# Supplementary Information

# Divergent Synthesis of *N*-Heterocyclic 1,6-Enynes through Zinc- catalyzed Decarboxylative A<sup>3</sup> Reaction

Zhuo-Ya Mao, <sup>a</sup> Yi-Wen Liu, <sup>a</sup> Rui-Jun Ma, <sup>a</sup> Jian-Liang Ye, <sup>b</sup> Chang-Mei Si, <sup>a</sup> Bang-Guo Wei, <sup>\*a</sup> and Guo-Qiang Lin<sup>c</sup>

<sup>a</sup>Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China. <sup>b</sup>College of Chemistry and Chemical Engineering and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen 361005, China

<sup>c</sup>Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.

## **Experimental section**

**General**: Toluene was dried over CaCl<sub>2</sub>. Reactions were monitored by thin layer chromatography (TLC) on glass plates coated with silica gel with fluorescent indicator. Flash chromatography was performed on silica gel (300–400) with petroleum/EtOAc as eluent. Optical rotations were measured on a polarimeter with a sodium lamp. HRMS were measured on a LTQ-Orbitrap-XL apparatus. IR spectra were recorded using film on a Fourier Transform Infrared Spectrometer. NMR spectra were recorded at 400 MHz or 600 MHz, and chemical shifts are reported in  $\delta$  (ppm) referenced to an internal TMS standard for <sup>1</sup>H NMR and CDCl<sub>3</sub> (77.16 ppm) for <sup>13</sup>C NMR.

### General Procedure for the Synthesis of 4

Amino acids 1 (1.5 mmol), terminal alkyne 3 (1.5 mmol) and ZnBr<sub>2</sub> (0.2 mmol) were dissolved in dry toluene (5 mL) under Ar atmosphere. The mixture was heated to 120°C and a solution of  $\alpha,\beta$ -unsaturated aldehyde 2 (1.0 mmol) in toluene (2 mL) was slowly added over 12h. Then, the reaction was cooled and concentrated. The residue was purified by flash chromatography on silica gel (PE/EA =5:1 - 10:1) to give the desired product 4.

1-Cinnamyl-2-(phenylethynyl)pyrrolidine (4aa)



Eluent: PE/EA=5:1, Yellow oil (169 mg, 59%); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.46-7.42 (m, 2H), 7.40-7.36 (m, 2H), 7.33-7.27 (m, 5H), 7.26-7.20 (m, 1H), 6.61 (d, J = 16.0 Hz, 1H), 6.43-6.33 (m, 1H), 3.76-3.67 (m, 2H), 3.28 (dd, J = 12.8, 7.6 Hz, 1H), 2.97-2.89 (m, 1H), 2.67-2.58 (m, 1H), 2.27-2.18 (m, 1H), 2.10-1.93 (m, 2H), 1.90-1.80 (m, 1H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  137.2, 132.7, 131.8, 128.6, 128.3, 128.2, 128.1, 127.5, 127.0, 126.5, 123.3, 88.4, 85.2, 55.5, 54.9, 51.9, 31.9, 22.2 ppm; HRMS (ESI-Orbitrap) *m/z*: [M + H]<sup>+</sup> Calcd for C<sub>21</sub>H<sub>21</sub>N<sup>+</sup>: 288.1747, found: 288.1752.

2-((2-Chlorophenyl)ethynyl)-1-cinnamylpyrrolidine (4ab)



Eluent: PE/EA=5:1, Yellow oil (186 mg, 58%); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.39-7.20 (m, 9H), 6.59 (d, *J* = 15.6 Hz, 1H), 6.40-6.28 (m, 1H), 3.72-3.65 (m, 1H), 3.64-3.56 (m, 1H), 3.27-3.18 (m, 1H), 2.97-2.86 (m, 1H), 2.59-2.47 (m, 1H), 2.25-2.14 (m, 1H), 2.07-1.90 (m, 2H), 1.87-1.78 (m, 1H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 137.2, 134.1, 133.1, 132.5, 128.7, 127.5, 127.3, 126.5, 121.9, 89.9, 83.8, 55.8, 83.2, 55.8, 54.9, 52.1, 31.9, 22.3 ppm; HRMS (ESI-Orbitrap) *m/z*: [M + H]<sup>+</sup> Calcd for C<sub>21</sub>H<sub>21</sub>ClN<sup>+</sup>: 322.1357, found: 322.1359.

2-((4-Bromophenyl)ethynyl)-1-cinnamylpyrrolidine (4ac)



Eluent: PE/EA=5:1, Yellow oil (186 mg, 51%); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.45-7.35 (m, 4H), 7.34-7.20 (m, 5H), 6.59 (d, *J* = 15.6 Hz, 1H), 6.44-6.34 (m, 1H), 3.73-3.65 (m, 1H), 3.63-3.55 (m, 1H), 3.28-3.17 (m, 1H), 2.98-2.86 (m, 1H), 2.60-2.51 (m, 1H), 2.26-2.13 (m, 1H), 2.07-1.75 (m, 4H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 137.2, 133.3, 132.5, 131.6, 128.7, 127.6, 127.3, 126.5, 122.4, 122.3, 90.2, 83.9, 55.8, 54.9, 52.2, 31.9, 22.3 ppm; HRMS (ESI-Orbitrap) *m/z*: [M + H]<sup>+</sup> Calcd for C<sub>21</sub>H<sub>21</sub>BrN<sup>+</sup>: 366.0852, 368.0831 found: 366.0860, 368.0840.

1-Cinnamyl-2-((2-methoxyphenyl)ethynyl)pyrrolidine (4ad)



Eluent: PE/EA=5:1, Yellow oil (209 mg, 66%); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.44-7.35 (m, 3H), 7.33-7.18 (m, 4H), 6.93-6.80 (m, 2H), 6.62 (d, *J* = 15.6 Hz, 1H), 6.44-6.34 (m, 1H), 3.86 (s, 3H), 3.76-3.67 (m, 2H), 3.34-3.25 (m, 1H), 2.94-2.85 (m, 1H), 2.65-2.57 (m, 1H), 2.25-2.14 (m, 1H), 2.11-2.04 (m, 1H), 2.00-1.92 (m, 1H), 1.87-1.79 (m, 1H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 160.2, 133.7, 132.7, 129.5, 128.6, 127.5, 126.5, 120.5, 110.8, 92.5, 81.5, 55.9, 55.3, 55.0, 51.7, 31.9, 22.2 ppm; HRMS (ESI-Orbitrap) *m/z*: [M + H]<sup>+</sup> Calcd for C<sub>22</sub>H<sub>24</sub>NO<sup>+</sup>: 318.1852, found: 318.1858.

2-((3-Bromophenyl)ethynyl)-1-cinnamylpyrrolidine (4ae)



Eluent: PE/EA=5:1, Yellow oil (245 mg, 67%); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.58 (s, 1H), 7.45-7.28 (m, 6H), 7.25-7.20 (m, 1H), 7.18-7.13 (m,

1H), 6.60 (d, *J* = 15.6 Hz, 1H), 6.43-6.31 (m, 1H), 3.72-3.60 (m, 2H), 3.29-3.20 (m, 1H), 2.96-2.85 (m, 1H), 2.63-2.54 (m, 1H), 2.26-2.17 (m, 1H), 2.08-1.93 (m, 2H), 1.90-1.80 (m, 1H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 137.1, 134.6, 132.8, 131.3, 130.4, 129.8, 128.7, 127.6, 126.9, 126.5, 125.4, 122.2, 90.1, 83.7, 55.6, 54.8, 52.0, 31.9, 22.3 ppm; HRMS (ESI-Orbitrap) *m/z*: [M + H]<sup>+</sup> Calcd for C<sub>21</sub>H<sub>21</sub>BrN<sup>+</sup>: 366.0852, 368.0831 found: 366.0861, 368.0843.

1-Cinnamyl-2-(p-tolylethynyl)pyrrolidine (4af)



Eluent: PE/EA=5:1, Yellow oil (202 mg, 67%); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.40-7.28 (m, 6H), 7.23-7.20 (m, 1H), 7.12-7.05 (m, 2H), 6.60 (d, *J* = 15.6 Hz, 1H), 6.43-6.34 (m, 1H), 3.75-3.58 (m, 2H), 3.26 (dd, *J* = 13.2, 7.6 Hz, 1H), 2.96-2.87 (m, 1H), 2.65-2.56 (m, 1H), 2.34 (s, 3H), 2.25-2.16 (m, 1H), 2.10-1.93 (m, 2H), 1.88-1.76 (m, 1H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 138.2, 137.2, 132.7, 131.7, 129.1, 128.6, 127.5, 127.1, 126.5, 120.3, 87.6, 85.2, 55.5, 54.9, 51.9, 31.9, 22.2, 21.5 ppm; HRMS (ESI-Orbitrap) *m/z*: [M + H]<sup>+</sup> Calcd for C<sub>22</sub>H<sub>24</sub>N<sup>+</sup>: 302.1903, found: 302.1909.

