Supporting information

Enantioselective Palladium-Catalyzed Diarylation of Unactivated Alkenes

Baihang Ju, Shigui Chen* and Wangqing Kong*

E-mail: wqkong@whu.edu.cn

The Center for Precision Synthesis, Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, P. R. China

Contents

1.	General information	S3
2.	General procedure	S4
3.	Characterization data of products	S5
4.	Copies of the ¹ H, ¹⁹ F and ¹³ C NMR spectra	S65
5.	References	S100

1. General Information

¹H and ¹³C NMR data were recorded with Bruker ADVANCE III (400 MHz) or JNM-ECZ400S/L1 (400 MHz) spectrometers. Chemical shifts are given in ppm. The spectra are calibrated to the residual ¹H and ¹³C signals of the solvents. Multiplicities are abbreviated as follows: singlet (s), doublet (d), triplet (t), quartet (q), doublet-doublet (dd), quintet (quint), septet (sept), multiplet (m), and broad (b). ¹⁹F NMR spectra were recorded using CFCl₃ as internal standard. Gas chromatography were determined with a SHIMADZU Nexis GC 2030 gas chromatography instrument with a FID detector. High-resolution mass spectra (HRMS) were recorded on DIONEX UltiMate 3000 & Bruker Compact TOF mass spectrometer. Enantiomeric excesses were determined with a SHIMADZU LC-20ADXR system using chiral stationary phase columns (DAICEL) by comparing the samples with the corresponding racemic samples. Column and elution details were specified in each entry.

Materials and Methods: Unless otherwise stated, starting materials were purchased from commercial suppliers (Adamas-beta®, Alfa, Aldrich and so on). All reactions dealing with air- or moisture-sensitive compounds were performed in the argon-filled glove box or by standard Schlenk techniques in oven-dried reaction vessels under argon atmosphere. Solvents were purchased in HPLC quality, degassed by purging thoroughly with argon and dried over activated molecular sieves of appropriate size. More sensitive compounds were stored in a desiccator or in a glove-box if required. Reactions were monitored by thin layer chromatography (TLC) using glass 0.25 mm silica gel plates. Compounds were visualized by UV-light at 254 nm and by dipping the plates in an aqueous potassium permanganate solution followed by heating. Flash column chromatography was performed over silica gel (200-400 mesh).

2. General Procedures

A mixture of PdCl₂ (10 mol %), (*4S*, *4'S*)-Cy-BOX **L6** (20 mol %) and MeOH (1.0 mL) was stirred in an oven-dried vial at room temperature for 15 minutes to form the precatalyst. The resulting solution was cooled to 10 °C and charged with arenediazonium salt **1** (0.10 mmol), boronic acid **2** (0.2 mmol) and Ag₂CO₃ (0.1 mmol). Then the reaction mixture was stirred at the same temperature until the reaction was completed. The solvent was removed under vacuum and the residue was then purified by column chromatography on silica gel, eluting with petroleum ether/EtOAc = 100:1~30/1 to afford the desired dihydrobenzofuran **3**.

3. Characterization data of products

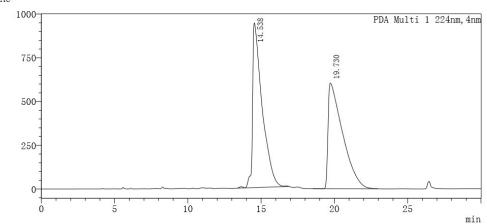
(R)-3-benzyl-3-methyl-2,3-dihydrobenzofuran (3aa)

Chemical Formula: C₁₆H₁₆O Exact Mass: 224.1201

3aa was prepared according to general procedure using **1a** and **2a** and was purified by silica gel column chromatography (petroleum ether/EtOAc = $100/1 \sim 50/1$) to obtain **3aa** as colorless oil (85% yield). The ¹H NMR data matched those reported in the literature¹: ¹H NMR (400 MHz, CDCl₃): δ 7.31-7.20 (m, 3H), 7.13 (ddd, J = 7.9, 7.3, 1.5 Hz, 1H), 7.00 (dd, J = 7.3, 2.2 Hz, 2H), 6.94 (dd, J = 7.4, 1.6 Hz, 1H), 6.86 (td, J = 7.4, 0.9 Hz, 1H), 6.80-6.74 (m, 1H), 4.50 (d, J = 8.7 Hz, 1H), 4.06 (d, J = 8.8 Hz, 1H), 3.15-2.78 (m, 2H), 1.36 (s, 3H);

¹³C NMR (101 MHz, CDCl₃): δ 159.5, 137.5, 134.8, 130.3, 128.2, 127.9, 126.4, 123.3, 120.3, 109.7, 81.9, 46.6, 46.2, 24.6.

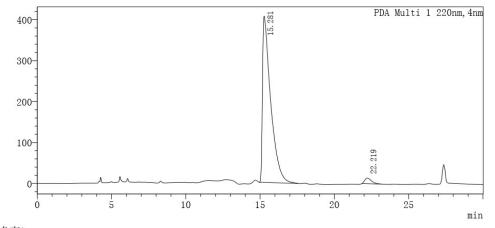
The enantiomeric purity was established by HPLC analysis using a chiral column: IA-H column, 30 °C, *n*-Hexane/*i*-Propanol = 98.8/0.2 as eluent, 254 nm, 0.75 mL/min. tR = 15 min (major), 22 min (minor).


Optical Rotation: $[\alpha]_D^{20}$ -13.4 (c 0.75, CHCl₃) for 94% ee.

Determination of Absolute Configuration:

We assigned the absolute stereochemistry of the aryl-alkenylation product **3aa** via chemical correlation with the corresponding known enantimer reported by the Brown and Correia's group; Both the HPLC analysis using the same conditions and the specific rotation indicated the *R* absolute stereochemistry. All other dihydrobenzofurans **3** were attributed accordingly.

5



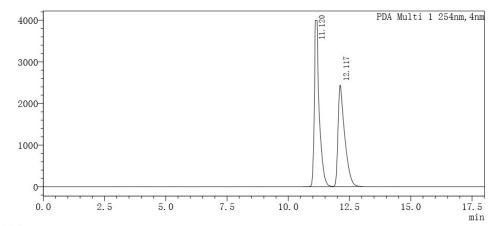
〈色谱图〉

mAU

(R)-3-([1,1'-biphenyl]-4-ylmethyl)-3-methyl-2,3-dihydrobenzofuran (**3ab**)

Chemical Formula: C₂₂H₂₀O Exact Mass: 300.1514

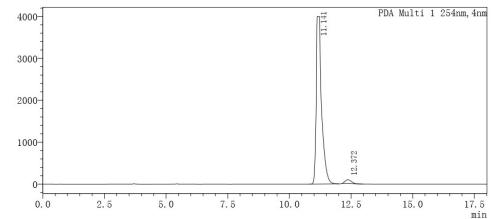
3ab was prepared according to general procedure using **1a** and **2b** and was purified by silica gel column chromatography (petroleum ether/EtOAc = $100/1 \sim 50/1$) to obtain **3ab** as colorless oil (82% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.66-7.58 (m, 2H), 7.54-7.42 (m, 4H), 7.39-7.32 (m, 1H), 7.17 (td, J = 7.6, 1.4 Hz, 1H), 7.12-7.06 (m, 2H), 7.00 (dd, J = 7.4, 1.4 Hz, 1H), 6.90 (td, J = 7.4, 1.0 Hz, 1H), 6.81 (ddd, J = 8.1, 1.0, 0.5 Hz, 1H), 4.56 (d, J = 8.7 Hz, 1H), 4.12 (d, J = 8.7 Hz, 1H), 2.97 (d, J = 13.2 Hz, 1H), 2.92 (d, J = 13.2 Hz, 1H), 1.41 (s, 3H);


¹³C NMR (101 MHz, CDCl₃): δ 159.5, 140.8, 139.3, 136.7, 134.8, 130.8, 128.7, 128.2, 127.1, 127.0, 126.6, 123.4, 120.3, 109.7, 81.9, 46.3, 46.2, 24.6;

HRMS: (ESI) calcd for C₂₂H₂₀NaO⁺[M+Na]⁺ 232.1406; found 323.1406.

