20 mL) and the combined organic extracts were dried over anhydrous Na2SO4. The organic solvent was evaporated in vacuo and the residue was purified by automated column chromatography on flash silica gel (PE/EA = 9:1 to 1:1) to obtain the desired product.

2.2. Characterization of unbranched lignin model substrates

1-(4-Methoxyphenyl)-2-phenoxyethan-1-ol (1a)^[4]

Yield: step 1: 99%, step 2: 80% MF: C₁₅H₁₆O₃ MW: 244.29 g/mol

MeO

¹H NMR (300 MHz, CDCl₃): δ [ppm] = 7.43 – 7.35 (m, 2H), 7.35 – 7.26 (m, 2H), 7.04 – 6.88 (m, 5H), 5.08 (dd, J = 8.6 Hz, 3.4 Hz, 1H), 4.12 – 3.96 (m, 2H), 3.83 (s, 3H), 2.80 (brs, 1H).

¹³C NMR (75 MHz, CDCl₃): δ [ppm] = 159.6, 158.5, 131.9, 129.7, 127.7, 121.4, 114.7, 114.1, 73.4, 72.3, 55.4.

 $\label{eq:HRMS} \begin{array}{l} \mbox{(APCI)} \ (m/z) \hfill \mbox{[M+H-H}_2O]^+ \mbox{(C}_{15}\mbox{H}_1\mbox{5}O_2) \ \mbox{calc.: } 227.1072, \ \mbox{found: } 227.1092. \\ \mbox{2-(2-Methoxyphenoxy)-1-(4-methoxyphenyl)ethan-1-ol (1b)} \hfill \hfil$

Yield: step 1: 89%, step 2: 99% MF: C₁₆H₁₈O₄ MW: 274.32 g/mol

¹H NMR (300 MHz, CDCl₃): δ [ppm] = 7.41 – 7.32 (m, 2H), 7.04 – 6.85 (m, 6H), 5.07 (dd, J = 9.4 Hz, 2.9 Hz, 1H), 4.18 – 4.10 (m, 1H), 4.02 – 3.92 (m, 1H), 3.87 (s, 3H), 3.81 (s, 3H), 3.40 (brs, 1H).

¹³C NMR (75 MHz, CDCl₃): δ [ppm] = 159.5, 150.1, 148.1, 131.8, 127.7, 122.5, 121.1, 115.8, 114.0, 112.0, 76.2, 72.0, 55.9, 55.4.

HRMS (APCI) (m/z): [M+H-H₂O]⁺ (C₁₆H₁₇O₃) calc.: 257.1178, found: 257.1221.

1-(4-Methoxyphenyl)-2-(p-tolyloxy)ethan-1-ol (1c)^[6]

Yield: step 1: 100%, step 2: 97% MF: C₁₆H₁₈O₃ MW: 258.32 g/mol

¹H NMR (300 MHz, $CDCl_3$): δ [ppm] = 7.46 – 7.35 (m, 2H), 7.14 (d, *J* = 8.2 Hz, 2H), 7.02 – 6.93 (m, 2H), 6.92 – 6.83 (m, 2H), 5.09 (dd, *J* = 8.1 Hz, 3.9 Hz, 1H), 4.12 – 3.96 (m, 2H), 3.84 (s, 3H), 3.32 (brs, 1H), 2.36 (s, 3H).

¹³C NMR (75 MHz, CDCl₃): δ [ppm] = 159.3, 156.3, 132.1, 130.3, 129.9, 127.5, 114.5, 113.8, 73.4, 72.0, 55.2, 20.4.

HRMS (APCI) (m/z): [M+H-H₂O]⁺ (C₁₆H₁₇O₂) calc.: 241.1229, found: 241.1290.

2-Phenoxy-1-phenylethan-1-ol (1d)^[7]

Yield: step 1: 94%, step 2: 86% MF: C₁₄H₁₄O₂ MW: 214.26 g/mol

¹H NMR (300 MHz, CDCl₃): δ [ppm] = 7.50 – 7.26 (m, 7H), 7.03 – 6.89 (m, 3H), 5.14 (dd, J = 8.8 Hz, 3.2 Hz, 1H), 4.12 (dd, J = 9.6 Hz, 3.2 Hz, 1H), 4.08 – 3.96 (m, 1H), 2.76 (brs, 1H).

 ^{13}C NMR (75 MHz, CDCl₃): δ [ppm] = 158.5 (Cq), 139.7 (Cq), 129.7 (+), 128.7 (+), 128.3 (+), 126.4 (+), 121.4 (+), 114.7 (+), 73.4 (–), 72.7 (+).

HRMS (EI) (m/z): $[M^{\bullet}]^{+}$ (C₁₄H₁₄O₂) calc.: 214.0994, found: 214.0993.

1-(3,4-Dimethoxyphenyl)-2-(2-methoxyphenoxy)ethan-1-ol (1e)^[5]

Yield: step 1: 99%, step 2: 71% MF: C₁₇H₂₀O₅ MW: 304.34 g/mol ¹H NMR (300 MHz, CDCl₃): δ [ppm] = 7.04 – 6.81 (m, 7H), 5.05 (dd, *J* = 9.3 Hz, 3.0 Hz, 1H), 4.15 (dd, *J* = 10.0 Hz, 3.0 Hz, 1H), 4.03 – 3.93 (m, 1H), 3.89 (s, 3H), 3.87 (s, 3H), 3.86 (s, 3H).

¹³C NMR (75 MHz, CDCl₃): δ [ppm] = 150.1, 149.1, 148.8, 148.1, 132.3, 122.5, 121.1, 118.7, 115.9, 112.0, 111.0, 109.4, 76.3, 72.2, 56.0, 55.93, 55.88.

HRMS (APCI) (m/z): [M+H-H₂O]⁺ (C₁₇H₁₉O₄) calc.: 287.1283, found: 287.1283.

2-(2,6-Dimethoxyphenoxy)-1-(3,4-dimethoxyphenyl)ethan-1-ol (1f)^[5]

Yield: step 1: 83%, step 2: 88% MF: C₁₈H₂₂O₆ MW: 334.37 g/mol

¹H NMR (300 MHz, $CDCl_3$): δ [ppm] = 6.96 (dd, *J* = 14.9 Hz, 4.8 Hz, 2H), 6.85 (d, *J* = 8.3 Hz, 1H), 6.77 (d, *J* = 8.2 Hz, 1H), 6.55 (d, *J* = 8.4 Hz, 2H), 4.87 (dd, *J* = 9.9 Hz, 2.4 Hz, 1H), 4.51 (s, 1H), 4.35 (dd, *J* = 10.9 Hz, 2.3 Hz, 1H), 3.81 (m, 9H), 3.78 (s, 3H), 3.67 (t, *J* = 10.4 Hz, 1H).

¹³C NMR (75 MHz, CDCl₃): δ [ppm] = 153.0, 148.8, 148.3, 136.5, 131.9, 123.9, 118.5, 110.8, 109.2, 104.9, 79.9, 72.0, 55.8, 55.7, 55.6.

HRMS (APCI) (m/z): $[M+H-H_2O]^+$ ($C_{18}H_{21}O_5$) calc.: 317.1389, found: 317.1388.