1-Cinnamyl-2-((4-ethynylphenyl)ethynyl)pyrrolidine (4ag)



Eluent: PE/EA=5:1, Yellow oil (109 mg, 35%); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.43-7.36 (m, 6H), 7.32-7.28 (m, 2H), 7.24-7.20 (m, 1H), 6.60 (d, J = 16.0 Hz, 1H), 6.41-6.33 (m, 1H), 3.72-3.64 (m, 2H), 3.28 (dd, J = 13.2, 7.6 Hz, 1H), 3.15 (s, 1H), 2.92 (ddd, J = 12.4, 8.4, 3.6 Hz, 1H), 2.64-2.56 (m, 1H), 2.27-2.18 (m, 1H), 2.07-1.93 (m, 2H), 1.89-1.80 (m, 1H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  137.2, 132.7, 132.1, 131.7, 128.7, 127.6, 127.2, 126.5, 124.0, 121.8, 90.9, 84.5, 83.4, 78.8, 55.7, 54.9, 52.1, 31.9, 22.3 ppm; HRMS (ESI-Orbitrap) *m/z*: [M + H]<sup>+</sup> Calcd for C<sub>23</sub>H<sub>22</sub>N<sup>+</sup>: 312.1747, found: 312.1751.

(E)-1-(3-(4-Chlorophenyl)allyl)-2-(phenylethynyl)pyrrolidine (4ah)



Eluent: PE/EA=5:1, Yellow oil (157 mg, 49%); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.46-7.40 (m, 2H), 7.32-7.23 (m, 7H), 6.55 (d, *J* = 16.0 Hz, 1H),

6.40-6.31 (m, 1H), 3.72-3.58 (m, 2H), 3.25 (dd, *J* = 13.6, 7.6 Hz, 1H), 2.96-2.88 (m, 1H), 2.62-2.53 (m, 1H), 2.25-2.17 (m, 1H), 2.10-1.93 (m, 2H), 1.90-1.80 (m, 1H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 135.8, 133.1, 131.9, 131.2, 128.8, 128.4, 128.2, 128.1, 127.7, 123.4, 88.7, 85.1, 55.6, 55.0, 52.1, 32.0, 22.3 ppm; HRMS (ESI-Orbitrap) *m/z*: [M + H]<sup>+</sup> Calcd for C<sub>21</sub>H<sub>21</sub>ClN<sup>+</sup>: 322.1357, found: 322.1363.

(E)-1-(3-(4-Bromophenyl)allyl)-2-(phenylethynyl)pyrrolidine (4ai)



Eluent: PE/EA=5:1, Yellow oil (186 mg, 51%); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.45-7.38 (m, 4H), 7.31-7.20 (m, 5H), 6.54 (d, *J* = 16.0 Hz, 1H), 6.43-6.32 (m, 1H), 3.72-3.60 (m, 2H), 3.25 (dd, *J* = 13.6, 7.6 Hz, 1H), 2.96-2.87 (m, 1H), 2.61-2.53 (m, 1H), 2.25-2.17 (m, 1H), 2.10-1.92 (m, 2H), 1.90-1.78 (m, 1H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 136.2, 131.8, 131.7, 131.3, 128.4, 128.2, 128.1, 128.0, 123.4, 121.2, 88.7, 85.1, 55.6, 55.0, 52.1, 32.0, 22.3 ppm; HRMS (ESI-Orbitrap) *m/z*: [M + H]<sup>+</sup> Calcd for C<sub>21</sub>H<sub>21</sub>BrN<sup>+</sup>: 366.0852, 368.0831 found: 366.0858, 368.0834.

(E)-1-(3-(4-Fluorophenyl)allyl)-2-(phenylethynyl)pyrrolidine (4aj)



Eluent: PE/EA=5:1, Yellow oil (204 mg, 67%); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.46-7.41 (m, 2H), 7.36-7.27 (m, 5H), 7.02-6.95 (m, 2H), 6.56 (d, *J* = 15.6 Hz, 1H), 6.34-6.26 (m, 1H), 3.72-3.64 (m, 2H), 3.26 (dd, *J* = 13.6, 7.6 Hz, 1H), 2.96-2.89 (m, 1H), 2.64-2.56 (m, 1H), 2.25-2.17 (m, 1H), 2.10-2.03 (m, 1H), 2.02-1.93 (m, 1H), 1.90-1.82 (m, 1H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 162.3 (*J* = 244.8 Hz), 133.4, 133.4, 131.8, 131.4, 128.4, 128.1, 128.0, 127.9, 127.1, 123.4, 115.6, 115.4, 88.6, 85.1, 55.6, 54.9, 52.0, 31.9, 22.2 ppm; HRMS (ESI-Orbitrap) *m/z*: [M + H]<sup>+</sup> Calcd for C<sub>21</sub>H<sub>21</sub>NF<sup>+</sup>: 306.1653, found: 306.1659.

(*E*)-1-(Dec-2-en-1-yl)-2-(phenylethynyl)pyrrolidine (4ak)



Eluent: PE/EA=7:1, Yellow oil (192 mg, 62%); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.46-7.40 (m, 2H), 7.32-7.26 (m, 3H), 5.71-5.49 (m, 2H), 3.63-3.56 (m, 1H), 3.54-3.46 (m, 1H), 3.21-2.98 (m, 1H), 2.93-2.82 (m, 1H), 2.56-2.48 (m, 1H), 2.23-2.13 (m, 1H), 2.10-1.86 (m, 4H), 1.85-1.77

(m, 1H), 1.40-1.32 (m, 2H), 1.30-1.20 (m, 8H), 0.91-0.84 (m, 3H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 134.3, 132.9, 131.8, 128.3, 128.0, 126.8, 126.3, 123.5, 88.9, 88.8, 84.8, 55.4, 54.8, 54.7, 51.8, 51.7, 49.7, 32.0, 31.9, 29.4, 29.3, 29.2, 22.7, 22.1, 14.2 ppm; HRMS (ESI-Orbitrap) *m/z*: [M + H]<sup>+</sup> Calcd for C<sub>22</sub>H<sub>32</sub>N<sup>+</sup>: 310.2529, found: 310.2529.

### 1-Allyl-2-(phenylethynyl)pyrrolidine (4al)



Eluent: PE/EA=5:1, Yellow oil (114 mg, 54%); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.25-7.16 (m, 2H), 7.11-7.02 (m, 3H), 5.79-5.65 (m, 1H), 5.00 (d, J = 17.2 Hz, 1H), 4.89 (d, J = 10.0 Hz, 1H), 3.37-3.28 (m, 2H), 2.81 (dd, J = 13.2, 7.6 Hz, 1H), 2.65-2.58 (m, 1H), 2.30-2.23 (m, 1H), 2.00-1.89 (m, 1H), 1.83-1.52 (m, 3H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  135.8, 131.8, 128.3, 128.1, 123.5, 117.4, 88.7, 84.8, 56.4, 54.9, 51.8, 31.9, 22.2 ppm; HRMS (ESI-Orbitrap) *m/z*: [M + H]<sup>+</sup> Calcd for C<sub>15</sub>H<sub>18</sub>N<sup>+</sup>: 212.1434, found: 212.1432.

(E)-2-((4-Bromophenyl)ethynyl)-1-(3-(4-chlorophenyl)allyl)pyrrolidine (4am)



Eluent: PE/EA=5:1, Yellow oil (204 mg, 51%); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.44-7.40 (m, 2H), 7.31-7.25 (m, 6H), 6.54 (dd, *J* = 16.0 Hz, 1H), 6.39-6.30 (m, 1H), 3.70-3.61 (m, 2H), 3.26 (dd, *J* = 13.6, 7.6 Hz, 1H), 2.92 (ddd, *J* = 13.6, 8.8, 4.8 Hz, 1H), 2.59 (ddd, *J* = 15.5, 8.8, 6.8 Hz, 1H), 2.27-2.17 (m, 1H), 2.08-1.92 (m, 2H), 1.92-1.80 (m, 1H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 135.7, 133.3, 133.2, 131.6, 131.4, 128.8, 127.9, 127.7, 122.4, 122.3, 89.9, 84.1, 55.6, 55.0, 52.2, 31.9, 22.3 ppm; HRMS (ESI-Orbitrap) *m/z*: [M + H]<sup>+</sup> Calcd for C<sub>21</sub>H<sub>20</sub>BrClN<sup>+</sup>: 400.0462, 402.0442, found: 400.0472, 402.0447.