The enantiomeric purity was established by HPLC analysis using a chiral column: OJ-H column, 30 °C, *n*-Hexane/*i*-Propanol = 85/15 as eluent, 254 nm, 1 mL/min. tR = 11.1 min (major), 12.1 min (minor).

Optical Rotation: $[\alpha]_D^{30}$ -31.2 (c 0.58, CHCl₃) for 95% ee.



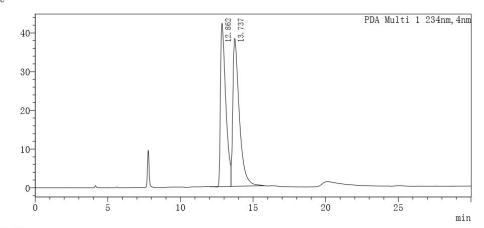
〈色谱图〉

mAU

(R)-3-(4-(tert-butyl)benzyl)-3-methyl-2,3-dihydrobenzofuran (**3ac**)

Chemical Formula: C₂₀H₂₄O Exact Mass: 280.1827

3ac was prepared according to general procedure using **1a** and **2c** and was purified by silica gel column chromatography (petroleum ether/EtOAc = $100/1 \sim 50/1$) to obtain **3ac** as colorless oil (79% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.30-7.26 (m, 2H), 7.18-7.12 (m, 1H), 7.03-6.95 (m, 3H), 6.88 (td, J = 7.4, 1.0 Hz, 1H), 6.79 (dt, J = 7.9, 0.8 Hz, 1H), 4.53 (d, J = 8.7 Hz, 1H), 4.06 (d, J = 8.7 Hz, 1H), 2.90 (d, J = 13.2 Hz, 1H), 2.84 (d, J = 13.2 Hz, 1H), 1.36 (s, 3H), 1.32 (s, 9H);

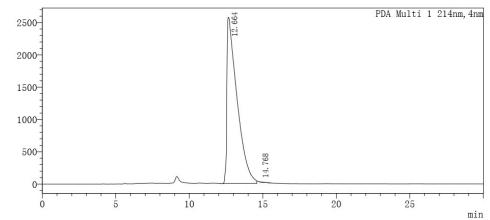

¹³C NMR (101 MHz, CDCl₃): δ 159.5, 149.3, 135.3, 134.5, 130.0, 128.1, 124.9, 123.3, 120.3, 109.7, 81.8, 46.2, 45.9, 34.4, 31.4, 24.7;

HRMS: (ESI) calcd for $C_{20}H_{24}NaO^{+}[M+Na]^{+}$ 303.1719; found 303.1714.

The enantiomeric purity was established by HPLC analysis using a chiral column: IA-H column, 30 °C, *n*-Hexane as eluent, 254 nm, 0.75 mL/min. tR = 12.8 min (major), 14.0 min (minor).

Optical Rotation: $[\alpha]_D^{30}$ -25.4 (c 0.35, CHCl₃) for 99% ee.

〈色谱图〉 mAU



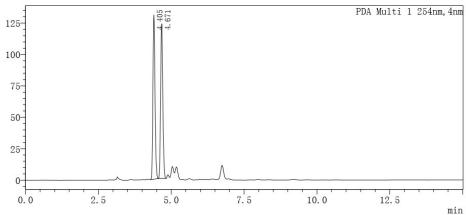
〈峰表〉

〈色谱图〉

mAU

(R)-3-(4-bromobenzyl)-3-methyl-2,3-dihydrobenzofuran (3ad)

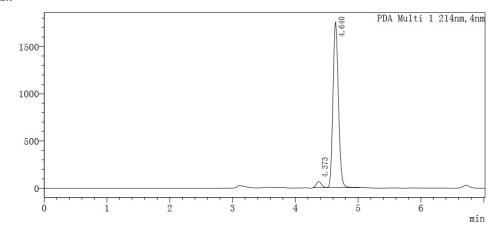
Chemical Formula: C₁₆H₁₅BrO Exact Mass: 302.0306


3ad was prepared according to general procedure using **1a** and **2d** and was purified by silica gel column chromatography (petroleum ether/EtOAc = $100/1 \sim 50/1$) to obtain **3ad** as colorless oil (63% yield). The ¹H NMR data matched those reported in the literature²: ¹H NMR (400 MHz, CDCl₃): δ 7.42-7.31 (m, 2H), 7.14 (ddd, J = 8.0, 7.1, 1.7 Hz, 1H), 6.97-6.80 (m, 4H), 6.76 (dt, J = 8.0, 0.8 Hz, 1H), 4.45 (d, J = 8.8 Hz, 1H), 4.08 (d, J = 8.7 Hz, 1H), 2.83 (d, J = 2.9 Hz, 2H), 1.36 (s, 3H);

¹³C NMR (101 MHz, CDCl₃): δ 159.5, 136.5, 134.1, 132.0, 131.0, 128.3, 123.3, 120.5, 120.3, 109.8, 81.8, 46.1, 24.4.

The enantiomeric purity was established by HPLC analysis using a chiral column: AD-H column, 30 °C, *n*-Hexane/*i*-Propanol = 97/3 as eluent, 254 nm, 1 mL/min. tR = 4.3 min (minor), 4.6 min (major).

Optical Rotation: $[\alpha]_D^{28}$ -30.2 (c 0.5, CHCl₃) for 93% ee.


〈色谱图〉 mAU 125— 100—

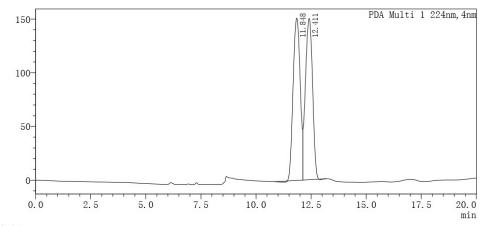
〈峰表〉

〈色谱图〉 mAU

(R)-3-(4-fluorobenzyl)-3-methyl-2,3-dihydrobenzofuran (3ae)

Chemical Formula: C₁₆H₁₅FO Exact Mass: 242.1107

3ae was prepared according to general procedure using **1a** and **2e** and was purified by silica gel column chromatography (petroleum ether/EtOAc = $100/1\sim50/1$) to obtain **3ae** as colorless oil (72% yield). The ¹H NMR data matched those reported in the literature¹: ¹H NMR (400 MHz, CDCl₃): δ 7.14 (ddd, J = 8.0, 7.2, 1.6 Hz, 1H), 6.92 (d, J = 7.1 Hz, 5H), 6.86 (td, J = 7.3, 1.0 Hz, 1H), 6.76 (dt, J = 8.0, 0.8 Hz, 1H), 4.47 (d, J = 8.7 Hz, 1H), 4.08 (d, J = 8.7 Hz, 1H), 2.87 (d, J = 13.2 Hz, 1H), 2.84 (d, J = 13.2 Hz, 1H), 1.37 (s, 3H);


¹³C NMR (101 MHz, CDCl₃): δ 161.8 (d, J = 244.5 Hz), 159.6, 134.3, 133.2 (d, J = 3.4 Hz), 131.7 (d, J = 7.9 Hz), 128.3, 123.3, 120.3, 114.7 (d, J = 21.1 Hz), 109.7, 81.8, 46.2, 45.9, 24.5;

¹⁹F NMR (376 MHz, CDCl₃): δ -116.58;

The enantiomeric purity was established by HPLC analysis using a chiral column: OD-H column, 30 °C, *n*-Hexane/*i*-Propanol = 99.5/0.5 as eluent, 254 nm, 0.5 mL/min. tR = 11.8 min (major), 12.4 min (minor).

Optical Rotation: $[\alpha]_D^{30}$ -29.0 (c 0.23, CHCl₃) for 94% ee.

