1	Supplementary Information
2	Enhanced in situ detection and imaging of lipids in biological
3	tissues by using 2,3-dicyanohydroquinone as a novel matrix for
4	positive-ion MALDI-MS Imaging
5	Yaqin Liu,‡ ^{ab} Lulu Chen,‡ ^b Liang Qin,‡ ^b Manman Han, ^{ab} Jinming Li, ^{ab} Feixian Luo, ^b
6	Kun Xue, ^b Jinchao Feng, ^b Yijun Zhou ^b and Xiaodong Wang ^{*ab}
7	
8 9	a. Centre for Imaging & Systems Biology, Minzu University of China, Beijing
10	100081, China.
11	b. College of Life and Environmental Sciences, Minzu University of China, Beijing
12	100081, China
13	‡ Y. L., L. C., and L. Q. contributed equally to this manuscript.
14	
15	
16	
17	
18	
19	*Corresponding author:
20	Prof. Xiaodong Wang, Ph.D
21	Centre for Imaging & Systems Biology, College of Life and Environmental Sciences,
22	Minzu University of China
23	#27 Zhongguancun South Avenue, Beijing, 100081, China
24	Email: Xiaodong@muc.edu.cn
25	Tel.: +86-10-68932922; Fax: +86-10-68936927

1 Supplementary Information--Experimental Section

Chemicals and Materials. 2,3-dicyanohydroquinone (DCH), 2,5-dihydroxybenzoic 2 acid (DHB), 2,5-dihydroxyacetophenone (DHA), para-nitroaniline (PNA), 2,4-3 dinitrophenylhydrazine (DNPH), 2-mercaptobenzothiazole (2-MBT), α-cyano-4-4 hydroxycinnamic acid (CHCA), LC/MS-grade acetonitrile (ACN), methanol, ethanol, 5 trifluoroacetic acid (TFA), formic acid (FA), and hematoxylin and eosin (H&E) staining 6 7 solutions were purchased from Sigma-Aldrich (St. Louis, MO). One lipid standard compound of PC(16:0/18:2) was purchased from Avanti Polar Lipids, Inc. 8 9 (Birmingham, AL). Ultrapure water used throughout the experiment was obtained from a Milli-Q system (Millipore, Milford, MA). Germinating Chinese-yew seeds were 10 collected from Jiujiang city, Jiangxi Province, China, in November 2016. Camelina 11 12 seeds were purchased from ExportGrain Corp. Ltd (Hei Longjiang, China). An 8-weekold adult male Sprague-Dawley rat was purchased from Shanghai Super-B&K 13 laboratory animal Corp. Ltd (Shanghai, China) for rat liver harvest, and a 6-week-old 14 male Kunming mouse was purchased from National Institutes for Food and Drug 15 Control (Beijing, China) for mouse brain obtaining. For tissue frozen, all the harvested 16 animal organs were slowly immersed into liquid nitrogen to avoid shattering, and then 17 stored at -80 °C until use. All of the animal organs used in this study were approved by 18 the Ethics Committee of College of Life and Environmental Sciences, Minzu 19 20 University of China.

UV-Vis Absorption Spectroscopy. Ultraviolet-visible (UV-Vis) absorption spectra of DCH, DHB, PNA, DNPH, 2-MBT, and CHCA solutions at the concentration of 2×10^{-5} mol/L were acquired on a UV-vis spectrometer (TU-1901, Jasco, Japan). For preparation of these solutions, 0.0320 g of DCH was dissolved in 1 mL solvent of ACN/H₂O/TFA (90:10:0.3, v/v/v), 0.0308 g of DHB was dissolved in 1 mL solvent of

methanol/H₂O/TFA (80:20:0.1, v/v/v), 0.0276 g of PNA was dissolved in 1 mL solvent 1 of methanol/H₂O/TFA (85:15:0.1, v/v/v), 0.0396 g of DNPH was dissolved in 1 mL 2 solvent of ACN/H₂O/TFA (50:50:0.1, v/v/v), 0.0334 g of 2-MBT was dissolved in 1 3 mL solvent of methanol/H2O/TFA (80:20:0.1, v/v/v), and 0.0378 g of CHCA was 4 dissolved in 1 mL solvent of methanol/H2O/TFA (85:15:0.1, v/v/v). These matrices 5 solutions were then diluted to the final concentration of 2×10^{-5} mol/L with the 6 7 corresponding solvents. The wavelength scanning range from 250 to 500 nm was used for UV-vis absorption spectrum acquirement. 8

9 **Optimization of Matrix Solution Composition.** To establish the optimal DCH matrix solution, L9 (3³) orthogonal array testing was carried out. According to previously 10 studies,^{1,2} the concentration of DCH, the % ACN, and the % TFA were used as the three 11 variables for the optimization of matrix DCH solution. For each variable, three levels 12 were chosen for the matrix optimization. The concentrations of DCH were prepared at 13 8, 10, and 12 mg/mL; the % ACN was prepared at 70%, 80%, and 90% in H₂O; the % 14 TFA was prepared at 0.1%, 0.2%, and 0.3%. Serial parallel-sectioned tissue slices (12-15 μ m thickness) of homogeneous rat liver were used for the DCH matrix optimization. 16

17 Chemical Stability Evaluation. For the preparation of the matrix solutions, DCH was prepared at the optimal concentration of 10 mg/mL in ACN/H₂O/TFA (90:10:0.3, v/v/v), 18 19 DHB was prepared at 10 mg/mL in 80:20 (v/v) methanol/H₂O containing 0.1% TFA, 20 and DHA at a concentration of 10 mg/mL was dissolved in 50:50 (v/v) ethanol/H₂O containing 0.05% TFA. An air-brush sprayer (model 200, Badger Air-brush) was used 21 for the matrix coating. Each matrix solution was sprayed for a total of 45 cycles (5 s of 22 spraying and 60 s of drying time) on the surfaces of a clean glass slide $(2.5 \times 2.5 \text{ cm})$ 23 and rat liver tissue section. After air-drying in a vented fume hood, three matrix-coated 24 25

1 ⁷ mbar) with a modified standby mode (the high voltage on target plate is switched off, and the UV laser in MALDI source is in a non-excited state) for chemical stability 2 evaluation. Optical images of matrix-coated glass slides were captured using an Epson 3 Perfection V550 Photo Flatbed Scanner (Epson, Suwa, Japan) at different time points 4 during vacuum-storage (i.e., 0, 4, 8, 16, 24, 32, 40, and 48 h). Subsequently, optical 5 images of these matrix-coated glass slides were also taken after the atmospheric 6 7 pressure storage at room temperature for 5, 10, 20, and 30 days. Meanwhile, all the weights of these matrix-coated glass slides at each storage time point were also 8 9 measured with an electronic balance (MS105DU, Mettler-Toledo, USA). Microscopic images of dried DCH, DHB, PNA, DNPH, 2-MBT, and CHCA matrix particles formed 10 by spraying were captured with a Nikon ECLIPSE Ti2-E inverted microscope (Nikon, 11 Tokyo, Japan) under three different magnifications $(10\times, 20\times, \text{ and } 60\times)$. 12

Quantitative Analysis of PC(16:0/18:2) Standard using DCH as the MALDI 13 Matrix. A series of standard solutions of PC(16:0/18:2) with twenty-eight different 14 concentrations in the range from 0.0 to 6.0 $\mu g/\mu L$ were prepared in H₂O containing 0.1% 15 TFA for quantitative evaluation for the use of DCH as the MALDI matrix. The detail 16 concentrations of these solutions are 0.0, 0.0002, 0.0004, 0.0006, 0.0008, 0.001, 0.002, 17 0.004, 0.006, 0.008, 0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 18 1.8, 2.0, 4.0, and 6.0 $\mu g/\mu L$. DCH was dissolved at the optimal concentration of 10 19 20 mg/mL in 90% aqueous ACN containing 0.3% TFA. Before MS analysis, 1 μ L of the series PC(16:0/18:2) standard solutions were spotted onto a MTP Anchorchip 384-well 21 target plate (Bruker Daltonics, Billerica, MA) for air-drying at room temperature (25 22 23 °C), and then 1 μ L of DCH matrix solution was added onto each air-dried PC(16:0/18:2) standard solution spot. After air-drying in a vented fume hood, quantitative detection 24 were performed using an Autoflex Speed MALDI TOF/TOF mass spectrometer 25

equipped with a 2000 Hz solid-state Smart beam Nd:YAG/355 nm UV laser (Bruker
Daltonics, Billerica, MA). The Microsoft Excel 2016 was used for the construction of
linear regression plots by plotting the peak intensities of the target standard compound
of PC(16:0/18:2) versus the concentrations of the standard solutions.

Tissue Sectioning. All the selected fresh frozen tissues, including rat liver, mouse brain, camelina seed, and germinating Chinese-yew seed, were cryo-sectioned into 12 μ m thickness slices with a Leica CM1860 cryostat (Leica Microsystems Inc., Wetzlar, Germany) at the chamber temperature of -20 °C, and then these serial cryo-sectioned tissue slices were immediately thaw-mounted on the indium tin oxide (ITO)-coated microscope glass slides purchased from Bruker Daltonics (Bremen, Germany).

11 Matrix Coating. DCH was prepared at the optimal concentration of 10 mg/mL in 12 ACN/H₂O/TFA (90:10:0.3, v/v/v). DHB at a concentration of 25 mg/mL was prepared in 80:20 methanol/H₂O containing 0.1% TFA. 2-MBT at a concentration of 12 mg/mL 13 was prepared in 80:20 methanol/H2O containing 2% FA. CHCA at a concentration of 14 20 mg/mL was prepared in 85:15 methanol/H₂O containing 0.1% TFA. DNPH at a 15 concentration of 4 mg/mL was prepared in 50:50 ACN/H₂O containing 0.1% TFA. PNA 16 at a concentration of 20 mg/mL was prepared in 85:15 methanol/H₂O containing 0.1% 17 TFA. Two standard peptide solutions, including Bradykinin 1-7 (*m/z* 757.40, 900 ng/ml) 18 and Angiotensin II (m/z 1046.54, 750 ng/ml), were added to each above mentioned 19 matrix solution for the lipid in situ analysis on tissue sections. Bradykinin 1-7 and 20 Angiotensin II signal ions were used in combination with the matrix ions of $[M+H]^+$ as 21 the internal standard to calibrate and improve the accuracy of the detectable lipid ion 22 signals. For matrix deposition, all the matrix solutions were coated onto the surface of 23 the rat liver, mouse brain, camelina seed, and germinating Chinese-yew seed tissue 24 25 sections using a Badger Air-brush sprayer (model 200, Franklin Park, IL). Forty-five

S-5

cycles (2s spray, 30s incubation and 60s drying time) were carried out for matrix coating.
 After matrix drying, optical images of the matrix-coated tissue sections were captured
 by using an Epson Perfection V550 Photo Scanner (Epson, Suwa, Japan).

MALDI-MS. The MALDI-MS measurements were performed in positive-ion 4 reflection mode on an Autoflex Speed MALDI-TOF/TOF mass spectrometer (Bruker 5 Daltonics, Billerica, MA). For MALDI-MS profiling, all mass spectra were acquired 6 7 over the mass range from 100 to 1700 Da, and recorded by accumulating 200 scans at 500 laser shots per scan. Each spectrum was acquired by applying the optimized laser 8 9 power for each matrix, in the range of 45% to 55% of the full scale of the Nd:YAG UV laser power with a global attenuator offset of 20%, which is ca. 1.6 mJ per pulse 10 according to the manufacturer's product specification. Thus, 45% to 55% of the full 11 scale of the Nd:YAG UV laser power with a global attenuator offset of 20% is 12 equivalent to 720 to 880 μ J per laser shot. MS images of endogenous lipids in mouse 13 brain and germinating Chinese-yew seed were obtained over a window of m/z range 14 from 500 to 1100 at a spatial resolution of 100 μ m with 500 laser shots per position. 15 For MALDI-MS data acquisition, a mixed standard solution, including Bradykinin 1-7 16 ([M+H]⁺, *m/z* 757.40), Angiotensin II ([M+H]⁺, *m/z* 1046.54), Angiotensin I ([M+H]⁺, 17 m/z 1296.68), Substance P ([M+H]⁺, m/z 1347.74), and Bombesin ([M+H]⁺, m/z18 1619.82), was used for external mass calibration. The matrix ions of DCH ([M+H]⁺, 19 *m*/*z* 161.03), DHB ([M+H]⁺, *m*/*z* 155.03), 2-MBT ([M+H]⁺, *m*/*z* 167.99), CHCA 20 $([M+H]^+, m/z \ 190.05), DNPH ([M+H]^+, m/z \ 199.05), and PNA ([M+H]^+, m/z \ 139.05),$ 21 were chosen in combination with two standard compound ions of Bradykinin 1-7 22 $([M+H]^+, m/z 757.40)$ and Angiotensin II $([M+H]^+, m/z 1046.54)$ for internal mass 23 calibration. The cubic enhanced mode was chosen for both external and internal mass 24 calibration processing. 25

Data Analysis. According to previous studies,^{1, 3, 4} FlexAnalysis 3.4 software (Bruker 1 Daltonics) was used for the MALDI-MS profiling data viewing and processing, such 2 as peak alignment, batch internal mass calibration, monoisotopic "peak picking", and 3 so on. The lipid ions were manually characterized by matching experimental precursors 4 with theoretical values for parent ion spectra and experimental fragment ions with 5 theoretical in MS/MS. 6 ones Three databases, including METLIN 7 (https://metlin.scripps.edu/), LIPID MAPS (www.lipidmaps.org), and LipidBlast (https://fiehnlab.ucdavis.edu/), were used for the lipid entity matching, within an 8 allowable mass error of ± 10 ppm. Three ion adduct forms of $[M+H]^+$, $[M+Na]^+$, and 9 $[M+K]^+$ were considered during the database searching in the positive-ion mode. 10 FlexImaging 4.1 software (Bruker Daltonics) was used to reconstruct the ion maps of 11 the detected lipids, with an allowable mass filter width of 10 ppm. 12

Histological Staining. After MALDI-MSI experiments, the same tissue sections were sequentially washed with 70%, 90%, and 100% methanol solutions to remove the matrix, and then hematoxylin and eosin (H&E) staining was performed to obtain standard histological optical images, according to a previously study.⁵

Lipids Extraction. Based on the previous reported procedure,^{1,3,4} lipids were extracted 17 from serial parallel-sectioned tissue slices (total ca. 250 mg, and 25 μ m thickness for 18 19 each tissue slice) of the same samples (rat liver, mouse brain, camelina seed, germinating Chinese-yew seed) which were used for MALDI profiling or imaging. 20 Briefly, each tissue sample was added into five clean 2-mL Eppendorf tubes and 21 homogenization was carried out by adding 200 µL H₂O in each Eppendorf tube with 22 four 5 mm stainless steel balls on a Precellys 24 tissue homogenizer (Bertin 23 Technologies, France) for 60 s \times 3. Next, 800 μ L of a mixed chloroform/methanol (1:3, 24 v/v) solvent was added in each Eppendorf tube and the solution was homogenized for 25

another 30 s. The vibrating frequency was set as 30 Hz during homogenization process. 1 2 The tubes were then centrifuged at $10,000 \times g$ in an Eppendorf 5430 R centrifuge (Hamberg, Germany) for 20 min at the temperature of 4 °C. The organic phase layer 3 (chloroform layer) was carefully collected into a new 2-mL Eppendorf tube and then 4 dried in the Savant SPD111 SpeedVac concentrator (Thermo Scientific, Waltham, USA) 5 at 4 °C. The dried lipid sample was dissolved in 500 μ L of 50% ACN with 10-min 6 7 ultrasonic treatment. Finally, the lipid solution was filtered using 0.22 μ m filter membrane for the following LC-MS/MS analysis. 8

LC-MS/MS Data Acquisition and Analysis. The structural confirmation of most of 9 the detected mass-matched lipid compounds was accomplished by LC/MS/MS analysis. 10 11 A Waters ACQUITY UPLC system coupled online to an Orbitrap Fusion Lumos Tribrid mass spectrometer (Thermo Fisher Scientific, Bremen, Germany), equipped with an 12 ESI source was used. The mobile phase consisted of 0.01% formic acid in water 13 (solvent A) and 0.01% formic acid in ACN/isopropanol (1:1) (solvent B) for binary 14 gradient elution. An elution gradient of 5% to 45% B in 5 min; 45% to 100% B in 15 15 min and 100% B for 2 min was used to separate the lipids on a Waters BEH C8 column 16 17 $(2.1 \times 50 \text{ mm}, 1.7 \mu\text{m})$ with the flow rate of 0.35 mL/min and a column temperature of 45 °C before the next injection. The FTMS detection mode was set at a mass resolution 18 of 15,000 FWHM (m/z 400) for LC-MS survey scan data within a mass range of m/z 30 19 to 2000. MS/MS experiments on the top 5 most abundant ions in the survey scan were 20 21 performed using collision-induced dissociation (CID) at a normalized collision energy of 30%. The automatic gain control and the time limit for each ion injection were 2 \times 22 10⁵ ion counts, and 100 ms in the ion trap. During the MS/MS data acquisitions, 23

dynamic exclusion was applied with an ion exclusion time of 15 s. the assignment of
the lipids was obtained by comparison of the acquired MS/MS spectra with those in the
standard MS/MS libraries of the METLIN, HMDB, or LIPID MAPS database, with the
aid of some manual spectral interpretation.

