Supplementary Information

Rhodium-mediated ¹⁸F-oxyfluorination of diazoketones using fluorine-18-containing hypervalent iodine reagent

Miguel A. Cortés González,^a Xingguo Jiang,^a Patrik Nordeman,^b Gunnar Antoni,^b and Kálmán J. Szabó*^a.

^a Department of Organic Chemistry Stockholm University, SE-106 91, Stockholm, Sweden. E-mail: kalman.j.szabo@su.se

^b Department of Medicinal Chemistry, Uppsala University, SE-751 23, Uppsala, Sweden.

Email: kalman.j.szabo@su.se

Table of Contents

General information	3
Synthesis of diazoketones (2)	4
Synthesis and characterization of 2-fluoro-2-methoxy-1-aryl-1-ones (4)	5
2-fluoro-2-methoxy-1-phenylethan-1-one (4a)	5
2-fluoro-2-methoxy-1-(naphthalen-1-yl)ethan-1-one (4b)	5
1-(4-bromophenyl)-2-fluoro-2-methoxyethan-1-one (4c)	6
1-(4-fluorophenyl)-2-fluoro-2-methoxyethan-1-one (4d)	7
1-(4-nitrophenyl)-2-fluoro-2-methoxyethan-1-one (4e)	7
1-(4-methylphenyl)-2-fluoro-2-methoxyethan-1-one (4f)	8
1-(3-methylphenyl)-2-fluoro-2-methoxyethan-1-one (4g)	8
1-(4-methoxyphenyl)-2-fluoro-2-methoxyethan-1-one (4h)	9
2-fluoro-2-methoxy-1-(furan-2-yl)ethan-1-one (4i)10	0
2-fluoro-2-methoxy-1-(thiophen-2-yl)ethan-1-one (4j)10	0
2-fluoro-2-methoxy-1-morpholinoethan-1-one (4k)1	1
1-fluoro-1-methoxy-4-phenylbutan-2-one (4l)1	1
Radiochemistry1	3
Preparation of [^{18F}]Bu ₄ NF1	3
Synthesis of 1-[¹⁸ F]fluoro-3,3-dimethyl-1,3-dihydro-1 λ^3 -benzo[<i>d</i>][1,2]iodoxole ([¹⁸ F]1)	3
Synthesis of 2-[¹⁸ F]fluoro-2-methoxy-1-aryl-1-ones ([¹⁸ F]4)14	4
Analysis and radiochemical yield (RCY) determination14	4
Isolation and determination of activity yield (AY) and molar activity (A_m) 1	5
Radio-HPLC chromatograms18	8
References	0
Copies of ¹ H-, ¹³ C- and ¹⁹ F-NMR of compounds	6

General information

Reagents were used as obtained from commercial suppliers without further purification. Solvents were obtained from commercial suppliers and dried using a Vacuum Atmospheres Solvent Purifier system. IST Phase Separators[®] were obtained from Biotage. Flash chromatography purifications were carried out on 60 Å (35-70 μ m) silica gel (Acros Kieselgel 60) using or *n*-pentane / EtOAc or *n*-pentane / Et₂O mixtures as eluent. Rh₂(OPiv)₄ was prepared following a reported literature procedure.¹

Fluorine-19 experiments. All reactions were carried out in dry closed glass reaction vessels using dry solvents under an atmosphere of dry Ar. Reagents **1** and **5** were prepared following a reported literature procedure.² Analytical TLC was carried out on aluminum-backed plates (1.5 Å, 4 cm) pre-coated (0.25 mm) with silica gel (Merck, Silica Gel 60 F254). Compounds were visualized by exposure to UV light (λ = 254 nm) or by dipping the plates in a solution of 0.75% KMnO₄ (w/v) in an aqueous solution of K₂CO₃ 0.36 M or in a soltion of PMA in EtOH (0.05M). Melting points were recorded in a metal block and are uncorrected. ¹H NMR spectra were recorded at 400 MHz, ¹³C NMR spectra were recorded at 100 MHz and ¹⁹F NMR spectra were recorded at 377 MHz with a Bruker Advance spectrometer. ¹H and ¹³C NMR chemical shifts (δ) are reported in ppm from tetramethylsilane, using the residual solvent resonance (CHCl₃: δ_H 7.26 and CDCl₃: δ_C 77.2) as an internal reference. Coupling constants (*J*) are given in Hz. High-resolution mass spectra (HRMS) were recorded on a Bruker microTOF ESI-TOF mass spectrometer in positive ion mode