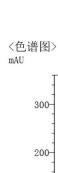
〈色谱图〉

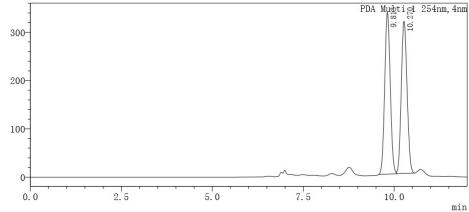
mAU

(R)-3-methyl-3-(4-(trifluoromethoxy)benzyl)-2,3-dihydrobenzofuran (3af)

Chemical Formula: C₁₇H₁₅F₃O₂ Exact Mass: 308.1024

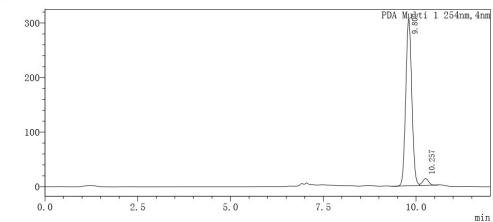
3af was prepared according to general procedure using **1a** and **2f** and was purified by silica gel column chromatography (petroleum ether/EtOAc = $100/1\sim50/1$) to obtain **3af** as colorless oil (72% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.18-7.11 (m, 1H), 7.11-7.05 (m, 2H), 7.01-6.95 (m, 2H), 6.94-6.83 (m, 2H), 6.80-6.73 (m, 1H), 4.47 (d, J = 8.7 Hz, 1H), 4.09 (d, J = 8.8 Hz, 1H), 2.90 (d, J = 13.2 Hz, 1H), 2.86 (d, J = 13.2 Hz, 1H), 1.38 (s, 3H);


¹³C NMR (101 MHz, CDCl₃): δ 159.6, 148.1, 136.3, 134.3, 131.6, 128.5, 123.4, 120.6 (q, J = 256.7 Hz), 120.5, 109.9, 81.9, 46.3, 46.1, 24.5;


¹⁹F NMR (376 MHz, CDCl₃): δ -57.8;

HRMS: (APCI) calcd for $C_{17}H_{15}F_3NaO_2^+[M+Na]^+331.0916$; found 331.0929.

The enantiomeric purity was established by HPLC analysis using a chiral column: OD-H column, 30 °C, *n*-Hexane/*i*-Propanol = 99/1 as eluent, 254 nm, 0.5 mL/min. tR = 9.8 min (major), 10.2 min (minor).

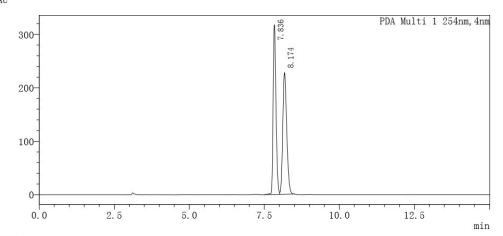

Optical Rotation: $[\alpha]_D^{30}$ -24.4 (c 0.38, CHCl₃) for 92% ee.

〈色谱图〉 mAU

Methyl (*R*)-4-((3-methyl-2,3-dihydrobenzofuran-3-yl)methyl)benzoate (**3ag**)

Chemical Formula: C₁₈H₁₈O₃ Exact Mass: 282.1256

3ag was prepared according to general procedure using **1a** and **2g** and was purified by silica gel column chromatography (petroleum ether/EtOAc = $100/1 \sim 30/1$) to obtain **3ag** as colorless oil (75% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.90 (d, J = 8.4 Hz, 2H), 7.14 (ddd, J = 8.0, 7.1, 1.7 Hz, 1H), 7.06-6.98 (m, 2H), 6.95-6.82 (m, 2H), 6.75 (dt, J = 8.0, 0.8 Hz, 1H), 4.47 (d, J = 8.7 Hz, 1H), 4.08 (d, J = 8.7 Hz, 1H), 3.90 (s, 3H), 2.93 (d, J = 2.0 Hz, 2H), 1.38 (s, 3H);


¹³C NMR (101 MHz, CDCl₃): δ 167.0, 159.5, 142.9, 134.0, 130.3, 129.1, 128.4, 123.3, 120.3, 109.8, 81.8, 52.0, 46.7, 46.2, 24.5;

HRMS: (ESI) calcd for $C_{18}H_{19}O_3^+[M+H]^+$ 283.1329; found 283.1317.

The enantiomeric purity was established by HPLC analysis using a chiral column: AD-H column, 30 °C, *n*-Hexane/*i*-Propanol = 97/3 as eluent, 254 nm, 1 mL/min. tR = 7.8 min (minor), 8.2 min (major).

Optical Rotation: $[\alpha]_D^{28}$ -34.1 (c 0.3, CHCl₃) for 93% ee.

〈色谱图〉 mAU

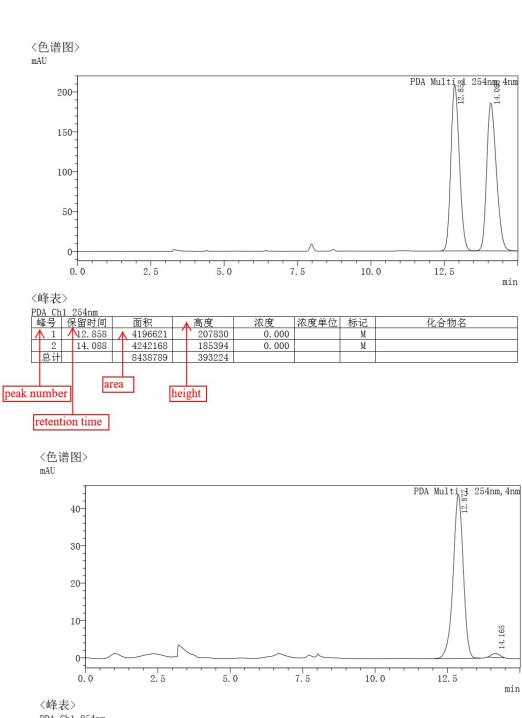
〈峰表〉

〈色谱图〉 mAU

2000 1500 1000 0 0 0 0 0 0 10.0 12.5

(R)-4-((3-methyl-2,3-dihydrobenzofuran-3-yl)methyl)benzonitrile (3ah)

Chemical Formula: C₁₇H₁₅NO Exact Mass: 249.1154


3ah was prepared according to general procedure using **1a** and **2h** and was purified by silica gel column chromatography (petroleum ether/EtOAc = $100/1 \sim 30/1$) to obtain **3ah** as colorless oil (50% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.56-7.46 (m, 2H), 7.19-7.08 (m, 1H), 7.04-6.98 (m, 2H), 6.92-6.82 (m, 2H), 6.73 (dt, J = 7.9, 0.8 Hz, 1H), 4.43 (d, J = 8.8 Hz, 1H), 4.10 (d, J = 8.9 Hz, 1H), 2.93 (d, J = 13.2 Hz, 1H), 2.89 (d, J = 13.2 Hz, 1H), 1.40 (s, 3H);

¹³C NMR (101 MHz, CDCl₃): δ 159.5, 143.1, 133.4, 131.6, 130.9, 128.6, 123.2, 120.5, 118.9, 110.5, 109.9, 81.7, 47.0, 46.3, 24.4;

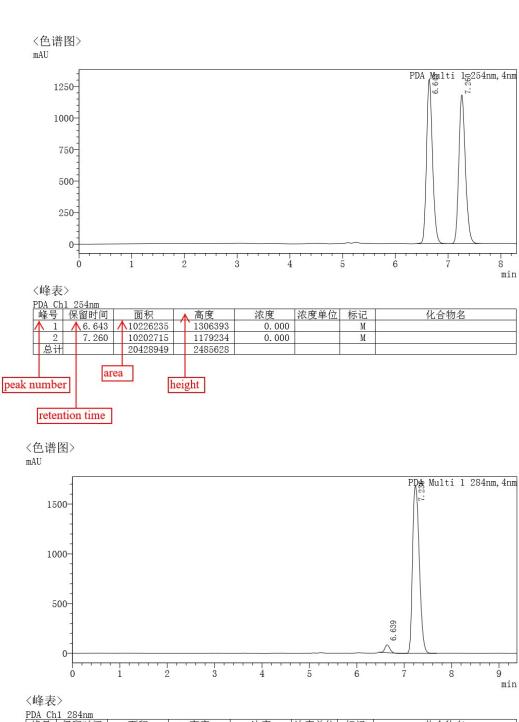
HRMS: (ESI) calcd for $C_{17}H_{15}NaNO^{+}[M+Na]^{+}$ 272.1046; found 272.1044.