1 Supplementary Information--Results and Discussion

A 355 nm Nd:YAG ultraviolet (UV) laser was installed on the MALDI-TOF/TOF mass
spectrometer used in this study, and UV absorption is a prerequisite for any new
MALDI matrix screening.² The UV absorption spectra of DCH, DHB, PNA, DNPH, 2MBT, and CHCA were first measured by an UV-vis spectrometer (Fig. S1). As shown,
DCH shows the strongest UV absorption at 355 nm, indicating that DCH has the
potential for use as a new MALDI matrix for lipid *in situ* detection and MSI studies.

1 Supplementary Information Figures

- 3 Fig. S1 Chemical structures (A) and the corresponding UV-vis absorption spectra (B) of the
- 4 DCH, DHB, 2-MBT, CHCA, DNPH, and PNA matrices.

Fig. S2 Comparison of mass spectra acquired using DCH as the matrix from the laser irradiation
of glass slides coated with (red) and without (black) tissue sections of the same rat liver by

4 MALDI-TOF MS in the positive detection ion mode. The matrix solution containing 8 mg/mL

5 DCH, prepared in 70% ACN solution containing 0.1% TFA, without optimization.

Fig. S3 Comparison of mass spectra acquired from UV laser irradiation of glass slides coated with (red mass spectra) and without (black mass spectra) rat liver tissue sections of the same by MALDI-TOF MS in both positive (right) and negative (left) ionization modes using DCH as the matrix. The optimized matrix solution, containing 10 mg/mL DCH, prepared in 90% ACN solution containing 0.3% TFA, was prepared for these detections.

Fig. S4 Orthogonal array testing for the optimization of DCH matrix solution compositions.
Three variables (% of ACN in water, DCH concentration, and % of TFA) and three levels of
each variable were tested. The numbers of detected lipids were the average numbers from nine
independent detection results (n=3*3).

1

2 Fig. S5 Bar graphs showing the number of lipid species detected from the rat liver tissue

3 sections by MALDI-TOF MS in the positive-ion mode using DCH, DHB, 2-MBT, CHCA,

4 DNPH, and PNA as the matrices.

1

2 Fig. S6 Comparison of mass spectra acquired using DNPH (A), CHCA (B), 2-MBT (C), PNA

3 (D), DCH (E), and DHB (F) as the matrices from laser irradiation of serial $12-\mu m$ tissue sections

4 of the same camelina seed by MALDI-TOF/TOF MS.

1

2 Fig. S7 Bar graphs showing the number of lipid species detected from the camelina seed tissue

3 sections by MALDI-TOF MS in the positive-ion mode using DCH, DHB, 2-MBT, CHCA,

4 DNPH, and PNA as the matrices.

Fig. S8 Scatter diagram showing the total number of lipids detected from the rat liver and

camelina seed tissue sections by MALDI-TOF MS in the positive-ion mode using DCH, DHB,
2-MBT, CHCA, DNPH, and PNA as the matrices.

Fig. S9 (A-C) Comparison of chemical stability of three different matrices of DCH, DHB, DHA
kept in the high vacuum MALDI ion source (~10⁻⁷ mbar) and atmospheric pressure condition
with different storage times. The optical images of matrix-coated glass slides were captured
with an Epson Perfection V550 Photo Scanner. The "control" labeled with asterisk means clean
glass without coated matrix.

2 Fig. S10 Comparison of mass spectra of lipids detected in three matrix-coated rat liver tissue

3 sections with different high-vacuum storages (0, 8, 24, and 40 h) by MALDI-TOF MS. DCH,

4 DHB, and DHA were used for rat liver tissue section matrix-coating, respectively.

2 Fig. S11 Comparison of the morphologies of matrix crystals of DCH, DHB, PNA, DNPH, 2-

MBT, and CHCA coated on glass slides. A Nikon ECLIPSE Ti2-E inverted microscope was
used for microscopic images acquiring under 10×, 20×, 60× magnification.

3 Fig. S12 Quantitative performance of PC(16:0/18:2) standard measured by MALDI-TOF MS using DCH as the matrix in the positive-ion mode. (a) Selected mass spectra showing the 4 5 quantitative analysis of PC(16:0/18:2) standard with different concentrations by MALDI-TOF 6 MS using DCH as the matrix in positive ion mode. (b) Dynamic range of linearity for detection 7 of PC(16:0/18:2) standard. Three independent experiments and three replicates were carried 8 out (n=3*3) to obtain the generation of quantitative standard curve of PC(16:0/18:2) standard. 9 (c) LLOD of PC(16:0/18:2) standard. Abbreviations: LLOD, lower limit of detection; LLOQ, lower limit of quantitation; ULOL, upper limit of linear response. 10

2 Fig. S13 Mass spectra (A and C) and the selected ion maps of lipids (B and D) detected from

3 mouse brain and germinating Chinese-yew seed tissue sections by MALDI-TOF/TOF MS in

4 the positive-ion mode using DHB as the matrix. The black square represents no lipid ion images

5 were collected by using DHB as a matrix. The H&E stained image was obtained from the same

6 tissue section after MSI. MS imaging was acquired at 100 μ m spatial resolution.

1 2 Fig. S14 Comparison of the number of lipid entities detected on the mouse brain tissue sections

3 by MALDI-TOF MS in the positive-ion mode using DCH and DHB as the matrices.

2 Fig. S15 Comparison of the selected ion maps of lipids detected on a 12 μ m mouse brain tissue

- 3 section by MALDI-TOF MS in the positive-ion mode using DCH and DHB as the matrices.
- 4 The MS imaging was acquired at 100 μ m spatial resolution.

4 matrices.

2 Fig. S17 Comparison of the selected ion maps of the lipids detected on a $12-\mu m$ germinating

- 3 Chinese-yew seed tissue section by MALDI-TOF MS in the positive-ion mode using DCH and
- 4 DHB as the matrices. The MS imaging was acquired at 100 μ m spatial resolution.

	Manager	Gebeeleded	F		Assignment			Structurally
No.	measured m/z	m/z	ppm	Ion form	Compound	Molecular	Ref.	specific CID
					· · · ·	formula		ions (m/z)a)
1	503.25	503.2534	7	$[M+K]^+$	PA(20:1)	$C_{23}H_{45}O_7P$	1	
2	507.25	507.2484	3	$[M+K]^+$	PG(P-16:0)	$C_{22}H_{45}O_8P$	1	
3	510.36	510.3554	9	$[M+H]^+$	PE(20:0)	$C_{25}H_{52}NO_7P$	6	
4	511.30	511.3030	6	$[M+H]^+$	PG(18:1)	$C_{24}H_{47}O_9P$		493, 475, 419, 283, 155
5	514.23	514.2330	6	$[M+K]^+$	PE(18:3)	$C_{23}H_{42}NO_7P$	6	
6	520.28	520.2800	0	[M+K] ⁺	PE(18:0)	C ₂₃ H ₄₈ NO ₇ P	6	
7	521.32	521.3214	3	[M+Na] ⁺	PG(18:0)	$C_{24}H_{51}O_8P$		
8	522.26	522.2591	2	[M+Na] ⁺	PE(20:5)	C ₂₅ H ₄₂ NO ₇ P		
9	524.37	524.3711	2	$[M+H]^+$	PC(18:0)	C ₂₆ H ₅₄ NO ₇ P		
10	526.29	526.2928	5	$[M+H]^+$	PE(22:6)	$C_{27}H_{44}NO_7P$	6	
11	529.27	529.2691	2	[M+K] ⁺	PA(22:2)	C ₂₅ H ₄₇ O ₇ P		
12	531.27	531.2717	3	$[M+H]^+$	PG(20:5)	$C_{26}H_{43}O_9P$		
13	532.30	532.3010	2	[M+Na] ⁺	PC(16:0)	$C_{24}H_{48}NO_8P$		494, 478, 327, 185, 88
14	533.30	533.3004	1	[M+K] ⁺	PA(22:0)	C ₂₅ H ₅₁ O ₇ P	6	
15	534.32	534.3166	6	[M+Na] ⁺	PS(O-18:0)	$C_{24}H_{50}NO_8P$		
16	535.28	535.2797	1	$[M+K]^+$	PG(P-18:0)	$C_{24}H_{49}O_8P$		
17	536.50	536.5037	7	[M+H]+	Cer(34:2)	C ₃₄ H ₆₅ NO ₃		
18	542.26	542.2643	8	$[M+K]^+$	PE(20:3)	$\mathrm{C}_{25}\mathrm{H}_{46}\mathrm{NO}_{7}\mathrm{P}$	6	
19	544.28	544.2800	0	$[M+K]^+$	PE(20:2)	C ₂₅ H ₄₈ NO ₇ P	6	
20	546.29	546.2956	10	$[M+K]^+$	PE(20:1)	C ₂₅ H ₅₀ NO ₇ P	6	
21	548.44	548.4440	7	$[M+K]^+$	Cer(d32:1)	C ₃₂ H ₆₃ NO ₃		
22	551.50	551.5034	6	$[M+H]^+$	DG(P-32:1)	$C_{35}H_{66}O_4$	1	
23	558.29	558.2956	10	$[M+K]^+$	PC(18:2)	C ₂₆ H ₅₀ NO ₇ P	1	
24	559.43	559.4333	6	[M+Na] ⁺	DG(30:2)	$C_{33}H_{60}O_5$		
25	560.31	560.3113	2	$[M+K]^+$	PC(18:1)	C ₂₆ H ₅₄ NO ₇ P		522, 504, 184,
26	562 16	563 1616	Q	[M+No1+	DG(20.0)	C.,H.O.		104
20	569.29	568 2000	0	[1v1 + 1va]	DG(50.0)	C II NO P	3	
21	308.28	508.2800	0	[IM+K]	PE(22:4)	C ₂₇ H48NO7P	2	511 526 181
28	582.29	582.2956	10	$[M+K]^+$	PC(20:4)	C ₂₈ H ₅₀ NO ₇ P		104

1 Table S1. Lipids detected and identified in the rat liver tissue sections by MALDI-TOF MS in

2 the positive-ion mode using DCH as the matrix.

		Maagurad	Calculated	Бинон	Assignment			Structurally	
	No.	m/z	m/z		Ion form	Compound	Molecular	Ref.	specific CID
				(P P)		compound	formula		ions (m/z)a)
	29	584.41	584.4050	9	[M+Na] ⁺	CerP(d30:1)	$C_{30}H_{60}NO_6P$		
	30	594.41	594.4129	5	$[M+H]^+$	PC(22:0)	$C_{30}H_{60}NO_8P$		
	31	606.29	606.2956	9	$[M+K]^+$	PC(22:6)	C ₃₀ H ₅₀ NO ₇ P	7	
	32	607.34	607.3372	5	$[M+K]^+$	PG(22:0)	$C_{28}H_{57}O_9P$		
	33	609.45	609.4489	2	[M+Na] ⁺	DG(34:5)	$C_{37}H_{62}O_5$		
	34	614.36	614.3582	3	[M+K] ⁺	PC(22:2)	C ₃₀ H ₅₈ NO ₇ P		
	35	616.37	616.3739	6	[M+K] ⁺	PC(22:1)	C ₃₀ H ₆₀ NO ₇ P	3	
	36	617.51	617.5115	2	[M+Na] ⁺	DG(34:1)	C ₃₇ H ₇₀ O ₅	2	
	37	627.44	627.4385	2	$[M+K]^+$	DG(34:4)	$C_{37}H_{64}O_5$		571, 351, 333, 259, 239, 59
	38	631.47	631.4698	0	$[M+K]^+$	DG(34:2)	$C_{37}H_{68}O_5$		
	39	637.41	637.4075	4	$[M+H]^+$	PG(26:1)	$C_{32}H_{61}O_{10}P$		
	40	638.49	638.4881	3	[M+Na] ⁺	DG(36:2)	$C_{39}H_{67}D_5O_5$	3	
	41	646.42	646.4208	1	$[M+K]^+$	PC(24:0)	C32H66NO7P	3	
	42	647.56	647.5585	2	[M+Na] ⁺	DG(36:0)	C ₃₉ H ₇₆ O ₅		
	43	651.46	651.4595	1	$[M+H]^+$	PG(P-28:0)	$C_{34}H_{67}O_9P$		
	44	653.61	653.6079	3	$[M+H]^+$	DG(38:0)	$C_{41}H_{80}O_5$	2	
	45	659.51	659.5123	3	$[M+H]^+$	PE-Cer(d24:2)	$C_{36}H_{71}N_2O_6P$		
	46	666.47	666.4704	1	$[M+H]^+$	PS(O-28:0)	C34H68NO9P		
	47	688.60	688.6004	1	$[M+K]^+$	Cer(d42:1)	C ₄₂ H ₈₃ NO ₃		
	48	689.43	689.4364	9	[M+Na] ⁺	PG(28:0)	$C_{34}H_{67}O_{10}P$		
	49	694.57	694.5746	7	$[M+K]^+$	Cer(t40:0)	$C_{40}H_{81}NO_5$		
	50	703.49	703.4884	2	[M+Na] ⁺	PG(O-30:0)	$C_{36}H_{73}O_9P$		
	51	704.43	704.4262	5	[M+Na] ⁺	PE(32:5)	C ₃₇ H ₆₄ NO ₈ P		
	52	725.49	725.4882	2	[M+K] ⁺	PA(P-36:1)	C ₃₉ H ₇₅ O ₇ P		
	53	733.62	733.6218	2	$[M+H]^+$	SM(d36:0)	$C_{41}H_{85}N_2O_6P$	8	
	54	734.48	734.4755	6	[M+H] ⁺	PE(36:7)	C41H68NO8P		
									695, 615, 453,
	55	735.53	735.5299	0	[M+Na] ⁺	PA(O-38:3)	$C_{41}H_{77}O_7P$	3	435,
	56	737.41	737.4153	7	[M+Na] ⁺	PA(38:9)	$C_{41}H_{63}O_8P$		279, 261
	57	741.45	741.4490	1	$[M+H]^+$	PA(40:10)	C ₄₃ H ₆₅ O ₈ P		
	58	742.41	742.4056	6	[M+K] ⁺	PS(30:2)	C ₃₆ H ₆₆ NO ₁₀ P		
-									

	Manager	Calculated	F	Assignment				Structurally
No.	measured	Calculated	Error	Ion form	Compound	Molecular	Ref.	specific CID
	III/Z	III/Z	lbbm	TOIL TOT III	Compound	formula		ions (m/z)a)
59	749.51	749.5116	2	$[M+H]^+$	PA(40:6)	$C_{43}H_{73}O_8P$		651, 461, 443, 289
60	750.45	750.4471	4	[M+K] ⁺	PE(34:4)	C ₃₉ H ₇₀ NO ₈ P	2	
61	751.51	751.5151	7	$[M+K]^+$	PE-Cer(d38:3)	C ₄₀ H ₇₇ N ₂ O ₆ P		
62	752.44	752.4473	2	[M+Na] ⁺	PS(32:3)	C ₃₈ H ₆₈ NO ₁₀ P		
63	753.55	753.5517	2	[M+Na] ⁺	PE-Cer(d38:2)	$C_{40}H_{79}N_2O_7P$		
64	754.47	754.4630	9	[M+Na] ⁺	PS(32:2)	C ₃₈ H ₇₀ NO ₁₀ P		
65	756.46	756.4576	3	[M+K] ⁺	PS(P-32:1)	C ₃₈ H ₇₂ NO ₉ P		
66	757.53	757.5354	7	[M+Na] ⁺	PG(O-34:1)	C ₄₀ H ₇₉ O ₉ P		
67	758.49	758.4943	6	[M+Na]+	PS(32:0)	C ₃₈ H ₇₄ NO ₁₀ P	9	
68	759.45	759.4573	10	[M+K] ⁺	PG(32:1)	C ₃₈ H ₇₃ O ₁₀ P		
69	760.51	760.5123	3	[M+H] ⁺	PS(34:2)	C ₄₀ H ₇₄ NO ₁₀ P		714, 504, 263, 239, 88
70	761.55	761.5456	6	[M+Na] ⁺	PA(O-40:4)	C43H79O7P		
71	762.45	762.4471	4	[M+K] ⁺	PC(32:5)	C ₄₀ H ₇₀ NO ₈ P		
72	765.45	765.4549	6	$[M+H]^+$	PI(29:2)	C ₃₈ H ₆₉ O ₁₃ P		
73	772.49	772.4888	1	[M+Na] ⁺	PC(34:6)	C ₄₂ H ₇₂ NO ₈ P		732, 285, 88
74	773.66	773.6630	4	[M+Na] ⁺	TG(44:0)	$C_{47}H_{90}O_6$	10	
75	774.60	774.6007	0	[M+H] ⁺	PE(38:1)	C ₄₃ H ₈₄ NO ₈ P	1	
76	775.68	775.6810	1	[M+H] ⁺	TG(46:2)	$C_{49}H_{90}O_6$		757, 519, 197
77	777.43	777.4315	2	[M+K] ⁺	PI(P-28:0)	$C_{37}H_{71}O_{12}P$	2	
78	778.44	778.4420	3	[M+K] ⁺	PS(P-34:4)	C ₄₀ H ₇₀ NO ₉ P		
79	779.44	779.4471	9	[M+K] ⁺	PI(O-28:0)	C ₃₇ H ₇₃ O ₁₂ P		
80	780.46	780.4575	3	[M+Na] ⁺	PE(38:9)	C ₄₃ H ₆₈ NO ₈ P		
81	781.48	781.4862	8	[M+H]+	PI(30:1)	C ₃₉ H ₇₃ O ₁₃ P		
82	782.48	782.4733	9	[M+K] ⁺	PS(O-34:3)	C ₄₀ H ₇₄ NO ₉ P		
83	784.51	784.5099	2	[M+Na]+	PS(34:1)	C ₄₀ H ₇₆ NO ₁₀ P		716, 478, 285, 267, 237
84	785.54	785.5456	7	[M+Na] ⁺	PA(O-42:6)	C ₄₅ H ₇₉ O ₇ P		
85	786.51	786.5068	4	[M+H]+	PE(40:9)	C45H72NO8P		
86	787.49	787.4885	2	[M+K] ⁺	PG(34:1)	C ₄₀ H ₇₇ O ₁₀ P		
87	788.52	788.5201	0	[M+Na] ⁺	PE(38:5)	C43H76NO8P	11	
88	789.49	789.4888	2	[M+Na] ⁺	PI(P-30:0)	C ₃₉ H ₇₅ O ₁₂ P		