2-(3,5-Dimethoxyphenoxy)-1-(3,4-dimethoxyphenyl)ethan-1-ol (1g)^[5]

¹H NMR (300 MHz, CDCl₃): δ [ppm] = 7.03 – 6.94 (m, 2H), 6.87 (d, J = 8.2 Hz, 1H), 6.10 (s, 3H), 5.06 (dd, J = 8.7 Hz, 3.3 Hz, 1H), 4.07 – 3.95 (m, 2H), 3.91 (s, 3H), 3.89 (s, 3H), 3.76 (s, 6H), 2.74 (brs, 1H).

¹³C NMR (75 MHz, CDCl₃): δ [ppm] = 161.7, 160.4, 149.3, 149.0, 132.3, 118.7, 111.2, 109.4, 93.7, 93.6, 73.5, 72.5, 56.1, 56.0, 55.5.

HRMS (ESI) (m/z): $[M+H]^+ = (C_{18}H_{23}O_6)$ calc.: 335.1495; found: 335.1493.

2-(2-Methoxyphenoxy)-1-(3,4,5-trimethoxyphenyl)ethan-1-ol (1h)^[5]

2-Bromo-1-(3,4,5-trimethoxyphenyl)ethan-1-one which was necessary for the first step of the synthesis of **1h** was prepared according to a previously reported procedure (10 mmol scale, 46% yield).^[8]

¹H NMR (300 MHz, CDCl₃): δ [ppm] = 7.05 – 6.84 (m, 4H), 6.66 (s, 2H), 5.03 (dd, J = 9.2 Hz, 2.9 Hz, 1H), 4.17 (dd, J = 10.0 Hz, 3.0 Hz, 1H), 4.02 – 3.92 (m, 1H), 3.87 (s, 3H), 3.86 (s, 6H), 3.83 (s, 3H).

¹³C NMR (75 MHz, CDCl₃): δ [ppm] = 153.4, 150.2, 148.0, 137.6, 135.4, 122.7, 121.2, 116.1, 112.0, 103.2, 76.4, 72.5, 60.9, 56.2, 55.9.

HRMS (APCI) (m/z): [M+H-H₂O]⁺ (C₁₈H₂₁O₅) calc.: 317.1389, found: 317.1398.

2.3. Synthesis and characterization of substrate 1i^[3b]

To a suspension of K_2CO_3 (0.6 g, 4.3 mmol, 1.0 equiv.) in ethanol/acetone (v/v = 1/1, 20 mL), 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethan-1-one (1.2 g, 4.4 mmol, 1.0 equiv.) and a solution of formaldehyde in water (37%) (0.6 mL, 7.3 mmol, 1.7 equiv.) was added. The reaction mixture was stirred for 4 h at rt under N₂ atmosphere, then it was filtered to remove K_2CO_3 and concentrated *in vacuo*. The residue was purified by column chromatography and used directly for the next step, although containing impurities.

In a 100 mL round-bottom flask, the ketone from step 1 (2.0 mmol, 1.0 equiv.) and a THF/water mixture (12 mL, v/v = 4/1) were mixed. NaBH₄ (2.4 mmol, 1.2 equiv.) was added in one portion and the reaction mixture was stirred at rt for 2 h. Then, an aqueous saturated NH₄Cl solution (15 mL) was added. The crude product was extracted with EA (3 × 10 mL) and the combined organic extracts were dried over anhydrous Na₂SO₄. The organic solvent was evaporated *in vacuo* and the residue was purified by automated column chromatography on flash silica gel (PE/EA = 9:1 to 1:1) to obtain the desired product.

3-Methoxy-2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)propan-1-ol (1i)^[5]

Yield: 73% MF: C₁₇H₂₀O₅ MW: 304.34 g/mol

¹H NMR (300 MHz, CDCl₃): δ [ppm] = 7.40 – 7.28 (m, 2H), 7.16 – 6.86 (m, 6H), 5.03 – 4.95 (m, 1H), 4.18 – 4.07 (m, 1H), 4.07 – 3.99 (m, 1H), 3.92 – 3.86 (m, 3H), 3.81 – 3.78 (m, 3H), 3.69 – 3.57 (m, 1H), 3.50 – 3.40 (m, 1H), 2.95 (brs, 1H).

Spectral data are consistent with those reported in the literature.

HRMS (APCI) (m/z): [M+H-H₂O]⁺ (C₁₇H₁₉O₄) calc.: 287.1283, found: 287.1282.

2.4. General procedures for the synthesis of acetylated aromatic substrates

General procedure for the synthesis of diols via reduction (step 1)

In a 100 mL round-bottom flask, the respective ketone (5.0 mmol, 1.0 equiv.) and a THF/water mixture (25 mL, v/v = 4/1) were mixed. NaBH₄ (6.0 mmol, 1.2 equiv.) was added in one portion and the reaction mixture was stirred at rt for 2 h. Then, an aqueous saturated NH₄Cl solution (30 mL) was added. The crude product was extracted with EA (3×20 mL) and the combined organic extracts were dried over anhydrous Na₂SO₄. The organic solvent was evaporated *in vacuo* and the residue was purified by automated column chromatography on flash silica gel (PE/EA = 9:1 to 1:1) to obtain the desired diol.

General procedure for the synthesis of diols via ring opening of epoxides (step 1)^[9]

To the respective epoxide (5.0 mmol, 1.0 equiv.) was added distilled water (30 mL) and the reaction mixture was stirred for 3 h at 60 °C. The reaction mixture was extracted with EA (3 x 15 mL) and brine (2 x 15 mL). The combined organic phases were dried over Na_2SO_4 , concentrated *in vacuo* and purified by flash column chromatography (PE/EA = 9:1 to 1:1).

General procedure for the acetylation of diols (step 2)

To a solution of diol (3.0 mmol) in DCM (12 mL) was added Ac_2O (4.5 mmol) and pyridine (1 mL) and the mixture was stirred for 3 h at rt. Then it was diluted with DCM to 30 mL and washed with 1M HCl (2 × 15 mL), saturated NaHCO₃ (aq.) (15 mL) and brine (15 mL). The organic phase was dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. The crude product was purified by flash column chromatography (PE/EA = 9:1 to 2:1).

2.5. Characterization of acetylated aromatic substrates

2-Hydroxy-2-(4-methoxyphenyl)ethyl acetate (1j)^[6]

Yield: step 1 (reduction): 56%, step 2: 61% MF: C₁₁H₁₄O₄ MW: 210.23 g/mol

¹H NMR (300 MHz, CDCl₃): δ [ppm] = 7.32 – 7.25 (m, 2H), 6.91 – 6.84 (m, 2H), 4.88 (dd, J = 8.4 Hz, 3.5 Hz, 1H), 4.26 – 4.07 (m, 2H), 3.79 (s, 3H), 2.67 (brs, 1H), 2.08 (s, 3H).

¹³C NMR (75 MHz, $CDCl_3$): δ [ppm] = 171.3 (C_q), 159.6 (C_q), 132.0 (C_q), 127.5 (+), 114.0 (+), 72.0 (+), 69.4 (-), 55.4 (+), 21.0 (+).

HRMS (APCI) (m/z): $[M+NH_4]^+ = (C_{11}NH_{18}O_4)$ calc.: 228.1230, found: 228.1230.