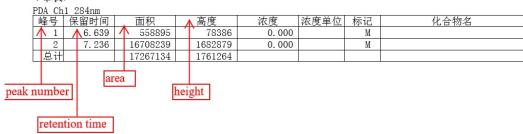
The enantiomeric purity was established by HPLC analysis using a chiral column: OD-H column, 30 °C, *n*-Hexane/*i*-Propanol = 98/2 as eluent, 254 nm, 1 mL/min. tR = 12.8 min (major), 14.1 min (minor).

Optical Rotation: $[\alpha]_D^{30}$ -29.8 (c 0.2, CHCl₃) for 96% ee.

(R)-1-(4-((3-methyl-2,3-dihydrobenzofuran-3-yl)methyl)phenyl)ethan-1-one (**3ai**)

Chemical Formula: C₁₈H₁₈O₂ Exact Mass: 266.1307


3ai was prepared according to general procedure using **1a** and **2i** and was purified by silica gel column chromatography (petroleum ether/EtOAc = $100/1 \sim 30/1$) to obtain **3ai** as colorless oil (91% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.88-7.76 (m, 2H), 7.17-7.08 (m, 1H), 7.06-7.01 (m, 2H), 6.97- 6.81 (m, 2H), 6.74 (dt, J = 8.1, 0.7 Hz, 1H), 4.46 (d, J = 8.7 Hz, 1H), 4.07 (d, J = 8.8 Hz, 1H), 2.94 (d, J = 13.2 Hz, 1H), 2.90 (d, J = 13.2 Hz, 1H), 2.56 (s, 3H), 1.37 (s, 3H);


¹³C NMR (101 MHz, CDCl₃): δ 197.8, 159.5, 143.2, 135.5, 134.0, 130.5, 128.4, 128.0, 123.3, 120.4, 109.8, 81.8, 46.7, 46.3, 26.5, 24.5;

HRMS: (ESI) calcd for $C_{18}H_{18}NaO_2^+[M+Na]^+289.1199$; found 289.1193.

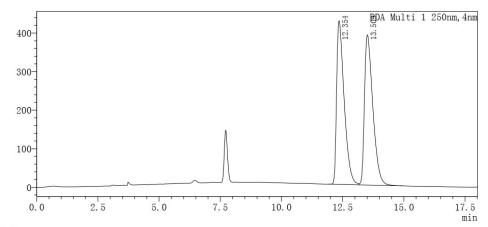
The enantiomeric purity was established by HPLC analysis using a chiral column: AD-H column, 30 °C, *n*-Hexane/*i*-Propanol = 90/10 as eluent, 254 nm, 1 mL/min. tR = 6.6 min (minor), 7.2 min (major).

Optical Rotation: $[\alpha]_D^{30}$ -41.7 (c 0.23, CHCl₃) for 94% ee.

(R)-N,N-dimethyl-4-((3-methyl-2,3-dihydrobenzofuran-3-yl)methyl)benzamide (3aj)

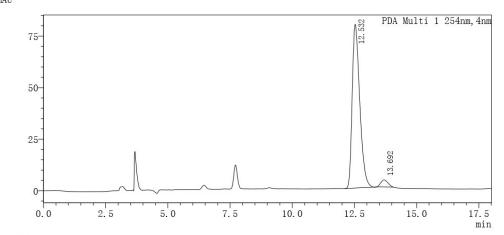
Chemical Formula: C₁₉H₂₁NO₂ Exact Mass: 295.1572

3aj was prepared according to general procedure using **1a** and **2j** and was purified by silica gel column chromatography (petroleum ether/EtOAc = $100/1 \sim 30/1$) to obtain **3aj** as colorless oil (91% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.43-7.38 (m, 1H), 7.32-7.27 (m, 2H), 7.16-7.09 (m, 1H), 7.03-6.98 (m, 2H), 6.94-6.90 (m, 1H), 6.85 (td, J = 7.4, 1.0 Hz, 1H), 6.77-6.72 (m, 1H), 4.47 (d, J = 8.8 Hz, 1H), 4.06 (d, J = 8.7 Hz, 1H), 3.03 (bs, 6H), 2.89 (d, J = 2.1 Hz, 2H), 1.36 (s, 3H);


¹³C NMR (101 MHz, CDCl₃): δ 171.6, 159.5, 139.2, 134.4, 130.2, 128.3, 128.3, 127.0, 126.8, 123.3, 120.3, 109.7, 81.8, 46.5, 46.2, 24.4;

HRMS: (ESI) calcd for C₁₉H₂₁NNaO₂⁺[M+Na]⁺ 318.1465; found 318.4166.

The enantiomeric purity was established by HPLC analysis using a chiral column: OJ-H column, 30 °C, *n*-Hexane/*i*-Propanol = 85/15 as eluent, 254 nm, 1 mL/min. tR = 12.3 min (major), 13.5 min (minor).

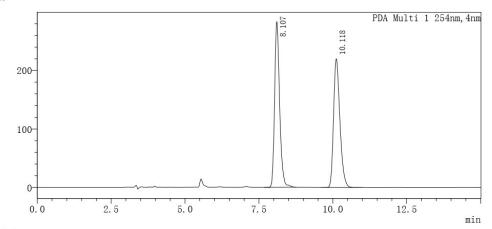

Optical Rotation: $\lceil \alpha \rceil_D^{30}$ -28.2 (c 0.35, CHCl₃) for 92% ee.

〈色谱图〉 mAU

(R)-3-methyl-3-(4-(methylsulfonyl)benzyl)-2,3-dihydrobenzofuran (3ak)

Chemical Formula: C₁₇H₁₈O₃S Exact Mass: 302.0977

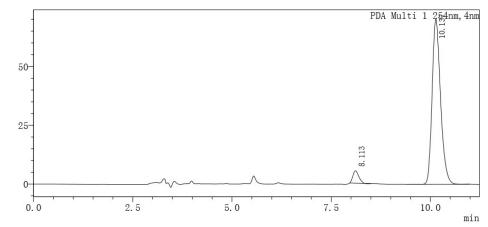
3ak was prepared according to general procedure using **1a** and **2k** and was purified by silica gel column chromatography (petroleum ether/EtOAc = $100/1 \sim 30/1$) to obtain **3ak** as colorless oil (65% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.78 (d, J = 8.3 Hz, 1H), 7.20-7.06 (m, 3H), 6.96-6.81 (m,2H), 6.78-6.69 (m, 1H), 4.45 (d, J = 8.8 Hz, 1H), 4.10 (d, J = 8.8 Hz, 1H), 3.04 (s, 3H), 2.96 (d, J = 1.1 Hz, 2H), 1.39 (s, 3H);


¹³C NMR (101 MHz, CDCl₃): δ 159.6, 144.2, 138.8, 133.6, 131.3, 128.7, 127.0, 123.4, 120.6, 110.0, 81.8, 46.7, 46.4, 44.6, 24.5;

HRMS: (ESI) calcd for C₁₇H₁₈NaO₃S⁺[M+Na]⁺ 325.0869; found 325.0864.

The enantiomeric purity was established by HPLC analysis using a chiral column: AD-H column, 30 °C, *n*-Hexane/*i*-Propanol = 70/30 as eluent, 254 nm, 1 mL/min. tR = 8.1 min (minor), 10.1 min (major).