(E)-1-(3-(4-Bromophenyl)allyl)-2-(p-tolylethynyl)pyrrolidine (4an)



Eluent: PE/EA=5:1, Yellow oil (193 mg, 51%); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.43-7.38 (m, 2H), 7.34-7.28 (m, 2H), 7.25-7.18 (m, 2H),

7.12-7.08 (m, 2H), 6.53 (d, J = 15.6 Hz, 1H), 6.42-6.33 (m, 1H), 3.71-3.63 (m, 2H), 3.26 (dd, J = 12.8, 7.6 Hz, 1H), 2.95-2.83 (m, 1H), 2.63-2.56 (m, 1H), 2.34 (s, 3H), 2.24-2.17 (m, 1H), 2.09-1.93 (m, 2H), 1.89-1.80 (m, 1H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  138.2, 136.2, 131.7, 131.4, 129.1, 128.1, 128.0, 121.2, 120.2, 87.6, 85.3, 55.5, 55.0, 52.0, 32.0, 22.2, 21.6 ppm; HRMS (ESI-Orbitrap) *m/z*: [M + H]<sup>+</sup> Calcd for C<sub>22</sub>H<sub>23</sub>BrN<sup>+</sup>: 380.1008, 382.0988, found: 380.1013, 382.0989.

(E)-1-(3-(4-Chlorophenyl)allyl)-2-(p-tolylethynyl)pyrrolidine (4ao)



Eluent: PE/EA=5:1, Yellow oil (154 mg, 46%); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.33-7.24 (m, 6H), 7.13-7.08 (m, 2H), 6.55 (d, *J* = 16.0 Hz, 1H), 6.41-6.33 (m, 1H), 3.72-3.64 (m, 2H), 3.27 (dd, *J* = 13.2, 7.6 Hz, 1H), 2.91 (ddd, *J* = 14.0, 8.8, 5.2 Hz, 1H), 2.64-2.57 (m, 1H), 2.34 (s, 3H), 2.25-2.17 (m, 1H), 2.09-1.93 (m, 2H), 1.90-1.81 (m, 1H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 138.2, 125.8, 133.1, 131.7, 131.4, 129.1, 128.8, 128.0, 127.7, 120.2, 87.6, 85.3, 55.5, 55.0, 52.0, 32.0, 22.2, 21.6 ppm; HRMS (ESI-Orbitrap) *m/z*: [M + H]<sup>+</sup> Calcd for C<sub>22</sub>H<sub>23</sub>ClN<sup>+</sup>: 336.1514, found: 336.1518.

1-Cinnamyl-2-(*m*-tolylethynyl)piperidine (4ba)



Eluent: PE/EA=6:1, Yellow oil (170 mg, 54%); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.43-7.36 (m, 2H), 7.33-7.26 (m, 4H), 7.23-7.18 (m, 2H), 7.14-7.08 (m, 1H), 6.58 (d, *J* = 15.6 Hz, 1H), 6.36-6.24 (m, 1H), 3.90-3.81 (m, 1H), 3.45-3.22 (m, 2H), 2.68-2.55 (m, 2H), 2.33 (s, 3H), 1.91-1.82 (m, 2H), 1.73-1.55 (m, 4H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 138.1, 137.2, 133.1, 132.4, 128.9, 128.6, 128.3, 127.5, 127.0, 126.5, 123.4, 87.0, 86.8, 58.9, 52.3, 49.4, 31.6, 25.9, 21.3, 21.0 ppm; HRMS (ESI-Orbitrap) *m/z*: [M + H]<sup>+</sup> Calcd for C<sub>23</sub>H<sub>26</sub>N<sup>+</sup>: 316.2060, found: 316.2062.

2-((2-Chlorophenyl)ethynyl)-1-cinnamylpiperidine (4bb)



Eluent: PE/EA=6:1, Yellow oil (181 mg, 54%); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.44-7.35 (m, 4H), 7.33-7.27 (m, 4H), 7.24-7.18 (m, 1H), 6.58 (d, *J* = 16.0 Hz, 1H), 6.34-6.25 (m, 1H), 3.90-3.83 (m, 1H), 3.45-3.35 (m, 1H), 3.33-3.25 (m, 1H), 2.65-2.56 (m, 2H), 1.93-1.82 (m, 2H), 1.71-1.54 (m, 4H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 137.2, 134.0, 133.3, 133.1, 128.7, 128.7, 127.6, 126.8, 126.5, 122.0, 88.3, 85.8, 58.9, 52.3, 49.5, 31.5, 25.8, 21.0 ppm; HRMS (ESI-Orbitrap) *m/z*: [M + H]<sup>+</sup> Calcd for C<sub>22</sub>H<sub>23</sub>ClN<sup>+</sup>: 336.1514, found: 336.1518.

1-Cinnamyl-2-((3-methoxyphenyl)ethynyl)piperidine (4bc)



Eluent: PE/EA=6:1, Yellow oil (228 mg, 69%); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.47-7.36 (m, 3H), 7.32-7.20 (m, 4H), 6.94-6.86 (m, 2H), 6.63 (d, J = 15.6 Hz, 1H), 6.37-6.28 (m, 1H), 3.96-3.93 (m, 1H), 3.89 (s, 3H), 3.43-3.31 (m, 2H), 2.73-2.56 (m, 2H), 1.95-1.86 (m, 2H), 1.85-1.51 (m, 2H), 1.85-1

4H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 160.3, 137.4, 133.7, 133.2, 129.4, 128.6, 127.5, 127.1, 126.5, 120.5, 112.9, 110.9, 91.4, 83.0, 58.8, 55.9, 52.5, 49.3, 31.6, 26.0, 20.9 ppm; HRMS (ESI-Orbitrap) *m/z*: [M + H]<sup>+</sup> Calcd for C<sub>23</sub>H<sub>26</sub>N<sup>+</sup>: 332.2009, found: 332.2012.

2-((3-Bromophenyl)ethynyl)-1-cinnamylpiperidine (4bd)



Eluent: PE/EA=6:1, Yellow oil (231 mg, 61%); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.62 (s, 1H), 7.46-7.43 (m, 1H), 7.42-7.38 (m, 3H), 7.32-7.27 (m, 2H), 7.25-7.16 (m, 2H), 6.59 (d, *J* = 15.6 Hz, 1H), 6.35-6.26 (m, 1H), 3.91-3.86 (m, 1H), 3.44-3.35 (m, 1H), 3.32-3.24 (m, 1H), 1.91-1.76 (m, 3H), 1.74-1.55 (m, 3H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 137.2, 134.6, 133.3, 131.2, 130.4, 129.9, 128.7, 127.6, 126.9, 126.5, 125.6, 122.2, 88.9, 85.4, 59.0, 52.3, 49.4, 31.5, 25.8, 21.0 ppm; HRMS (ESI-Orbitrap) *m/z*: [M + H]<sup>+</sup> Calcd for C<sub>22</sub>H<sub>23</sub>BrN<sup>+</sup>: 380.1008, 382.0988 found: 380.1018, 382.0996.

1-Cinnamyl-2-(p-tolylethynyl)piperidine (4be)



Eluent: PE/EA=10:1, Yellow oil (233 mg, 74%); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.43-7.35 (m, 4H), 7.32-7.26 (m, 2H), 7.23-7.20 (m, 1H), 7.14-7.09 (m, 2H), 6.58 (d, *J* = 16.0 Hz, 1H), 6.35-6.26 (m, 1H), 3.89-3.82 (m, 1H), 3.44-3.35 (m, 1H), 3.35-3.28 (m, 1H), 2.68-2.57 (m, 2H), 2.34 (s, 3H), 1.91-1.84 (m, 2H), 1.75-1.54 (m, 4H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 138.0, 137.1, 133.1, 131.7, 129.1, 128.6, 127.4, 126.9, 126.4, 120.4, 86.8, 86.3, 58.8, 52.2, 49.3, 31.6, 25.8, 21.5, 20.9 ppm; HRMS (ESI-Orbitrap) *m/z*: [M + H]<sup>+</sup> Calcd for C<sub>23</sub>H<sub>26</sub>N<sup>+</sup>: 316.2060, found: 316.2062.