Fluorine-18 experiments. The labelling reactions were carried out in dry conical glass vials under an atmosphere of dry N₂. Dry CH₂Cl₂ for the labelling reactions was obtained from commercial suppliers and dried using a Vacuum Atmospheres Solvent Purifier system or by distillation over LiAlH₄ and stored in a glovebox. Trimethyl orthoformate was distilled over CaSO₄ and stored in a glovebox. Radiochemical units and parameters are used in accordance with the standard of the field.³ Radiochemical yields were estimated by radio-HPLC analysis of the crude reaction mixture by integration of the product peak relative to that of [¹⁸F]fluoride and are decay corrected. The activity yield was determined by dividing the isolated activity obtained after semi-preparative HPLC purification by the starting activity of [¹⁸F]**1** and is non-decay corrected.

Synthesis of diazoketones (2)

Diazoketones **2k-I** were prepared by reported literature procedures.⁴ Diazoketones **2a-j** were synthesized from the corresponding acyl chlorides by modified literature procedures⁵. Accordingly, (trimethylsilyl)diazomethane (2M in Et₂O, 1.2 equiv.) and triethylamine (1.0 equiv.) was dissolved in MeCN at 0 °C. To this mixture the corresponding benzoyl chloride was added dropwise under Ar. The reaction mixture was allowed to warm to room temperature and stirred for 4 hours or until the full consumption of the benzoyl chloride. The solvent was evaporated and Na₂CO₃ (sat. aq.) was added before extracting with Et₂O. The combined organic fractions were dried using an IST Phase Separator[®] (Biotage) and concentrated. The crude was purified by flash chromatography using *n*-pentane / EtOAc (10:1).

Diazoketones **2a-j** are known compounds. The obtained spectroscopical data matched with the reported literature values.⁵⁻⁶

Synthesis and characterization of 2-fluoro-2-methoxy-1-aryl-1-ones (4)

A Schlenk flask was loaded with fluorobenziodoxole **1** (0.1 mmol, 1.0 equiv.), $Rh_2(OPiv)_4$ (1 mol%) and trimethyl orthoformate **3** (0.2 M) under Ar. To this was added a solution of diazoketone **2** (1.2 equiv) in trimethyl orthoformate (0.24 M) dropwise at room temperature over 10 minutes. The reaction was stirred for 10 more minutes. The excess of **3** was removed under vacuum and the crude was purified by column chromatography affording the desired 2-fluoro-methoxy-1-aryl-1-ones.

2-fluoro-2-methoxy-1-phenylethan-1-one (4a)

The title compound was prepared starting from 2-diazo-1-phenylethan-1-one (18 mg, 0.12 mmol). The crude was purified by column chromatography (SiO₂; Et_2O / *n*-pentane 1:50) affording the title compound as a colorless oil (3 mg, 18%).

TLC: $R_f = 0.52$ (Et₂O / *n*-pentane 1:10). UV active.

¹H NMR (400 MHz, CDCl₃, TMS): δ = 8.11-8.09 (m, 2H), 7.64-7.59 (m, 1H), 7.51-7.46 (m, 2H), 5.79 (d, J(H,F) = 63.7 Hz, 1H), 3.75 (d, J(H,F) = 1.7 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃, TMS): δ = 190.1 (d, *J*(C,F) = 27.9 Hz), 134.3, 132.7 (d, *J*(C,F) = 1.8 Hz), 130.0 (d, *J*(C,F) = 2.3 Hz), 128.7, 110.7 (d, *J*(C,F) = 230.0 Hz), 57.9.

¹⁹F NMR (377 MHz, CDCl₃): δ = -131.90 (d, J(F,H) = 63.6 Hz).

HRMS (ESI): m/z calcd for C₉H₉FO₂+Na⁺: 191.0479, [M+Na]⁺; found: 191.0480.

2-fluoro-2-methoxy-1-(naphthalen-1-yl)ethan-1-one (4b)

The title compound was prepared starting from 2-diazo-1-(naphthalen-1-yl)ethan-1-one (24 mg, 0.12 mmol). The crude was purified by column chromatography (SiO₂; Et_2O / n -pentane 1:50) affording the title compound as a colorless oil (5 mg, 21%).

TLC: $R_f = 0.58$ (Et₂O / *n*-pentane 1:10). UV active.

¹H NMR (400 MHz, CDCl₃, TMS): δ = 8.76 (d, J(H,H) = 8.5 Hz, 1H), 8.24 (d, J(H,H) = 7.3 Hz, 1H), 8.07 (d, J(H,H) = 8.2 Hz, 1H), 7.90 (d, J(H,H) = 8.1 Hz, 1H), 7.65-7.62 (m, 1H), 7.58-7.53 (m, 2H), 5.88 (d, J(H,F) = 64.1 Hz, 1H), 3.76 (d, J(H,F) = 1.6, 3H).