Optical Rotation: $[\alpha]_D^{30}$ -24.1 (c 0.42, CHCl₃) for 90% ee.



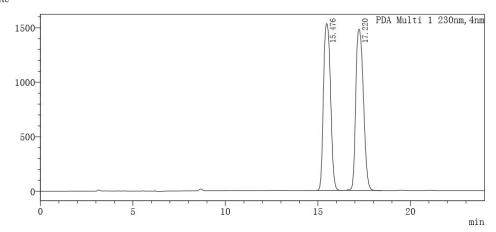
〈色谱图〉

mAU

(R)-4-((3-methyl-2,3-dihydrobenzofuran-3-yl)methyl)phenol (3al)

Chemical Formula: C₁₆H₁₆O₂ Exact Mass: 240.1150

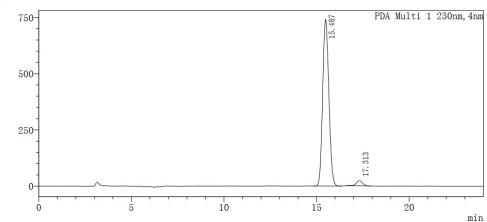
3al was prepared according to general procedure using **1a** and **2l** and was purified by silica gel column chromatography (petroleum ether/EtOAc = $100/1 \sim 30/1$) to obtain **3al** as colorless oil (81% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.13 (ddd, J = 8.0, 7.4, 1.5 Hz, 1H), 6.94 (dd, J = 7.4, 1.5 Hz, 1H), 6.90-6.82 (m, 3H), 6.79-6.73 (m, 1H), 6.73-6.66 (m, 2H), 4.48 (d, J = 8.7 Hz, 1H), 4.07 (d, J = 8.7 Hz, 1H), 2.83 (d, J = 13.2 Hz, 1H), 2.79 (d, J = 13.2 Hz, 1H), 1.35 (s, 3H);


¹³C NMR (101 MHz, CDCl₃): δ 159.5, 154.2, 134.8, 131.4, 129.7, 128.1, 123.4, 120.3, 114.8, 109.7, 81.9, 46.3, 45.8, 24.6;

HRMS: (ESI) calcd for $C_{16}H_{15}O_2$ -[M-H]-239.1078; found 239.1076.

The enantiomeric purity was established by HPLC analysis using a chiral column: AD-H column, 30 °C, *n*-Hexane/*i*-Propanol = 95/5 as eluent, 254 nm, 1 mL/min. tR = 15.4 min (major), 17.3 min (minor).

Optical Rotation: $[\alpha]_D^{30}$ -23.9 (c 0.45, CHCl₃) for 94% ee.



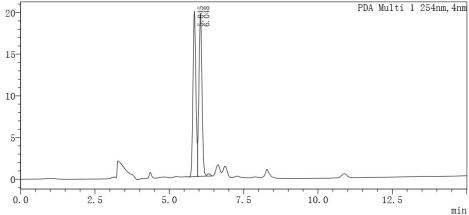
〈色谱图〉

mAU

(R)-3-(3-chlorobenzyl)-3-methyl-2,3-dihydrobenzofuran (3am)

Chemical Formula: C₁₆H₁₅CIO Exact Mass: 258.0811

3am was prepared according to general procedure using **1a** and **2m** and was purified by silica gel column chromatography (petroleum ether/EtOAc = $100/1 \sim 30/1$) to obtain **3am** as colorless oil (75% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.24-7.10 (m, 3H), 6.99-6.82 (m, 4H), 6.77 (dt, J = 8.0, 0.8 Hz, 1H), 4.47 (d, J = 8.8 Hz, 1H), 4.08 (d, J = 8.8 Hz, 1H), 2.88 (d, J = 13.2 Hz, 1H), 2.83 (d, J = 13.2 Hz, 1H), 1.37 (s, 3H);

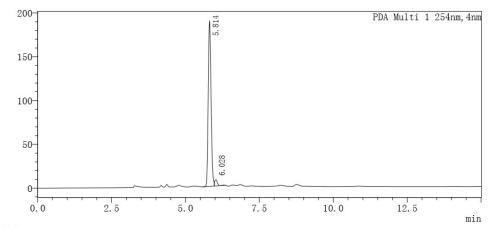

¹³C NMR (101 MHz, CDCl₃): δ 159.5, 139.5, 134.2, 133.7, 130.3, 129.1, 128.5, 128.4, 126.7, 123.3, 120.4, 109.8, 81.7, 46.3, 46.2, 24.4;

HRMS: (ESI) calcd for C₁₆H₁₅ClNaO⁺ [M+Na]⁺ 281.0704; found 281.0702.

The enantiomeric purity was established by HPLC analysis using a chiral column: OD-H column, 30 °C, *n*-Hexane/*i*-Propanol = 98/2 as eluent, 254 nm, 1 mL/min. tR = 5.8 min (major), 6.0 min (minor).

Optical Rotation: $[\alpha]_D^{30}$ -38.0 (c 0.25, CHCl₃) for 93% ee.

〈色谱图〉 mAU



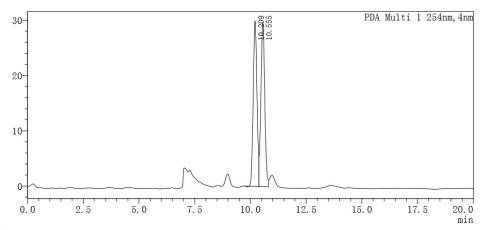
〈峰表〉

〈色谱图〉

mAU

(R)-3-(3-fluoro-4-methylbenzyl)-3-methyl-2,3-dihydrobenzofuran (3an)

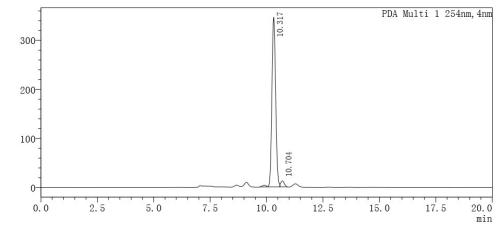
Chemical Formula: C₁₇H₁₇FO Exact Mass: 256.1263


3an was prepared according to general procedure using **1a** and **2n** and was purified by silica gel column chromatography (petroleum ether/EtOAc = $100/1 \sim 30/1$) to obtain **3an** as colorless oil (72% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.15 (ddd, J = 8.0, 7.3, 1.5 Hz, 1H), 7.07-7.00 (m, 1H), 6.98-6.94 (m, 1H), 6.88 (td, J = 7.4, 1.0 Hz, 1H), 6.77 (dt, J = 8.0, 0.8 Hz, 1H), 6.70-6.60 (m, 2H), 4.47 (d, J = 8.7 Hz, 1H), 4.07 (d, J = 8.7 Hz, 1H), 2.86 (d, J = 13.2 Hz, 1H), 2.82 (d, J = 13.2 Hz, 1H), 2.24 (d, J = 1.8 Hz, 3H), 1.37 (s, 3H);

¹³C NMR (101 MHz, CDCl₃): δ 160.8 (d, J = 244.2 Hz), 159.5, 137.1 (d, J = 7.2 Hz), 134.50, 130.8 (d, J = 5.6 Hz), 128.3, 125.7 (d, J = 3.3 Hz), 123.2, 122.7 (d, J = 17.2 Hz), 120.4, 116.7 (d, J = 22.0 Hz), 109.7, 81.8, 46.2, 46.1, 24.6, 14.2 (d, J = 3.5 Hz); HRMS: (APCI) calcd for C₁₇H₁₇FNaO⁺ [M+Na]⁺ 279.1156; found 279.1152.

The enantiomeric purity was established by HPLC analysis using a chiral column: OD-H column, 30 °C, *n*-Hexane/*i*-Propanol = 99/1 as eluent, 254 nm, 0.5 mL/min. tR = 10.3 min (major), 10.5 min (minor).