	Maanmad	Calculated	Emmon		Assignment	;		Structurally
No.	m/z	calculated	Innm	Ion form	Compound	Molecular	Ref.	specific CID
	III/Z	111/2	lhhm		Compound	formula		ions (m/z)a)
89	790.40	790.4056	7	[M+K] ⁺	PS(34:6)	C ₄₀ H ₆₆ NO ₁₀ P		
90	791.50	791.4988	2	[M+K] ⁺	PA(40:4)	C43H77O8P		
91	794.43	794.4369	9	[M+K] ⁺	PS(34:4)	C40H70NO10P		710, 500, 259
92	796.45	796.4525	3	[M+K] ⁺	PS(34:3)	C40H72NO10P		712, 478, 281
93	797.51	797.5093	1	[M+K] ⁺	PG(O-36:3)	C ₄₂ H ₇₉ O ₉ P		
94	798.56	798.5619	2	[M+Na] ⁺	PS(O-36:1)	C ₄₂ H ₈₂ NO ₉ P		
95	799.52	799.5248	6	[M+Na] ⁺	PA(42:6)	C ₄₅ H ₇₇ O ₈ P		
96	800.46	800.4627	3	[M+K] ⁺	PE(38:7)	C43H72NO8P	12	
97	801.70	801.6967	4	[M+H] ⁺	TG(48:3)	C ₅₁ H ₉₂ O ₆	13	
98	802.53	802.5357	7	[M+Na] ⁺	PC(36:5)	C44H78NO8P		
99	804.45	804.4576	9	[M+K] ⁺	PS(P-36:5)	C ₄₂ H ₇₂ NO ₉ P		
100	805.73	805.7280	2	$[M+H]^+$	TG(48:1)	C ₅₁ H ₉₆ O ₆	14	
101	806.47	806.4733	4	[M+K] ⁺	PS(P-36:4)	C ₄₂ H ₇₄ NO ₉ P		
102	808.51	808.5123	3	[M+H] ⁺	PS(38:6)	C44H74NO10P	15	721, 623, 285,
						++ /+ 10		88
103	810.53	810.5256	5	[M+Na] ⁺	PS(36:2)	C ₄₂ H ₇₈ NO ₁₀ P		742, 603, 450, 321
104	813.49	813.4831	8	[M+K] ⁺	PA(42:7)	C45H75O8P		
105	814.53	814.5357	7	[M+Na] ⁺	PE(40:6)	C45H78NO8P	6	
106	815.48	815.4858	7	[M+H] ⁺	PG(40:10)	C ₄₆ H ₇₁ O ₁₀ P		
107	818.51	818.5097	0	[M+K] ⁺	PC(36:5)	C44H78NO8P	2	
108	820.46	820.4525	9	[M+K] ⁺	PS(36:5)	C ₄₂ H ₇₂ NO ₁₀ P	16	764, 597, 502, 261
109	822.47	822.4682	2	[M+K] ⁺	PS(36:4)	C ₄₂ H ₇₄ NO ₁₀ P		784, 738, 697, 599, 289
110	823.52	823.5250	6	[M+K] ⁺	PG(P-38:3)	$C_{44}H_{81}O_9P$		
111	824.48	824.4838	5	[M+K] ⁺	PS(36:3)	C ₄₂ H ₇₆ NO ₁₀ P	15	740, 504, 263
112	825.54	825.5406	1	[M+K] ⁺	PG(P-38:2)	C44H83O9P		
113	826.53	826.5357	7	[M+Na] ⁺	PC(38:7)	C ₄₆ H ₇₈ NO ₈ P	17	786, 528, 289
114	827.55	827.5563	8	[M+K] ⁺	PG(O-38:2)	C44H85O9P		
115	829.44	829.4416	2	[M+K] ⁺	PG(38:8)	C44H71O10P		
116	830.47	830.4733	4	[M+K] ⁺	PS(P-38:6)	C44H74NO9P		
117	831.45	831.4573	9	[M+K] ⁺	PG(38:7)	C ₄₄ H ₇₃ O ₁₀ P		
118	832.53	832.5253	6	[M+K] ⁺	PE(40:5)	C45H80NO8P	15	751, 653, 482

	Maggungd	Calaulatad	Emmon	Assignment				Structurally
No.	measured		Error	Ion form	Commoned	Molecular	Ref.	specific CID
	m/z	III/Z	ppm	ion iorm	Compound	formula		ions (m/z)a)
119	833.51	833.5175	9	[M+H]+	PI(34:3)	C ₄₃ H ₇₇ O ₁₃ P		
120	834.53	834.5256	5	[M+Na] ⁺	PS(38:4)	C44H78NO10P	18	725, 627, 261
121	835.53	835.5331	4	$[M+H]^+$	PI(34:2)	C ₄₃ H ₇₉ O ₁₃ P	19	
122	840.50	840.4940	7	[M+K] ⁺	PC(38:8)	C ₄₆ H ₇₆ NO ₈ P		
123	842.51	842.5097	0	[M+K] ⁺	PC(38:7)	C ₄₆ H ₇₈ NO ₈ P	1	
								713, 701, 603,
124	848.52	848.5201	0	[M+Na]+	PC(40:10)	C ₄₈ H ₇₆ NO ₈ P	20	450, 337, 319,
								211, 89
125	850.60	850.6086	10	[M+K] ⁺	PE(42:2)	C ₄₇ H ₉₀ NO ₇ P	3	
126	851.55	851.5563	7	[M+K] ⁺	PG(O-40:4)	C ₄₆ H ₈₅ O ₉ P		
127	852.55	852.5514	2	[M+Na] ⁺	PC(40:8)	C ₄₈ H ₈₀ NO ₈ P		
128	868.45	868.4525	3	[M+K] ⁺	PS(40:9)	C ₄₆ H ₇₂ NO ₁₀ P		
129	872.49	872.4838	7	$[M+K]^+$	PS(40:7)	C ₄₆ H ₇₆ NO ₁₀ P		788, 526, 285,
								486, 289, 88
130	925.48	925.4837	4	[M+Na] ⁺	PI(40:10)	C ₄₉ H ₇₅ O ₁₃ P		
121	828.47	828.4786	10	[M+Na] ⁺	DC(29.7)	C. H. NO. P	21	528, 287, 261,
151	844.45	844.4525	3	[M+K] ⁺	F3(38.7)	C44H72INO10F		88
132	812.54	812.5436	4	$[M+H]^+$	PS(38·4)	C44H72NO10P	18	766, 502, 261
102	846.46	846.4682	10	$[M+K]^+$	15(5011)	04411/6110101		, 00, 002, 201
133	783.50	783.5018	2	$[M+H]^+$	PI(30:0)	C ₃₉ H ₇₅ O ₁₃ P		765, 559, 541,
								225
134	807.50	807.5018	2	[M+H] ⁺	PI(32:2)	C ₄₁ H ₇₅ O ₁₃ P	15	789, 581, 265
	845.46	845.4577	3	$[M+K]^+$				
135	809.52	809.5175	3	[M+H] ⁺	PI(32:1)	C41H77O12P	15	791, 567, 251
	847.47	847.4733	4	$[M+K]^+$		-41// 0 13		
136	811.54	811.5330	9	$[M+H]^+$	PI(32·0)	CuHroOuP	16, 22	551 421 313
150	849.49	849.4889	1	$[M+K]^+$	1 1(32.0)	04111/90131		551, 721, 515

a) Structurally specific CID ions of lipids were detected by LC-MS/MS using CID. Fragment ions shown in blue were detected by *in situ* MALDI-MS/MS. Abbreviations: PC, phosphatidylcholine; PE, phosphatidylethanolamine; PA, phosphatidic acid; PG,
 phosphatidylglycerol; PS, phosphatidylserine; PI, phosphatidylinositol; Cer, ceramide; CerP, ceramide 1-phosphate; PE-Cer,
 phosphatidylethanolamine-ceramide; SM, sphingomyelin; DG, diacylglycerol; TG, triglyceride. Highlighted lipids were also detected using
 DCH matrix without optimization (8 mg/mL DCH, prepared in 70% aqueous ACN solution containing 0.1% TFA).

6

- 1 Table S2. Comparison of ion signals of lipids detected in the rat liver tissue sections by MALDI-
- 2 TOF MS in the positive-ion mode using DCH, DHB, 2-MBT, CHCA, DNPH, and PNA as the
- 3 matrices.

Normhan		Lipids ion signals detected in rat liver tissue sections						
Number	DCH	DHB	2-MBT	CHCA	DNPH	PNA		
1	503.25							
2					506.31			
3				506.36				
4	507.25							
5		510.31						
6	510.36							
7	511.30							
8	514.23							
9	520.28							
10	521.32							
11	522.26							
12			524.27					
13	524.37							
14	526.29							
15	529.27							
16	531.27							
17	532.30							
18	533.30							
19					534.24			
20	534.32							
21						534.48		
22	535.28							
23	536.50							
24	542.26							
25	544.28							
26	546.29							
27	548.44							
28	551.50							
29		554.51						
30		557.41						
31	558.29							
32	559.43							
33	560.31							
34					562.32			
35	563.46							
36	568.28							
37			569.51					
38					569.52			
39						575.47		

	Lipids ion signals detected in rat liver tissue sections						
Number	DCH	DHB	2-MBT	CHCA	DNPH	PNA	
40	582.29						
41	584.41						
42	594.41						
43	606.29						
44	607.34						
45	609.45						
46		614.35					
47	614.36						
48	616.37						
49		616.40					
50	617.51						
51		623.41					
52						627.40	
53	627.44						
54		627.45					
55	631.47						
56	637.41						
57	638.49						
58	646.42						
59	647.56						
60	651.46						
61	653.61						
62						657.55	
63	659.51						
64	666.47						
65				688.39			
66	688.60						
67	689.43						
68	694.57						
69						703.44	
70	703.49						
71	704.43						
72						714.46	
73	725.49						
74	733.62						
75						734.45	
76	734.48						
77		734.50					
78	735.53						
79	737.41						
80	741.45						
81			741.46				

Lipids ion signals detected in rat liver tissue sections							
Number	DCH	DHB	2-MBT	CHCA	DNPH	PNA	
82						742.40	
83	742.41						
84				749.49			
85		749.50					
86	749.51						
87			749.56			749.56	
88	750.45						
89						750.58	
90			750.63		750.63		
91	751.51						
92						751.62	
93			751.63				
94					751.68		
95	752.44						
96	753.55						
97	754.47						
98						756.42	
99	756.46						
100	757.53						
101			758.47				
102	758.49						
103		758.51					
104			759.43				
105	759.45						
106		759.52					
107						760.43	
108			760.46				
109	760.51	760.51					
110		761.54					
111	761.55						
112	762.45						
113						762.48	
114	765.45						
115						769.43	
116			772.48				
117	772.49						
118				773.51			
119						773.53	
120			773.64				
121	773.66						
122					773.67		
123						774.53	

	Lipids ion signals detected in rat liver tissue sections						
Number	DCH	DHB	2-MBT	CHCA	DNPH	PNA	
124		774.54					
125	774.60						
126	775.68						
127				777.42			
128	777.43						
129		777.44					
130			777.60				
131						777.61	
132	778.44						
133						778.59	
134			778.67				
135	779.44						
136			780.42			780.42	
137	780.46						
138		780.48					
139						781.45	
140	781.48						
141		781.49					
142						782.47	
143	782.48		782.48				
144		782.51					
145			783.43				
146	783.50						
147		783.53					
148			784.45				
149						784.50	
150	784.51						
151		784.54					
152			785.47				
153	785.54						
154			786.48				
155	786.51						
156		786.57					
157			787.47				
158	787.49						
159		787.59					
160	788.52		788.52				
161			789.39				
162	789.49						
163	790.40						
164	791.50						
165	794.43						

Manular	Lipids ion signals detected in rat liver tissue sections							
Number	DCH	DHB	2-MBT	CHCA	DNPH	PNA		
166	796.45							
167		796.46						
168			796.48					
169					796.53			
170				796.58				
171			797.41					
172		797.50						
173	797.51							
174					797.55			
175			798.43					
176					798.50			
177		798.51						
178	798.56							
179				798.64				
180			799.49					
181	799.52							
182		799.53						
183					799.56			
184	800.46							
185			800.59					
186				801.41				
187						801.57		
188			801.59					
189	801.70				801.70			
190				802.46	802.46			
191	802.53							
192						802.57		
193			802.59					
194					802.66			
195						803.59		
196			803.66	803.66				
197			804.41					
198	804.45							
199		804.50						
200				804.69				
201	805.73							
202	806.47		806.47					
203		806.52			806.52			
204			807.43					
205	807.50							
206		807.51						
207			808.45					

N 1	Lipids ion signals detected in rat liver tissue sections						
Number	DCH	DHB	2-MBT	CHCA	DNPH	PNA	
208	808.51						
209		808.55					
210			809.48				
211	809.52						
212			810.50				
213	810.53						
214		810.55					
215					810.60		
216				810.69			
217			811.47				
218	811.54						
219		811.58					
220			812.48				
221	812.54						
222						813.47	
223	813.49						
224	814.53						
225	815.48						
226	818.51						
227	820.46	820.46					
228					820.51		
229				820.61			
230			821.43				
231		821.50					
232					821.53		
233				821.67			
234			822.44				
235	822.47						
236		822.48					
237					822.53		
238			823.48				
239						823.49	
240	823.52						
241	824.48						
242		824.52					
243			824.53				
244					824.57		
245				824.65			
246			825.46				
247	825.54						
248		825.55					
249					825.57		

		signals detected in rat liver tissue sections					
Number	DCH	DHB	2-MBT	CHCA	DNPH	PNA	
250				825.70			
251			826.47				
252						826.49	
253	826.53						
254					826.59		
255			827.47				
256						827.49	
257	827.55						
258	828.47						
259		828.49					
260			828.54				
261				828.65			
262	829.44						
263	830.47						
264	831.45						
265			832.49				
266	832.53						
267	833.51						
268			834.51				
269		834.52					
270	834.53						
271					834.61		
272						835.46	
273			835.48				
274	835.53						
275						837.46	
276						839.47	
277	840.50						
278				840.59			
279	842.51						
280	844.45						
281		844.46					
282				844.58			
283			845.45				
284	845.46						
285		845.47					
286					845.50		
287				845.60			
288	846.46					846.46	
289					846.50		
290				846.59			
291	847.47						

	Lipids ion signals detected in rat liver tissue sections								
Number	DCH	DHB	2-MBT	CHCA	DNPH	PNA			
292					847.56				
293		848.51							
294	848.52								
295					848.54				
296				848.67					
297			849.45						
298		849.48							
299	849.49					849.49			
300					849.59				
301				849.69					
302			850.46						
303						850.51			
304		850.54							
305	850.60								
306				850.63					
307			851.48						
308						851.52			
309	851.55								
310	852.55					852.55			
311			853.58						
312						853.60			
313						854.57			
314						856.44			
315	868.45								
316				868.54					
317	872.49								
318					872.57				
319				872.63					
320			873.48			873.48			
321					873.59				
322				873.64					
323			874.47						
324						874.51			
325						895.62			
326			921.49						
327	925.48								
328				963.60					
329				964.62					
Total number of detected lipids	136	42	54	33	28	44			