¹³C NMR (100 MHz, CDCl₃, TMS): δ = 192.8 (d, J(C,F) = 27.3 Hz), 134.5, 134.1, 131.2, 130.9 (d, J(C,F) = 3.8 Hz), 129.9, 128.82, 128.78, 126.8, 125.7, 124.3, 110.7 (d, J(C,F) = 231.8 Hz), 58.0.

¹⁹F NMR (377 MHz, CDCl₃): δ = -130.58 (d, J(F,H) = 64.2 Hz)

HRMS (ESI): m/z calcd for $C_{13}H_{11}FO_2+Na^+$: 241.0635, [M+Na]⁺; found: 241.0635.

1-(4-bromophenyl)-2-fluoro-2-methoxyethan-1-one (4c)

The title compound was prepared starting from 1-(4-bromophenyl)-2-diazoethan-1-one (27 mg, 0.12 mmol). The crude was purified by column chromatography (SiO₂; Et₂O / n-pentane 1:50) affording the title compound as a white solid (5 mg, 21%).

M.p.: 45.9 - 46.4 °C.

TLC: $R_f = 0.55$ (Et₂O / n-pentane 1:10). UV active.

¹H NMR (400 MHz, CDCl₃, TMS): δ = 7.99-7.95 (m, 2H), 7.65-7.61 (m, 2H), 5.71 (d, J(H,F) = 63.9 Hz), 3.75 (d, J(H,F) = 1.7 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃, TMS): δ = 189.3 (d, J(C,F) = 28.8 Hz), 132.1, 131.5 (d, J(C,F) = 2.3 Hz), 131.3 (d, J(C,F) = 2.3 Hz), 129.8, 111.0 (d, J(C,F) = 230.5 Hz), 58.1.

¹⁹F NMR (377 MHz, CDCl₃): δ = -130.72 (d, J(F,H) = 63.6 Hz).

HRMS (ESI): m/z calcd for C₉H₈⁷⁹BrFO₂+Na⁺: 268.9584, [M+Na]⁺; found: 268.9588.

1-(4-fluorophenyl)-2-fluoro-2-methoxyethan-1-one (4d)

The title compound was prepared starting from 1-(4-fluorophenyl)-2-diazoethan-1-one (20 mg, 0.12 mmol). The crude was purified by column chromatography (SiO₂; Et_2O / n -pentane 1:50) affording the title compound as a colorless oil (3 mg, 18%).

TLC: $R_f = 0.59$ (Et₂O / *n*-pentane 1:10). UV active.

¹H NMR (400 MHz, CDCl₃, TMS): δ = 8.18-8.13 (m, 2H), 7.18-7.12 (m, 2H), 5.72 (d, *J*(H,F) = 63.9 Hz, 1H), 3.75 (d, *J*(H,F) = 1.7 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃, TMS): δ = 188.6 (d, *J*(C,F) = 28.6 Hz), 166.5 (d, *J*(C,F) = 256.8 Hz), 133.0 (dd, *J*(C,F) = 9.3 Hz, 2.6 Hz), 129.0 (t, *J*(C,F) = 2.7 Hz), 116.0 (d, *J*(C,F) = 21.9 Hz), 111.1 (*J*(C,F) = 230.5 Hz), 58.1.

¹⁹F NMR (377 MHz, CDCl₃): δ = -102.83 (tt, J(F,H) = 8.7 Hz, 5.5 Hz), -130.57 (d, J(F,H) = 64.0 Hz).

HRMS (ESI): m/z calcd for C₉H₈F₂O₂+Na⁺: 209.0385, [M+Na]⁺; found: 209.0384.

1-(4-nitrophenyl)-2-fluoro-2-methoxyethan-1-one (4e)

The title compound was prepared starting from 1-(4-nitrophenyl)-2-diazoethan-1-one (23 mg, 0.12 mmol). The crude was purified by column chromatography (SiO₂; Et₂O / n-pentane 1:50) affording the title compound as a yellow solid (7 mg, 32%).

M.p.: 64.6 – 65.4 °C.

TLC: $R_f = 0.37$ (Et₂O / *n*-pentane 3:6). UV active.

¹H NMR (400 MHz, CDCl₃, TMS): δ = 8.33-8.27 (m, 4H), 5.73 (d, *J*(H,F) = 64.0 Hz, 1H), 3.79 (m, 3H).