Optical Rotation: $[\alpha]_D^{30}$ -29.9 (c 0.29, CHCl₃) for 94% ee.



〈色谱图〉

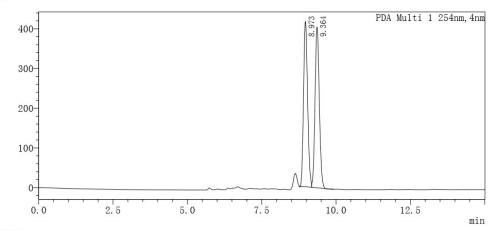
mAU

(R)-3-(3,5-bis(trifluoromethyl)benzyl)-3-methyl-2,3-dihydrobenzofuran (**3ao**)

Chemical Formula: C₁₈H₁₄F₆O Exact Mass: 360.0949

3ao was prepared according to general procedure using **1a** and **2o** and was purified by silica gel column chromatography (petroleum ether/EtOAc = $100/1 \sim 30/1$) to obtain **3ao** as colorless oil (27% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.73-7.68 (m, 1H), 7.27-7.20 (m, 2H), 7.15 (ddd, J = 8.1, 7.0, 1.9 Hz, 1H), 6.94-6.82 (m, 2H), 6.70 (dt, J = 8.1, 0.8 Hz, 1H), 4.40 (d, J = 8.9 Hz, 1H), 4.12 (d, J = 8.9 Hz, 1H), 2.95 (s, 2H), 1.42 (s, 3H);

¹³C NMR (101 MHz, CDCl₃): δ 159.6, 139.8, 132.7, 131.1, 130.8, 130.2, 128.9, 123.3 (q, J = 272.3 Hz), 123.2, 120.6, 110.1, 81.5, 46.7, 46.3, 23.9;

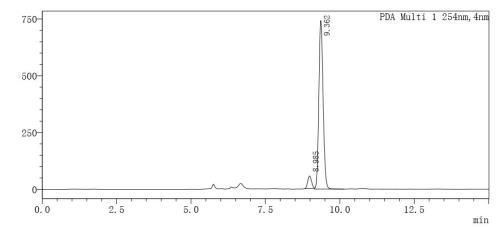

¹⁹F NMR (376 MHz, CDCl₃): δ -62.81;

HRMS: (APCI) calcd for $C_{18}H_{15}F_6O^+[M+H]^+361.1022$; found 361.1036.

The enantiomeric purity was established by HPLC analysis using a chiral column: OD-H column, 30 °C, *n*-Hexane/*i*-Propanol = 98/2 as eluent, 254 nm, 0.5 mL/min. tR = 8.9 min (minor), 9.3 min (major).

Optical Rotation: $[\alpha]_D^{30}$ -201.4 (c 0.03, CHCl₃) for 88% ee.

〈色谱图〉 mAU



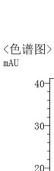
〈峰表〉

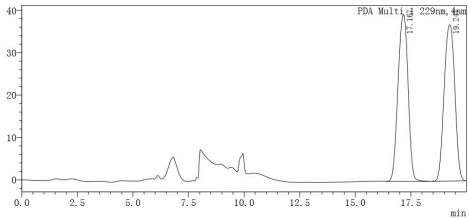
〈色谱图〉

mAU

Ethyl (R)-2-((3-methyl-2,3-dihydrobenzofuran-3-yl)methyl)benzoate (3ap)

Chemical Formula: C₁₉H₂₀O₃ Exact Mass: 296.1412

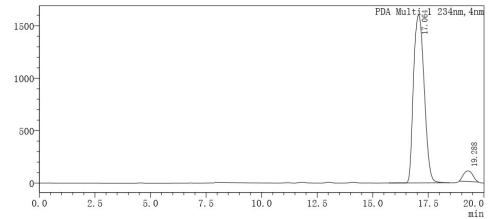

3ap was prepared according to general procedure using **1a** and **2p** and was purified by silica gel column chromatography (petroleum ether/EtOAc = $100/1 \sim 30/1$) to obtain **3ap** as colorless oil (53% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.83 (dd, J = 7.5, 1.9 Hz, 1H), 7.35-7.22 (m, 2H), 7.17-7.04 (m, 1H), 6.95-6.79 (m, 3H), 6.72 (dd, J = 8.1, 0.8 Hz, 1H), 4.46 (d, J = 8.8 Hz, 1H), 4.24 (q, J = 7.1 Hz, 2H), 4.09 (d, J = 8.8 Hz, 1H), 3.70 (d, J = 13.1 Hz, 1H), 3.19 (d, J = 13.1 Hz, 1H), 1.36 (s, 3H), 1.35 (t, J = 3.6 Hz, 1H);


¹³C NMR (101 MHz, CDCl₃): δ 168.0, 159.6, 138.8, 134.4, 132.5, 131.5, 131.0, 130.4, 128.1, 126.4, 123.5, 120.2, 109.6, 82.3, 60.9, 46.8, 42.3, 24.9, 14.2;

HRMS: (ESI) calcd for $C_{19}H_{20}NaO_3^+$ [M+Na]⁺ 319.1305; found 319.1300.

The enantiomeric purity was established by HPLC analysis using a chiral column: OD-H column, 30 °C, *n*-Hexane/*i*-Propanol = 99.5/0.5 as eluent, 254 nm, 0.5 mL/min. tR = 17.1 min (major), 19.2 min (minor).

Optical Rotation: $[\alpha]_D^{30}$ -97.9 (c 0.05, CHCl₃) for 90% ee.

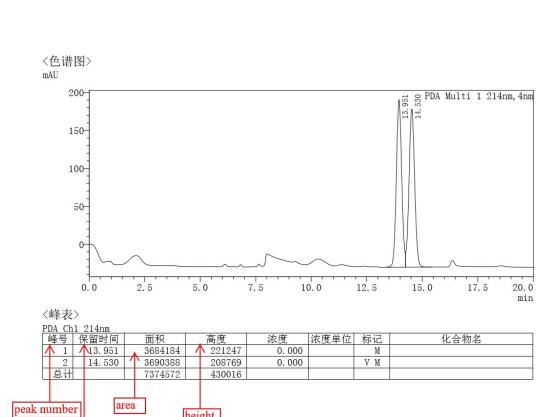


retention time

〈色谱图〉

mAU

(R)-3-(2-methoxybenzyl)-3-methyl-2,3-dihydrobenzofuran (3aq)


Chemical Formula: C₁₇H₁₈O₂ Exact Mass: 254.1307

3aq was prepared according to general procedure using **1a** and **2q** and was purified by silica gel column chromatography (petroleum ether/EtOAc = $100/1 \sim 30/1$) to obtain **3aq** as colorless oil (43% yield). The ¹H NMR data matched those reported in the literature¹: ¹H NMR (400 MHz, CDCl₃): δ 7.20 (ddd, J = 8.2, 7.3, 1.8 Hz, 1H), 7.12 (ddd, J = 8.0, 7.4, 1.4 Hz, 1H), 7.01 (ddd, J = 7.4, 1.5, 0.5 Hz, 1H), 6.92-6.78 (m, 4H), 6.76 (dt, J = 8.0, 0.8 Hz, 1H), 4.57 (d, J = 8.6 Hz, 1H), 4.06 (d, J = 8.6 Hz, 1H), 3.74 (s, 3H), 3.05 (d, J = 13.2 Hz, 1H), 2.91 (d, J = 13.2 Hz, 1H), 1.34 (s, 3H);

¹³C NMR (101 MHz, CDCl₃): δ 159.5, 157.9, 135.5, 132.1, 127.9, 127.7, 126.3, 123.2, 120.1, 119.9, 110.3, 109.5, 82.4, 55.0, 46.7, 39.3, 24.9;

The enantiomeric purity was established by HPLC analysis using a chiral column: OD-H column, 30 °C, *n*-Hexane/*i*-Propanol = 99.5/0.5 as eluent, 254 nm, 0.5 mL/min. tR = 14.0 min (major), 14.5 min (minor).