2-Hydroxy-2-phenylethyl acetate (1k)^[10]

Yield: 52% MF: C₁₀H₁₂O₃ MW: 180.20 g/mol

¹H NMR (300 MHz, $CDCl_3$): δ [ppm] = 7.37 – 7.25 (m, 5H), 4.89 (dd, *J* = 8.3 Hz, 3.5 Hz, 1H), 4.26 – 4.06 (m, 2H), 3.09 (brs, 1H), 2.05 (s, 3H).

¹³C NMR (75 MHz, CDCl₃): δ [ppm] = 171.3, 140.0, 128.5, 128.1, 126.2, 72.2, 69.3, 20.9.

HRMS (APCI) (m/z): [M+H-H₂O]⁺ (C₁₀H₁₁O₂) calc.: 163.0759, found: 163.0755.

2-(4-Chlorophenyl)-2-hydroxyethyl acetate (1l)^[10]

Yield: step 1 (epoxide opening): 95%, step 2: 45% MF: C₁₀H₁₁ClO₃ MW: 214.65 g/mol

¹H NMR (300 MHz, $CDCl_3$): δ [ppm] 7.40 – 7.14 (m, 4H), 4.98 – 4.76 (m, 1H), 4.29 – 3.95 (m, 2H), 3.07 (brs, 1H), 2.07 (s, 3H).

¹³C NMR (75 MHz, CDCl₃): δ [ppm] = 171.4, 138.5, 133.9, 128.7, 127.6, 71.6, 69.1, 20.9.

HRMS (APCI) (m/z): $[M+H]^+$ (C₁₀H₁₂ClO₃) calc.: 215.0475, found: 215.0469.

2-(4-Fluorophenyl)-2-hydroxyethyl acetate (1m)^[10]

Yield: step 1 (epoxide opening): 68%, step 2: 38% MF: C₁₀H₁₁FO₃ MW: 198.19 g/mol

¹H NMR (300 MHz, $CDCl_3$): δ [ppm] = 7.38 – 7.21 (m, 2H), 7.00 (td, *J* = 8.6 Hz, 1.9 Hz, 2H), 4.92 – 4.78 (m, 1H), 4.23 – 3.99 (m, 2H), 3.09 (brs, 1H), 2.03 (s, 3H).

¹³C NMR (75 MHz, CDCl₃): δ [ppm] = 171.4, 162.5 (d, J = 246.1 Hz), 135.8, 127.9 (d, J = 8.2 Hz), 115.4 (d, J = 21.5 Hz), 71.5, 69.2, 20.8.

HRMS (APCI) (m/z): [M+H]⁺ (C₁₀H₁₂FO₃) calc.: 199.0770, found: 199.0766.

2.6. Synthesis and characterization of aromatic substrates with other leaving groups

Synthesis and characterization of substrate with benzyl leaving group (1n)^[11]

To a stirred solution of 1-(4-methoxyphenyl)-1,2-ethandiol (0.34 g, 2.0 mmol, 1.0 equiv.) in pyridine (4 mL) at 0 °C, benzoylchloride (0.25 mL, 2.2 mmol, 1.1 equiv.) was added dropwise. The mixture was allowed to warm to rt over night before ice water (4 mL) was added. After stirring for 30 minutes, the mixture was extracted with DCM (3 x 15 mL) and the combined organic phase was dried over sodium sulfate. Purification by column chromatography (PE/EA = 7:3) gave the product as colorless solid.

2-Hydroxy-2-(4-methoxyphenyl)ethyl benzoate (1n)^[12]

¹H NMR (300 MHz, CDCl₃): δ [ppm] = 7.29 (m, 2H), 7.78 – 7.51 (m, 2H), 7.48 – 7.27 (m, 4H), 6.97 – 6.83 (m, 2H), 5.06 (dd, J = 3.6 Hz, 1H), 4.55 – 4.24 (m, 2H), 3.81 (s, 3H).

HRMS (ES) (m/z): [M+NH₄]⁺ (C₁₆NH₂₀O₄) calc.: 290.1392, found: 290.1388.

Synthesis and characterization of intramolecular substrate (10)^[13]

To a stirred solution of 3-coumaranone (0.50 g, 3.7 mmol, 1.0 equiv.) in methanol (10 mL) at 0°C, sodium borohydride (1.6 g, 42 mmol, 11.4 equiv.) was added in portions within 1 hour. The reaction mixture was stirred for additional 30 minutes at 0 °C to complete conversion, monitored by TLC. The mixture was allowed to warm to rt and HCl (15 mL, 0.2 M) was added. After extraction with chloroform (3 x 15 mL), the combined organic phases were dried over sodium sulfate. The crude product was purified by column chromatography with *tert*-butyl methyl ether.

2,3-Dihydrobenzofuran-3-ol (10)^[13]

Yield: 99%. MF: C₈H₈O₂ MW: 136.15 g/mol ¹H NMR (300 MHz, $CDCl_3$): δ [ppm] = 7.40 (dd, J = 7.4 Hz, 0.6 Hz, 1H), 7.26 (td, J = 7.6 Hz, 1.3 Hz, 1H), 6.94 (td, J = 7.4 Hz, 0.9 Hz, 1H), 6.87 (d, J = 8.1 Hz, 1H), 5.29 (brs, 1H), 4.50 (dd, J = 10.7 Hz, 6.5 Hz, 1H), 4.39 (dd, J = 10.7 Hz, 2.2 Hz, 1H), 2.42 - 2.24 (m, 1H).

¹³C NMR (75 MHz, CDCl₃): δ [ppm] = 160.3, 130.9, 128.3, 125.6, 121.1, 110.7, 79.2, 72.2. HRMS (EI) (m/z): [M[•]]⁺ (C₈H₈O₂) calc.: 136.0524, found: 136.0515.

2.7. Synthesis and characterization of unprotected and full protected diol derivatives

1-(4-Methoxyphenyl)ethane-1,2-diol (4)^[14]

Yield: (by reduction with NaBH₄, see 2.4, step 1) 56% MF: $C_9H_{12}O_3$ MW: 168.19 g/mol

¹H NMR (300 MHz, CDCl₃): δ [ppm] = 7.34 – 7.26 (m, 2H), 6.93 – 6.87 (m, 2H), 4.78 (dd, J = 8.0 Hz, 3.8 Hz, 1H), 3.81 (s, 3H), 3.76 – 3.62 (m, 2H), 2.01 (brs, 2H).

HRMS (APCI) (m/z): [M+H-H₂O]⁺ (C₉H₁₁O₂) calc.: 151.0759, found: 151.0785.

Synthesis and characterization of compound 5^[15]

A solution of 1-(4-methoxyphenyl)ethane-1,2-diol (5 mmol, 1.0 equiv.) in 2 mL pyridine/acetic anhydride (1:1, v/v) was stirred at rt for 2 h. Then, the reaction mixture was diluted with EA (5 mL) and washed with a solution of NaHCO₃ (5%, 5 mL), water and brine. The organic phases were dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. The resulting crude product was purified by flash column chromatography (PE/EA = 9:1) to give compound **5**.