	Manager	Gebeeleded	F		Assignment			Structurally
No.	Measured	Calculated	Error	Ion form	Compound	Molecular	Ref.	specific CID
	<i>mv 1</i> ,	m/2	phu	TOIL TOT III	Compound	formula		ions $(m/z)^{a}$
1	504.44	504.4387	3	[M+Na] ⁺	Cer(d30:1)	C ₃₀ H ₅₉ NO ₃	23	
2	522.45	522.4517	3	$[M+H]^+$	Cer(d32:3)	C32H59NO4		
3	527.47	527.4670	6	$[M+H]^+$	DG(29:0)	$C_{32}H_{62}O_5$		509, 239, 197, 155, 75
4	544.47	544.4700	0	[M+Na] ⁺	Cer(d33:2)	C33H63NO3	24	
5	547.43	547.4333	6	[M+Na] ⁺	DG(29:1)	$C_{32}H_{60}O_5$	25	
6	577.42	577.4229	5	$[M+K]^{+}$	DG(30:1)	C33H62O5	26	
7	595.43	595.4333	6	[M+Na] ⁺	DG(33:5)	$C_{36}H_{60}O_5$		555, 285, 197, 169, 75
8	597.39	597.3916	3	$[M+K]^+$	DG(32:5)	C35H58O5	27	
9	598.38	598.3843	7	[M+Na] ⁺	PC(22:2)	C ₃₀ H ₅₈ NO ₇ P	28	
10	599.47	599.4670	5	$[M+H]^+$	DG(35:6)	$C_{38}H_{62}O_5$		
11	601.48	601.4827	4	$[M+H]^+$	DG(35:5)	C ₃₈ H ₆₄ O ₅		
12	603.50	603.4959	7	[M+Na] ⁺	DG(33:1)	C ₃₆ H ₆₈ O ₅	29	
13	605.42	605.4177	4	$[M+H]^+$	PA(29:1)	$C_{32}H_{61}O_8P$		587, 225, 209, 197, 98
14	637.39	637.3840	9	[M+Na] ⁺	PA(30:3)	C33H59O8P		
15	639.43	639.4360	9	[M+Na] ⁺	PA(P-31:1)	C ₃₄ H ₆₅ O ₇ P		
16	642.45	642.4469	5	[M+Na] ⁺	PE(P-28:0)	C33H66NO7P		
17	644.50	644.5015	2	$[M+K]^+$	Cer(d38:3)	C ₃₈ H ₇₁ NO ₄		
18	650.44	650.4391	1	$[M+H]^+$	PC(25:0)	$C_{33}H_{64}NO_9P$	27	
19	651.44	651.4385	2	$[M+K]^+$	DG(36:6)	C ₃₉ H ₆₄ O ₅		
20	660.48	660.4748	8	$[M+H]^+$	DG(40:8)	$C_{43}H_{63}D_5O_5$		
21	662.47	662.4755	8	$[M+H]^+$	PE(30:1)	C ₃₅ H ₆ 8NO ₈ P	30	
22	712.45	712.4524	3	[M+Na] ⁺	PS(P-30:1)	C ₃₆ H ₆₈ NO ₉ P		
23	714.44	714.4341	8	$[M+H]^+$	PS(31:4)	C ₃₇ H ₆₄ NO ₁₀ P		
24	749.45	749.4518	2	$[M+K]^+$	PA(37:4)	$C_{40}H_{71}O_8P$	31	435, 281, 259, 231, 98
25	751.55	751.5484	2	$[M+H]^+$	PG(34:0)	$C_{40}H_{79}O_{10}P$	32, 33	
26	754.41	754.4056	6	$[M+K]^+$	PS(31:3)	C37H66NO10P		
27	756.49	756.4940	5	$[M+K]^+$	PE(34:1)	C ₃₉ H ₇₆ NO ₈ P		
28	758.49	758.4943	6	[M+Na] ⁺	PS(32:0)	C ₃₈ H ₇₄ NO ₁₀ P		295, 183, 88

1 Table S3. Lipids detected and identified in the camelina seed tissue sections by MALDI-TOF

2 MS in the positive-ion mode using DCH as the matrix.

	Maggunad	Calculated	Ennon		Assignment	:		Structurally
No.	measured		Error	Ion form	Compound	Molecular	Ref.	specific CID
	mu t	m/ 2	lbbm	Ion Iorm	Compound	formula		ions $(m/z)^{a}$
29	759.49	759.4935	5	[M+Na] ⁺	PA(39:5)	$C_{42}H_{73}O_8P$		
30	760.49	760.4912	2	$[M+H]^+$	PE(38:8)	C43H70NO8P		
31	761.51	761.5116	2	$[M+H]^+$	PA(41:7)	$C_{44}H_{73}O_8P$		743, 433, 311, 98
32	762.53	762.5280	3	$[M+H]^+$	PS(34:1)	C40H76NO10P		
32	800.49	800.4838	8	$[M+K]^+$	PS(34:1)	$C_{40}H_{76}NO_{10}P$		
33	771.49	771.4935	5	[M+Na] ⁺	PA(40:6)	$C_{43}H_{73}O_8P$	30	731, 447, 311, 285, 98
34	773.67	773.6654	6	$[M+H]^+$	TG(46:3)	C49H88O6		
35	774.51	774.5068	4	$[M+H]^+$	PE(39:8)	$C_{44}H_{72}NO_8P$		
36	775.68	775.6810	1	$[M+H]^+$	TG(46:2)	$C_{49}H_{90}O_{6}$	29	
37	776.66	776.6528	9	$[M+H]^+$	PC(O-36:0)	$C_{44}H_{90}NO_7P$	28	
38	777.70	777.6967	4	$[M+H]^+$	TG(46:1)	$C_{49}H_{92}O_6$		759, 521, 251, 239, 197
39	778.47	778.4654	6	$[M+H]^+$	PS(36:7)	$C_{42}H_{68}NO_{10}P$	34	
40	779.45	779.4471	4	[M+K] ⁺	PI(O-28:0)	$C_{37}H_{73}O_{12}P$		
41	780.48	780.4786	2	[M+Na] ⁺	DS(24.2)	C H NO B	35	
41	796.45	796.4525	3	$[M+K]^+$	r 3(34.3)	C40H72NO10F		
42	781.50	781.5014	2	$[M+H]^+$	PG(37:6)	$C_{43}H_{73}O_{10}P$	36	763, 609, 285, 75
43	782.50	782.4967	4	$[M+H]^+$	PS(36:5)	$C_{42}H_{72}NO_{10}P$	15	
44	783.51	783.5147	6	[M+Na] ⁺	DC (25.2)	СНОР	36	
44	799.49	799.4886	2	$[M+K]^{+}$	10(55.2)	04111770101		
45	784.53	784.5253	6	$[M+K]^+$	PC(33:1)	$C_{41}H_{80}NO_8P$		
46	785.54	785.5457	7	$[M+K]^+$	PA(39:0)	$C_{42}H_{83}O_8P$		729, 477, 253, 98
47	786.56	786.5619	2	$[M+Na]^+$	PS(O-35:0)	$C_{41}H_{82}NO_9P$		
48	787.58	787.5823	3	$[M+Na]^+$	PG(O-36:0)	$C_{42}H_{85}O_9P$	37	
49	788.58	788.5800	0	$[M+H]^+$	PS(O-37:2)	$C_{43}H_{82}NO_9P$		
50	789.54	789.5406	1	$[M+K]^+$	PG(O-35:0)	$C_{41}H_{83}O_9P$		733, 579, 281, 225
51	794.49	794.4943	5	[M+Na] ⁺	PS(35:3)	$C_{41}H_{74}NO_{10}P$	31	
52	797.47	797.4729	4	$[M+K]^+$	PG(35:3)	$C_{41}H_{75}O_{10}P$		
53	798.50	798.5046	6	$[M+K]^+$	PS(O-35:2)	$C_{41}H_{78}NO_9P$	38	
54	802.52	802.5147	7	$[M+K]^+$	PC(P-36:5)	C44H78NO7P	25	581, 285, 223,

	Maggungd	Calaulated	Emmon	Assignment				Structurally
No.	m/z	m/z	ppm	Ion form	Compound	Molecular formula	Ref.	specific CID ions (<i>m/z</i>) ^{a)}
55	804.50	804.4940	7	[M+K]+	PE(38:5)	C ₄₃ H ₇₆ NO ₈ P		
56	805.53	805.5354	7	[M+Na] ⁺	PG(P-38:4)	C44H79O9P		
57	806.51	806.5097	0	[M+K] ⁺	PE(38:4)	C ₄₃ H ₇₈ NO ₈ P		295, 259, 44 27
58	807.51	807.5147	6	[M+Na] ⁺	PG(37:4)	$C_{43}H_{77}O_{10}P$		
59	808.54	808.5463	8	[M+Na] ⁺	PS(P-37:2)	$C_{43}H_{80}NO_9P$	38	
60	810.56	810.5619	2	[M+Na] ⁺	PS(P-37:1)	$C_{43}H_{82}NO_9P$	38	603, 279, 25 88, 42
61	818.43	818.4369	8	$[M+K]^+$	PS(36:6)	$C_{42}H_{70}NO_{10}P$		
62	819.45	819.4420	10	$[M+K]^+$	PI(30:1)	$C_{39}H_{73}O_{13}P$		
63	820.51	820.5099	0	[M+Na] ⁺	PS(37:4)	C43H76NO10P		
64	821.47	821.4729	4	$[M+K]^+$	PG(37:5)	$C_{43}H_{75}O_{10}P$		611, 477, 28 75
65	822.47	822.4682	2	$[M+K]^{+}$	PS(36:4)	$C_{42}H_{74}NO_{10}P$		
66	823.52	823.5250	6	$[M+K]^+$	PG(O-38:4)	$C_{44}H_{81}O_9P$		
67	824.49	824.4838	8	[M+K] ⁺	PS(36:3)	C42H76NO10P	39	
68	825.54	825.5405	1	[M+Na] ⁺	PA(44:7)	$C_{47}H_{79}O_8P$		475, 321, 29 98
69	826.53	826.5357	7	$[M+Na]^+$	PC(38:7)	$C_{46}H_{78}NO_8P$	40	
70	830.67	830.6633	8	$[M+H]^+$	PC(39:1)	$C_{47}H_{92}NO_8P$	41	
71	856.52	856.5253	6	$[M+K]^{+}$	PE(42:7)	$\mathrm{C}_{47}\mathrm{H}_{80}\mathrm{NO}_8\mathrm{P}$		
72	873.66	873.6579	2	$[M+H]^+$	PG(43:2)	$C_{49}H_{93}O_{10}P$		701, 547, 31 75
73	874.67	874.6660	5	$[M+Na]^+$	PC(O-42:4)	$C_{50}H_{94}NO_7P$	28	
74	875.71	875.7099	0	$[M+Na]^+$	TG(52:5)	$C_{55}H_{96}O_{6}$		
75	876.52	876.5151	6	$[M+K]^+$	PS(40:5)	$C_{46}H_{80}NO_{10}P$	42	
76	877.72	877.7256	6	[M+Na] ⁺	TG(52:4)	$C_{55}H_{98}O_6$		837, 655, 54 295, 183
77	878.70	878.6973	3	$[M+Na]^+$	PC(O-42:2)	$\mathrm{C}_{52}\mathrm{H}_{96}\mathrm{NO}_{7}\mathrm{P}$		
78	879.75	879.7436	7	$[M+H]^+$	TG(54·6)	CerHoo		
70	901.72	901.7256	6	[M+Na] ⁺	10(34.0)	05/119806		
79	881.75	881.7569	8	[M+Na] ⁺	TG(52:2)	$C_{55}H_{102}O_6$		
80	889.67	889.6682	2	[M+K] ⁺	TG(52:6)	$C_{55}H_{94}O_6$		833, 597, 31 237, 209
81	891.64	891.6473	8	[M+Na] ⁺	TG(54:11)	C57H88O6		

	Manager		F		Assignment			Structurally
No.	Measured	Calculated	Error		a 1	Molecular	Ref.	specific CID
	m/z	m/z	ppm	lon form	Compound	formula		ions $(m/z)^{a)}$
82	893.66	893.6630	3	[M+Na] ⁺	TG(54:10)	$C_{57}H_{90}O_6$		
83	895.67	895.6634	7	$[M+H]^+$	PI(O-39:0)	$C_{48}H_{95}O_{12}P$		
84	896.68	896.6869	8	[M+K] ⁺	PC(P-42:0)	$C_{50}H_{100}NO_7P$		675, 518, 323, 279, 88
85	898.67	898.6661	4	$[M+K]^+$	PE(44:0)	$C_{49}H_{98}NO_8P$		
97	899.71	899.7099	0	[M+Na] ⁺	TO(54.7)	C U O		
80	915.68	915.6838	4	$[M+K]^+$	16(54:7)	C ₅₇ H ₉₆ O ₆		
87	900.69	900.6817	9	[M+Na] ⁺	PC(O-44:5)	C ₅₂ H ₉₆ NO ₇ P	28	
00	903.74	903.7412	1	[M+Na] ⁺	TC(54.5)	C U O	43	
00	919.71	919.7151	6	[M+K] ⁺	10(34:5)	$C_{57}\Pi_{100}O_6$		
89	905.75	905.7569	8	[M+Na] ⁺	TG(54:4)	$C_{57}H_{102}O_6$		617, 599, 333, 267
90	907.77	907.7725	3	$[M+Na]^+$	TG(54:3)	$C_{57}H_{104}O_6$	44	
91	911.66	911.6525	8	$[M+K]^+$	TG(54:9)	C57H92O6		
92	912.61	912.6090	1	$[M+K]^+$	PS(42:1)	$C_{48}H_{92}NO_{10}P$		689, 321, 295
93	913.63	913.6294	1	$[M+K]^+$	PG(43:1)	$C_{49}H_{95}O_{10}P$		
94	918.63	918.6349	5	$[M+K]^+$	PC(43:4)	C ₅₁ H ₉₄ NO ₈ P		715, 548, 315,
95	981.58	981.5829	3	$[M+K]^+$	PI(42:4)	$C_{51}H_{91}O_{13}P$		00

a) Structurally specific CID ions of lipids were detected by LC-MS/MS using CID. Fragment ions shown in blue were detected by *in situ*

MALDI-MS/MS. Abbreviations: PC, phosphatidylcholine; PE, phosphatidylethanolamine; PA, phosphatidic acid; PG,
 phosphatidylglycerol; PS, phosphatidylserine; PI, phosphatidylinositol; Cer, ceramide; DG, diacylglycerol; TG, triglyceride.

1 Table S4. Comparison of ion signals of lipids detected in the camelina seed tissue sections by

- 2 MALDI-TOF MS in the positive-ion mode using DCH, DHB, 2-MBT, CHCA, DNPH, and
- 3 PNA as the matrices.

Number		Lipids ion sig	gnals detected in	Camelina seed	tissue section	
Tumber	DCH	DHB	2-MBT	CHCA	DNPH	PNA
1			502.42			
2			504.30			
3		504.34				
4	504.44					
5			507.21			
6	522.45					
7		524.30				
8	527.47	527.47				
9		528.43				
10	544.47					
11	547.43					
12		553.49				
13		558.49				
14						573.39
15		573.42				
16		574.42				
17		575.41				
18		576.40				
19	577.42					
20			582.22			
21		587.44				
22			593.28			
23						595.29
24	595.43					
25						596.28
26			597.30			
27	597.39					
28	598.38					
29						599.33
30	599.47					
31						600.33
32						601.34
33		601.39				
34	601.48					
35	603.50					
36	605.42					
37			629.46			
38			630.45			

Newler		Lipids ion sig	gnals detected in	Camelina seed	tissue section	
Number	DCH	DHB	2-MBT	CHCA	DNPH	PNA
39			631.38			
40		634.46				
41		636.62				
42	637.39					
43			639.42			
44	639.43					
45	642.45					
46	644.50					
47		645.55				
48	650.44					
49	651.44					
50		653.42				
51			658.44			
52		660.40				
53	660.48					
54	662.47					
55			674.42			
56			675.41			
57			676.35			
58		680.49				
59		681.47				
60						682.45
61			699.41			
62		700.41				
63		701.41				
64			702.43			
65		710.51				
66		711.40				
67	712.45					
68		713.42				
69		714.39				
70	714.44					
71		727.40				
72		729.38				
73		739.44				
74		740.44				
75		742.45				
76		743.65				
77		744.63				
78		745.46				
79		746.60				
80		747.50				

Number		Lipids ion sig	gnals detected in	Camelina seed	tissue section	
Nulliber	DCH	DHB	2-MBT	CHCA	DNPH	PNA
81		748.42				
82	749.45					
83		749.50				
84		750.50				
85		751.48				
86	751.55					
87		752.46				
88		753.47				
89	754.41					
90		754.49				
91		755.50				
92			756.43			
93	756.49					
94		756.63				
95		757.42				
96			758.43			
97		758.44				
98	758.49					
99			759.43			
100	759.49					759.49
101		759.51				
102			760.44			
103	760.49					
104		760.53				
105						761.42
106		761.50				
107	761.51					
108		762.42				
109	762.53					
110		763.47				
111		765.44				
112		766.50				
113		771.46				
114	771.49					
115		772.48				
116		773.46				
117	773.67					
118			774.48			
119	774.51					
120			775.59			
121	775.68					
122	776.66					