1-Cinnamyl-2-(phenylethynyl)piperidine (4bf)



Eluent: PE/EA=6:1, Yellow oil (211 mg, 70%); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) & 7.50-7.44 (m, 2H), 7.41-7.37 (m, 2H), 7.35-7.27 (m, 5H),

7.24-7.22 (m, 1H), 6.59 (d, *J* = 16.0 Hz, 1H), 6.35-6.26 (m, 1H), 3.93-3.85 (m, 1H), 3.49-3.36 (m, 1H), 3.34-3.26 (m, 1H), 2.68-2.57 (m, 2H), 1.91-1.84 (m, 2H), 1.78-1.53 (m, 4H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 137.2, 133.3, 131.8, 128.6, 128.4, 128.3, 128.0, 127.5, 126.8, 126.5, 123.5, 87.1, 86.9, 58.9, 52.2, 49.4, 31.5, 25.8, 20.9 ppm; HRMS (ESI-Orbitrap) *m/z*: [M + H]<sup>+</sup> Calcd for C<sub>22</sub>H<sub>24</sub>N<sup>+</sup>: 302.1903, found: 302.1906.

(E)-1-(3-(4-Bromophenyl)allyl)-2-(p-tolylethynyl)piperidine (4bg)



Eluent: PE/EA=6:1, Yellow oil (150 mg, 38%); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.45-7.40 (m, 2H), 7.39-7.33 (m, 2H), 7.27-7.21 (m, 2H), 7.15-7.08 (m, 2H), 6.52 (d, *J* = 16.0 Hz, 1H), 6.35-6.25 (m, 1H), 3.90-3.82 (m, 1H), 3.42-3.24 (m, 2H), 2.67-2.55 (m, 2H), 2.36 (s, 3H), 1.92-1.85 (m, 2H), 1.77-1.70 (m, 1H), 1.66-1.56 (m, 3H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 138.2, 136.2, 132.0, 131.7, 129.2, 128.0, 127.8, 121.3, 120.4, 87.0, 86.2, 58.8, 52.4, 49.4, 31.6, 25.8, 21.6, 20.9 ppm; HRMS (ESI-Orbitrap) *m/z*: [M + H]<sup>+</sup> Calcd for C<sub>23</sub>H<sub>25</sub>BrN<sup>+</sup>: 394.1165, 396.1144, found: 394.1165, 396.1174.

(E)-1-(3-(4-Chlorophenyl)allyl)-2-(p-tolylethynyl)piperidine (4bh)



Eluent: PE/EA=6:1, Yellow oil (140 mg, 40%); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.40-7.21 (m, 6H), 7.15-7.07 (m, 2H), 6.54 (d, *J* = 15.6 Hz, 1H), 6.34-6.23 (m, 1H), 3.90-3.81 (m, 1H), 3.43-3.35 (m, 1H), 3.34-3.25 (m, 1H), 2.67-2.55 (m, 2H), 2.36 (s, 3H), 1.93-1.83 (m, 2H), 1.71-1.51 (m, 4H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 138.1, 135.8, 133.1, 131.9, 131.7, 129.2, 128.8, 127.8, 127.7, 120.4, 87.0, 86.3, 58.8, 52.4, 49.4, 31.6, 25.9, 21.6, 20.9 ppm; HRMS (ESI-Orbitrap) *m/z*: [M + H]<sup>+</sup> Calcd for C<sub>23</sub>H<sub>25</sub>ClN<sup>+</sup>: 350.1670, found: 350.1677.

1-Allyl-2-(phenylethynyl)piperidine (4bi)



Eluent: PE/EA=5:1, Yellow oil (83 mg, 37%); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.47-7.43 (m, 2H), 7.34-7.27 (m, 3H), 5.95-5.83 (m, 1H), 5.26 (d, *J* = 16.8 Hz, 1H), 5.16 (d, *J* = 10.0 Hz, 1H), 3.85-3.75 (m, 1H), 3.27-3.19 (m, 1H), 3.18-3.09 (m, 1H), 2.62-2.49 (m, 2H), 1.90-1.81 (m, 2H), 1.75-1.53 (m, 4H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  135.4, 131.8, 128.4, 128.0, 123.6, 118.1, 87.3, 86.7, 59.7, 52.2, 49.3, 31.6, 25.9, 21.0

ppm; HRMS (ESI-Orbitrap) m/z:  $[M + H]^+$  Calcd for C<sub>16</sub>H<sub>20</sub>N<sup>+</sup>: 226.1590, found: 226.1587.

#### 5-Methyl-7-phenyl-2,3,4,5,6,6a,7,12b-octahydro-1*H*-benzo[*f*]pyrido[2,1-α]isoindol-5-ium iodide (10)



To a solution of **4bf** (300 mg, 1 mmol) in MeCN (10 mL) was added MeI (426 mg, 3 mmol), after being stirred for 12 h at room temperature, the reaction mixture was concentrated to give the **9** which was used without further purification. The iodide salt **9** was dissolved in a mixture of EtOH (1 mL) and 3 *N* KOH (1 mL) solution, then warmed to 90°C and stirred for 6 h. After cooled, concentrated the **10** was recrystallized from absolute EtOH as white solid (310 mg, 70%); mp 257-259°C; <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>/CCl<sub>4</sub>)  $\delta$  7.53-7.40 (m, 4H), 7.34-7.28 (m, 3H), 7.24-7.19 (m, 1H), 7.17-7.13 (m, 1H), 6.80-6.75 (m, 1H), 4.56-4.48 (m, 1H), 4.25 (d, *J* = 16.4, 1H), 3.88-3.81 (m, 1H), 3.57-3.48 (m, 1H), 3.43-3.40 (m, 1H), 3.24 (s, 3H), 3.02 (dd, *J* = 14.4, 5.2 Hz, 1H), 2.80-2.70 (m, 1H), 2.23-2.14 (m, 1H), 2.01-1.93 (m, 2H), 1.73-1.60 (m, 3H) ppm; <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>/CCl<sub>4</sub>)  $\delta$  136.7, 135.4, 134.2, 133.6, 131.0, 128.9, 128.7, 127.9, 127.8, 127.5, 126.8, 125.1, 73.6, 68.0, 57.2, 46.7, 37.3, 30.9, 19.7, 19.6, 15.4 ppm; HRMS (ESI-Orbitrap) *m/z*: [M]<sup>+</sup> Calcd for C<sub>23</sub>H<sub>26</sub>N<sup>+</sup>: 316.2060, found: 316.2064.

#### 1,2-Di((*E*)-benzylidene)hexahydro-1H-pyrrolizine (11)



To a solution of **4aa** (287 mg, 1 mmol) in toluene (3 mL) was added Pd(OAc)<sub>2</sub> (45 mg, 0.2 mmol) and (*p*-MePh)<sub>3</sub>P (92 mg, 0.3 mmol) under N<sub>2</sub> protection, then the reaction mixture was warmed to 60°C and stirred for 6 h. After cooled, concentrated the residue was purified by flash chromatography on silica gel (DCM/MeOH/TEA=50:1:0.1) to give the **11** as yellow oil (242 mg, 84%); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.39-7.34 (m, 5H), 7.32-7.28 (m, 2H), 7.25-7.22 (m, 3H), 6.98-6.94 (m, 2H), 4.63-4.57 (m, 1H), 4.16-4.09 (m, 1H), 3.74-3.68 (m, 1H), 3.08-3.02 (m, 1H), 2.73-2.65 (m, 1H), 2.34-2.27 (m, 1H), 1.84-1.77 (m, 2H), 1.65-1.57 (m, 1H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  145.3, 140.8, 137.6, 137.0, 129.1, 129.0, 128.6, 128.5, 127.0, 120.2, 120.1, 66.7, 56.9, 54.8, 31.8, 25.3 ppm; HRMS (ESI-Orbitrap) *m/z*: [M]<sup>+</sup> Calcd for C<sub>21</sub>H<sub>22</sub>N<sup>+</sup>: 288.1747, found: 288.1747.

(*E*)-1-(1,5-Diphenylpent-1-en-4-yn-3-yl)pyrrolidine (5)



Eluent: PE/EA=5:1, Yellow oil; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.52-7.47 (m, 2H), 7.45-7.41 (m, 2H), 7.35-7.30 (m, 5H), 7.27-7.23 (m, 1H), 6.86 (d, *J* = 16.0 Hz, 1H), 6.37 (dd, *J* = 15.6, 5.6 Hz, 1H), 4.52 (d, *J* = 6.0 Hz, 1H), 2.85-2.74 (m, 4H), 1.86-1.81 (m, 4H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  136.9, 132.1, 132.0, 128.7, 128.4, 128.3, 128.2, 127.8, 126.8, 123.3, 87.3, 85.8, 56.9, 50.2, 23.7 ppm; HRMS (ESI-Orbitrap) *m/z*: [M + H]<sup>+</sup> Calcd for C<sub>21</sub>H<sub>21</sub>N<sup>+</sup>: 288.1747, found: 288.1756.