1-(4-Methoxyphenyl)ethane-1,2-diyl diacetate (5)

Yield: 58% MF: C₁₃H₁₆O₅ MW: 252.27 g/mol

¹H NMR (300 MHz, $CDCl_3$): δ [ppm] = 7.33 – 7.26 (m, 2H), 6.92 – 6.85 (m, 2H), 5.96 (t, *J* = 6.1 Hz, 1H), 4.29 (d, *J* = 6.0 Hz, 2H), 3.80 (s, 3H), 2.09 (s, 3H), 2.05 (s, 3H).

¹³C NMR (75 MHz, CDCl₃): δ [ppm] = 170.8 (C_q), 170.2 (C_q), 159.9 (C_q), 128.7 (C_q), 128.3 (+), 114.1 (+), 73.1 (+), 66.2 (-), 55.4 (+), 21.3 (+), 21.0 (+).

HRMS (APCI) (m/z): $[M+H]^+$ (C₁₃H₁₇O₅) calc.: 253.1071, found: 253.1068.

2.8. Procedure for the preparation of NaOP(O)(OBu)₂

To a solution of dibutylphosphate (10 mmol, 2.102 g) in 10 mL deionized water, $NaHCO_3$ (10 mmol, 0.840 g) was added in portions. After the addition was completed, the reaction mixture was stirred at rt for another 1 h. Then water was removed under reduced pressure. The resulting residue was further dried under vacuum for one week to afford the desired product in quantitative yield.

3. Optimization of reaction conditions for photocatalytic C–O cleavage

 Table S1: Screening of photocatalysts.

OH HSCH ₂ CO ₂ Me (NaOP(O)(OBu) ₂	.0 mol%) 20 mol%) (1.0 equiv)	о 🗸 🔿 ОН
DMA, 25 °C 455 nm, 24	h MeO	<pre></pre>
Photocatalyst	Yield of ketone ^a	Yield of phenol ^a
Ru(ppy)₃*6H₂O	nd	nd
<i>fac</i> -Ir(ppy)₃	nd	nd
Ir[dFCF ₃ (ppy) ₂ (dtbpy)]PF ₆	3%	4%
<pre>Ir[FCF₃(ppy)₂(dtbpy)]PF₆</pre>	72%	57%
[lr(ppy) ₂ (dtbpy)]PF ₆	91%	81%
Eosin Y (5 mol%)	nd	nd
Perylene (5 mol%)	nd	nd
4CzIPN (5 mol%)	26%	26%
4CzIPN (5 mol%), air	59%	48%
	photocatalyst (1 OH OPh	photocatalyst (1.0 mol%) HSCH ₂ CO ₂ Me (20 mol%) NaOP(O)(OBu) ₂ (1.0 equiv) DMA, 25 °C, N ₂ 455 nm, 24 h MeO Photocatalyst Yield of ketone ^a Ru(ppy) ₃ *6H ₂ O nd fac-Ir(ppy) ₃ nd Ir[dFCF ₃ (ppy) ₂ (dtbpy)]PF ₆ 3% Ir[FCF ₃ (ppy) ₂ (dtbpy)]PF ₆ 91% Eosin Y (5 mol%) nd Perylene (5 mol%) nd AczIPN (5 mol%), air 59%

^{*a*} Determined by GC analysis using naphthalene as an internal standard.

3.1. Optimization for $[Ir(ppy)_2(dtbpy)]PF_6$ system

Table S2: Screening of bases for the iridium system.

^{*a*} Determined by GC analysis using naphthalene as an internal standard.

	Table S3:	Screening	of solvents	for the	iridium	system.
--	-----------	-----------	-------------	---------	---------	---------

^{*a*} Determined by GC analysis using naphthalene as an internal standard.

Table S4: Screening of thiols for the iridium system.

T	PIISE	22%	13%
2	PhSSPh	17%	8%
3	BnSH	58%	52%
4	CH ₃ CH(SH)COCH ₃	71%	49%
5	CH ₃ CH(SH)CO ₂ Et	40%	33%

^{*a*} Determined by GC analysis using naphthalene as an internal standard.

Table S5: Control reactions for the iridium system.

Entry	Deviation from standard conditions	Yield of ketone ^a	Yield of phenol ^a
1	no light	nd	nd
2	no photocatalyst	nd	nd
3	no thiol	nd	nd
4	no base	nd	nd
5	under air	16%	trace

^{*a*} Determined by GC analysis using naphthalene as an internal standard.

3.2. Optimization for 4CzIPN system

O I	H HSCH ₂ CO ₂ OPh base ((10 mol%) Me (40 mol%) 1.0 equiv)	+ OH
MeO	455 n	m, 24 h MeO	
Entry	Base	Yield of ketone ^a	Yield of phenol ^a
1	K ₂ CO ₃	20%	28%
2	NaOAc	31%	42%
3	NaHCO ₃	32%	72%
4	NaOP(O)(OBu)₂	72%	44%

Table S6: Screening of bases for the 4CzIPN system.

^{*a*} Determined by GC analysis using naphthalene as an internal standard.

Table S7: Screening of solvents for the 4CzIPN system.

MeO	H 4CzIPN HSCH ₂ CO ₂ OPh NaOP(O)(OE solvent, 455 ni	(10 mol%) Me (40 mol%) Bu) ₂ (1.0 equiv) 25 °C, air m, 24 h MeO	+ ()OH
Entry	Solvent	Yield of ketone ^a	Yield of phenol ^a
1	DCM	63%	traces
2	DCE	62%	traces
3	1,4-Dioxane	21%	15%
4	Acetone	35%	traces
5	MeCN	39%	7%
6	DMSO	73%	54%
7	DMF	71%	41%
8	THF	50%	25%

^{*a*} Determined by GC analysis using naphthalene as an internal standard.

Table S8: Screening of different amounts of catalyst and thiol.

MeO	OH OPh OPh OPh OPh OPh OPh HSCH ₂ CO ₂ Me (X mol%) NaOP(O)(OBu) ₂ (1.0 equ DMSO, 25 °C, air 455 nm, 24 h	(b) Jiv) MeO	+OH
Entry	Solvent	Yield of ketone ^a	Yield of phenol ^a
1	8 mol% 4CzIPN 20 mol% thiol	80%	/110/
		0070	41/0
2	8 mol% 4CzIPN, 40 mol% thiol	76%	58%
2 3	8 mol% 4CzIPN, 40 mol% thiol 8 mol% 4CzIPN, 60 mol% thiol	76% 71%	58% 58%
2 3 4	8 mol% 4CzIPN, 40 mol% thiol 8 mol% 4CzIPN, 60 mol% thiol 8 mol% 4CzIPN, 80 mol% thiol	76% 71% 57%	58% 58% 55%

3 mol% 4CzIPN, 40 mol% thiol	69%	46%
2 mol% 4CzIPN, 40 mol% thiol	31%	20%
1 mol% 4CzIPN, 40 mol% thiol	18%	13%
10 mol % 4CzIPN, 40 mol% thiol	73%	54%
	3 mol% 4CzIPN, 40 mol% thiol 2 mol% 4CzIPN, 40 mol% thiol 1 mol% 4CzIPN, 40 mol% thiol 10 mol % 4CzIPN, 40 mol% thiol	3 mol% 4CzIPN, 40 mol% thiol 69% 2 mol% 4CzIPN, 40 mol% thiol 31% 1 mol% 4CzIPN, 40 mol% thiol 18% 10 mol % 4CzIPN, 40 mol% thiol 73%

 $^{\it a}$ Determined by GC analysis using naphthalene as an internal standard.