Number	Lipids ion signals detected in Camelina seed tissue section							
Number	DCH	DHB	2-MBT	CHCA	DNPH	PNA		
123			777.55					
124	777.70							
125	778.47							
126		779.44						
127	779.45							
128						780.43		
129		780.45						
130	780.48							
131		781.45						
132	781.50							
133		782.43						
134			782.44					
135	782.50							
136						783.43		
137	783.51							
138	784.53							
139						785.44		
140			785.45					
141	785.54							
142	786.56							
143		787.43				787.43		
144	787.58							
145			788.45					
146	788.58							
147						789.39		
148	789.54							
149	794.49							
150						795.45		
151		795.46						
152	796.45							
153	797.47							
154						798.45		
155	798.50	798.50						
156		799.46						
157	799.49							
158		800.44						
159	800.49							
160		801.45						
161		802.47						
162	802.52							
163	804.50							
164	805.53							

Number	Lipids ion signals detected in Camelina seed tissue section							
Number	DCH	DHB	2-MBT	CHCA	DNPH	PNA		
165	806.51							
166	807.51							
167	808.54							
168	810.56							
169						816.42		
170	818.43							
171	819.45					819.45		
172	820.51							
173						821.45		
174	821.47							
175	822.47							
176	823.52							
177						824.47		
178	824.49							
179						825.46		
180	825.54							
181	826.53							
182		829.42						
183	830.67							
184	856.52							
185						873.45		
186			873.51					
187	873.66							
188	874.67							
189						875.47		
190			875.50					
191	875.71							
192	876.52							
193						877.49		
194	877.72							
195	878.70							
196						879.45		
197	879.75							
198	881.75							
199						889.42		
200	889.67							
201	891.64							
202	893.66							
203						894.46		
204			895.47					
205	895.67							
206			896.48			896.48		

Number		Lipids ion sig	gnals detected in	Camelina seed	tissue section	
Number	DCH	DHB	2-MBT	CHCA	DNPH	PNA
207	896.68					
208			897.48			
209			898.51			
210	898.67					
211						899.46
212			899.47			
213	899.71					
214	900.69					
215			901.48			
216						901.49
217	901.72					
218		902.49				902.49
219			902.53			
220			903.49			903.49
221	903.74					
222						905.45
223	905.75					
224	907.77					
225	911.66					
226	912.61					
227	913.63					
228						915.45
229	915.68					
230						917.45
231			917.47			
232	918.63					
233	919.71					
234						920.56
235						961.53
236	981.58					
Total number of detected lipids	95	68	36	0	0	32

2

_

					Assignment			Structurally
No.	Measured m/z	m/z	ppm	Ion form	Compound	Molecular formula	Ref.	specific CID ions (<i>m/z</i>) ^{a)}
1	502.42	502.4231	6	[M+Na] ⁺	Cer(d30:2)	C ₃₀ H ₅₇ NO ₃	6	
2	504.34	504.3424	5	[M+Na] ⁺	PC(O-16:0)	C24H52NO6P	6	
3	506.32	506.3241	8	$[M+H]^+$	PE(20:2)	$C_{25}H_{48}NO_7P$	6	
4	507.40	507.4020	4	[M+Na] ⁺	DG(26:0)	C ₂₉ H ₅₆ O ₅		
5	509.42	509.4201	0	$[M+H]^+$	DG(28:2)	$C_{31}H_{56}O_5$		
6	518.40	518.3970	6	$[M+K]^{+}$	Cer(30:2)	C ₃₀ H ₅₇ NO ₃		444, 224, 137
7	519.25	519.2483	3	$[M+K]^+$	PA(20:0)	$C_{23}H_{45}O_8P$		463, 383, 309, 173, 155
8	520.41	520.4127	5	$[M+K]^+$	Cer(d30:1)	C ₃₀ H ₅₉ NO ₃		
9	522.28	522.2826	5	$[M+H]^+$	PS(18:2)	$C_{24}H_{44}NO_9P$		
10	524.37	524.3711	2	$[M+H]^+$	PC(18:0)	C ₂₆ H ₅₄ NO ₇ P	45	506, 184, 104, 88
11	534.29	534.2956	10	$[M+K]^+$	PC(16:0)	C24H50NO7P	6	
12	537.45	537.4514	3	$[M+H]^+$	DG(30:2)	C33H60O5		293, 209, 181
13	540.25	540.2487	2	$[M+K]^+$	PE(20:4)	C25H44NO7P	1	
14	546.45	546.4493	1	[M+Na] ⁺	Cer(d32:2)	C ₃₂ H ₆₁ NO ₄		
15	548.44	548.4440	7	$[M+K]^+$	Cer(d32:1)	C ₃₂ H ₆₃ NO ₃		
16	552.50	552.4986	3	$[M+H]^+$	Cer(d34:2)	C ₃₄ H ₆₅ NO ₄		
17	558.43	558.4255	8	[M+Na] ⁺	DG(30:0)	C33H59D5O5		299, 243, 225, 197, 183
18	560.33	560.3323	4	[M+Na] ⁺	PS(P-20:0)	$C_{26}H_{52}NO_8P$	6	
19	561.45	561.4514	2	$[M+H]^+$	DG(32:4)	$C_{35}H_{60}O_5$	6	
20	562.52	562.5194	1	$[M+H]^+$	Cer(d36:3)	C ₃₆ H ₆₇ NO ₃		
21	563.37	563.3707	1	$[M+H]^+$	PA(26:1)	$C_{29}H_{55}O_8P$		
22	564.54	564.5350	9	$[M+H]^+$	Cer(d36:2)	C ₃₆ H ₆₉ NO ₃	6	
23	565.46	565.4591	2	$[M+H]^+$	PA(O-28:0)	$C_{31}H_{65}O_6P$		
24	566.46	566.4544	10	$[M+H]^+$	PC(O-22:0)	$C_{30}H_{64}NO_6P$		
25	576.48	576.4753	8	$[M+K]^+$	Cer(d34:1)	C ₃₄ H ₆₇ NO ₃		
26	578.49	578.4909	2	$[M+K]^+$	Cer(d34:0)	C34H69NO3		
27	580.4	580.3972	5	$[M+H]^+$	PE(24:0)	$C_{29}H_{58}NO_8P$		
28	602.32	602.3219	3	[M+K] ⁺	PC(20:1)	C ₂₈ H ₅₄ NO ₈ P	6	

1 Table S5. Lipids detected and identified in the mouse brain tissue sections by MALDI-TOF MS

2 in the positive-ion mode using DCH as the matrix.

	Measured	Calculated	Error -		Assignment		_	Structurally
No.	m/7	m/7	Innm	Ion form	Compound	Molecular	Ref.	specific CID
			P.P		Compound	formula		ions $(m/z)^{a}$
29	609.45	609.4489	2	$[M+K]^+$	DG(34:5)	$C_{37}H_{62}O_5$		
30	611.39	611.3918	3	$[M+H]^+$	PG(24:0)	$C_{30}H_{59}O_{10}P$		
31	651.46	651.4595	1	$[M+H]^+$	PG(P-28:0)	$C_{34}H_{67}O_9P$		
32	706.42	706.4182	3	$[M+K]^+$	PG(28:0)	$C_{34}H_{68}O_{10}P$		
33	707.65	707.6548	7	$[M+H]^+$	DG(42:1)	$C_{45}H_{86}O_5$		
34	709.42	709.4205	1	$[M+K]^+$	PA(34:3)	$C_{37}H_{67}O_8P$	6	
35	710.5	710.4968	5	$[M+K]^+$	GlcCer(d32:1)	C ₃₈ H ₇₃ NO ₈	6	
36	711.53	711.5299	0	[M+Na] ⁺	PA(O-36:1)	$C_{39}H_{77}O_7P$	6	
37	712.43	712.4314	2	$[M+K]^+$	PC(28:2)	C ₃₆ H ₆₈ NO ₈ P		
38	713.41	713.4153	7	[M+Na] ⁺	PA(36:7)	$C_{39}H_{63}O_8P$	2	
39	714.5	714.5044	6	[M+Na] ⁺	PE(32:0)	C ₃₇ H ₇₄ NO ₈ P		
40	720.55	720.5538	5	$[M+H]^+$	PE(34:0)	C ₃₉ H ₇₈ NO ₈ P	46	267, 44, 27
41	722.4	722.4004	1	[M+Na] ⁺	PS(30:4)	C ₃₆ H ₆₂ NO ₁₀ P		
42	724.57	724.5697	0	[M+Na] ⁺	GlcCer(d34:0)	C40H79NO8		
43	725.56	725.5568	4	[M+Na] ⁺	SM(d34:1)	$C_{39}H_{79}N_2O_6P$	7	703, 184
44	726.59	726.5878	3	$[M+H]^+$	GlcCer(d36:2)	C42H79NO8		
45	727.47	727.4698	0	$[M+K]^+$	DG(42:10)	C45H68O5	6	
46	731.56	731.5585	2	$[M+H]^+$	PA(38:1)	$C_{41}H_{79}O_8P$	1	447, 293, 239
47	732.48	732.4810	1	$[M+H]^+$	PS(32:2)	C ₃₈ H ₇₀ NO ₁₀ P		
48	734.50	734.4967	4	$[M+H]^+$	PS(32:1)	$C_{38}H_{72}NO_{10}P$		
49	735.53	735.5324	3	$[M+K]^+$	DG(42:6)	C45H76O5		385, 311, 283
50	736.54	736.5334	9	[M+Na] ⁺	GlcCer(d34:2)	C40H75NO9		
51	737.54	737.5456	8	[M+Na] ⁺	PA(O-38:2)	$C_{41}H_{79}O_7P$		
52	738.44	738.4471	10	$[M+K]^+$	PC(30:3)	C38H70NO8P		
53	739.43	739.4309	1	[M+Na] ⁺	PA(38:8)	$\mathrm{C}_{41}\mathrm{H}_{65}\mathrm{O}_8\mathrm{P}$		
54	740.46	740.4627	4	$[M+K]^+$	PC(30:2)	C ₃₈ H ₇₂ NO ₈ P	47	436, 249, 88
55	741.47	741.4677	3	[M+Na] ⁺	PG(32:2)	$C_{38}H_{71}O_{10}P$	48	
56	742.51	742.5147	6	$[M+K]^+$	PE(P-34:0)	C ₃₉ H ₇₈ NO ₇ P	3	
57	746.54	746.5330	9	$[M+H]^+$	PS(P-34:1)	$\mathrm{C}_{40}\mathrm{H}_{76}\mathrm{NO}_{9}\mathrm{P}$		
58	750.51	750.5068	4	$[M+H]^+$	PC(34:6)	$\mathrm{C}_{42}\mathrm{H}_{72}\mathrm{NO}_{8}\mathrm{P}$		311, 283, 88
59	752.44	752.4473	10	[M+Na] ⁺	PS(32:3)	$C_{38}H_{68}NO_{10}P$		
60	753.55	753.5429	9	$[M+H]^{+}$	PA(40:4)	$C_{43}H_{77}O_8P$	2	

	Maagunad	Calculated l	Еннон		Assignment			Structurally
No.	m/z	m/7	Innm	Ion form	Compound	Molecular	Ref.	specific CID
			PP	1011 IOT III	Compound	formula		ions $(m/z)^{a)}$
61	754.57	754.5721	3	[M+Na] ⁺	PE(P-36:0)	$C_{41}H_{82}NO_7P$	49	
62	755.56	755.5674	10	[M+Na] ⁺	PE-Cer(d38:1)	$C_{40}H_{81}N_{2}O_{7}P$		
63	756.50	756.494	8	$[M+K]^{+}$	PE(34:1)	$\mathrm{C}_{39}\mathrm{H}_{76}\mathrm{NO}_{8}\mathrm{P}$	1	265, 44, 27
64	757.42	757.4205	1	$[M+K]^+$	PA(38:7)	$\mathrm{C}_{41}\mathrm{H}_{67}\mathrm{O}_8\mathrm{P}$		
65	758.48	758.4733	9	$[M+K]^{+}$	PS(O-32:1)	$\mathrm{C}_{38}\mathrm{H}_{74}\mathrm{NO}_{9}\mathrm{P}$		
66	759.46	759.4573	4	$[M+K]^+$	PG(32:1)	$C_{38}H_{73}O_{10}P$	50	
67	760.49	760.4889	1	$[M+K]^{+}$	PS(O-32:0)	$\mathrm{C}_{38}\mathrm{H}_{76}\mathrm{NO}_{9}\mathrm{P}$		
68	761.55	761.5480	3	[M+H] ⁺	PA(P-42:6)	$C_{45}H_{77}O_7P$		433, 311, 279, 98
69	762.54	762.5408	1	[M+Na] ⁺	PC(O-34:4)	$\mathrm{C}_{42}\mathrm{H}_{78}\mathrm{NO}_{7}\mathrm{P}$	51	
70	763.58	763.5847	6	$[M+H]^+$	PG(P-36:0)	$C_{42}H_{83}O_9P$		
71	764.55	764.5565	9	[M+Na] ⁺	PC(P-34:2)	$\mathrm{C}_{42}\mathrm{H}_{80}\mathrm{NO}_{7}\mathrm{P}$		
72	765.49	765.4912	2	$[M+H]^+$	PI(P-30:1)	$C_{39}H_{73}O_{12}P$		
73	766.51	766.5147	6	$[M+K]^+$	PE(P-36:2)	$\mathrm{C}_{41}\mathrm{H}_{78}\mathrm{NO}_{7}\mathrm{P}$	49	283, 44, 27
74	767.54	767.5464	8	$[M+K]^+$	SM(d36:2)	$C_{41}H_{81}N_2O_6P$	52	
75	768.5	768.4940	8	$[M+K]^+$	PC(32:2)	$\mathrm{C}_{40}\mathrm{H}_{76}\mathrm{NO}_{8}\mathrm{P}$	53	
76	769.53	769.5256	6	$[M+K]^+$	PE-Cer(d38:2)	$C_{40}H_{79}N_2O_7P$		
77	770.51	770.5095	1	[M+Na] ⁺	PE(P-38:6)	C43H74NO7P	54	
78	771.52	771.5171	4	$[M+H]^+$	PG(36:4)	$C_{42}H_{75}O_{10}P$	1, 55	
79	772.53	772.5253	6	$[M+K]^+$	PC(32:0)	$C_{40}H_{80}NO_8P$	7, 56, 57	
80	773.53	773.5303	0	[M+Na] ⁺	PG(34:0)	$C_{40}H_{79}O_{10}P$		
81	774.54	774.5408	1	[M+Na] ⁺	PE(38:4)	C43H78NO7P	1	
82	775.55	775.5484	2	$[M+H]^+$	PG(36:2)	$C_{42}H_{79}O_{10}P$	50, 58	603, 293, 251, 75
83	778.51	778.5147	6	$[M+K]^+$	PC(P-34:3)	$\mathrm{C}_{42}\mathrm{H}_{78}\mathrm{NO}_{7}\mathrm{P}$		
84	779.47	779.4705	1	$[M+H]^+$	PI(30:2)	$C_{39}H_{71}O_{13}P$	2	
85	780.5	780.4940	8	$[M+K]^+$	PE(36:3)	$\mathrm{C}_{41}\mathrm{H}_{76}\mathrm{NO}_{8}\mathrm{P}$	2	619, 267, 44
86	782.54	782.5460	8	$[M+K]^+$	PC(P-34:1)	$C_{42}H_{82}NO_7P$	59	
87	783.55	783.5510	1	[M+Na] ⁺	PG(P-36:1)	$C_{42}H_{81}O_9P$		
88	784.52	784.5123	10	$[M+H]^+$	PS(36:4)	$C_{42}H_{74}NO_{10}P$		287, 88, 42
89	785.54	785.5456	7	[M+Na] ⁺	PA(O-42:6)	C45H79O7P		
90	786.54	786.5409	1	$[M+K]^+$	PE(36:0)	$C_{41}H_{82}NO_8P$	1	
91	787.67	787.6688	2	$[M+H]^+$	SM(d40:1)	$C_{45}H_{91}N_2O_6P$		702, 604, 586,