Optical Rotation: $[\alpha]_D^{30}$ -249.0 (c 0.02, CHCl₃) for 90% ee.

height

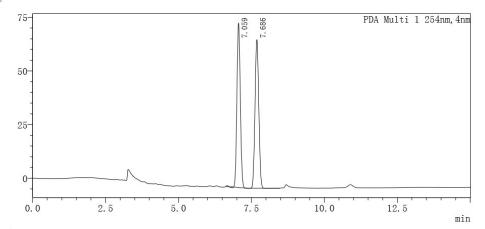
retention time

〈色谱图〉

mAU 4000-PDA Multi 1 214nm, 4nm 3000-2000-1000-14.817 7. 5 15. 0 0.0 2.5 5. 0 10.0 12.5 17.5 min

(R)-5-((3-methyl-2,3-dihydrobenzofuran-3-yl)methyl)benzo[d][1,3]dioxole (3ar)

Chemical Formula: C₁₇H₁₆O₃ Exact Mass: 268.1099

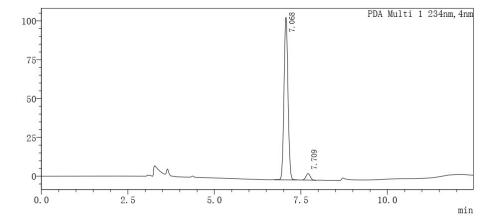

3ar was prepared according to general procedure using **1a** and **2r** and was purified by silica gel column chromatography (petroleum ether/EtOAc = $100/1\sim30/1$) to obtain **3ar** as colorless oil (78% yield). The ¹H NMR data matched those reported in the literature¹: ¹H NMR (400 MHz, CDCl₃): δ 7.18-7.09 (m, 1H), 6.94-6.99 (m, 1H), 6.90-6.84 (m, 1H), 6.79-6.74 (m, 1H), 6.71-6.66 (m, 1H), 6.48-6.41 (m, 2H), 5.93-5.91 (m, 2H), 4.47 (d, J = 8.6 Hz, 1H), 4.06 (d, J = 8.6 Hz, 1H), 2.83 (d, J = 13.2 Hz, 1H), 2.78 (d, J = 13.2 Hz, 1H), 1.35 (s, 3H);

¹³C NMR (101 MHz, CDCl₃): δ 159.5, 147.2, 146.2, 134.7, 131.3, 128.2, 123.4, 123.3, 123.3, 120.3, 110.6, 109.7, 107.8, 100.8, 81.8, 46.35, 46.33, 24.7;

The enantiomeric purity was established by HPLC analysis using a chiral column: OD-H column, 30 °C, *n*-Hexane/*i*-Propanol = 98/2 as eluent, 254 nm, 1 mL/min. tR = 7.0 min (major), 7.7 min (minor).

Optical Rotation: $[\alpha]_D^{30}$ -170.0 (c 0.03, CHCl₃) for 92% ee.

〈色谱图〉 mAU



〈峰表〉

〈色谱图〉

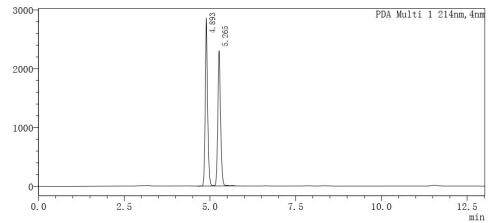
mAU

(R)-3-(dibenzo[b,d]thiophen-2-ylmethyl)-3-methyl-2,3-dihydrobenzofuran (**3as**)

Chemical Formula: C₂₂H₁₈OS Exact Mass: 330.1078

3as was prepared according to general procedure using **1a** and **2s** and was purified by silica gel column chromatography (petroleum ether/EtOAc = $100/1 \sim 20/1$) to obtain **3as** as colorless oil (91% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.18-8.01 (m, 1H), 7.91-7.82 (m, 1H), 7.78-7.69 (m, 2H), 7.55-7.39 (m, 2H), 7.19 (ddd, J = 8.0, 7.3, 1.5 Hz, 1H), 7.11 (dd, J = 8.1, 1.8 Hz, 1H), 6.99 (ddd, J = 7.3, 1.5, 0.5 Hz, 1H), 6.91 (td, J = 7.4, 1.0 Hz, 1H), 6.81 (dt, J = 8.0, 0.8 Hz, 1H), 4.59 (d, J = 8.7 Hz, 1H), 4.14 (d, J = 8.7 Hz, 1H), 3.07 (d, J = 3.9 Hz, 2H), 1.45 (s, 3H);

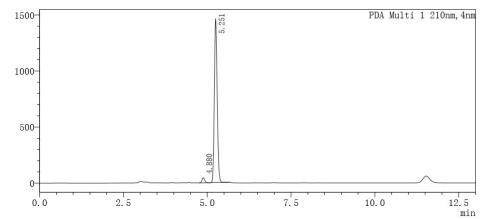
¹³C NMR (101 MHz, CDCl₃): δ 159.6, 139.7, 137.6, 135.4, 135.3, 134.5, 133.8, 129.2, 128.3, 126.6, 124.3, 123.5, 123.1, 122.8, 122.1, 121.4, 120.3, 109.8, 81.9, 46.7, 46.4, 24.4;


HRMS: (ESI) calcd for C₂₂H₁₈SNaO⁺[M+Na]⁺ 353.0971; found 353.0971.

The enantiomeric purity was established by HPLC analysis using a chiral column: AD-H column, 30 °C, *n*-Hexane/*i*-Propanol = 90/10 as eluent, 254 nm, 1 mL/min. tR = 4.8 min (minor), 5.2 min (major).

Optical Rotation: $[\alpha]_D^{30}$ -35.0 (c 0.6, CHCl₃) for 94% ee.

〈色谱图〉



〈峰表〉

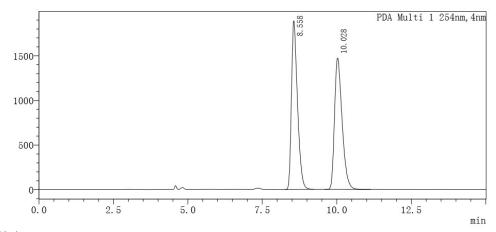
〈色谱图〉

mAU

(R)-9-ethyl-3-((3-methyl-2,3-dihydrobenzofuran-3-yl)methyl)-9H-carbazole (3at)

Chemical Formula: C₂₄H₂₃NO Exact Mass: 341.1780

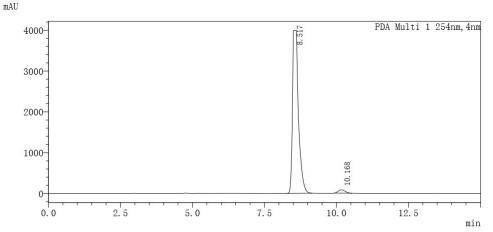
3at was prepared according to general procedure using **1a** and **2t** and was purified by silica gel column chromatography (petroleum ether/EtOAc = $100/1\sim20/1$) to obtain **3at** as colorless oil (67% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.05 (dt, J = 7.7, 1.0 Hz, 1H), 7.75 (d, J = 1.6 Hz, 1H), 7.48 (ddd, J = 8.2, 7.0, 1.2 Hz, 1H), 7.41 (dt, J = 8.2, 1.0 Hz, 1H), 7.30 (d, J = 8.3 Hz, 1H), 7.26-7.10 (m, 3H), 7.02 (dd, J = 7.3, 1.5 Hz, 1H), 6.91 (td, J = 7.4, 1.0 Hz, 1H), 6.85-6.78 (m, 1H), 4.64 (d, J = 8.6 Hz, 1H), 4.36 (q, J = 7.2 Hz, 2H), 4.11 (d, J = 8.6 Hz, 1H), 3.35-2.84 (m, 2H), 1.44 (d, J = 5.1 Hz, 6H);


¹³C NMR (101 MHz, CDCl₃): δ 159.6, 140.1, 138.8, 135.2, 128.2, 128.1, 127.8, 125.5, 123.5, 122.8, 122.7, 121.9, 120.3, 120.2, 118.6, 109.7, 108.4, 107.7, 82.0, 46.6, 46.5, 37.5, 24.6, 13.8;

HRMS: (ESI) calcd for $C_{24}H_{24}NO^{+}[M+H]^{+}$ 342.1852; found 342.1836.