Table S9: Screening of thiols for the 4CzIPN system.

ОН	4CzIPN thiol (40 OPh NaOP(O)(OBu	(4 mol%)) mol%) u) ₂ (1.0 equiv)	O U A OH
MeO	DMSO, 2 455 nm	5 °C, air h, 24 h MeO	+
Entry	Thiol	Yield of ketone ^a	Yield of phenol ^a
1	PhSH	40%	19%
2	PhSSPh	41%	19%
3	BnSH	56%	32%
4	CH₃CH(SH)COCH₃	80%	36%
5	CH ₃ CH(SH)CO ₂ Et	77%	38%
6	(<i>i</i> Pr)₃SiSH	81%	52%

^{*a*} Determined by GC analysis using naphthalene as an internal standard.

Table S10: Control reactions for the 4CzIPN system.

	4CzIPN (4 mol%) OH HSCH ₂ CO ₂ Me (40 mol%) NaOP(O)(OBu) ₂ (1.0 equiv		o .0H
MeO	DMSO, 25 °C, air 455 nm, 24 h	MeO	+
Entry	Deviation from standard conditions	Yield of ketone ^a	Yield of phenol ^a
1	no light	nd	nd
2	no photocatalyst	nd	nd
2 3	no photocatalyst no thiol	nd 23%	nd 11%
2 3 4	no photocatalyst no thiol no base	nd 23% 25%	nd 11% 0%
2 3 4 5	no photocatalyst no thiol no base N2 atmosphere	nd 23% 25% 26%	nd 11% 0% 26%

^{*a*} Determined by GC analysis using naphthalene as an internal standard.

MeO	OH 4CzIPN (4 mol%) OPh HSCH ₂ CO ₂ Me (40 mol%) NaOP(O)(OBu) ₂ (1.0 equiv DMSO, 25 °C, air 455 nm, 24 h		+ OH
Entry	Deviation from standard conditions	Yield of ketone ^a	Yield of phenol ^a
1	0.2 mmol in 1 mL DMSO	64%	58%
2	0.2 mmol in 2 mL DMSO	56%	54%
3	0.1 mmol in 2 mL DMSO	67%	32%
4	0.5 equiv. base	80%	57%

Table S11: Further screening reactions for the 4CzIPN system.

^a Determined by GC analysis using naphthalene as an internal standard. Standard conditions: 0.1 mmol substrate in 1 mL DMSO.

Table S12: Screening of C–O cleavage of alkyl substrates.

Entry	Deviation from standard conditions	Conversion	Yield of phenol ^a
1	no change	44%	39%
2	72 h	62%	49%
3	2.0 mol% Ir-cat, 40 mol% thiol, 72 h	80%	72%
4	same as entry 3, 0.2 mmol in 1 mL DMA	79%	66%
5	4.0 mol% 4CzIPN, 40 mol% thiol, 48 h, under air	41%	nd

^{*a*} Determined by GC analysis using naphthalene as an internal standard.

4. General procedures for photocatalytic reactions

4.1. Visible light-induced C–O cleavage of benzylic diol derivatives via 4CzIPN catalysis

The substrate (0.1 mmol, 1.0 equiv.), 4CzIPN (3.2 mg, 0.004 mmol, 4 mol%) and NaOP(O)(OBu)₂ (11.6 mg, 0.05 mmol, 0.5 equiv.) were weighed into a 5 mL crimp cap vial equipped with a stirring bar. Dry DMSO (1.0 mL) and methyl thioglycolate (4 μ L, 0.04 mmol, 40 mol%) were added *via* syringe and the vial was capped. The yellow reaction mixture was irradiated using a blue LED for 24 h at 25 °C. Then four vials with the same content were combined and the reaction mixture was diluted with EA (40 mL) and washed with water (2 x 15 mL). The organic layer was dried over Na₂SO₄ and the solvent was removed under reduced pressure. Purification of the crude product was performed by flash column chromatography (PE/EA = 9:1 up to 1:1).

4.2. Visible light-induced C–O cleavage of benzylic diol derivatives via [Ir(ppy)₂(dtbpy)]PF₆ catalysis

The substrate (0.2 mmol, 1.0 equiv.), $[Ir(ppy)_2(dtbpy)]PF_6$ (1.8 mg, 0.002 mmol, 1 mol%) and NaOP(O)(OBu)₂ (46.4 mg, 0.2 mmol, 1.0 equiv.) were weighed into a 5 mL crimp cap vial equipped with a stirring bar. Dry DMA (2.0 mL) and methyl thioglycolate (4 µL, 0.04 mmol, 20 mol%) were added *via* syringe. Nitrogen atmosphere was then introduced *via* three cycles of freeze-pump-thaw (10 minutes vacuum at 1 mbar). The yellow reaction mixture was irradiated using a blue LED for 24 h at 25 °C. Then two vials with the same content were combined and the reaction mixture was diluted with EA (40 mL) and extracted with water (2 x 15 mL). The organic layer was dried over Na₂SO₄ and the solvent was removed under reduced pressure. Purification of the crude product was performed by flash column chromatography (PE/EA = 9:1 up to 1:1).

Following the general procedure 4.1. with substrate **1a** (24.4 mg, 0.1 mmol) and 4CzIPN. Four reactions were carried out in parallel and then combined for isolation by column chromatography to obtain ketone **2a** (47.6 mg, 79%) and phenol **3a** (23.9 mg, 63%).

Following the general procedure 4.2. with substrate **1a** (48.9 mg, 0.2 mmol) and 1 mol% Ir catalyst. Two reactions were carried out in parallel and then combined for isolation by column chromatography to obtain ketone **2a** (51.8 mg, 86%) and phenol **3a** (26.8 mg, 71%).

Following the general procedure 4.1. with substrate **1b** (27.4 mg, 0.1 mmol) and 4CzIPN. Four reactions were carried out in parallel and then combined for isolation by column chromatography to obtain ketone **2a** (41.3 mg, 69%) and phenol **3b** (25.4 mg, 51%).

Following the general procedure 4.1. with substrate **1c** (25.8 mg, 0.1 mmol) and 4CzIPN. Four reactions were carried out in parallel and then combined for isolation by column chromatography to obtain ketone **2a** (54.2 mg, 90%) and phenol **3c** (26.4 mg, 61%).

Following the general procedure 4.1. with substrate **1d** (21.4 mg, 0.1 mmol) and 4CzIPN. Four reactions were carried out in parallel and then combined for isolation by column chromatography to obtain ketone **2b** (33.0 mg, 69%) and phenol **3a** (18.9 mg, 50%).

Following the general procedure 4.1. with substrate **1e** (30.4 mg, 0.1 mmol) and 4CzIPN. Four reactions were carried out in parallel and then combined for isolation by column chromatography to obtain ketone **2c** (54.0 mg, 75%) and phenol **3b** (30.1 mg, 61%).

Following the general procedure 4.1. with substrate **1f** (33.4 mg, 0.1 mmol) and 4CzIPN. Four reactions were carried out in parallel and then combined for isolation by column chromatography to obtain ketone **2c** (60.1 mg, 83%) and phenol **3d** (46.6 mg, 76%).