¹³C NMR (100 MHz, CDCl₃, TMS): δ = 188.7 (d, *J*(C,F) = 30.1 Hz), 150.9, 137.0 (d, *J*(C,F) = 2.8 Hz), 131.3 (d, *J*(C,F) = 2 4 Hz), 123.8, 111.1 (d, *J*(C,F) = 230.4 Hz), 58.4.

¹⁹F NMR (377 MHz, CDCl₃): $\delta = -129.80$ (d, J(F,H) = 64.0 Hz).

HRMS (ESI): m/z calcd for C₉H₈FNO₄+Na⁺: 236.0330, [M+Na]⁺; found: 236.0319.

1-(4-methylphenyl)-2-fluoro-2-methoxyethan-1-one (4f)

The title compound was prepared starting from 1-(4-methylphenyl)-2-diazoethan-1-one (19 mg, 0.12 mmol). The crude was purified by column chromatography (SiO₂; Et_2O / n -pentane 1:50) affording the title compound as a colorless oil (16 mg, 88%).

TLC: $R_f = 0.49$ (Et₂O / *n*-pentane 1:10). UV active.

¹H NMR (400 MHz, CDCl₃, TMS): δ = 7.99 (d, J(H,H) = 8.2 Hz, 2H), 7.28 (d, J(H,H) = 8.2 Hz, 2H), 5.77 (d, J(H,F) = 63.7 Hz, 1H), 3.74 (d, J(H,F) = 1.7 Hz, 3H), 2.43 (s, 3H).

¹³C NMR (100 MHz, CDCl₃, TMS): δ = 189.7 (d, *J*(C,F) = 27.6 Hz), 145.4, 130,2 (d, *J*(C,F) = 1.7 Hz), 130,1 (d, *J*(C,F) = 2.1 Hz), 129.5, 110.7 (d, *J*(C,F) = 230.2 Hz), 57.8, 22.0.

¹⁹F NMR (377 MHz, CDCl₃): δ = -132.03 (d, J(F,H) = 64.3 Hz).

HRMS (ESI): m/z calcd for $C_{10}H_{11}FO_2+Na^+$: 205.0635, [M+Na]⁺; found: 205.0641.

1-(3-methylphenyl)-2-fluoro-2-methoxyethan-1-one (4g)

The title compound was prepared starting from 1-(3-methylphenyl)-2-diazoethan-1-one (19 mg, 0.12 mmol). The crude was purified by column chromatography (SiO₂; Et₂O / n-pentane 1:50) affording the title compound as a colorless oil (6 mg, 31%).

TLC: $R_f = 0.43$ (Et₂O / *n*-pentane 1:10). UV active.

¹H NMR (400 MHz, CDCl₃, TMS): δ = 7.90-7.89 (m, 2H), 7.44-7.42 (m, 1H), 7.39-7.35 (m, 1H), 5.79 (d, J(H,F) = 63.6 Hz, 1H), 3.74 (d, J(H,F) = 1.7 Hz, 3H), 2.42 (s, 3 Hz).

¹³C NMR (100 MHz, CDCl₃, TMS): δ = 190.2 (d, *J*(C,F) = 27.7 Hz), 138.6, 135.1, 132.7 (d, *J*(C,F) = 1.7 Hz), 130.3 (*J*(C,F) = 1.9 Hz), 128.6, 127.2 (d, *J*(C,F) = 2.2 Hz), 110.6 (d, *J*(C,F) = 230.3 Hz), 57.9, 21.5.

¹⁹F NMR (377 MHz, CDCl₃): δ = -132.09 (d, J(F,H) = 63.4 Hz).

HRMS (ESI): m/z calcd for $C_{10}H_{11}FO_2+Na^+$: 205.0635, $[M+Na]^+$; found: 205.0634.

1-(4-methoxyphenyl)-2-fluoro-2-methoxyethan-1-one (4h)

The title compound was prepared starting from 1-(4-methoxyphenyl)-2-diazoethan-1-one (21 mg, 0.12 mmol). The crude was purified by column chromatography (SiO₂; Et₂O / n-pentane 1:30 to 1:25) affording the title compound as a white solid (4 mg, 20%).

M.p.: 65.1 - 65.7 °C.

TLC: $R_f = 0.20$ (Et₂O / *n*-pentane 1:9). UV active.