	Measured	Calculated	Calculated Ennon		Assignment		_	Structurally
No.	m/7	m/7	Innm	Ion form	Compound	Molecular	Ref.	specific CID
			PPm		Compound	formula		ions $(m/z)^{a)}$
92	788.55	788.5436	8	$[M+H]^+$	PS(36:2)	$C_{42}H_{78}NO_{10}P \\$		
93	789.57	789.5769	9	[M+Na] ⁺	PA(O-42:4)	$C_{45}H_{83}O_7P$		
94	790.56	790.5593	1	$[M+H]^+$	PS(36:1)	$C_{42}H_{80}NO_{10}P$	60	703, 446, 299, 281
95	791.59	791.5925	3	[M+Na] ⁺	PA(P-42:2)	$C_{45}H_{85}O_7P$		
96	794.53	794.5306	1	[M+Na] ⁺	PS(O-36:3)	$\mathrm{C}_{42}\mathrm{H}_{78}\mathrm{NO}_{9}\mathrm{P}$		
97	795.49	795.4935	4	[M+Na] ⁺	PA(42:8)	C45H73O8P		
98	796.52	796.5253	7	$[M+K]^{+}$	PC(34:2)	$\mathrm{C}_{42}\mathrm{H}_{80}\mathrm{NO}_{8}\mathrm{P}$	7, 61, 62	740, 184
99	797.54	797.5457	7	$[M+K]^+$	PA(40:1)	$C_{43}H_{83}O_8P$		
100	798.54	798.5410	1	$[M+K]^+$	PC(34:1)	$\mathrm{C}_{42}\mathrm{H}_{82}\mathrm{NO}_{8}\mathrm{P}$	61, 63, 64	742, 184, 88
101	799.61	799.6090	1	$[M+K]^+$	SM(d38:0)	$C_{43}H_{89}N_2O_6P$		
102	800.55	800.5565	8	[M+Na] ⁺	PE(P-40:5)	$C_{45}H_{80}NO_7P$	1	
103	801.57	801.5616	10	[M+Na] ⁺	PG(36:0)	$C_{42}H_{83}O_{10}P$	65	
104	802.52	802.5147	7	$[M+K]^+$	PC(P-36:5)	C44H78NO7P		
105	803.56	803.5585	2	$[M+H]^+$	PA(44:7)	C47H79O8P		
106	804.61	804.6113	2	$[M+H]^+$	PS(P-38:0)	$C_{44}H_{86}NO_9P$		
107	806.55	806.5460	5	$[M+K]^+$	PC(O-36:4)	C44H82NO7P	16, 59	
108	807.55	807.5510	1	[M+Na] ⁺	PG(O-38:4)	$C_{44}H_{81}O_9P$		
109	808.56	808.5617	2	$[M+K]^+$	PC(P-36:2)	C44H84NO7P	59	
110	809.6	809.6031	4	[M+Na] ⁺	PA(42:1)	$C_{45}H_{87}O_8P$		
111	810.6	810.6007	1	$[M+H]^+$	PC(38:4)	C46H84NO8P	61, 66	792, 751, 627, 184
112	811.58	811.5823	3	[M+Na] ⁺	PG(O-38:2)	$C_{44}H_{85}O_9P$		
113	812.54	812.5436	4	$[M+H]^+$	PS(38:4)	C44H78NO10P	18	725, 436, 315, 287
114	814.41	814.4056	5	$[M+K]^+$	PS(36:8)	$C_{42}H_{66}NO_{10}P$		456, 259, 88
115	816.57	816.5749	6	$[M+H]^+$	PS(38:2)	$C_{44}H_{82}NO_{10}P$		337, 88
116	820.56	820.5617	2	$[M+K]^+$	PE(P-40:3)	C45H84NO7P	67	
117	821.59	821.5933	4	$[M+K]^+$	SM(d40:3)	$C_{45}H_{87}N_2O_6P$		
118	822.56	822.5619	2	[M+Na] ⁺	PS(P-38:2)	C44H82NO9P		
119	823.57	823.5695	1	$[M+H]^+$	PI(O-34:1)	$C_{43}H_{83}O_{12}P$		
								621, 603, 560,
120	824.55	824.5566	8	$[M+K]^+$	PC(36:2)	$C_{44}H_{84}NO_8P$	7, 63	448, 339, 321,

	Maaguund	Calculated	Eman	Assignment			Structurally	
No.	measured m/z	m/z	Error ppm	Ion form	Compound	Molecular	Ref.	specific CID
					•	formula		ions $(m/z)^{a}$
121	825.45	825.4524	3	[M+Na] ⁺	PI(32:4)	$C_{41}H_{71}O_{13}P \\$		
122	826.58	826.5804	0	$[M+H]^+$	PI-Cer(t36:0)	$C_{42}H_{84}NO_{12}P$		
123	827.46	827.4681	10	[M+Na] ⁺	PI(32:3)	$C_{41}H_{73}O_{13}P$		539, 249, 223 163
124	828.56	828.5538	7	$[M+H]^+$	PC(40:9)	$C_{48}H_{78}NO_8P$	7	
125	829.53	829.5354	7	[M+Na] ⁺	PG(P-40:6)	$C_{46}H_{79}O_9P$		
126	830.5	830.4943	7	[M+Na] ⁺	PS(38:6)	C44H74NO10P	15	721, 641, 623 462, 285
127	831.51	831.5018	10	$[M+H]^+$	PI(34:4)	$C_{43}H_{75}O_{13}P$		577, 261, 237 181
128	832.62	832.6191	1	[M+Na] ⁺	PE(O-42:4)	C47H88NO7P		
129	833.6	833.6031	4	[M+Na] ⁺	PA(44:3)	$C_{47}H_{87}O_8P$		
130	834.6	834.6007	1	$[M+H]^+$	PC(40:6)	$C_{48}H_{84}NO_8P$	7, 57, 66	
131	835.58	835.5823	3	[M+Na] ⁺	PG(P-40:3)	$C_{46}H_{85}O_9P$		
132	836.54	836.5412	1	[M+Na]+	PS(38:3)	$C_{44}H_{80}NO_{10}P$	17	727, 508, 27
133	838.61	838.6086	2	$[M+K]^+$	PC(O-38:2)	C46H90NO7P	68	
134	839.61	839.6136	4	[M+Na] ⁺	PG(O-40:2)	$C_{46}H_{89}O_9P$		
135	840.62	840.6243	5	$[M+K]^+$	PC(O-38:1)	C46H92NO7P		
136	844.52	844.5253	6	$[M+K]^+$	PC(38:6)	$C_{46}H_{80}NO_8P$	7, 56, 66	
137	845.53	845.5303	0	[M+Na] ⁺	PG(40:6)	$C_{46}H_{79}O_{10}P$	60, 69	
138	846.51	846.5046	6	$[M+K]^+$	PE(40:6)	C45H78NO9P		327, 267, 239 44
139	848.61	848.6140	5	[M+Na] ⁺	PE(42:3)	C47H88NO8P	55	
140	849.62	849.6246	5	$[M+K]^+$	SM(d42:3)	$C_{47}H_{91}N_2O_6P$	70, 71	
141	850.64	850.6320	9	$[M+H]^+$	PE(44:5)	C49H88NO8P	72	
142	851.60	851.6008	1	$[M+H]^+$	PI(O-36:1)	$C_{45}H_{87}O_{12}P$		
143	852.62	852.6243	5	$[M+K]^+$	PE(P-42:1)	C47H92NO7P		
144	852.59	852.5879	2	$[M+K]^+$	PC(38:2)	C46H88NO8P	59	
145	853.57	853.5719	2	$[M+K]^+$	PG(P-40:2)	$C_{46}H_{87}O_9P$		
146	854.55	854.5460	5	$[M+K]^+$	PC(P-40:7)	C48H82NO7P		
147	855.50	855.5018	2	$[M+H]^+$	PI(36:6)	$C_{45}H_{75}O_{13}P$		
148	856.51	856.5099	0	[M+Na] ⁺	PS(40:7)	C46H76NO10P		747, 528, 28′ 88
149	864.62	864.6243	5	[M+K] ⁺	PC(P-40:2)	C48H92NO7P		

	Manager	Calculated	Error		Assignment			Structurally
No.	Measured	Calculated	Error	To a Comm	Comment	Molecular	Ref.	specific CID
	m/z,	m/z.	ppm	ion form	Compound	formula		ions $(m/z)^{a)}$
150	865.58	865.5801	0	$[M+H]^+$	PI(36:1)	$C_{45}H_{85}O_{13}P$	3	
151	866.61	866.6036	7	$[M+K]^+$	PE(42:2)	C47H90NO8P	1	
152	867.56	867.5512	10	$[M+K]^+$	PG(40:3)	$C_{46}H_{85}O_{10}P$		519, 311
153	868.52	868.5253	6	$[M+K]^{+}$	PC(40:8)	$\mathrm{C}_{48}\mathrm{H}_{80}\mathrm{NO}_{8}\mathrm{P}$	73	
154	869.55	869.5514	2	[M+Na] ⁺	PI(O-36:3)	$C_{45}H_{83}O_{12}P$		
155	870.54	870.5410	1	$[M+K]^+$	PC(40:7)	$\mathrm{C}_{48}\mathrm{H}_{82}\mathrm{NO}_{8}\mathrm{P}$		649, 287, 88
156	871.48	871.4733	8	$[M+K]^{+}$	PI(34:3)	C43H77O13P		
157	872.55	872.5566	8	$[M+K]^+$	PC(40:6)	C48H84NO8P		
158	873.48	873.4890	10	$[M+K]^{+}$	PI(34:2)	$C_{43}H_{79}O_{13}P$		
159	874.48	874.4783	2	$[M+K]^{+}$	PE(44:12)	C ₄₉ H ₇₄ NO ₈ P	74	
	508.41	508.4122	4	$[M+H]^+$		$C_{31}H_{55}D_5O_5$		
160	530.39	530.3942	8	[M+Na] ⁺	DG(28:0)	$C_{31}H_{55}D_5O_5$	75	
	533.42	533.4176	4	[M+Na] ⁺				
161	549.39	549.3916	3	[M+K] ⁺	DG(28:1)	$C_{31}H_{58}O_5$		

a) Structurally specific CID ions of lipids were detected by LC-MS/MS using CID. Fragment ions shown in blue were detected by *in situ*

2 MALDI-MS/MS. Abbreviations: PC, phosphatidylcholine; PE, phosphatidylethanolamine; PA, phosphatidic acid; PG,

3 phosphatidylglycerol; PS, phosphatidylserine; PI, phosphatidylinositol; Cer, ceramide; GlcCer, glycosylceramide; PE-Cer,

4 phosphatidylethanolamine-ceramide; PI-Cer, phosphatidylinositol-ceramide; SM, sphingomyelin; DG, diacylglycerol.

			ulated Error –		Assignment			Structurally
No.	Measured <i>m/z</i>	Calculated <i>m/z</i>	Error ppm	Ion form	Compound	Molecular	Ref.	specific CID
						formula		ions $(m/z)^{a}$
1	535.43	535.4333	6	[M+Na] ⁺	DG(28:0)	$C_{31}H_{60}O_5$		
2	537.45	537.4514	3	$[M+H]^+$	DG(30:2)	$C_{33}H_{60}O_5$		311, 237, 181
3	706.47	706.4654	7	$[M+H]^+$	PS(30:1)	$C_{36}H_{68}NO_{10}P$		
4	723.47	723.4725	3	$[M+K]^+$	PA(P-36:2)	$C_{39}H_{73}O_7P$		
5	731.57	731.5698	0	$[M+H]^+$	PE-Cer(d38:2)	$C_{40}H_{79}N_2O_7P$		
6	734.57	734.5694	1	$[M+H]^+$	PC(32:0)	$\mathrm{C}_{40}\mathrm{H}_{80}\mathrm{NO}_{8}\mathrm{P}$		
7	735.53	735.5324	3	$[M+K]^+$	DG(42:6)	$C_{45}H_{76}O_5$		385, 313, 285
8	736.49	736.4888	2	[M+Na] ⁺	PE(34:3)	C ₃₉ H ₇₂ NO ₈ P		
9	751.39	751.3947	6	$[M+K]^+$	PG(32:5)	$C_{38}H_{65}O_{10}P$		
10	753.52	753.5195	1	$[M+K]^+$	PA(P-38:1)	$C_{41}H_{79}O_7P$		
11	754.51	754.5147	6	$[M+K]^+$	PC(P-32:1)	C40H78NO7P	67	
12	756.50	756.4940	8	$[M+K]^+$	PE(34:1)	C ₃₉ H ₇₆ NO ₈ P	1, 59	265, 44, 27
13	758.47	758.4733	4	$[M+K]^+$	PS(P-32:0)	C ₃₈ H ₇₄ NO ₉ P		
14	759.46	759.4573	4	$[M+K]^+$	PG(32:1)	$C_{38}H_{73}O_{10}P$		
15	760.49	760.4889	1	[M+K]+	PS(O-32:0)	C ₃₈ H ₇₆ NO ₉ P		
16	761.55	761.5480	3	$[M+H]^+$	PA(P-42:6)	$C_{45}H_{77}O_7P$		433, 311, 279, 98
17	762.51	762.5068	4	$[M+H]^+$	PE(38:7)	$\mathrm{C}_{43}\mathrm{H}_{72}\mathrm{NO}_{8}\mathrm{P}$	72, 76	
18	763.48	763.4732	9	[M+Na] ⁺	PI(O-28:0)	$C_{37}H_{73}O_{12}P$		
19	766.50	766.4993	1	[M+Na] ⁺	PS(P-34:2)	$\mathrm{C}_{40}\mathrm{H}_{74}\mathrm{NO}_{9}\mathrm{P}$		
20	770.43	770.4369	9	$[M+K]^+$	PS(32:2)	$C_{38}H_{70}NO_{10}P$	77	
21	771.48	771.4725	10	$[M+K]^+$	PA(P-40:6)	$C_{43}H_{73}O_7P$		
22	772.45	772.4525	3	$[M+K]^+$	PS(32:1)	$C_{38}H_{72}NO_{10}P$	48	
23	773.49	773.4882	2	$[M+K]^+$	PA(O-40:6)	$C_{43}H_{75}O_7P$		
24	774.47	774.4682	2	$[M+K]^+$	PS(32:0)	C ₃₈ H ₇₄ NO ₁₀ P	9	
25	775.47	775.4675	3	$[M+K]^+$	PA(39:5)	$C_{42}H_{73}O_8P$	78	
26	779.72	779.7123	10	$[M+H]^+$	TG(46:0)	C49H94O6	79	
27	782.47	782.4731	4	[M+Na] ⁺	PE(38:8)	$\mathrm{C}_{43}\mathrm{H}_{70}\mathrm{NO}_{8}\mathrm{P}$		
28	783.50	783.5018	2	$[M+H]^+$	PI(30:0)	C ₃₉ H ₇₅ O ₁₃ P		765, 559, 541, 225
29	784.51	784.5123	3	$[M+H]^+$	PS(36:4)	$C_{42}H_{74}NO_{10}P$		289, 88, 42

1 Table S6. Lipids detected and identified in the mouse brain tissue sections by MALDI-TOF MS

2 in the positive-ion mode using DHB as the matrix.

Measured		Calculated	Eman		Assignment	ment		Structurally
No.	measured	Calculated	Error	Ion form	Compound	Molecular	Ref.	specific CID
	m/2,	m/2	phm	Ion Iorm	Compound	formula		ions $(m/z)^{a}$
30	786.48	786.4834	4	$[M+K]^+$	PE(P-38:6)	C43H74NO7P	1, 59	
31	788.50	788.4991	1	$[M+K]^{+}$	PE(P-38:5)	C43H74NO7P	1	
32	789.50	789.5042	5	$[M+K]^{+}$	PG(34:0)	$C_{40}H_{79}O_{10}P$	80	
33	796.43	796.4314	2	$[M+K]^+$	PE(38:9)	$\mathrm{C}_{43}\mathrm{H}_{68}\mathrm{NO}_{8}\mathrm{P}$		
34	798.46	798.4682	10	$[M+K]^{+}$	PS(34:2)	$C_{40}H_{74}NO_{10}P$		
35	799.44	799.4368	4	$[M+Na]^+$	PI(30:3)	$C_{39}H_{69}O_{13}P$		
36	800.44	800.4473	9	[M+Na] ⁺	PS(36:7)	$C_{42}H_{68}NO_{10}P$		
37	801.45	801.4524	3	$[M+Na]^+$	PI(30:2)	$C_{39}H_{71}O_{13}P$	81	
38	802.48	802.4784	2	$[M+K]^+$	PE(38:6)	$\mathrm{C}_{43}\mathrm{H}_{74}\mathrm{NO}_{8}\mathrm{P}$	1	287, 44
39	806.49	806.4967	8	$[M+H]^+$	PS(38:7)	$C_{44}H_{72}NO_{10}P$		
40	810.50	810.5046	6	$[M+K]^+$	PS(O-36:3)	$\mathrm{C}_{42}\mathrm{H}_{78}\mathrm{NO}_{9}\mathrm{P}$		
41	811.49	811.4886	2	$[M+K]^+$	PG(36:3)	$C_{42}H_{77}O_{10}P$	82	
42	814.41	814.4056	5	$[M+K]^+$	PS(36:8)	$C_{42}H_{66}NO_{10}P$		456, 259, 88
43	824.44	824.4473	9	[M+Na] ⁺	PS(38:9)	$C_{44}H_{68}NO_{10}P$		
44	827.47	827.4681	2	[M+Na] ⁺	PI(32:3)	$C_{41}H_{73}O_{13}P$		539, 249, 223, 163
45	832.49	832.4888	1	[M+Na] ⁺	PE(42:11)	$C_{47}H_{72}NO_8P$		
46	839.48	839.4834	4	[M+Na] ⁺	PG(40:9)	$C_{46}H_{73}O_{10}P$		
47	848.49	848.4838	7	$[M+K]^+$	PS(38:5)	C44H76NO10P	83	723, 500, 287
48	849.49	849.4890	1	$[M+K]^+$	PI(32:0)	$C_{41}H_{79}O_{13}P$		793, 569, 253, 181
49	850.50	850.4995	1	$[M+K]^+$	PS(38:4)	$C_{44}H_{78}NO_{10}P$	18	795, 490, 261, 88
50	864.49	864.4940	5	$[M+K]^+$	PC(40:10)	$\mathrm{C}_{48}\mathrm{H}_{76}\mathrm{NO}_{8}\mathrm{P}$	84	
51	866.51	866.5097	0	$[M+K]^+$	PC(40:9)	$C_{48}H_{78}NO_8P$	7	
50	822.51	822.5044	7	[M+Na] ⁺	D C(28.0)			
52	838.48	838.4784	2	$[M+K]^+$	PC(38:9)	C ₄₆ H ₇₄ NO ₈ P		
50	769.50	769.5014	2	$[M+H]^+$	DC(24 C)			
53	807.46	807.4573	3	[M+K] ⁺	PG(36:5)	C ₄₂ H ₇₃ O ₁₀ P		

a) Structurally specific CID ions of lipids were detected by LC-MS/MS using CID. Fragment ions shown in blue were detected by *in situ*