Following the general procedure 4.1. with substrate **1g** (33.4 mg, 0.1 mmol) and 4CzIPN. Four reactions were carried out in parallel and then combined for isolation by column chromatography to obtain ketone **2c** (72.0 mg, 100%) and phenol **3e** (51.8 mg, 84%).

Following the general procedure 4.1. with substrate **1h** (33.4 mg, 0.1 mmol) and 4CzIPN. Two reactions were carried out in parallel and then combined for isolation by column chromatography to obtain ketone **2d** (28.6 mg, 68%) and phenol **3b** (8.3 mg, 33%).

Following the general procedure 4.1. with substrate **1i** (30.4 mg, 0.1 mmol) and 4CzIPN. Four reactions were carried out in parallel and then combined for isolation by column chromatography to obtain phenol **3b** (10.0 mg, 20%), but no ketone could be isolated. Ketone **2e** was detected by GC-MS analysis.

Following the general procedure 4.2. with substrate **1i** (60.9 mg, 0.2 mmol) and 1 mol% Ir catalyst. Two reactions were carried out in parallel and then combined for isolation by column chromatography, but no ketone **2e** nor phenol **3b** could be isolated. Ketone **2e** was detected by GC-MS analysis.

Following the general procedure 4.1. with substrate **1j** (21.0 mg, 0.1 mmol) and 4CzIPN. Four reactions were carried out in parallel and then combined for isolation by column chromatography to obtain ketone **2a** (41.9 mg, 70%).

Following the general procedure 4.1. with substrate **1k** (18.0 mg, 0.1 mmol) and 4CzIPN. Four reactions were carried out in parallel and then combined for isolation by column chromatography to obtain ketone **2b** (35.6 mg, 74%).

Following the general procedure 4.1. with substrate **1** (21.5 mg, 0.1 mmol) and 4CzIPN. Four reactions were carried out in parallel and then combined for isolation by column chromatography to obtain ketone **2f** (37.6 mg, 61%).

Following the general procedure 4.1. with substrate **1m** (19.8 mg, 0.1 mmol) and 4CzIPN. Four reactions were carried out in parallel and then combined for isolation by column chromatography to obtain ketone **2g** (41.6 mg, 75%).

Following the general procedure 4.1. with substrate **1n** (27.2 mg, 0.1 mmol) and 4CzIPN. Four reactions were carried out in parallel and then combined for isolation by column chromatography to obtain ketone **2a** (43.8 mg, 73%) and benzoic acid **3f** (34.1 mg, 70%).

Following the general procedure 4.1. with substrate **1o** (13.4 mg, 0.1 mmol) and 4CzIPN. Four reactions were carried out in parallel and then combined for isolation by column chromatography to obtain ketone **2h** (24.5 mg, 45%).

5. Mechanistic investigations

5.1. Control experiments for clarification of the mechanism

Following the general procedure 4.1. with substrate **4** (16.8 mg, 0.1 mmol) and 4CzIPN. The yield of ketone **2a** (5%) was determined by GC-analysis with the internal standard naphthalene.

Following the general procedure 4.1. with substrate **5** (25.2 mg, 0.1 mmol) and 4CzIPN. Four reactions were carried out in parallel and then combined for isolation by column chromatography, but ketone **2a** could not be obtained and no conversion was observed.

Following the general procedure 4.1. with the proposed ketone intermediate **B** (21.2 mg, 0.1 mmol) and 4CzIPN. Four reactions were carried out in parallel and then combined for isolation by column chromatography to obtain ketone **2b** (28.6 mg, 60%) and phenol **3a** (15.1 mg, 40%).

5.2. Cyclic voltammetry measurements

CV measurements were performed with the three-electrode potentiostat galvanostat PGSTAT302N from Metrohm Autolab using a glassy carbon working electrode, a platinum wire counter electrode, a silver wire as a reference electrode and TBATFB 0.1 M as supporting electrolyte. The potentials were achieved relative to the Fc/Fc⁺ redox couple with ferrocene as internal standard.^[16] The control of the measurement instrument, the acquisition and processing of the cyclic voltammetric data were performed with the software Metrohm Autolab NOVA 1.10.4. The measurements were carried out as follows: a 0.1 M solution of TBATFB in CH₃CN was added to the measuring cell and the solution was degassed by argon purge for 5 min. After recording the baseline, the electroactive compound was added (0.01 M) and the solution was again degassed a stream of argon for 5 min. The cyclic voltammogram was recorded with one to three scans with a scan rate of 50 mV/s. Afterwards ferrocene (2.20 mg, 12.0 μ mol) was added to the solution which was again degassed by argon purge for 5 min added to the solution which was again degassed by argon purge for 5 min added to the solution which was again degassed by argon purge for 5 min.

Figure S1: Cyclic voltammogram of **1d** in DMSO under argon (scan direction indicated by black arrow). The peak at -1.93 V shows the reduction of **1d** and corresponds to a potential of -2.52 V vs SCE; the reversible peaks at 1.00 and 0.90 V correspond to ferrocene, which was used as an internal standard.

Figure S2: Cyclic voltammogram of 2-phenoxy-1-phenylethan-1-one in DMSO under argon (scan direction indicated by black arrow). The peak at -1.43 V shows the reduction of 2-phenoxy-1-phenylethan-1-one and corresponds to a potential of -1.72 V vs SCE; the reversible peaks at 0.74 and 0.65 V correspond to ferrocene, which was used as an internal standard.

5.3. Fluorescence quenching experiments

For fluorescence quenching experiments, a 38 μ M solution of the photocatalyst 4CzIPN in degassed DMF was prepared under nitrogen atmosphere in a gas-tight 10 mm quartz cuvette. The photocatalyst was irradiated with 390 nm and the change of the fluorescence emission upon addition of different potential quenchers was recorded.

Figure S3: Fluorescence quenching of 4CzIPN (38 μ M in DMSO) upon titration with methylthioglycolate + base (1:1).

Figure S4: Fluorescence quenching of 4CzIPN (38 μ M in DMSO) upon titration with methyl thioglycolate.

Figure S5: Fluorescence quenching of 4CzIPN (38 µM in DMSO) upon titration with **1d**.

Figure S6: Corresponding Stern-Volmer plot at 554 nm.

5.4. GC analysis of crude reaction mixture

To verify the formation of ketone intermediate using GC-FID and GC-MS analysis, 1d was subjected to

Figure S7: GC-FID of crude reaction mixture after 4-hour irradiation using starting material 1d. The presence of intermediate ketone is clearly visible.

6. Characterization of isolated products

6.1. Characterization of ketones

1-(4-Methoxyphenyl)ethan-1-one (2a)^[17]

MF: C₉H₁₀O₂ MW: 150.18 g/mol

MeO

¹H NMR (300 MHz, CDCl₃): δ [ppm] = 7.97 - 7.88 (m, 2H), 6.97 - 6.87 (m, 2H), 3.85 (s, 3H), 2.54 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ [ppm] = 196.9 (C_q), 163.6 (C_q), 130.7 (+), 130.4 (C_q), 113.8 (+), 55.6 (+), 26.5 (+).

