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Experimental section

Materials synthesis

VOPO,-2H,0 was prepared by a typical reflux method [S1]. 9.6 g V,05 and 50 ml
H;PO, (85%) were added to 200 ml deionized water, and then refluxed at 110 °C for
6 h. The resulting yellow precipitate was collected by filtration, washed with cold
water and acetone, then dried in a vacuum oven at 80 °C.

VOHPO,:0.5H,0 was prepared from the direct reduction of VOPO,-2H,0 [S2]. 4 g
VOPO,-2H,0 was dispersed in 100 ml isobutanol and refluxed at 110 °C for 8 h. A
light blue precipitate was collected by filtration, washed with ethanol and denoted as
VOHPO,-B.

VOHPO, yC/HyOH: 4 g VOPO,2H,0 was dispersed in 100 ml isobutanol and
stirred at room temperature for 12 h to intercalate isobutanol into the VOPO, layers.
Then the intermediate product was heated stepwise at 30 °C, 50 °C and 70 °C for 1h,
respectively. Finally, it was refluxed at 110 °C for 8 h. The resulting precipitate was
denoted as VOHPO4,-F.

VPO, VOPO,4-2H,0, VOHPO4-B and VOHPO,-F were annealed at 800 °C under a
mixed Hy/Ar (5%) reduction atmosphere for 2 h, and the as-obtained VPO, samples
were marked as VPO4-P, VPO4-B and VPO,-F, respectively.

Characterization

The phases of as-obtained products were characterized with an X-ray diffractometer
(Rigaku TTR-III, Cu Ka radiation). The morphology of the samples was studied with
a scanning electron microscope (SEM, FEI Apreo) and a transmission electron
microscope (TEM, JEM-2100F). The elemental mappings were analyzed by energy
dispersive X-ray spectroscopy (EDS) attached to the SEM instrument.
Thermogravimetric analysis (TGA) was performed at a heating rate of 10 °C min™! in
the temperature range of 25-800 °C under air atmosphere (DTG-60H, Shinadzu). The
carbon contents were also measured with an Infrared Carbon-sulfur analyzer (CS-

8800C, Jinbo). The specific surface area was measured by N,-adsorption/desorption



(ASAP 2020). Raman spectra (Renishaw inVia Raman Microscope) were recorded on
the condition of 532 nm diode laser excitation. Fourier transformation infrared
spectroscopy (FTIR, Magna-IR 750 spectrometer) in the range of 400-4000 cm™' was

performed.

Electrochemical evaluation

The VPO, electrodes consisted of the active material (70 wt. %), acetylene black (20
wt. %) and carboxymethyl cellulose binder (10 wt. %) on copper foil. The typical
VPO, mass loadings were about 1.5 mg cm, respectively. The electrochemical
properties of the obtained materials were evaluated in coin-type cells (CR2032 size),
which were assembled in an argon filled glove box (MBraun Unilab). For the
fabrication of potassium half cells, potassium metal was used as the counter electrode,
3 mol L' KFSI in DME was used as the electrolyte and a Whatman glass-fiber
separator was used. The cells were galvanostatically cycled on a multi-channel battery
test system (Neware BTS-2300, Shenzhen) in the voltage range of 0.01-3.0 V. The
cyclic voltammetry (CV) of the cells was conducted on a CHI 660C electrochemical
workstation at the scan rate of 0.1-2.0 mV s'!. The electrochemical impedance spectra

(EIS) were measured through a frequency range between 0.01 Hz to 100 kHz.

Ex-situ measurements

The cells were charged and discharged at a low current of 50 mA g to a certain
voltage, and then were disassembled and washed by DME in the glove box.
Polyimide films are covered at the surface of electrodes in glove box before the ex-

situ XRD test.
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Fig. S1 SEM images of VPOy4-B (a) and VPO,-F (b).

& 1 det mode cur WD mat I
X3 2.00kV_ETD SE 0pA_ 101 mm 50000 x OptiPlan

> cps/eV

i B 3
10;
8

V/P=1.02/0.98

A

Fig. S2 EDS result of VPO,-F.
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Fig. S3 N, adsorption-desorption isotherms of VPO, samples.
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Fig. S4 XRD patterns of VOPO,-2H,O and VOHPO,. A small amount of un-
intercalated VOHPO,4-0.5H,0 in VOHPO,-F is marked with asterisk (*).
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Fig. S5 FTIR spectra of VOPO,4-2H,0 and VOHPO,.
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Fig. S6 XRD patterns of VOHPO,-F after annealing in H,/Ar at 900 °C for 12h.
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Fig. S7 TG curves of VPO, samples.

Fig. S8 Optical photographs of VOPO,4-2H,0 and VOHPO, (a), VPO, samples (b).
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Fig. S9 XPS spectrum of VPO,-F.
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Fig. S10 High-resolution XPS spectra of V 2p (a), P 2p (b), O 1s (¢), and C 1s (d) of
VPO4-F.



Fig. S11 TEM images of VPO,-B (a) and VPO,-F (b).
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Fig. S12 The comparison of the 1% (a) and the 2" (b) discharge/charge curves of the

VPO, samples at a current density of 50 mA g-!.



—_
[
S

c e Cu
Polyimide film

Full charge

e S

Half charge

/M..."ur .L

0 Full discharge

Intensity (a.u.)
E

NP_O‘. k4 ) Half discharge

1 ll l | VPO-B

Simulated K,PO, patterns

10 20 30 40 50
20 (degree)

60 70

(b)

Intensity (a.u.)

Polyimide film

*Cu

1st charge

1st discharge

VPO,-F

10 20 30 40

20 (degree)

50

60 70

Fig. S13 Ex-situ XRD patterns of crystalline VPO4-B (a) and amorphous VPO4-F (b)

at different discharge/charge states of the 15t cycle.

Fig. S14 TEM and HR-TEM images of VPO4-B (a-c) and VPO,-F (d-f) electrodes

after the 1%t discharge process.
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Fig. S15 High-resolution XPS spectra of V 2p at the 1% discharged (a) and charged (b)
states of VPO4-F. V 2p (¢) and P 2p (d) XPS spectra of VPO,-F at different

electrochemical stages.

Fig. S16 SEM images of the electrodes after 100 cycles: (a)VPO4-P, (b) VPO,-B, (¢)
VPO,-F.



R e | Ro | R/2
| © VPO, P——Fitted 3,5 5009 4501
© VPO,-B——Fitted 3.071 670.9 505.5
9004 =~ VPO,-F ——Fitted 3.668 9451 620.3
g
- 600-
N
300 -

T T T

800 1200 1600
Z' (Q2)

Fig. S17 EIS spectra of VPO, samples fitted using the inset equivalent electrical
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circuit model. The cells were first discharged to 0.01 V and charged to 2.0 V.
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Fig. S18 (a) CV curves of VPO4-F at various sweep rates from 0.1 to 2.0 mV s°!; (b)
Separation of the capacitive and diffusion-controlled currents at a sweep rate of 0.5
mV s!; (¢) Contribution ratio of the capacitive and diffusion-controlled charge at

various sweep rates.
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