2 MALDI-MS/MS. Abbreviations: PC, phosphatidylcholine; PE, phosphatidylethanolamine; PA, phosphatidic acid; PG,

3 phosphatidylglycerol; PS, phosphatidylserine; PI, phosphatidylinositol; PE-Cer, phosphatidylethanolamine-ceramide; DG, diacylglycerol;

4 TG, triglyceride.

5

			_		Assignment			Structurally
No.	Measured	Calculated	Error	Ion form	Compound	Molecular	Ref.	specific CID
	m/2	m/ 2,	lbbm	Ion Iorm	Compound	formula		ions $(m/z)^{a}$
1	506.45	506.4544	9	[M+Na] ⁺	Cer(d30:0)	$C_{30}H_{61}NO_{3}$		
2	518.40	518.3970	6	$[M+K]^+$	Cer(d30:2)	C ₃₀ H ₅₇ NO ₃		
3	520.38	520.3762	7	$[M+H]^+$	PC(P-19:1)	$\mathrm{C}_{27}\mathrm{H}_{54}\mathrm{NO}_{6}\mathrm{P}$		
4	523.38	523.3759	8	$[M+K]^+$	DG(26:0)	$C_{29}H_{56}O_5$		
5	524.41	524.4075	5	$[M+H]^+$	PC(O-19:0)	C ₂₇ H ₅₈ NO ₆ P		
6	525.45	525.4514	3	$[M+H]^+$	DG(29:1)	$C_{32}H_{60}O_5$		
7	526.52	526.5194	1	$[M+H]^+$	Cer(d33:0)	C ₃₃ H ₆₇ NO ₃		
8	533.3	533.3004	1	$[M+K]^{+}$	PA(22:0)	$C_{25}H_{51}O_7P$	85	
9	535.44	535.4357	8	$[M+H]^+$	DG(30:3)	$C_{33}H_{58}O_5$		
10	539.47	539.4670	6	[M+H]+	DG(30:1)	C22H62O5		521, 339, 257,
				[]	(****)	- 33 62 - 3		183, 59
11	544.37	544.3737	7	[M+Na] ⁺	PC(O-19:1)	C ₂₇ H ₅₆ NO ₆ P		
12	545.42	545.4176	4	[M+Na] ⁺	DG(29:2)	$C_{32}H_{58}O_5$		
13	548.44	548.4440	7	$[M+K]^+$	Cer(32:1)	$C_{32}H_{63}NO_3$		492, 267
14	552.44	552.4388	2	$[M+H]^+$	PC(O-21:0)	$\mathrm{C}_{29}\mathrm{H}_{62}\mathrm{NO}_{6}\mathrm{P}$		
15	556.47	556.4700	0	[M+Na] ⁺	Cer(d34:3)	C ₃₄ H ₆₃ NO ₃		
16	558.39	558.3894	1	[M+Na] ⁺	PC(P-20:0)	$\mathrm{C}_{28}\mathrm{H}_{58}\mathrm{NO}_{6}\mathrm{P}$		
17	560.40	560.4050	9	[M+Na] ⁺	PC(O-20:0)	$C_{28}H_{60}NO_6P$		
18	561.45	561.4514	2	$[M+H]^+$	DG(32:4)	$C_{35}H_{60}O_5$		543, 333, 259, 169
19	564.40	564.4024	4	$[M+H]^+$	LysoPE(24:1)	$\mathrm{C}_{29}\mathrm{H}_{58}\mathrm{NO}_{7}\mathrm{P}$		
20	584.50	584.5013	2	[M+Na] ⁺	Cer(d36:3)	C ₃₆ H ₆₇ NO ₃		
21	615.43	615.4360	10	[M+Na] ⁺	PA(O-29:0)	$C_{32}H_{65}O_7P$		
22	629.42	629.4177	4	$[M+H]^+$	PA(31:3)	$C_{34}H_{61}O_8P$		415, 215, 169
23	631.47	631.4698	0	$[M+K]^+$	DG(34:2)	$C_{37}H_{68}O_5$		355, 295, 211
24	642.41	642.4105	1	[M+Na] ⁺	PE(27:1)	$\mathrm{C}_{32}\mathrm{H}_{62}\mathrm{NO}_{8}\mathrm{P}$		
25	660.40	660.4001	0	$[M+K]^{+}$	PE(27:0)	$C_{32}H_{64}NO_8P$		225, 44, 27
26	661.41	661.4051	7	[M+Na] ⁺	PG(26:0)	$C_{32}H_{63}O_{10}P$		
27	701.45	701.4517	2	[M+Na] ⁺	PA(P-36:5)	C ₃₉ H ₆₇ O ₇ P	82	377, 285, 223
28	739.46	739.4675	10	$[M+K]^+$	PA(36:2)	$C_{39}H_{73}O_8P$		475, 321, 209
29	749.51	749.5116	2	$[M+H]^+$	PA(40:6)	$C_{43}H_{73}O_8P$		651, 465, 435

1 Table S7. Lipids detected and identified in the germinating Chinese-yew seed tissue sections

2 by MALDI-TOF MS in the positive-ion mode using DCH as the matrix.

			Б		Assignment		Structurally	
No.	Measured	Calculated	Error	Less Course	C	Molecular	Ref.	specific CID
	m/z,	m/z,	ppm	ion form	Compound	formula		ions $(m/z)^{a)}$
30	750.44	750.4471	9	$[M+K]^{+}$	PE(34:4)	$C_{39}H_{70}NO_8P$		289, 44
31	751.68	751.6810	1	$[M+H]^+$	TG(44:0)	C47H90O6		509, 225, 183, 127
32	752.43	752.4320	3	[M+Na] ⁺	PI(25:0)	C ₃₄ H ₆₈ NO ₁₃ P		
33	753.39	753.3892	1	$[M+K]^+$	PA(38:9)	$C_{41}H_{63}O_8P$		439, 285, 259, 98
34	756.55	756.5514	2	[M+Na] ⁺	PC(32:0)	$C_{40}H_{80}NO_8P$		716, 535, 309, 224, 169, 88
35	757.42	757.4205	1	$[M+K]^+$	PA(38:7)	$\mathrm{C}_{41}\mathrm{H}_{67}\mathrm{O}_8\mathrm{P}$		
36	758.44	758.4369	4	$[M+K]^+$	PS(31:1)	C ₃₇ H ₇₀ NO ₁₀ P		251, 88, 42
37	759.45	759.4573	10	$[M+K]^+$	PG(32:1)	$C_{38}H_{73}O_{10}P$		
38	760.58	760.5851	7	[M+H] ⁺	PC(34:1)	$C_{42}H_{82}NO_8P$		742, 577, 184, 88
39	761.47	761.4729	4	$[M+K]^+$	PG(32:0)	$C_{38}H_{75}O_{10}P$		
40	762.47	762.4680	3	[M+Na] ⁺	PS(P-34:4)	C40H70NO9P		259, 88, 42
41	778.51	778.5147	6	$[M+K]^+$	PC(P-34:3)	C42H78NO7P		
42	773.54	773.5327	9	$[M+H]^+$	PG(36:3)	$C_{42}H_{77}O_{10}P$	82	601, 263, 75
43	774.59	774.5854	6	[M+Na] ⁺	GlcCer(d38:3)	C44H81NO8		
44	775.65	775.6576	10	$[M+K]^+$	DG(44:0)	$\mathrm{C}_{45}\mathrm{H}_{91}\mathrm{O}_{7}\mathrm{P}$		
45	777.69	777.6967	9	$[M+H]^+$	TG(46:1)	$C_{49}H_{92}O_{6}$	86	339, 265, 223, 197, 155
46	779.41	779.4107	1	$[M+K]^+$	PI(27:0)	$C_{36}H_{69}O_{13}P$		
47	780.48	780.4810	1	$[M+H]^+$	PS(36:6)	$C_{42}H_{70}NO_{10}P$		311, 88
48	781.44	781.4416	2	$[M+K]^+$	PG(34:4)	$C_{40}H_{71}O_{10}P \\$		
49	782.43	782.4369	9	$[M+K]^+$	PS(33:3)	$C_{39}H_{70}NO_{10}P$		559, 235, 88, 42
50	784.59	784.5827	9	[M+Na] ⁺	PC(34:0)	$C_{42}H_{84}NO_8P$		744, 184, 166
51	785.51	785.5093	1	$[M+K]^+$	PG(O-35:2)	$C_{41}H_{79}O_9P$		
52	786.48	786.4834	4	$[M+K]^+$	PE(P-38:6)	C43H74NO7P	59	
53	787.67	787.6688	2	[M+H] ⁺	SM(d40:1)	$C_{45}H_{91}N_2O_6P$		751, 604, 447, 323, 88
54	788.52	788.5201	0	[M+Na] ⁺	PE(38:5)	$C_{43}H_{76}NO_8P$		
55	789.5	789.5042	5	$[M+K]^{+}$	PG(34:0)	$C_{40}H_{79}O_{10}P$		
56	790.4	790.4056	7	[M+K] ⁺	PS(34:6)	$C_{40}H_{66}NO_{10}P$	87	303, 181, 88,
57	791.43	791.4260	5	$[M+K]^+$	PG(35:6)	$C_{41}H_{69}O_{10}P$		

	Maagurad	Coloulated	Funon	Assignment		_	Structurally	
No.	m/z	m/z		Ion form	Compound	Molecular	Ref.	specific CID
			PP		compound	formula		ions $(m/z)^{a)}$
58	793.43	793.4264	5	$[M+K]^+$	PI(28:0)	$C_{37}H_{71}O_{13}P$		
59	795.45	795.4573	9	$[M+K]^{+}$	PG(35:4)	$C_{41}H_{73}O_{10}P$		
60	796.52	796.5253	7	$[M+K]^+$	PC(34:2)	$C_{42}H_{80}NO_8P$		740, 184
61	797.42	797.4211	1	$[M+Na]^+$	PI(30:4)	$C_{39}H_{67}O_{13}P$		
62	798.43	798.4317	2	$[M+Na]^+$	PS(36:8)	$C_{42}H_{66}NO_{10}P$		
63	799.44	799.4368	4	[M+Na] ⁺	PI(30:3)	$C_{39}H_{69}O_{13}P$		
64	800.53	800.5225	9	$[M+H]^+$	PC(38:9)	$\mathrm{C}_{46}\mathrm{H}_{74}\mathrm{NO}_{8}\mathrm{P}$		635, 285, 88
	801.46	801.4549	6	$[M+H]^+$				
65	823.44	823.4368	4	[M+Na] ⁺	PI(32:5)	C ₄₁ H ₆₉ O ₁₃ P		
66	806.44	806.4369	4	$[M+K]^{+}$	PS(35:5)	$C_{41}H_{70}NO_{10}P$		
67	808.45	808.4525	3	$[M+K]^{+}$	PS(35:4)	$C_{41}H_{72}NO_{10}P$		
68	810.57	810.5773	9	$[M+K]^{+}$	PC(P-36:1)	$C_{44}H_{86}NO_7P$		754, 184
69	812.47	812.4627	9	$[M+K]^{+}$	PC(36:8)	$C_{44}H_{72}NO_8P$		
70	813.45	813.4524	3	$[M+Na]^+$	PI(31:3)	$C_{40}H_{71}O_{13}P$		
71	814.51	814.5147	6	$[M+K]^{+}$	PE(P-40:6)	C45H78NO7P		313, 44
72	815.46	815.4622	3	[M+Na] ⁺	PA(44:12)	$C_{47}H_{69}O_8P$		
73	816.42	816.4212	1	$[M+K]^+$	PS(36:7)	$C_{42}H_{68}NO_{10}P$		456, 259, 88, 42
74	817.46	817.4628	3	[M+K] ⁺	PI(P-31:1)	$C_{40}H_{75}O_{12}P$		
75	818.51	818.5097	0	$[M+K]^+$	PC(36:5)	$C_{44}H_{78}NO_8P$	2	
76	821.45	821.4577	9	$[M+K]^+$	PI(30:0)	$C_{39}H_{75}O_{13}P$		765, 583, 541, 225
77	822.44	822.4471	9	[M+K] ⁺	PS(36:10)	$\mathrm{C}_{45}\mathrm{H}_{70}\mathrm{NO}_{8}\mathrm{P}$		
78	824.45	824.4473	3	[M+Na] ⁺	PS(38:9)	$C_{44}H_{68}NO_{10}P$		617, 285, 88, 42
79	825.50	825.5042	5	[M+K] ⁺	PG(37:3)	$C_{43}H_{79}O_{10}P$		
80	826.48	826.4784	2	$[M+K]^{+}$	PE(40:8)	C45H74NO8P		
81	827.49	827.4834	8	[M+Na] ⁺	PG(39:8)	$C_{45}H_{73}O_{10}P$		
82	828.48	828.4810	1	$[M+H]^+$	PS(40:10)	C46H70NO10P		741, 526, 285
83	830.47	830.4733	4	$[M+K]^+$	PS(P-38:6)	C ₄₄ H ₇₄ NO ₉ P		775, 607, 436, 311, 223, 88
84	834.46	834.4682	10	$[M+K]^+$	PS(37:5)	C43H74NO10P		
85	838.48	838.4784	2	[M+K] ⁺	PC(38:9)	$C_{46}H_{74}NO_8P$		635, 285, 88
86	846.47	846.4682	2	[M+K] ⁺	PS(38:6)	C44H74NO10P		

	Magannad	Calculated	Eman		Assignment			Structurally
No.	wieasureu	Calculated	Error	Ion form	Commoned	Molecular	Ref.	specific CID
	m/2,	m/2,	lbbm	Ion Iorm	Compound	formula		ions $(m/z)^{a}$
87	848 52	848 5201	0	[M+N]a]+	$\mathbf{PC}(A0.10)$	C. H. NO P	88	550, 311, 259,
07	848.32	848.5201	0		10(40.10)	C48117610081		88
88	851.47	851.4705	1	$[M+H]^+$	PI(36:8)	$C_{45}H_{71}O_{13}P$		
89	852.49	852.4940	5	[M+K] ⁺	PE(42:9)	C47H76NO8P		315, 44
90	853.48	853 4837	4	[M+Na]+	PI(34·4)	CuaHarQuaP		
90	855.48	855.4857	4	[IVI + INA]	11(34.4)	04311/50131		
91	855.48	855.4784	2	$[M+K]^+$	PI(P-34:3)	$C_{43}H_{77}O_{12}P$		
92	870.54	870.5410	1	$[M+K]^+$	PC(40:7)	$C_{48}H_{82}NO_8P$		649, 269, 88
								816, 761, 184,
93	872.55	872.5566	8	$[M+K]^+$	PC(40:6)	$C_{48}H_{84}NO_8P$		88
94	919.57	919.5672	3	[M+K] ⁺	PI(37:0)	C46H89O13P		
95	021 50	021 5827	8	[M+Na]+	PI(0-40.5)	CueHerOveP		
95	921.39	921.3627	8	[IVI + INA]	11(0-40.3)	C491187O121		
96	979.48	979.4710	9	$[M+K]^+$	PIP(36:3)	$C_{45}H_{82}O_{16}P_2 \\$		

a) Structurally specific CID ions of lipids were detected by LC-MS/MS using CID. Fragment ions shown in blue were detected by *in situ*

2 MALDI-MS/MS. Abbreviations: PC, phosphatidylcholine; PE, phosphatidylethanolamine; lysoPE, lysophosphatidylethanolamine; PA,

bosphatidic acid; PG, phosphatidylglycerol; PS, phosphatidylserine; PI, phosphatidylinositol; PIP, Phosphatidylinositol monophosphate;