HRMS (APCI) (m/z): [M+H]⁺ (C₉H₁₁O₂) calc.: 151.0759, 151.0762.

Acetophenone (2b)^[18]

MF: C₈H₈O MW: 120.15 g/mol

¹H NMR (300 MHz, CDCl₃): δ [ppm] = 8.02 – 7.91 (m, 2H), 7.60 – 7.53 (m, 1H), 7.49 – 7.43 (m, 2H), 2.61 (s, 3H).

¹³C NMR (75 MHz, CDCl₃): δ [ppm] = 198.5 (C_q), 137.2 (C_q), 133.3 (+), 128.7 (+), 128.5 (+), 26.7 (+). HRMS (EI) (m/z): [M[•]]⁺ (C₈H₈O) calc.: 120.0570, found: 120.0572.

1-(3,4-Dimethoxyphenyl)ethan-1-one (2c)^[19]

MeO

MF: $C_{10}H_{12}O_3$ MW: 180.20 g/mol

MeO

¹H NMR (300 MHz, CDCl₃): δ [ppm] = 7.54 (dd, J = 8.3 Hz, 2.0 Hz, 1H), 7.49 (d, J = 2.0 Hz, 1H), 6.85 (d, J = 8.3 Hz, 1H), 3.91 (s, 3H), 3.90 (s, 3H), 2.53 (s, 3H).

¹³C NMR (75 MHz, CDCl₃): δ [ppm] = 196.9 (C_a), 153.3 (C_a), 149.0 (C_a), 130.5 (C_a), 123.3 (+), 110.04 (+), 109.96 (+), 56.1 (+), 56.0 (+), 26.3 (+).

HRMS (EI) (m/z): [M[•]]⁺ (C₁₀H₁₂O₃) calc.: 180.0781, found: 180.0776.

MF: C₁₁H₁₄O₄

MW: 210.23 g/mol

1-(3,4,5-Trimethoxyphenyl)ethan-1-one (2d)^[20]

¹H NMR (300 MHz, CDCl₃): δ [ppm] = 7.21 (s, 2H), 3.92 (s, 6H), 3.92 (s, 3H), 2.59 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ [ppm] = 197.0 (C_q), 153.2 (C_q), 142.8 (C_q), 132.6 (C_q), 106.0 (+), 61.1 (+), 56.5 (+), 26.6 (+).

HRMS (EI) (m/z): $[M^{\bullet}]^{+}$ (C₁₁H₁₄O₄) calc.: 210.0887, found: 210.0884.

1-(4-Chlorophenyl)ethan-1-one (2f)^[21]

MF: C₈H₇ClO MW: 154.59 g/mol

¹H NMR (300 MHz, CDCl₃): δ [ppm] = 7.92 – 7.85 (m, 2H), 7.46 – 7.39 (m, 2H), 2.58 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ [ppm] = 197.1 (C_q), 139.7 (C_q), 135.5 (C_q), 129.9 (+), 129.0 (+), 26.7 (+). HRMS (EI) (m/z): [M[•]]⁺ (C₈H₇ClO) calc.: 154.0180, found: 154.0180.

1-(4-Fluorophenyl)ethan-1-one (2g)^[22]

MF: C₈H₇FO MW: 138.14 g/mol

¹H NMR (300 MHz, CDCl₃): δ [ppm] = 8.02 – 7.91 (m, 2H), 7.17 – 7.05 (m, 2H), 2.58 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ [ppm] = 196.7 (C_q), 165.9 (C_q, d, J = 254.7 Hz), 133.6 (C_q, d, J = 3.0 Hz), 131.1 (+, d, J = 9.3 Hz), 115.8 (+, d, J = 21.9 Hz), 26.6 (+).

HRMS (EI) (m/z): [M[•]]⁺ (C₈H₇FO) calc.: 138.0475, found: 138.0486.

1-(2-Hydroxyphenyl)ethan-1-one (2h)^[18]

MF: C₈H₈O₂ MW: 136.15 g/mol

¹H NMR (300 MHz, CDCl₃): δ [ppm] = 12.26 (s, 1H), 7.74 (dd, *J* = 8.0 Hz, 1.7 Hz, 1H), 7.48 (ddd, *J* = 8.5 Hz, 7.2 Hz, 1.7 Hz, 1H), 6.98 (dd, *J* = 8.4 Hz, 1.1 Hz, 1H), 6.90 (ddd, *J* = 8.3 Hz, 7.2 Hz, 1.2 Hz, 1H), 2.64 (s, 3H).

¹³C NMR (75 MHz, CDCl₃): δ [ppm] = 204.7 (C_q), 162.5 (C_q), 136.6 (+), 130.9 (+), 119.8 (C_q), 119.1 (+), 118.6 (+), 26.8 (+).

6.2. Characterization of phenols and other leaving fragments

OH

MF: C₆H₆O MW: 94.11 g/mol

¹H NMR (300 MHz, CDCl₃): δ [ppm] = 7.29 – 7.22 (m, 2H), 6.98 – 6.90 (m, 1H), 6.90 – 6.77 (m, 2H), 5.31 (brs, 1H).

¹³C NMR (75 MHz, CDCl₃): δ [ppm] = 155.7 (C_q), 129.8 (+), 120.8 (+), 115.4 (+). HRMS (EI) (m/z): [M[•]]⁺ (C₆H₆O) calc.: 94.0413, found: 94.0422.

2-Methoxyphenol (3b)^[6]

-OMe MF: C₇H₈O₂ MW: 124.14 g/mol

¹H NMR (300 MHz, CDCl₃): δ [ppm] = 6.99 – 6.81 (m, 4H), 3.89 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ [ppm] = 146.7 (C_q), 145.8 (C_q), 121.6 (+), 120.3 (+), 114.7 (+), 110.8 (+), 56.0 (+). HRMS (EI) (m/z): [M[•]]⁺ (C₇H₈O2) calc.: 124.0524, found: 124.0534.

p-Cresol (3c)[6]

OH

MF: C₇H₈O MW: 108.14 g/mol

¹H NMR (300 MHz, CDCl₃): δ [ppm] = 7.10 – 6.99 (m, 2H), 6.81 – 6.70 (m, 2H), 5.07 (brs, 1H), 2.28 (s, 3H).

¹³C NMR (75 MHz, CDCl₃): δ [ppm] = 153.3 (C_q), 130.2 (+), 130.1 (C_q), 115.2 (+), 20.6 (+). HRMS (EI) (m/z): [M[•]]⁺ (C₇H₈O) calc.: 108.0570, found: 108.0566.

2,6-Dimethoxyphenol (3d)^[5]

MeO OMe MF: C₈H₁₀O₃ MW: 154.17 g/mol

¹H NMR (300 MHz, CDCl₃): δ [ppm] = 6.80 (dd, *J* = 8.8 Hz, 7.8 Hz, 1H), 6.61 - 6.54 (m, 2H), 3.88 (s, 6H). ¹³C NMR (75 MHz, CDCl₃): δ [ppm] = 149.0 (C_q), 130.5 (C_q), 123.4 (+), 110.1 (+), 56.1 (+). HRMS (EI) (m/z): $[M^{\bullet}]^{+}$ (C₈H₁₀O₃) calc.: 154.0630, found: 154.0638.