37

368 351

<u>،</u> ؋ ؋ ؋ ؋

| 743<br>728<br>708<br>694<br>675 | 306<br>287<br>274 | 933<br>920       | $\begin{array}{c} 630\\ 614 \end{array}$ | $\begin{array}{c} 255 \\ 2223 \\ 2223 \\ 2224 \\ 2224 \\ 2224 \\ 2224 \\ 2224 \\ 2224 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 2005 \\ 200$ |
|---------------------------------|-------------------|------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                 |                   | $\int_{2.}^{2.}$ | 2.2.                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| 00444000004                                                                                         |                 |                         |          |   |
|-----------------------------------------------------------------------------------------------------|-----------------|-------------------------|----------|---|
| 12808212048                                                                                         | 0 5             | 496                     | 0        | 6 |
|                                                                                                     | 4-1             | $\infty \propto \Omega$ | <u>с</u> | 1 |
| $0.0 - 1.0 \times 0 \times$ | • •             |                         | •        | • |
| ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~                                                               | 21 00           | - t- C                  |          | 2 |
|                                                                                                     | $\infty \infty$ | ດດດ                     | ŝ        | 2 |
|                                                                                                     |                 | ( ) ノ                   |          |   |
|                                                                                                     | 1 (             |                         |          |   |



230 210 190 170 150 130 110 90 80 70 60 50 40 30 20 10 0 -10 -30 f1 (ppm)



![](_page_23_Figure_1.jpeg)

![](_page_23_Figure_2.jpeg)

![](_page_24_Figure_0.jpeg)

![](_page_25_Picture_0.jpeg)

![](_page_25_Picture_1.jpeg)

---0.000

![](_page_25_Figure_2.jpeg)

![](_page_26_Figure_0.jpeg)

110 9 f1 (ppm) -30 -10

![](_page_27_Figure_0.jpeg)

![](_page_27_Figure_1.jpeg)

![](_page_27_Figure_2.jpeg)

---0.001

![](_page_27_Figure_3.jpeg)

4.0 f1 (ppm)

![](_page_28_Figure_0.jpeg)

![](_page_29_Picture_0.jpeg)

 $\begin{array}{c} -3.\ 646 \\ -3.\ 255 \\ -3.\ 243 \\ -2.\ 911 \\ -2.\ 588 \\ -2.\ 009 \\ -1.\ 857 \\ -1.\ 857 \end{array}$ 

--0.000

![](_page_29_Figure_2.jpeg)

![](_page_29_Figure_3.jpeg)

![](_page_30_Figure_0.jpeg)

![](_page_31_Figure_0.jpeg)

| 2800585412                             |                 |      |    |        |
|----------------------------------------|-----------------|------|----|--------|
|                                        | 212             | 2002 | 91 | 17     |
| 0.0.7.7.8.9.1.2.7.8                    |                 |      |    |        |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 22              | 145  | 1  | $^{2}$ |
|                                        | $\infty \infty$ | ດດດ  | ŝ  | 22     |
|                                        |                 |      |    |        |
| ר הר                                   | 1 (             | ז זו |    | ١٢     |

![](_page_32_Figure_1.jpeg)

-30 110 g f1 (ppm) 70 60 50 40 -10

![](_page_33_Figure_0.jpeg)

![](_page_34_Figure_0.jpeg)

![](_page_35_Figure_0.jpeg)

![](_page_35_Figure_1.jpeg)

![](_page_35_Figure_2.jpeg)








(<sup>1</sup>H NMR, 400 MHz, CDCI<sub>3</sub>)







110 9 f1 (ppm) -30 -10 



 $\begin{array}{c} 7.443\\ 7.432\\ 7.432\\ 7.432\\ 7.432\\ 7.429\\ 7.429\\ 7.429\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.23333\\ 7.2333\\ 7.2333\\ 7.23333\\ 7.23333\\ 7.2333\\ 7.2333\\ 7.2333\\ 7.23$ 



(<sup>1</sup>H NMR, 400 MHz, CDCl<sub>3</sub>)







39

| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   |           |                         |                                        |
|-----------------------------------------|-----------|-------------------------|----------------------------------------|
| N N O M M M M M M M M M M M M M M M M M | 0 0 0     | ccoc-4                  | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 00000000000                             | 202       | $\dot{0}$               | 000024040                              |
|                                         | ~ 1 00 00 | 410010                  | 0000000000                             |
| 4010000                                 |           |                         |                                        |
|                                         | a a 4     | 10 <del>4</del> 4 1 1 0 |                                        |
|                                         | ốc ốc ốc  | ក៏លលល៍លំលី              |                                        |
|                                         | 1 J J     | i i i i i i             |                                        |
|                                         | $\sim$ /  |                         |                                        |
|                                         |           | 11 1 1                  |                                        |



-30 110 g f1 (ppm) 70 60 50 40 -10



















110 9 f1 (ppm) -30 -10



9.0







| 0044-400000                                                                   |                 |          |                               |
|-------------------------------------------------------------------------------|-----------------|----------|-------------------------------|
| 00140004040                                                                   | 7               | 8 - 1 12 | 0040                          |
|                                                                               | 6 X             | 0 N N    | 0000                          |
| $\infty \lor \neg \neg \otimes \infty \otimes \land \neg \neg \otimes \infty$ |                 |          |                               |
| 0 0 0 0 0 0 0 0 0 0 0 0                                                       | 00              | 0 C1 C0  |                               |
| $\neg$         | $\infty \infty$ | 004      | $\alpha \alpha \alpha \alpha$ |
|                                                                               |                 | ノ く く    |                               |
|                                                                               | Ý               | ( ) )    |                               |







 $\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & &$ 







fl (ppm)

230





(<sup>1</sup>H NMR, 400 MHz, CDCl<sub>3</sub>)











| 856 | $381 \\ 317 \\ 298 \\ 284 \\ 265 $ | $640 \\ 616 \\ 586$ | $\begin{array}{c} 335\\ 869\\ 861\\ 721\\ 721\\ 723\\ 675\\ 633\\ 633\\ 614\\ 614\\ 614\\ 603\\ 527\\ 527\\ 527\\ \end{array}$ |
|-----|------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------|
| -3. |                                    | 555<br>575<br>77    |                                                                                                                                |

| 8447774704                                                            |                 |                 |            |
|-----------------------------------------------------------------------|-----------------|-----------------|------------|
| 00004844                                                              | 4 -             | c 4 α           | 1002       |
|                                                                       | $\infty \infty$ | 3000            | 0.48       |
| 00007801377                                                           |                 |                 |            |
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                 | 9               | 0 1 0           | 1510       |
| $\neg$ | $\infty \infty$ | 00 <del>4</del> | 0 0 0 0    |
|                                                                       | ( )             | JUU             | $1 \cup 1$ |
|                                                                       | Y               | ( ) )           |            |
|                                                                       |                 |                 |            |





| 882         | 390<br>331<br>312<br>312<br>299<br>279 | $\begin{array}{c} 646\\ 620\\ 626\\ 628\\ 8875\\ 7725\\ 608\\ 668\\ 608\\ 604\\ 6015\\ 6015\\ 6015\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5555\\ 5$ |
|-------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -33.<br>13. |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |



(<sup>1</sup>H NMR, 400MHz, CDCl<sub>3</sub>)



| 00440000404                                                                                       |                 |                                   |       |
|---------------------------------------------------------------------------------------------------|-----------------|-----------------------------------|-------|
| -000040000400                                                                                     | က်က             | 0 <del>4</del> 8                  | C C C |
|                                                                                                   | $^{-1}$         | $\infty \cap \infty$              | 0 0 U |
| $\sim \sim $ |                 |                                   |       |
| ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~                                                             | P 9             | 0 M M                             | 0 2 1 |
|                                                                                                   | $\infty \infty$ | 10 10 <del>4</del>                | 000   |
|                                                                                                   |                 | $\mathcal{I} \subset \mathcal{I}$ |       |
|                                                                                                   | Y               | ( ) )                             | ( )   |









| 371<br>355<br>289<br>270<br>137<br>121  | 2555<br>216<br>278<br>278<br>258<br>258 | 849 | $372 \\ 311 \\ 293 \\ 293$ | $643 \\ 620 \\ 586 \\ 356 \\ 356 \\$ | 873<br>634<br>576                         | 000 |
|-----------------------------------------|-----------------------------------------|-----|----------------------------|--------------------------------------|-------------------------------------------|-----|
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 0000                                    | ÷.  | $\cdots$                   | ~~~~                                 |                                           | 0.  |
|                                         |                                         |     | $\leq$                     |                                      | $\langle \langle \langle \rangle \rangle$ |     |







| $\begin{array}{c} 452\\ 444\\ 308\\ 303\\ 298\\ 298\end{array}$ | 939<br>923<br>8828<br>8828<br>8862<br>8862<br>175<br>175<br>175 | 813 | $\begin{array}{c} 226 \\ 160 \\ 141 \\ 127 \\ 109 \end{array}$ | 589             | 075<br>870<br>691<br>661<br>662<br>5590<br>5565<br>565 |
|-----------------------------------------------------------------|-----------------------------------------------------------------|-----|----------------------------------------------------------------|-----------------|--------------------------------------------------------|
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                          |                                                                 | -3. |                                                                | ,2.<br>2.<br>2. |                                                        |
|                                                                 |                                                                 |     |                                                                |                 |                                                        |

-0.002

| .43<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35<br>.35 | 26<br>66     | 65<br>19<br>27    | 58<br>98<br>98 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------|----------------|
| $\begin{array}{c} 135\\ 131\\ 128\\ 128\\ 123\\ 118\\ 118\\ 118\\ 118\\ 118\\ 118\\ 118\\ 11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 87.          | 59.<br>52.<br>49. | 31.25.25.      |
| /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\mathbf{Y}$ |                   | 215            |














--66.709 --56.867 --54.824 --31.793 --25.290



f1 (ppm) -10 -20 -30 -40 





f1 (ppm) Ó -10 The results of decarboxylative A<sup>3</sup> reaction with phenylacetylene and hexanal.