¹H NMR (400 MHz, CDCl₃, TMS): δ = 8.09 (d, J(H,H) = 8.5 Hz, 2H), 6.95 (d, J(H,H) = 9.1 Hz, 2H), 5.75 (d, J(H,F) = 63.9 Hz, 1H), 3.89 (s, 3H), 3.73 (d, J(H,F) = 1.7 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃, TMS): δ = 188.7 (d, *J*(C,F) = 27.7 Hz), 164.5, 132.5 (d, *J*(C,F) = 2.3 Hz), 125.6 (d, *J*(C,F) = 1.9 Hz), 114.0, 111.0 (d, *J*(C,F) = 230.3 Hz), 57.9, 55.7.

¹⁹F NMR (377 MHz, CDCl₃): δ = -131.31 (d, J(F,H) = 64.7 Hz).

HRMS (ESI): m/z calcd for C₁₀H₁₁FO₃+Na⁺: 221.0584, [M+Na]⁺; found:221.0587.

2-fluoro-2-methoxy-1-(furan-2-yl)ethan-1-one (4i)

The title compound was prepared starting from 2-diazo-1-(furan-2-yl)ethan-1-one (16 mg, 0.12 mmol). The crude was purified by column chromatography (SiO₂; Et_2O / *n*-pentane 1:35) affording the title compound as a yellow oil (3 mg, 16%).

TLC: $R_f = 0.43$ (Et₂O / *n*-pentane 3:7). UV active.

¹H NMR (400 MHz, CDCl₃, TMS): δ = 7.71 (dd, *J*(H,H) = 1.7 Hz, 0.8 Hz, 1H), 7.47 (ddd, *J*(H,H) = 3.7 Hz, 1.5 Hz, 0.7 Hz, 1H), 6.60 (dd, *J*(H,H) = 3.7 Hz, 1.7 Hz, 1H), 5.68 (d, *J*(H,F) = 63.4 Hz, 1H), 3.73 (d, *J*(H,F) = 1.7 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃, TMS): δ = 178.7 (d, *J*(C,F) = 29.1 Hz), 149.1 (d, *J*(C,F) = 1.3 Hz), 148.4, 122.3 (d, *J*(C,F) = 4.4 Hz), 112.7, 109.4 (d, *J*(C,F) = 229.5 Hz), 58.0.

¹⁹F NMR (377 MHz, CDCl3): δ = -133.55 (δ , J(F,H) = 63.3 Hz).

HRMS (ESI): m/z calcd for C₇H₇FO₃+Na⁺: 181.0271, [M+Na]⁺; found: 181.0274.

2-fluoro-2-methoxy-1-(thiophen-2-yl)ethan-1-one (4j)

The title compound was prepared starting from 2-diazo-1-(thiophen-2-yl)ethan-1-one (18 mg, 0.12 mmol). The crude was purified by column chromatography (SiO₂; Et_2O / n -pentane 1:30) affording the title compound as a yellow oil (2 mg, 12%).

TLC: $R_f = 0.44$ (Et₂O / *n*-pentane 1:7). UV active.

¹H NMR (400 MHz, CDCl₃, TMS): δ = 8.02 (dt, J(H,H) = 3.8 Hz, 1.1 Hz, 1H), 7.75 (dd, J(H,H) = 4.9Hz, 1.1 Hz, 1H), 7.18 (dd, J(H,H) = 4.9 Hz, 3.9 Hz, 1H), 5.67 (d, J(H,F) = 63.7 Hz, 1H), 3.74 (d, J(H,F) = 1.7 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃, TMS): δ = 183.6 (d, *J*(C,F) = 29.0 Hz), 138.8 (d, *J*(C,F) = 2.4 Hz), 135.8, 135.6 (d, *J*(C,F) = 3.7 Hz), 128.6, 110.3 (d, *J*(C,F) = 230.6 Hz), 57.9.

¹⁹F NMR (377 MHz, CDCl₃): δ = -130.91 (dt, J(F,H) = 64.0 Hz, 1.5 Hz).

HRMS (ESI): m/z calcd for C₇H₇FO₂S+Na⁺: 197.0043, [M+Na]⁺; found: 197.0048.

2-fluoro-2-methoxy-1-morpholinoethan-1-one (4k)

The title compound was prepared starting from 2-diazo-1-morpholinoethan-1-one (15 mg, 0.12 mmol). The crude was purified by column chromatography (SiO₂; EtOAc / pentane 1:4) affording the title compound as a pale yellow oil (2 mg, 11%).

TLC: R_f = 0.30 (EtOAc / *n*-pentane 1:1). UV inactive. Stains green with PMA.

¹H NMR (400 MHz, CDCl₃, TMS): δ = 5.57 (d, J(H,F) = 64.4 Hz, 1H), 3.72-3.56 (m, 11H).