3,5-Dimethoxyphenol (3e)^[5]

MF: C₈H₁₀O₃ MW: 154.17 g/mol

¹H NMR (300 MHz, CDCl₃): δ [ppm] = 6.09 - 6.05 (m, 1H), 6.04 (d, J = 2.1 Hz, 2H), 3.74 (s, 6H). ¹³C NMR (75 MHz, CDCl₃): δ [ppm] = 161.7 (C_q), 157.6 (C_q), 94.4 (+), 93.2 (+), 55.5 (+). HRMS (EI) (m/z): [M[•]]⁺ (C₈H₁₀O₃) calc.: 154.0630, found: 154.0638.

Benzoic acid (3f)^[24]

COOH

MF: $C_7H_6O_2$ MW: 122.12 g/mol

¹H NMR (300 MHz, CDCl₃): δ [ppm] = 12.45 (brs, 1H), 8.19 – 8.10 (m, 2H), 7.68 – 7.58 (m, 1H), 7.54 – 7.44 (m, 2H).

¹³C NMR (75 MHz, CDCl₃): δ [ppm] = 172.7 (C_q), 134.0 (+), 130.4 (+), 129.5 (C_q), 128.6 (+). HRMS (EI) (m/z): [M[•]]⁺ (C₇H₆O₂) calc.: 122.0368, found: 122.0357.

7. ¹H- and ¹³C-NMR spectra

¹H and ¹³C-NMR of compound **1b** in CDCl₃:

¹H and ¹³C-NMR of compound **1c** in CDCl₃:

 ^1H and $^{13}\text{C-NMR}$ of compound 1d in $\text{CDCl}_3\text{:}$

¹H and ¹³C-NMR of compound **1e** in CDCl₃:

¹H and ¹³C-NMR of compound **1f** in CDCl₃:

¹H and ¹³C-NMR of compound **1g** in CDCl₃:

38

¹H and ¹³C-NMR of compound **1h** in CDCl₃:

¹H and ¹³C-NMR of compound **1j** in CDCl₃:

¹H and ¹³C-NMR of compound **1**I in CDCl₃:

¹H and ¹³C-NMR of compound **1m** in CDCl₃:

¹H and ¹³C-NMR of compound **10** in CDCl₃:

¹H -NMR of compound **4** in CDCl₃:

¹H -NMR of compound **5** in CDCl₃:

¹H and ¹³C-NMR of compound **2a** in CDCl₃:

 ^1H and $^{13}\text{C-NMR}$ of compound 2c in CDCl_3:

 ^1H and $^{13}\text{C-NMR}$ of compound 2d in CDCl_3:

¹H-NMR of compound **2f** in CDCl₃:

¹H-NMR of compound **2g** in CDCl₃:

 ^1H and $^{13}\text{C-NMR}$ of compound 2h in CDCl_3:

 ^1H and $^{13}\text{C-NMR}$ of compound 3e in CDCl_3:

8. References

- [1] R. K. Harris, E. D. Becker, S. M. Cabral de Menezes, R. Goodfellow, P. Granger, *Magn. Reson. Chem.* **2002**, *40*, 489-505.
- [2] (a) G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg, *Organometallics* 2010, *29*, 2176-2179; (b) H. E. Gottlieb, V. Kotlyar, A. Nudelman, *J. Org. Chem.* 1997, *62*, 7512-7515.
- [3] (a) J.-W. Zhang, Y. Cai, G.-P. Lu, C. Cai, *Green Chem.* 2016, *18*, 6229-6235; (b) H. Liu, H. Li, J. Lu,
 S. Zeng, M. Wang, N. Luo, S. Xu, F. Wang, *ACS Catal.* 2018, *8*, 4761-4771.
- [4] C. Zhang, H. Li, J. Lu, X. Zhang, K. E. MacArthur, M. Heggen, F. Wang, ACS Catal. 2017, 7, 3419-3429.
- [5] I. Bosque, G. Magallanes, M. Rigoulet, M. D. Kärkäs, C. R. J. Stephenson, ACS Cent. Sci. 2017, 3, 621-628.
- [6] J. Luo, X. Zhang, J. Lu, J. Zhang, ACS Catal. **2017**, *7*, 5062-5070.
- [7] A. Zvagulis, S. Bonollo, D. Lanari, F. Pizzo, L. Vaccaro, *Adv. Synth. Catal.* **2010**, *352*, 2489-2496.
- [8] J. Teske, B. Plietker, Org. Lett. **2018**, 20, 2257-2260.
- [9] Z. Wang, Y.-T. Cui, Z.-B. Xu, J. Qu, J. Org. Chem. 2008, 73, 2270-2274.
- [10] P. S. Prathima, C. U. Maheswari, K. Srinivas, M. M. Rao, *Tetrahedron Lett.* 2010, *51*, 5771-5774.
- [11] D. F. Ewing, V. Glaçon, C. Len, G. Mackenzie, New J. Chem. 2005, 29, 1461-1468.
- [12] B. Liu, J. Yan, R. Huang, W. Wang, Z. Jin, G. Zanoni, P. Zheng, S. Yang, Y. R. Chi, Org. Lett. 2018, 20, 3447-3450.
- [13] S. Ghosh, I. Datta, R. Chakraborty, T. K. Das, J. Sengupta, D. C. Sarkar, *Tetrahedron* **1989**, *45*, 1441-1446.
- [14] J. C. Griffith, K. M. Jones, S. Picon, M. J. Rawling, B. M. Kariuki, M. Campbell, N. C. O. Tomkinson, J. Am. Chem. Soc. **2010**, 132, 14409-14411.
- [15] C. Zhao, J. Huang, L. Yang, F. Yue, F. Lu, Ind. Eng. Chem. Res. 2019, 58, 5707-5714.
- [16] V. V. Pavlishchuk, A. W. Addison, *Inorg. Chim. Acta* **2000**, *298*, 97-102.
- [17] K. Wang, J. Yang, X. Yao, J. Wang, *Chem. Asian J.* **2018**, *13*, 3165-3168.
- [18] R. J. Abraham, M. Mobli, R. J. Smith, *Magn. Reson. Chem.* **2003**, *41*, 26-36.
- [19] S. Son, F. D. Toste, Angew. Chem. Int. Ed. 2010, 49, 3791-3794.
- [20] S. Roy, M. P. Davydova, R. Pal, K. Gilmore, G. A. Tolstikov, S. F. Vasilevsky, I. V. Alabugin, *J. Org. Chem.* **2011**, *76*, 7482-7490.
- [21] S. Nie, J. Wang, X. Huang, X. Niu, L. Zhu, X. Yao, ACS Appl. Nano Mater. 2018, 1, 6567-6574.
- [22] J. A. Murphy, A. G. J. Commeureuc, T. N. Snaddon, T. M. McGuire, T. A. Khan, K. Hisler, M. L. Dewis, R. Carling, *Org. Lett.* **2005**, *7*, 1427-1429.
- [23] R. J. Abraham, M. Reid, J. Chem. Soc., Perkin Trans. 2 2002, 1081-1091.
- [24] Y. Sawama, A. Nakano, T. Matsuda, T. Kawajiri, T. Yamada, H. Sajiki, *Org. Process Res. Dev.* **2019**.