Proline **1a** (1.5 mmol), phenylacetylene **3a** (1.5 mmol) and ZnBr<sub>2</sub> (0.2 mmol) were dissolved in dry toluene (5 mL) under Ar atmosphere. The mixture was heated to 120°C and a solution of benzaldehyde **2g** (1.0 mmol) in toluene (2 mL) was slowly added over 12h. Then, the reaction was cooled and concentrated. The residue was purified by flash chromatography on silica gel (PE/EA = 10:1) to give the **S1**<sup>1</sup> (133 mg, 51%) and **S2**<sup>2</sup> (42 mg, 16%).



Proline **1a** (1.5 mmol), phenylacetylene **3a** (1.5 mmol) and ZnBr<sub>2</sub> (0.2 mmol) were dissolved in dry toluene (5 mL) under Ar atmosphere. The mixture was heated to 120°C and a solution of hexanal **2h** (1.0 mmol) in toluene (2 mL) was slowly added over 12h. Then, the reaction was cooled and concentrated. The residue was purified by flash chromatography on silica gel (PE/EA =5:1) to give the **S3** as colorless oil (170 mg, 67%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.44-7.40 (m, 2H), 7.33-7.27 (m, 3H), 3.68 (dd, *J* = 8.8, 6.0 Hz, 1H), 2.80-2.75 (m, 2H), 2.76-2.68 (m, 2H), 1.84-1.77 (m, 4H), 1.76-1.69 (m, 2H), 1.63-1.54 (m, 1H), 1.52-1.43 (m, 1H), 1.37-1.31 (m, 4H), 0.93-0.88 (m, 3H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  131.9, 128.3, 127.9, 123.6, 88.4, 85.4, 55.3, 49.9, 35.1, 31.8, 26.5, 23.6, 22.7, 14.2 ppm; HRMS (ESI-Orbitrap) *m/z*: [M + H]<sup>+</sup> Calcd for C<sub>18</sub>H<sub>26</sub>N<sup>+</sup>: 256.2060, found: 256.2060.

## References

1. H.-P. Bi, Q. Teng, M. Guan, W.-W. Chen, Y.-M. Liang, X. Yao and C.-J. Li, J. Org. Chem., 2010, 75, 783-788.

2. C. Zhao and D. Seidel, J. Am. Chem. Soc., 2015, 137, 4650-4653.







|     |     | '   | '   | '   ' |     | 1 1 | 1 1 | 1 1 | 1   | '   |                 | '  | · · | ·  | '  | ·  | · 1 | · · | ·  |    | ' | · · |  |
|-----|-----|-----|-----|-------|-----|-----|-----|-----|-----|-----|-----------------|----|-----|----|----|----|-----|-----|----|----|---|-----|--|
| 210 | 200 | 190 | 180 | 170   | 160 | 150 | 140 | 130 | 120 | 110 | 100<br>f1 (ppm) | 90 | 80  | 70 | 60 | 50 | 40  | 30  | 20 | 10 | 0 | -10 |  |
|     |     |     |     |       |     |     |     |     |     |     |                 | /  |     |    |    |    |     |     |    |    |   |     |  |



f1 (ppm)

## The results of DFT calculations.

**Computational methods:** Calculations were carried out with the Gaussian 09 programs<sup>1</sup>. The geometries of all the species were fully optimized by using DFT of the B3LYP method<sup>2-4</sup> with the 6-31G\* basis set.<sup>5,6</sup> All stationary points were verified as either minima (zero imaginary frequencies) or transition states (a single imaginary frequency). Reported relative energies are Gibbs free energies in kcal/mol. Molecular structure graphics were generated using CYLview.<sup>7</sup>

To further explore the regional selectivity of the reaction with different zinc catalysts, the DFT calculations with  $ZnF_2$  and  $ZnBr_2$  were performed and the results show that the energy of 7a- $ZnF_2$  is ca. 3.06 kJ/mol lower than that of 7b- $ZnF_2$ . Therefore, 7a- $ZnF_2$  is more favorable when  $ZnF_2$  was used, the major product is 5. When  $ZnBr_2$  was used, the energy of 7b- $ZnBr_2$  is ca. 0.03 kJ/mol lower than that of 7a- $ZnBr_2$  (Fig. S1). However, the transition state 8b is ca. 7.08 kJ/mol lower than that of 8a (Fig. S2). Therefore, 4 was the major product when  $ZnBr_2$  was used. Furthermore, the 8b is the possible transition state for the reaction based on the DFT calculations results.



Fig. S1.



Fig. S2

When 5 was refluxed in toluene in the presence of  $ZnBr_2$ , the 5 was consumed completely and the reaction mixture was complexed, no major product can be isolated and characterized (Scheme S1). This result explained the high regional selectivity and moderate yields of the reaction.



Scheme S1. 5 (0.5 mmol) in toluene (5 mL) was refluxed in the presence of  $ZnBr_2$  (0.1 mmol) for 12h.

## Data for the DFT calculations



| С  | 1.05072600  | 2.58578400  | 0.11000600  |
|----|-------------|-------------|-------------|
| Ν  | 1.19119600  | 1.14649600  | -0.25774600 |
| С  | 2.61117300  | 0.76695200  | -0.47681000 |
| С  | 3.36259300  | 1.90345800  | 0.21655200  |
| С  | -3.54761200 | -0.25810700 | -0.05494400 |
| С  | -2.10459600 | -0.36567800 | -0.20709600 |
| С  | -1.18156600 | 0.63274200  | -0.16222200 |
| С  | 0.20070300  | 0.30054700  | -0.32718900 |
| С  | 2.47509900  | 3.14314600  | -0.01248500 |
| С  | -4.31847000 | -1.43493900 | -0.13384500 |
| С  | -5.70318000 | -1.39493800 | 0.00468800  |
| С  | -6.34579100 | -0.17556300 | 0.22525800  |
| С  | -5.59579900 | 1.00339400  | 0.30634700  |
| С  | -4.21382100 | 0.96496100  | 0.16806600  |
| Н  | 0.49572800  | -0.75007600 | -0.47974000 |
| Н  | -1.47727000 | 1.66444400  | 0.00517700  |
| Н  | -1.72660700 | -1.37446800 | -0.37155000 |
| Н  | 4.37201600  | 2.02443700  | -0.18638400 |
| Н  | 3.46511300  | 1.71130900  | 1.29244300  |
| Н  | 0.33024600  | 3.07117600  | -0.55512700 |
| Н  | 0.66948100  | 2.64556800  | 1.13597000  |
| Н  | 2.65002800  | 3.95512100  | 0.70014200  |
| Н  | 2.63435600  | 3.54003400  | -1.02166100 |
| Н  | -3.81758000 | -2.38452500 | -0.30442600 |
| Н  | -6.27984200 | -2.31312100 | -0.05887700 |
| Н  | -7.42610000 | -0.14054100 | 0.33429300  |
| Н  | -6.09421800 | 1.95316900  | 0.47847100  |
| Н  | -3.64707600 | 1.88889600  | 0.23400500  |
| Н  | 2.76860200  | 0.85017500  | -1.56357200 |
| Zn | 3.01474700  | -1.13831000 | 0.01496900  |
| F  | 4.50147300  | -1.84921000 | 0.67639200  |
| F  | 1.51692500  | -2.17838300 | -0.25661000 |

| 0 of imaginary frequencies                   |              |
|----------------------------------------------|--------------|
| Sum of electronic and zero-point Energies=   | -2537.752086 |
| Sum of electronic and thermal Energies=      | -2537.735069 |
| Sum of electronic and thermal Enthalpies=    | -2537.734125 |
| Sum of electronic and thermal Free Energies= | -2537.800071 |