¹³C NMR (100 MHz, CDCl₃, TMS): δ = 163.2 (d, *J*(C,F) = 27.3 Hz), 110.4 (d, *J*(C,F) = 231.5 Hz), 67.0, 66.9, 58.0, 45.9 (d, *J*(C,F) = 4.3 Hz), 42.8.

¹⁹F NMR (377 MHz, CDCl₃): δ = -130.00 (d, J(F,H) = 64.4 Hz).

HRMS (ESI): m/z calcd for $C_{14}H_{25}F_2N_2O_6$: 355.1675, $[2M+H]^+$; found: 355.1668.

1-fluoro-1-methoxy-4-phenylbutan-2-one (4I)

The title compound was prepared starting from 1-diazo-4-phenylbutan-2-one (21 mg, 0.12 mmol). The crude was purified by column chromatography (SiO₂; Et_2O / pentane 1:50) affording the title compound as a yellow oil (2 mg, 8%).

TLC: $R_f = 0.25$ (Et₂O / *n*-pentane 1:10). UV inactive. Stains green with PMA.

¹H NMR (400 MHz, (CD₃)₂CO, TMS): δ = 7.29-7.15 (m, 5H), 5.38 (d, J(H,F) = 64.2 Hz, 1H), 3.62 (d, J(H,F) = 1.7 Hz, 3H), 2.97-2.93 (m, 2H), 2.89-2.85 (m, 2H).

¹³C NMR (100 MHz, CDCl₃, TMS): δ = 201.3 (d, *J*(C,F) = 28.3 Hz), 140.7, 128.7, 128.5, 126.4, 109.7 (d, *J*(C,F) = 228.9 Hz), 57.8, 38.1, 28.7.

 ^{19}F NMR (377 MHz, (CD₃)₂CO): δ = -137.90 (d, J(F,H) = 64.6 Hz).

HRMS (ESI): m/z calcd for $C_{22}H_{27}F_2O_4$: 393.1872, $[2M+H]^+$; found: 393.1870.

Radiochemistry

Preparation of [^{18F}]Bu₄NF

[¹⁸F]Fluoride was produced by the nuclear reaction ¹⁸O(p,n)¹⁸F using [¹⁸O]H₂O as target in a Scanditronix MC-17 cyclotron and was separated from [¹⁸O]H₂O using a Sep-PAK^{*} Accell Plus QMA Light anion exchange cartridge (Waters, Part No. WAT023525) pretreated with K₂CO₃ (aq. 0.5 M, 10 mL) and later with H₂O (10 mL). [¹⁸F]Fluoride was released from the cartridge as [¹⁸F]Bu₄NF using an aqueous solution of Bu₄NHCO₃ (ABX; 0.0375 M) in a 1:1 mixture with acetonitrile (450 μ L total volume). Acetonitrile was added (200 μ L) and the [¹⁸F]Bu₄NF was dried at 120 °C under a flow of N₂ for 4 minutes. The drying process was repeated (x2) using 200 μ L of acetonitrile for 3 and 2 minutes respectively. The obtained [¹⁸F]Bu₄NF was dissolved in dry CH₂Cl₂ and used in the next step.

The activity in the vials was determined using a CRC-15R (Capintec) detector calibrated for fluorine-18.

Synthesis of 1-[¹⁸F]fluoro-3,3-dimethyl-1,3-dihydro-1 λ^3 -benzo[d][1,2]iodoxole ([¹⁸F]1)

A 0.5 mL conical glass vial containing a magnetic stirrer was loaded with 1-tosyloxy-3,3-dimethyl-1,3dihydro- λ^3 -benzo[d][1,2]iodoxole **5** (5 mg, 0.012 mmol). [¹⁸F]Bu₄NF in CH₂Cl₂ was added (500 µL, 1-3 GBq) and the reaction was stirred at room temperature for 5 minutes. After that time, the solvent was evaporated under a stream of N₂ for 10 minutes at room temperature until a solid formed. To ensure the formation of the solid, *n*-hexane (300 µL) was added before the CH₂Cl₂ evaporated completely. To the remaining solid was added *n*-hexane (500 µL) and the mixture was stirred at 70 °C for 1 minute. The *n*-hexane supernatant was extracted by means of a syringe, filtered through a 1 mL IST Phase Separator[®] (Biotage, Part No. 120-1901-A) and used as such in the labelling reactions.