4 Cer, ceramide; GlcCer, glycosylceramide; SM, sphingomyelin; DG, diacylglycerol; TG, triglyceride.

1 References

- X. Wang, J. Han, A. Chou, J. Yang, J. Pan and C. H. Borchers, *Anal Chem*, 2013, 85, 7566 7573.
- H. He, L. Qin, Y. Zhang, M. Han, J. Li, Y. Liu, K. Qiu, X. Dai, Y. Li, M. Zeng, H. Guo, Y.
 Zhou and X. Wang, *Anal Chem*, 2019, **91**, 2634-2643.
- 6 3. X. Wang, J. Han, J. Yang, J. Pan and C. H. Borchers, *Chem Sci*, 2015, **6**, 729-738.
- 7 4. X. Wang, J. Han, J. Pan and C. H. Borchers, Anal Chem, 2014, 86, 638-646.
- 8 5. R. Casadonte and R. M. Caprioli, *Nat Protoc*, 2011, **6**, 1695-1709.
- 6. X. Wang, J. Han, D. B. Hardie, J. Yang and C. H. Borchers, *J Mass Spectrom*, 2016, **51**, 86 95.
- 11 7. C. H. Le, J. Han and C. H. Borchers, Anal. Chem., 2012, 84, 8391-8398.
- 8. V. V. Jaroslav Po'l, Gary Kruppa, Va' clav Kobliha, Petr Nova' k,Karel Lemr,Tapio Kotiaho,
 Risto Kostiainen, Vladimi'r Havli'c' ek, and Michael Volny, *Anal. Chem.*, 2009, **81**, 8479 8487.
- S. R. Shanta, L. H. Zhou, Y. S. Park, Y. H. Kim, Y. Kim and K. P. Kim, *Anal Chem*, 2011, 83, 1252-1259.
- 17 10. S. S. Bird, V. R. Marur, I. G. Stavrovskaya and B. S. Kristal, *Metabolomics*, 2013, 9, 67 83.
- N. Lu, D. Wei, F. Chen and S. T. Yang, *European Journal of Lipid Science and Technology*,
 2012, **114**, 253-265.
- 21 12. X. Wang, X. Gu, H. Song, Q. Song, X. Gao, Y. Lu and H. Chen, *Anal Chim Acta*, 2015,
 22 893, 77-83.
- D. DeZwaan-McCabe, R. D. Sheldon, M. C. Gorecki, D. F. Guo, E. R. Gansemer, R. J.
 Kaufman, K. Rahmouni, M. P. Gillum, E. B. Taylor, L. M. Teesch and D. T. Rutkowski, *Cell Rep*, 2017, **19**, 1794-1806.
- 26 14. C. Hu, M. Hoene, X. Zhao, H. U. Haring, E. Schleicher, R. Lehmann, X. Han, G. Xu and
 27 C. Weigert, *PLoS One*, 2010, 5, e13318.
- 15. A. A. Ebshiana, S. G. Snowden, M. Thambisetty, R. Parsons, A. Hye and C. LegidoQuigley, *PLoS One*, 2015, 10, e0122883.
- P. Y. Wielinga, R. E. Wachters-Hagedoorn, B. Bouter, T. H. van Dijk, F. Stellaard, A. G.
 Nieuwenhuizen, H. J. Verkade and A. J. Scheurink, *Am J Physiol Gastrointest Liver Physiol*,
 2005, 288, G1144-1149.
- 17. E. Cowan, P. Kumar, K. J. Burch, D. J. Grieve, B. D. Green and S. F. Graham,
 Metabolomics, 2016, 12, 124.
- 18. D. Kuc, W. Zgrajka, J. Parada-Turska, T. Urbanik-Sypniewska and W. A. Turski, *Amino Acids*, 2008, 35, 503-505.
- K. Eisinger, S. Krautbauer, T. Hebel, G. Schmitz, C. Aslanidis, G. Liebisch and C. Buechler,
 Exp Mol Pathol, 2014, 97, 37-43.
- 20. C. ANDRIAMAMPANDRY*, R. MASSARELLIt and J. N. KANFER*, *Biochemistry*,
 1992, 288, 267-272.
- G. C. Sparagna, C. A. Johnson, S. A. McCune, R. L. Moore and R. C. Murphy, *J Lipid Res*,
 2005, 46, 1196-1204.
- 43 22. K. Goda, K. Saito, K. Mute, A. Kobayashi, Y. Saito and S. Sugai, Journal of Toxicological
- 44 *Sciences*, 2018, **43**, 395-405.

- 1 23. J. N. Mi, J. R. Wang and Z. H. Jiang, *Sci Rep*, 2016, **6**, 20870.
- A. Ribel-Madsen, R. Ribel-Madsen, K. F. Nielsen, S. Brix, A. A. Vaag and C. Brons, *Sci Rep*, 2018, 8, 3452.
- 4 25. A. J. Lloyd, M. Beckmann, T. Wilson, K. Tailliart, D. Allaway and J. Draper, *Metabolomics*,
 2017, 13, 15.
- 6 26. R. Renthal, A. Y. Li, X. Gao and A. A. P. De León, *Journal of Medical Entomology*, 2014,
 7 51, 1237-1241.
- 27. J. Sostare, R. Di Guida, J. Kirwan, K. Chalal, E. Palmer, W. B. Dunn and M. R. Viant, *Anal Chim Acta*, 2018, **1037**, 301-315.
- 28. R. t'Kindt, E. D. Telenga, L. Jorge, A. J. Van Oosterhout, P. Sandra, N. H. Ten Hacken and
 K. Sandra, *Anal Chem*, 2015, 87, 4957-4964.
- W. Lorenzen, K. A. J. Bozhuyuk, N. S. Cortina and H. B. Bode, *Journal of Lipid Research*,
 2014, 55, 2620-2633.
- 30. J. A. Fincher, J. E. Dyer, A. R. Korte, S. Yadavilli, N. J. Morris and A. Vertes, *J Comp Neurol*, 2018, DOI: 10.1002/cne.24566.
- 16 31. S. Guo, D. Zhou, M. Zhang, T. Li, Y. Liu, Y. Xu, T. Chen and Z. Li, Sci Rep, 2017, 7, 5054.
- 17 32. W. J. Griffiths and Y. Wang, Chem Soc Rev, 2009, 38, 1882-1896.
- 18 33. A. B. Russell, M. LeRoux, K. Hathazi, D. M. Agnello, T. Ishikawa, P. A. Wiggins, S. N.
 19 Wai and J. D. Mougous, *Nature*, 2013, 496, 508-512.
- 20 34. H. Sun, J. Zhao, D. Zhong and G. Li, *PLoS One*, 2017, **12**, e0189009.
- 35. P. Rafols, D. Vilalta, S. Torres, R. Calavia, B. Heijs, L. A. McDonnell, J. Brezmes, E. Del
 Castillo, O. Yanes, N. Ramirez and X. Correig, *PLoS One*, 2018, 13, e0208908.
- 23 36. P. H. Li, S. Y. Huang, Y. C. Chen and P. L. Urban, *Rsc Advances*, 2013, **3**, 6865-6870.
- 24 37. M. Kompauer, S. Heiles and B. Spengler, *Nat Methods*, 2017, 14, 90-96.
- 25 38. F. Negrao, D. R. Abanades, C. F. Jaeeger, D. F. O. Rocha, K. R. A. Belaz, S. Giorgio, M.
- 26 N. Eberlin and C. F. F. Angolini, *Mol Biosyst*, 2017, **13**, 2401-2406.
- 39. J. B. Hu, S. Y. Chen, J. T. Wu, Y. C. Chen and P. L. Urban, *Rsc Advances*, 2014, 4, 1069310701.
- 40. L. V. Adamyan, N. Starodubtseva, A. Borisova, A. A. Stepanian, V. Chagovets, D.
 Salimova, Z. Wang, A. Kononikhin, I. Popov, A. Bugrova, K. Chingin, A. Kozachenko, H.
 Chen and V. Frankevich, *J Minim Invasive Gynecol*, 2018, 25, 426-433.
- 41. Z. Haoula, S. Ravipati, D. J. Stekel, C. A. Ortori, C. Hodgman, C. Daykin, N. RaineFenning, D. A. Barrett and W. Atiomo, *Metabolomics*, 2015, 11, 657-666.
- 42. K. B. Louie, B. P. Bowen, S. McAlhany, Y. Huang, J. C. Price, J. H. Mao, M. Hellerstein
 and T. R. Northen, *Sci Rep*, 2013, 3, 1656.
- 36 43. R. Yang, Y. Zhang, W. Qian, L. Peng, L. Lin, J. Xu, T. Xie, J. Ji, X. Zhan and J. Shan,
 37 *Metabolites*, 2019, 9.
- 44. J. M. Castro-Perez, T. P. Roddy, V. Shah, D. G. McLaren, S. P. Wang, K. Jensen, R. J.
 Vreeken, T. Hankemeier, D. G. Johns, S. F. Previs and B. K. Hubbard, *J Proteome Res*, 2011,
 10, 4281-4290.
- 45. G. B.-G. m. Egoitz Astigarraga, Laura Lombardero,Olatz Fresnedo,Fernando Castan²
 o,Mari'a Teresa Giralt, Begon² a Ochoa, Rafael Rodri'guez-Puertas,and Jose' A. Ferna' ndez,
 43 *Anal. Chem.*, 2008, **80**, 9105–9114.
- 44 46. S. Lin, B. Kanawati, L. Liu, M. Witting, M. Li, J. Huang, P. Schmitt-Kopplin and Z. Cai,

- 1 *Talanta*, 2014, **118**, 45-53.
- 2 47. A. Korenaga, F. Chen, H. Li, K. Uchiyama and J. M. Lin, *Talanta*, 2017, **162**, 474-478.
- 3 48. Y. Sugiura and M. Setou, *Rapid Commun Mass Spectrom*, 2009, 23, 3269-3278.
- 4 49. Y. Xu, M. Zhang, Q. Wang and Z. Li, *Anal Chim Acta*, 2018, **1026**, 101-108.
- 5 50. J. Wang, J. Sun, J. Wang, H. Liu, J. Xue and Z. Nie, *Chem Commun (Camb)*, 2017, 53,
 8114-8117.
- 7 51. C. Z. Ulmer, J. P. Koelmel, J. M. Ragland, T. J. Garrett and J. A. Bowden, *J Am Soc Mass Spectrom*, 2017, 28, 562-565.
- 52. E. Moreno-Gordaliza, D. Esteban-Fernandez, A. Lazaro, B. Humanes, S. Aboulmagd, A.
 Tejedor, M. W. Linscheid and M. M. Gomez-Gomez, *Talanta*, 2017, 164, 16-26.
- 53. J. J. Jones, M. J. Stump, R. C. Fleming, J. O. Lay, Jr. and C. L. Wilkins, *J Am Soc Mass Spectrom*, 2004, **15**, 1665-1674.
- 54. Q. Wu, J. L. Chu, S. S. Rubakhin, M. U. Gillette and J. V. Sweedler, *Chem Sci*, 2017, 8, 3926-3938.
- 15 55. E. L. Pannkuk, L. P. McGuire, D. F. Gilmore, B. J. Savary and T. S. Risch, *J Chem Ecol*,
 2014, 40, 227-235.
- T. Hayasaka, N. Goto-Inoue, Y. Sugiura, N. Zaima, H. Nakanishi, K. Ohishi, S. Nakanishi,
 T. Naito, R. Taguchi and M. Setou, *Rapid Commun Mass Spectrom*, 2008, 22, 3415-3426.
- J. A. Hankin, R. M. Barkley and R. C. Murphy, *J Am Soc Mass Spectrom*, 2007, 18, 1646 1652.
- 21 58. C. D. Calvano, C. De Ceglie and C. G. Zambonin, *J Mass Spectrom*, 2014, **49**, 831-839.
- R. Fernandez, S. Lage, B. Abad-Garcia, G. Barcelo-Coblijn, S. Teres, D. H. Lopez, F.
 Guardiola-Serrano, M. L. Martin, P. V. Escriba and J. A. Fernandez, *J Am Soc Mass Spectrom*,
 2014, 25, 1237-1246.
- 25 60. S. N. Jackson, H. Y. Wang and A. S. Woods, J Am Soc Mass Spectrom, 2007, 18, 17-26.
- 61. G. B.-G. m. Egoitz Astigarraga, Laura Lombardero, Olatz Fresnedo, Fernando Castan,
 Mar'a Teresa Giralt, Begona Ochoa, Rafael Rodr'guez-Puertas, and Jose'A. Ferna'ndez, *Anal. Chem.*, 2008, **80**, 9105-9114.
- 29 62. Y. Sugiura, Y. Konishi, N. Zaima, S. Kajihara, H. Nakanishi, R. Taguchi and M. Setou, J
 30 *Lipid Res*, 2009, **50**, 1776-1788.
- 31 63. J. Matsumoto, Y. Sugiura, D. Yuki, T. Hayasaka, N. Goto-Inoue, N. Zaima, Y. Kunii, A.
 32 Wada, Q. Yang, K. Nishiura, H. Akatsu, A. Hori, Y. Hashizume, T. Yamamoto, K. Ikemoto,
 33 M. Setou and S. Niwa, *Anal Bioanal Chem*, 2011, **400**, 1933-1943.
- 64. M. C. P. C. Rachelle R. Landgraf, Timothy J. Garrett, Peter W. Stacpoole, and Richard A.
 Yost*, *Anal. Chem.*, 2009, 81, 8488–8495.
- 36 65. B. Yang, N. H. Patterson, T. Tsui, R. M. Caprioli and J. L. Norris, *J Am Soc Mass Spectrom*,
 37 2018, **29**, 1012-1020.
- 66. H. Enomoto, Y. Sugiura, M. Setou and N. Zaima, *Anal Bioanal Chem*, 2011, 400, 1913 1921.
- 40 67. M. Gaudin, M. Panchal, S. Ayciriex, E. Werner, A. Brunelle, D. Touboul, C. Boursier41 Neyret, N. Auzeil, B. Walther, C. Duyckaerts and O. Laprevote, *J Mass Spectrom*, 2014, 49,
 42 1035-1042.
- 43 68. M. Wiegelmann, K. Dreisewerd and J. Soltwisch, *J Am Soc Mass Spectrom*, 2016, 27, 1952-1964.

- 69. A. Bodzon-Kulakowska, A. Antolak, A. Drabik, M. Marszalek-Grabska, J. Kotlinska and
 P. Suder, *Biochim Biophys Acta Mol Cell Biol Lipids*, 2017, **1862**, 686-691.
- 70. A. Y. Min Young Lee, Muhammad Shahid, Eunho Cho3, Vikram Sairam, Robert Figlin,
 Khae-Hwan Kim and Jayoung Kim, *Oncotarget*, 2018, 9, 13231-13243.
- 5 71. Min Young Lee, Austin Yeon, Muhammad Shahid, Eunho Cho, Vikram Sairam, Robert
 6 Figlin, K.-H. Kim and J. Kim, *Oncotarget*, 2018, 9, 13231-13243.
- 7 72. H. N. W. Abdelhamid, H. F., *Talanta*, 2013, **115**, 442-450.
- 8 73. S. Hameed, K. Ikegami, E. Sugiyama, S. Matsushita, Y. Kimura, T. Hayasaka, Y. Sugiura,
- 9 N. Masaki, M. Waki, I. Ohta, M. A. Hossen and M. Setou, *Anal Bioanal Chem*, 2015, 407, 10
 7589-7602.
- 74. F. Benabdellah, A. Seyer, L. Quinton, D. Touboul, A. Brunelle and O. Laprevote, *Anal Bioanal Chem*, 2010, **396**, 151-162.
- 13 75. L. Andrew N. Lane, KY, Patent Application Publication 2018.
- P. Zacek, M. Bukowski, L. Johnson, S. K. Raatz and M. Picklo, *J Nutr Biochem*, 2018, 54, 57-65.
- 16 77. Z. G. Howard Goldfine, *Hydrocarbon and Lipid Microbiology Protocols*, 2015, DOI:
 17 10.1007/8623_2015_56.
- 18 78. M. L. Yueyan Li, Xi Shu, Changgeng Liu, Jinian Shu, *Int. J. Mass spectrom.*, 2013, 352,
 44-50.
- 79. H. Alamri, N. H. Patterson, E. Yang, P. Zoroquiain, A. Lazaris, P. Chaurand and P.
 Metrakos, *Anal Bioanal Chem*, 2019, 411, 885-894.
- 22 80. Q. S. Wei Dong , Joewel T. Baibado, Yimin Liang, Ping Wang, Yeqing Huang, Zhifeng
 23 Zhang, and H.-Y. C. Yixuan Wang, *Int. J. Mass spectrom.*, 2013, 343-344, 15-22.
- 81. C. D. Calvano, C. De Ceglie, A. Aresta, L. A. Facchini and C. G. Zambonin, *Anal Bioanal Chem*, 2013, 405, 1641-1649.
- 82. M. Peukert, A. Matros, G. Lattanzio, S. Kaspar, J. Abadia and H. P. Mock, *New Phytol.*,
 2012, **193**, 806-815.
- 83. S. Karnati, V. Garikapati, G. Liebisch, P. P. Van Veldhoven, B. Spengler, G. Schmitz and
 E. Baumgart-Vogt, *PLoS One*, 2018, 13, e0203464.
- 84. M. Schlame, D. Acehan, B. Berno, Y. Xu, S. Valvo, M. Ren, D. L. Stokes and R. M. Epand, *Nat Chem Biol*, 2012, 8, 862-869.
- 85. P. J. Horn, J. E. Silva, D. Anderson, J. Fuchs, L. Borisjuk, T. J. Nazarenus, V. Shulaev, E.
 B. Cahoon and K. D. Chapman, *Plant J*, 2013, **76**, 138-150.
- 86. R. Mikova, V. Vrkoslav, R. Hanus, E. Hakova, Z. Habova, A. Dolezal, R. Plavka, P. Coufal
 and J. Cvacka, *PLoS One*, 2014, 9, e99173.
- 87. C. D. Calvano, F. Italiano, L. Catucci, A. Agostiano, T. R. Cataldi, F. Palmisano and M.
 Trotta, *Biometals*, 2014, 27, 65-73.
- 38 88. D. Sturtevant, M. Aziz and K. Chapman, *INFORM International News on Fats, Oils, and* 39 *Related Materials*, 2018, 29, 21-24.