| С  | 0.86136100  | -0.13930300 | -0.71440800 |
|----|-------------|-------------|-------------|
| С  | -0.48441900 | -0.36957100 | -0.17738200 |
| С  | -1.63215500 | -0.17763200 | -0.86207700 |
| С  | 3.06891500  | -2.79782300 | 0.67579700  |
| С  | 1.74826700  | -2.16043000 | 0.38469200  |
| Ν  | 1.84427200  | -1.12779000 | -0.39890800 |
| С  | 3.26997800  | -0.87222000 | -0.77444300 |
| С  | 3.97543300  | -2.18711700 | -0.41967900 |
| С  | -2.99728800 | -0.25350200 | -0.33579100 |
| С  | -4.07288700 | -0.30212900 | -1.24233900 |
| С  | -5.38939300 | -0.40150100 | -0.79761900 |
| С  | -5.66511000 | -0.44891300 | 0.56971400  |
| С  | -4.61024100 | -0.38811400 | 1.48528700  |
| С  | -3.29556900 | -0.28681400 | 1.04064800  |
| Н  | 0.89705500  | 0.06381600  | -1.78832700 |
| Н  | -0.53781900 | -0.63141900 | 0.88134400  |
| Н  | -1.55807500 | 0.05407700  | -1.92495700 |
| Н  | 3.40151300  | -2.51572600 | 1.68590900  |
| Н  | 3.01919500  | -3.89139900 | 0.64809600  |
| Н  | 0.78774700  | -2.45899000 | 0.78509900  |
| Н  | 3.57828600  | -0.02406500 | -0.15071900 |
| Н  | 3.31228100  | -0.60377100 | -1.83343600 |
| Н  | 4.01447600  | -2.85338400 | -1.28750300 |
| Н  | 4.99757400  | -2.01707600 | -0.07515000 |
| Н  | -3.86571300 | -0.26557600 | -2.30947000 |
| Н  | -6.20075000 | -0.43846700 | -1.51980900 |
| Н  | -6.69089400 | -0.52090700 | 0.92052100  |
| Н  | -4.81548200 | -0.40630000 | 2.55251000  |
| Н  | -2.49385300 | -0.20829900 | 1.76967700  |
| Zn | 1.52761000  | 1.63484700  | 0.13096400  |
| F  | 2.91998200  | 1.25420300  | 1.22473600  |
| F  | 0.94167500  | 3.22102200  | -0.38970900 |

| 0 of imaginary frequencies                   |              |
|----------------------------------------------|--------------|
| Sum of electronic and zero-point Energies=   | -2537.746234 |
| Sum of electronic and thermal Energies=      | -2537.728948 |
| Sum of electronic and thermal Enthalpies=    | -2537.728004 |
| Sum of electronic and thermal Free Energies= | -2537.795194 |

| + Br                          |             |             |             |
|-------------------------------|-------------|-------------|-------------|
| N <sup>×</sup> − ZII<br> ] Br |             |             |             |
|                               |             |             |             |
| Ph                            |             |             |             |
| С                             | -0.17131400 | 3.03043700  | -0.03907900 |
| Ν                             | 0.03107200  | 1.62007000  | -0.47798700 |
| С                             | 1.43588500  | 1.36243300  | -0.85601700 |
| С                             | 2.15931700  | 2.65190900  | -0.45789400 |
| С                             | -4.56275800 | -0.16332200 | 0.07542800  |
| С                             | -3.14036000 | -0.14388600 | -0.22368200 |
| С                             | -2.29095900 | 0.91987200  | -0.18767800 |
| С                             | -0.91454800 | 0.72098600  | -0.51393900 |
| С                             | 1.08277500  | 3.74822900  | -0.54369000 |
| С                             | -5.24260500 | -1.39631900 | 0.01089300  |
| С                             | -6.60391200 | -1.47892600 | 0.28908700  |
| С                             | -7.31451300 | -0.32858400 | 0.63627700  |
| С                             | -6.65592400 | 0.90473600  | 0.70356200  |
| С                             | -5.29707900 | 0.98889200  | 0.42705400  |
| Н                             | -0.58916500 | -0.28157100 | -0.79186800 |
| Н                             | -2.64079700 | 1.90602600  | 0.10109900  |
| Н                             | -2.71139900 | -1.10711600 | -0.49915900 |
| Н                             | 3.01788000  | 2.84159000  | -1.10769700 |
| Н                             | 2.54878700  | 2.58569700  | 0.56517600  |
| Н                             | -1.10449700 | 3.41885700  | -0.45406600 |
| Н                             | -0.24083600 | 3.04468500  | 1.05523000  |
| Н                             | 1.30599500  | 4.63669600  | 0.05462500  |
| Н                             | 0.93477700  | 4.06600200  | -1.58255200 |
| Н                             | -4.68874000 | -2.29223500 | -0.25793000 |
| Н                             | -7.10956600 | -2.43861100 | 0.23563100  |
| Н                             | -8.37711200 | -0.38923700 | 0.85371200  |
| Н                             | -7.20784000 | 1.80080900  | 0.97269600  |
| Н                             | -4.80247200 | 1.95415400  | 0.48188400  |
| Н                             | 1.43861300  | 1.23634900  | -1.94718300 |
| Zn                            | 2.27111900  | -0.34455000 | -0.12706200 |
| Br                            | 4.29621300  | -0.19965400 | 0.93596700  |
| Br                            | 1.04582400  | -2.28276900 | -0.54864600 |
|                               |             |             |             |

| 0 of imaging the guardian                    |              |
|----------------------------------------------|--------------|
|                                              | 7401 560270  |
| Sum of electronic and zero-point Energies=   | -/481.5682/9 |
| Sum of electronic and thermal Energies=      | -7481.550065 |
| Sum of electronic and thermal Enthalpies=    | -7481.549121 |
| Sum of electronic and thermal Free Energies= | -7481.621127 |

| (+)<br>−  Br    |             |             |             |
|-----------------|-------------|-------------|-------------|
| Zn              |             |             |             |
| Ph <sup>2</sup> | 0.43084300  | -0.65548700 | -1.19253300 |
| С               | -0.88227700 | -0.89274600 | -0.58192000 |
| С               | -2.06075300 | -0.50701600 | -1.12005300 |
| С               | 2.78321500  | -3.33975700 | -0.16744200 |
| С               | 1.44472500  | -2.68098600 | -0.23721100 |
| Ν               | 1.41414700  | -1.67213100 | -1.06141800 |
| С               | 2.75384000  | -1.45317700 | -1.67867500 |
| С               | 3.49374400  | -2.77162200 | -1.41821400 |
| С               | -3.36365900 | -0.55633600 | -0.45230900 |
| С               | -4.53720100 | -0.54127500 | -1.22861100 |
| С               | -5.79451400 | -0.61710100 | -0.63351100 |
| С               | -5.90828800 | -0.70015500 | 0.75548000  |
| С               | -4.75305700 | -0.69425500 | 1.54259900  |
| С               | -3.49657700 | -0.61679400 | 0.94887400  |
| Н               | 0.41413500  | -0.27558400 | -2.21386700 |
| Н               | -0.87874100 | -1.30760100 | 0.42619100  |
| Н               | -2.06544200 | -0.12586100 | -2.14149300 |
| Н               | 3.28229200  | -3.03591600 | 0.76405100  |
| Н               | 2.71537400  | -4.43254500 | -0.16028400 |
| Н               | 0.57157900  | -2.94688700 | 0.34196700  |
| Н               | 3.21172200  | -0.60386200 | -1.15979300 |
| Н               | 2.62673600  | -1.19705100 | -2.73298900 |
| Н               | 3.36665800  | -3.45257800 | -2.26551000 |
| Н               | 4.56374500  | -2.61472900 | -1.26632300 |
| Н               | -4.45476600 | -0.47822200 | -2.31132400 |
| Н               | -6.68642000 | -0.60796700 | -1.25450700 |
| Н               | -6.88788000 | -0.75295500 | 1.22256800  |
| Н               | -4.83295000 | -0.73220500 | 2.62581200  |
| Н               | -2.61031800 | -0.56369500 | 1.57540500  |
| Zn              | 0.97189100  | 0.91298700  | 0.07750000  |
| Br              | 1.79283300  | -0.08456800 | 1.99243200  |
| Br              | 0.71997400  | 3.04466000  | -0.66568400 |

| 0 of imaginary frequencies                   |              |
|----------------------------------------------|--------------|
| Sum of electronic and zero-point Energies=   | -7481.568786 |
| Sum of electronic and thermal Energies=      | -7481.550439 |
| Sum of electronic and thermal Enthalpies=    | -7481.549495 |
| Sum of electronic and thermal Free Energies= | -7481.621176 |
|                                              |              |