Synthesis of 2-[¹⁸F]fluoro-2-methoxy-1-aryl-1-ones ([¹⁸F]4)

To a 0.5 mL conical vial containing a magnetic stirrer was added a solution of $Rh_2(OPiv)_4$ in DCM (100 μ L, 5 mg/mL). The solvent was removed under a stream of nitrogen at room temperature before adding the labelling reagent [¹⁸F]1 in hexane (100 μ L, 100-300 MBq). The solvent was removed under a stream of nitrogen at room temperature for 4 minutes. To the resulting mixture was added a solution of the corresponding diazoketone 2 in trimethyl orthoformate (0.027 M) in one step. In case of radiosynthesis of [¹⁸F]4a-j the reaction was stirred at room temperature for 10 minutes, while for synthesis of [¹⁸F]4k the temperature was increased to 90 °C. An aliquot was analyzed by radio-HPLC in order to estimate the radiochemical yield of 2-[¹⁸F]fluoro-2-methoxy-1-aryl-1-ones [¹⁸F]4.

Analysis and radiochemical yield (RCY) determination

Radiochemical yields were determined by HPLC analysis of the crude reaction mixtures. The analyses were performed using a VWR LaChrom ELITE system (L-2200, L2300, L2450) with a built-in PDA detector and in series with a Bioscan Flow-Count PMT radioactivity detector using a Chromolith Performace RP-18 end-capped column (2 μ m, 100 x 4.6 mm). The mixtures were eluted with a linear-increase gradients 1 and 2 (mobile phase A: acetonitrile, mobile phase B: ammonium formate 50 mM) at a flow of 4 mL/min.

Gradient 1											
Time [min]	Mobile Phase A (MeCN) [%]	Mobile Phase B (AMF) [%]									
0	10	90									
10	50	50									
	Gradient 2										
Time [min]	Mobile Phase A (MeCN) [%]	Mobile Phase B (AMF) [%]									
0	1	99									
10	5	95									

Gradient	Compound	Retention time UV detector	Compound	Retention time β^+ flow
		(¹³ F reference) [min]		detector (¹ °F-labelled) [min]
1	4a	3.760	[¹⁸ F]4a	3.821
1	4b	7.433	[¹⁸ F]4b	7.743
1	4c	6.620	[¹⁸ F]4c	6.665
1	4d	4.373	[¹⁸ F]4d	4.440
1	4e	2.051	[¹⁸ F]4e	2.128
1	4f	5.140	[¹⁸ F]4f	5.335
1	4g	4.413	[¹⁸ F]4g	4.633
1	4h	4.433	[¹⁸ F]4h	4.436
1	4i	1.113	[¹⁸ F]4i	1.163
1	4j	3.120	[¹⁸ F]4j	3.133
2	4k	2.225	[¹⁸ F]4k	2.227

The ¹⁸F-labelled compounds were identified by comparison of the retention time of the labelled compounds [¹⁸F]4 with that of the corresponding references 4.

Isolation and determination of activity yield (AY) and molar activity (A_m)

A 0.5 mL conical glass vial containing a magnetic stirrer was loaded with 1-tosyloxy-3,3-dimethyl-1,3dihydro- λ^3 -benzo[d][1,2]iodoxole (5 mg, 0.012 mmol). [¹⁸F]Bu₄NF in CH₂Cl₂ was added (500 µL, 6.60 GBq) and the reaction was stirred at room temperature for 5 minutes. After that time, the solvent was evaporated under a stream of N₂ for 10 minutes at room temperature until a solid formed. To ensure the formation of the solid, *n*-hexane (300 µL) was added before the CH₂Cl₂ evaporated completely. To the remaining solid was added *n*-hexane (500 µL) and the mixture was stirred at 70 °C for 1 minute. The *n*-hexane supernatant was extracted by means of a syringe and filtered through a 1 mL IST Phase Separator[®] (Biotage, Part No. 120-1901-A) obtaining 2.70 GBq of extracted activity.

To a 0.5 mL conical vial containing a magnetic stirrer was added a solution of $Rh_2(OPiv)_4$ in DCM (100 μ L, 5 mg/mL). The solvent was removed under a stream of nitrogen at room temperature before

adding the labelling reagent [¹⁸F]1 in hexane (2.70 GBq). The solvent was removed under a stream of N₂ at room temperature for 7 minutes. To the resulting mixture was added a solution of 1- (4-bromophenyl)-2-diazoethan-1-one **2c** in trimethyl orthoformate (0.027 M) in one step. The reaction was stirred at room temperature for 10 minutes. An aliquote was analyzed by radio-HPLC to confirm product formation and estimate the RCY (RCY = 38%). The labelled compound [¹⁸F]4c was purified by semi-preparative HPLC. The isolated activity was 253 MBq (9% AY, starting from [¹⁸F]1, non-decay corrected) with a radiochemical purity of 89% and a molar activity of 216 GBq/µmol, measured 110 minutes after the end of the bombardment.

