Supporting information

In-situ carbon coated flower-like VPO₄ as an anode material for

potassium-ion batteries

Jiaying Liao, Qiao Hu, Jinxiao Mu, Xiaodong He, Shuo Wang, Jiemin Dong, Chunhua Chen*

CAS Key Laboratory of Materials for Energy Conversions, Department of Materials Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei 230026, Anhui, China

Corresponding authors: E-mail: cchchen@ustc.edu.cn; Phone: +86-551-63606971; Fax: (+86)551-63601592.

Experimental section

Materials synthesis

VOPO₄·2H₂**O** was prepared by a typical reflux method [S1]. 9.6 g V₂O₅ and 50 ml H₃PO₄ (85%) were added to 200 ml deionized water, and then refluxed at 110 °C for 6 h. The resulting yellow precipitate was collected by filtration, washed with cold water and acetone, then dried in a vacuum oven at 80 °C.

VOHPO₄·**0.5H**₂**O** was prepared from the direct reduction of VOPO₄·2H₂O [S2]. 4 g VOPO₄·2H₂O was dispersed in 100 ml isobutanol and refluxed at 110 °C for 8 h. A light blue precipitate was collected by filtration, washed with ethanol and denoted as VOHPO₄-B.

VOHPO₄·**yC**₄**H**₉**OH**: 4 g VOPO₄·2H₂O was dispersed in 100 ml isobutanol and stirred at room temperature for 12 h to intercalate isobutanol into the VOPO₄ layers. Then the intermediate product was heated stepwise at 30 °C, 50 °C and 70 °C for 1h, respectively. Finally, it was refluxed at 110 °C for 8 h. The resulting precipitate was denoted as VOHPO₄-F.

VPO₄: VOPO₄·2H₂O, VOHPO₄-B and VOHPO₄-F were annealed at 800 °C under a mixed H₂/Ar (5%) reduction atmosphere for 2 h, and the as-obtained VPO₄ samples were marked as VPO₄-P, VPO₄-B and VPO₄-F, respectively.

Characterization

The phases of as-obtained products were characterized with an X-ray diffractometer (Rigaku TTR-III, Cu K α radiation). The morphology of the samples was studied with a scanning electron microscope (SEM, FEI Apreo) and a transmission electron microscope (TEM, JEM-2100F). The elemental mappings were analyzed by energy dispersive X-ray spectroscopy (EDS) attached to the SEM instrument. Thermogravimetric analysis (TGA) was performed at a heating rate of 10 °C min⁻¹ in the temperature range of 25-800 °C under air atmosphere (DTG-60H, Shinadzu). The carbon contents were also measured with an Infrared Carbon-sulfur analyzer (CS-8800C, Jinbo). The specific surface area was measured by N₂-adsorption/desorption

(ASAP 2020). Raman spectra (Renishaw inVia Raman Microscope) were recorded on the condition of 532 nm diode laser excitation. Fourier transformation infrared spectroscopy (FTIR, Magna-IR 750 spectrometer) in the range of 400-4000 cm⁻¹ was performed.

Electrochemical evaluation

The VPO₄ electrodes consisted of the active material (70 wt. %), acetylene black (20 wt. %) and carboxymethyl cellulose binder (10 wt. %) on copper foil. The typical VPO₄ mass loadings were about 1.5 mg cm⁻², respectively. The electrochemical properties of the obtained materials were evaluated in coin-type cells (CR2032 size), which were assembled in an argon filled glove box (MBraun Unilab). For the fabrication of potassium half cells, potassium metal was used as the counter electrode, 3 mol L⁻¹ KFSI in DME was used as the electrolyte and a Whatman glass-fiber separator was used. The cells were galvanostatically cycled on a multi-channel battery test system (Neware BTS-2300, Shenzhen) in the voltage range of 0.01-3.0 V. The cyclic voltammetry (CV) of the cells was conducted on a CHI 660C electrochemical workstation at the scan rate of 0.1-2.0 mV s⁻¹. The electrochemical impedance spectra (EIS) were measured through a frequency range between 0.01 Hz to 100 kHz.

Ex-situ measurements

The cells were charged and discharged at a low current of 50 mA g^{-1} to a certain voltage, and then were disassembled and washed by DME in the glove box. Polyimide films are covered at the surface of electrodes in glove box before the exsitu XRD test.

Fig. S1 SEM images of VPO₄-B (a) and VPO₄-F (b).

Fig. S2 EDS result of VPO₄-F.

Fig. S3 N₂ adsorption-desorption isotherms of VPO₄ samples.

Fig. S4 XRD patterns of $VOPO_4 \cdot 2H_2O$ and $VOHPO_4$. A small amount of unintercalated $VOHPO_4 \cdot 0.5H_2O$ in $VOHPO_4$ -F is marked with asterisk (*).

Fig. S5 FTIR spectra of VOPO₄·2H₂O and VOHPO₄.

Fig. S6 XRD patterns of VOHPO₄-F after annealing in H₂/Ar at 900 °C for 12h.

Fig. S7 TG curves of VPO₄ samples.

Fig. S8 Optical photographs of VOPO₄·2H₂O and VOHPO₄ (a), VPO₄ samples (b).

Fig. S9 XPS spectrum of VPO₄-F.

Fig. S10 High-resolution XPS spectra of V 2p (a), P 2p (b), O 1s (c), and C 1s (d) of VPO_4 -F.

Fig. S11 TEM images of VPO_4 -B (a) and VPO_4 -F (b).

Fig. S12 The comparison of the 1^{st} (a) and the 2^{nd} (b) discharge/charge curves of the VPO₄ samples at a current density of 50 mA g⁻¹.

Fig. S13 *Ex-situ* XRD patterns of crystalline VPO_4 -B (a) and amorphous VPO_4 -F (b) at different discharge/charge states of the 1st cycle.

Fig. S14 TEM and HR-TEM images of VPO₄-B (a-c) and VPO₄-F (d-f) electrodes after the 1st discharge process.

Fig. S15 High-resolution XPS spectra of V 2p at the 1^{st} discharged (a) and charged (b) states of VPO₄-F. V 2p (c) and P 2p (d) XPS spectra of VPO₄-F at different electrochemical stages.

Fig. S16 SEM images of the electrodes after 100 cycles: (a)VPO₄-P, (b) VPO₄-B, (c) VPO₄-F.

Fig. S17 EIS spectra of VPO_4 samples fitted using the inset equivalent electrical circuit model. The cells were first discharged to 0.01 V and charged to 2.0 V.

Fig. S18 (a) CV curves of VPO₄-F at various sweep rates from 0.1 to 2.0 mV s⁻¹; (b) Separation of the capacitive and diffusion-controlled currents at a sweep rate of 0.5 mV s⁻¹; (c) Contribution ratio of the capacitive and diffusion-controlled charge at various sweep rates.

References

- [S1] H. R. Tietze, Aust. J. Chem 1981, 34, 2035.
- [S2] N. Yamamoto, N. Hiyoshi and Toshio Okuhara, Chem. Mater. 2002, 14, 3882.