| С  | -0.44671900 | -1.34227700 | 2.10329200  |
|----|-------------|-------------|-------------|
| Ν  | -0.60639200 | -1.13450200 | 0.65478500  |
| С  | -1.81264200 | -1.71648800 | 0.16101600  |
| С  | -2.33512800 | -2.60133600 | 1.29070600  |
| С  | 2.40535300  | 2.55895400  | 0.42575300  |
| С  | 1.47772300  | 1.51506000  | -0.02934600 |
| С  | 1.40137800  | 0.24684300  | 0.40671200  |
| С  | 0.40029900  | -0.69525200 | -0.16920400 |
| С  | -1.82065000 | -1.86830500 | 2.54238800  |
| С  | 2.15850600  | 3.88940300  | 0.04450400  |
| С  | 2.99626000  | 4.92307400  | 0.45967600  |
| С  | 4.10533500  | 4.64462600  | 1.25930200  |
| С  | 4.37131700  | 3.32468700  | 1.63679300  |
| С  | 3.53325100  | 2.29320400  | 1.22427300  |
| Н  | 2.05925400  | -0.13120600 | 1.18586400  |
| Н  | 0.75668800  | 1.82930300  | -0.78477300 |
| Н  | -1.90811500 | -3.61465800 | 1.23876900  |
| Н  | -3.42419100 | -2.69312800 | 1.28395900  |
| Н  | 0.34566300  | -2.08868600 | 2.26597700  |
| Н  | -0.14433500 | -0.41122600 | 2.59150700  |
| Н  | -2.48632300 | -1.03092600 | 2.77870100  |
| Н  | -1.75159300 | -2.50883800 | 3.42559000  |
| Н  | 1.29386900  | 4.10926100  | -0.57697400 |
| Н  | 2.78319300  | 5.94464800  | 0.15705000  |
| Н  | 4.76268700  | 5.44734900  | 1.58205000  |
| Н  | 5.23976500  | 3.09963700  | 2.25030700  |
| Н  | 3.76602100  | 1.27110300  | 1.50962300  |
| Zn | -3.07439700 | -0.16085300 | -0.36008400 |
| Н  | -0.01380200 | -0.33752300 | -1.11490200 |
| С  | 1.20307400  | -2.16705800 | -0.78701700 |
| С  | 2.45061600  | -2.31640800 | -0.74593500 |
| С  | 3.84447000  | -2.30169800 | -0.62964800 |
| С  | 4.48653800  | -2.86027300 | 0.50697600  |
| С  | 4.64643300  | -1.74628700 | -1.66156500 |
| С  | 5.87145700  | -2.85793100 | 0.60032000  |
| Н  | 3.87961600  | -3.29207900 | 1.29678100  |
| С  | 6.02966400  | -1.74604600 | -1.54850100 |
| Н  | 4.16078900  | -1.31964000 | -2.53318300 |
| С  | 6.64851800  | -2.30110600 | -0.42222100 |

| Η  | 6.35210100  | -3.29002100 | 1.47352300  |
|----|-------------|-------------|-------------|
| Н  | 6.63286900  | -1.31333800 | -2.34149500 |
| Н  | 7.73170100  | -2.30055900 | -0.34206700 |
| Η  | 0.38838000  | -2.78224100 | -1.16599900 |
| Η  | -1.65089900 | -2.20659500 | -0.81040300 |
| Br | -2.10660200 | 1.10519300  | -2.04084400 |
| Br | -5.09302700 | 0.01292600  | 0.69340100  |

1 of imaginary frequencies

| Sum of electronic and zero-point Energies=   | -7789.821591 |
|----------------------------------------------|--------------|
| Sum of electronic and thermal Energies=      | -7789.796083 |
| Sum of electronic and thermal Enthalpies=    | -7789.795139 |
| Sum of electronic and thermal Free Energies= | -7789.885784 |

н Br Ρh `Zn Br Ph

| С | 0.39243400  | -0.62438800 | -1.21509000 |
|---|-------------|-------------|-------------|
| С | 0.88094200  | 0.65404300  | -0.77289300 |
| С | 2.03980600  | 1.24648300  | -1.22024300 |
| С | -2.64713600 | -1.76467400 | 0.48971800  |
| С | -1.71861600 | -0.65671600 | 0.05598700  |
| Ν | -0.79419200 | -1.17641300 | -0.79265300 |
| С | -1.16664700 | -2.53643200 | -1.25132100 |
| С | -2.58959100 | -2.72961500 | -0.71076000 |
| С | 2.62572900  | 2.47370900  | -0.70016300 |
| С | 3.60498800  | 3.14015600  | -1.46543700 |
| С | 4.18196000  | 4.32628700  | -1.02101800 |
| С | 3.80369500  | 4.87478400  | 0.20633200  |
| С | 2.85034100  | 4.21554500  | 0.98898700  |
| С | 2.27182100  | 3.03001200  | 0.54862700  |
| Н | 0.80965800  | -1.07705800 | -2.10899500 |
| Н | 0.32636000  | 1.14907100  | 0.01959200  |
| Н | 2.56520700  | 0.78212400  | -2.05371400 |
| Н | -2.25269500 | -2.23389900 | 1.40042000  |
| Н | -3.65488700 | -1.39773100 | 0.70122000  |
| Н | -1.36308300 | 0.06616300  | 0.78223300  |
| Н | -0.44992700 | -3.24142000 | -0.81291000 |
| Н | -1.08792700 | -2.59825600 | -2.34139900 |
| Н | -3.32306700 | -2.42866400 | -1.46502700 |
|   |             |             |             |

| Н  | -2.78536700 | -3.76937900 | -0.43789800 |
|----|-------------|-------------|-------------|
| Н  | 3.90432900  | 2.71801500  | -2.42184800 |
| Н  | 4.93085600  | 4.82235600  | -1.63272700 |
| Н  | 4.25640100  | 5.79791800  | 0.55724300  |
| Н  | 2.56807400  | 4.62078600  | 1.95709600  |
| Н  | 1.56813300  | 2.51154100  | 1.19410100  |
| Zn | 2.02412600  | -1.06851800 | 0.27315900  |
| С  | -2.73787800 | 0.67607000  | -1.02230200 |
| С  | -3.95583300 | 0.83356700  | -0.81462700 |
| С  | -5.31139700 | 0.87642700  | -0.43664900 |
| С  | -5.73995000 | 1.72520500  | 0.61477200  |
| С  | -6.28139300 | 0.09483000  | -1.11303100 |
| С  | -7.08075700 | 1.77633000  | 0.97479000  |
| Н  | -5.00549200 | 2.33305300  | 1.13393500  |
| С  | -7.61903800 | 0.15959000  | -0.74361200 |
| Н  | -5.96481500 | -0.55137600 | -1.92614700 |
| С  | -8.02663000 | 0.99664500  | 0.30067100  |
| Н  | -7.39322000 | 2.42933900  | 1.78508100  |
| Н  | -8.35096200 | -0.44532400 | -1.27190500 |
| Н  | -9.07381200 | 1.04265700  | 0.58538500  |
| Н  | -1.93536500 | 1.06487300  | -1.63368700 |
| Br | 3.70449600  | -2.15093200 | -0.80248300 |
| Br | 1.14939200  | -0.93568300 | 2.37926300  |

1 of imaginary frequencies

| -7789.832573 |
|--------------|
| -7789.806719 |
| -7789.805775 |
| -7789.897058 |
|              |

## References

 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. *Gaussian 09*; Gaussian, Inc.: Wallingford, CT, 2009.

- Lee, C., Yang, W. & Parr, R. G. Development of the colle-salvetti correlationenergy formula into a functional of the electron density. *Phys. Rev. B* 1988, *37*, 785–789.
- Becke, A. D. A new mixing of Hartree–Fock and local density–functional theories. J. Phys. Chem. 1993, 98, 1372–1377, doi:10.1063/1.464304.
- Stephens, P. J., Devlin, F. J., Chabalowski, C. F. & Frisch, M. J. *Ab Initio* calculation of vibrational absorption and circular dichroism spectra using density functional force fields. *J. Phys. Chem.* **1994**, *98*, 11623–11627.
- 5. Hariharan, P. C. & Pople, J. A. The effect of d-functions on molecular orbital energies for hydrocarbons. *Chem. Phys. Lett.* **1972**, *16*, 217–219.
- Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; DeFrees,
  D. J.; Pople, J. A. Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. *J. Chem. Phys.* 1982, 77, 3654–3665.
- Legault, C. Y. CYLview, 1.0b; Université de Sherbrooke, 2009; http://www.cylview.org.