Purification and analysis procedure:

The crude reaction mixture was purified by semi-preparative HPLC using a VWR LaPrep HPLC system (LP1200) with an in-series UV-detector (λ = 212 nm), in series with a Bioscan Flow-Count PMT radioactivity detector using a reverse phase column (Kinetex 5 µm, C18, 100 Å, 10 × 250 mm) and eluted with a linear increase gradient (mobile phase A: acetonitrile, mobile phase B: ammonium formate 50 mM) at a flow of 5 mL/min.

Time [min]	Mobile Phase A (MeCN) [%]	Mobile Phase B (AMF) [%]
0	10	90
12	50	50
30	50	50

The product was collected in a fraction over 31 seconds with a retention time of 19.3 minutes.

Analysis of the purified product was performed using a VWR LaChrom ELITE system (L-2200, L2300, L2450) with a built-in PDA detector and in series with a Bioscan Flow-Count PMT radioactivity detector using a Chromolith Performace RP-18 end-capped column (2 μ m, 100 x 4.6 mm). and eluted with a linear-increase gradient (mobile phase A: acetonitrile, mobile phase B: ammonium formate 50 mM) at a flow of 4 mL/min.

Time [min]	Mobile Phase A (MeCN) [%]	Mobile Phase B (AMF) [%]					
0	5	95					
10	50	50					

The identity of the labelled compound [¹⁸F]4c was confirmed by co-injection with a true reference of product **4c** (Figure S1).

Figure S1. Co-injection of purified product [¹⁸F]4c and true 4c.

The molar activity was calculated using a calibration curve (Fig S2). The calibration curve was generated plotting the UV absorption (λ = 253 nm) of known amounts of **4c** against the injected amounts.

Figure S2. Calibration curve of 4b for the determination of the molar activity.

S22

mVolts

mVolts

References

- 1. F. A. Cotton and T. R. Felthouse, *Inorg. Chem.*, **1980**, *19*, 323-328.
- 2. G. C. Geary, E. G. Hope, K. Singh and A. M. Stuart, *Chem. Commun.*, **2013**, *49*, 9263-9265.
- (a) H. H. Coenen, A. D. Gee, M. Adam, G. Antoni, C. S. Cutler, Y. Fujibayashi, J. M. Jeong, R. H. Mach, T. L. Mindt, V. W. Pike and A. D. Windhorst, *Nucl. Med. Biol.*, 2017, 55, v-xi; (b) H. H. Coenen, A. D. Gee, M. Adam, G. Antoni, C. S. Cutler, Y. Fujibayashi, J. M. Jeong, R. H. Mach, T. L. Mindt, V. W. Pike and A. D. Windhorst, *Nucl. Med. Biol.*, 2019, 71, 19-22.
- (a) N. Döben, H. Yan, M. Kischkewitz, J. Mao and A. Studer, *Org. Lett.*, 2018, 20, 7933-7936; (b) F. R. Fortea-Pérez, M. Mon, J. Ferrando-Soria, M. Boronat, A. Leyva-Pérez, A. Corma, J. M. Herrera, D. Osadchii, J. Gascon, D. Armentano and E. Pardo, *Nat. Mater.*, 2017, 16, 760.
- 5. L. J. Martin, A. L. Marzinzik, S. V. Ley and I. R. Baxendale, *Org. Lett.*, **2011**, *13*, 320-323.
- 6. L. Mingshun, W. Jian'an, Y. Xiaoxi, J. Rong and F. Nanyan, *Synth. Commun.*, **2017**, *47*, 2369-2377.

Copies of ¹H-, ¹³C- and ¹⁹F-NMR of compounds

S28 2-fluoro-2-methoxy-1-phenylethan-1-one (**4a**)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

S31 2-fluoro-2-methoxy-1-(naphthalen-1-yl)ethan-1-one (4b)

10

S32

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

ومرويها وبريا الكراك الجديدية إنساطن زوارا بالتزين الجمادي تبتر أتودك أيدا بالمتكف عاف أقاد تستك

1																								· · · ·
20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-22
	f1 (ppm)																							

10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210
f1 (ppm)																						

a de la companya de l

S52 2-fluoro-2-methoxy-1-(furan-2-yl)ethan-1-one (4i)

T 20

S55 2-fluoro-2-methoxy-1-(thiophen-2-yl)ethan-1-one (**4j**)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm) S56 2-fluoro-2-methoxy-1-morpholinoethan-1-one (**4k**)

т 20