The enantiomeric purity was established by HPLC analysis using a chiral column: OD-H column, 30 °C, *n*-Hexane/*i*-Propanol = 95/5 as eluent, 254 nm, 1 mL/min. tR = 8.5 min (major), 10.1 min (minor).

Optical Rotation: $[\alpha]_D^{30}$ -29.4 (c 0.5, CHCl₃) for 95% ee.


〈色谱图〉 mAU

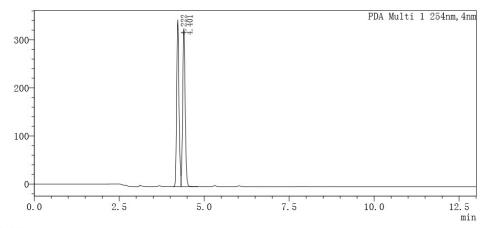
〈峰表〉

〈色谱图〉

(*R*)-3-methyl-3-(4-vinylbenzyl)-2,3-dihydrobenzofuran (**3au**)

Chemical Formula: C₁₈H₁₈O Exact Mass: 250.1358

3au was prepared according to general procedure using **1a** and **2u** and was purified by silica gel column chromatography (petroleum ether/EtOAc = $100/1 \sim 50/1$) to obtain **3au** as colorless oil (49% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.30 (d, J = 8.1 Hz, 2H), 7.14 (ddd, J = 7.9, 7.3, 1.5 Hz, 1H), 7.02-6.93 (m, 3H), 6.87 (td, J = 7.4, 1.0 Hz, 1H), 6.78 (dt, J = 7.9, 0.7 Hz, 1H), 6.70 (dd, J = 17.6, 10.9 Hz, 1H), 5.72 (dd, J = 17.6, 1.0 Hz, 1H), 5.22 (dd, J = 10.9, 0.9 Hz, 1H), 4.50 (d, J = 8.7 Hz, 1H), 4.07 (d, J = 8.7 Hz, 1H), 2.88 (d, J = 4.4 Hz, 2H), 1.36 (s, 3H);

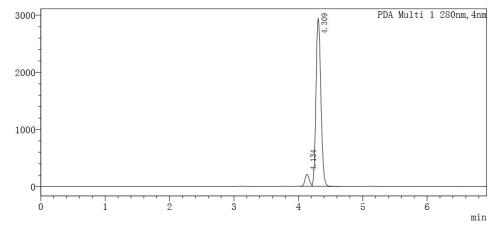

¹³C NMR (101 MHz, CDCl₃): δ 159.5, 137.2, 136.5, 135.8, 134.7, 130.5, 128.2, 125.8, 123.4, 120.3, 113.4, 109.7, 81.9, 46.3, 46.2, 24.5;

HRMS: (ESI) calcd for C₁₈H₁₈NaO⁺[M+Na]⁺ 273.1250; found 273.1261.

The enantiomeric purity was established by HPLC analysis using a chiral column: AD-H column, 30 °C, *n*-Hexane/*i*-Propanol = 97/3 as eluent, 254 nm, 1 mL/min. tR = 4.1 min (minor), 4.3 min (major).

Optical Rotation: $[\alpha]_D^{30}$ -128.8 (c 0.1, CHCl₃) for 89% ee.

〈色谱图〉 mAU

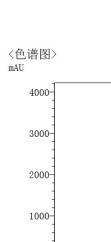


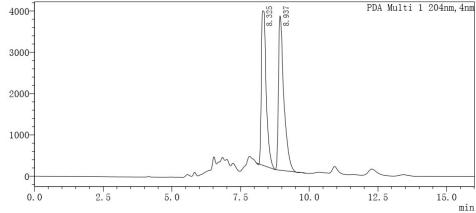
〈峰表〉

〈色谱图〉

mAU

(R)-3-benzyl-5-(tert-butyl)-3-methyl-2,3-dihydrobenzofuran (**3ba**)

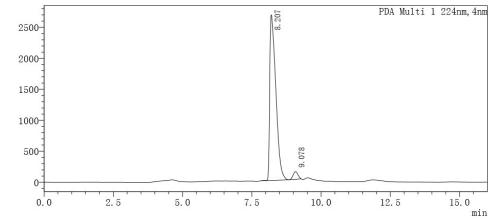

Chemical Formula: C₂₀H₂₄O Exact Mass: 280.1827


3ba was prepared according to general procedure using **1b** and **2a** and was purified by silica gel column chromatography (petroleum ether/EtOAc = $100/1\sim20/1$) to obtain **3ba** as colorless oil (74% yield). The ¹H NMR data matched those reported in the literature¹: ¹H NMR (400 MHz, CDCl₃) δ 7.27-7.22 (m, 3H), 7.17 (dd, J = 8.4, 2.2 Hz, 1H), 7.02-6.96 (m, 2H), 6.81 (dd, J = 2.2, 0.5 Hz, 1H), 6.72 (dd, J = 8.4, 0.5 Hz, 1H), 4.49 (d, J = 8.6 Hz, 1H), 4.11 (d, J = 8.6 Hz, 1H), 2.89 (s, 2H), 1.36 (s, 3H), 1.28 (s, 9H);

¹³C NMR (101 MHz, CDCl₃) δ 157.2, 143.0, 137.6, 133.9, 130.5, 127.8, 126.3, 124.8, 120.6, 108.7, 82.7, 46.6, 46.3, 34.3, 31.6, 23.9.

The enantiomeric purity was established by HPLC analysis using a chiral column: IA-H column, 30 °C, *n*-Hexane as eluent, 254 nm, 0.75 mL/min. tR = 8.2 min (major), 9.0 min (minor).

Optical Rotation: $[\alpha]_D^{30}$ -16.2 (c 0.23, CHCl₃) for 93% ee.

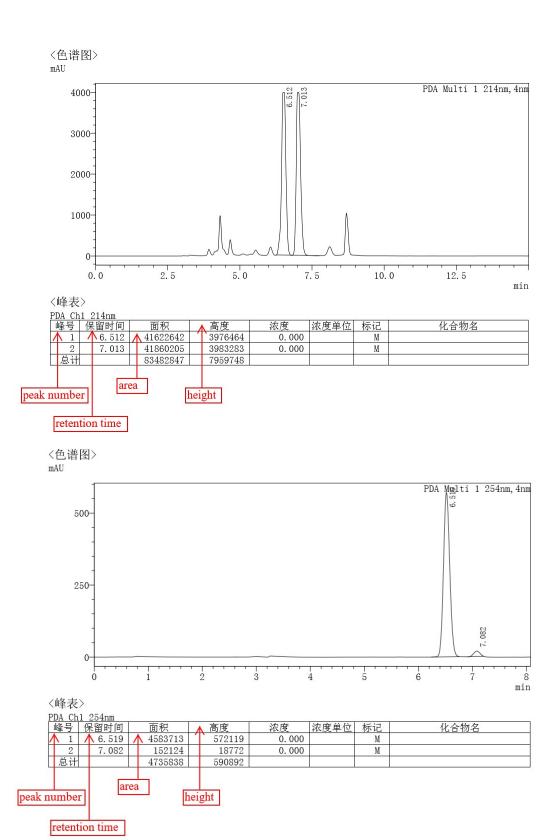


〈峰表〉

〈色谱图〉

mAU

(R)-3-benzyl-3-methyl-5-phenyl-2,3-dihydrobenzofuran (3ca)


Chemical Formula: C₂₂H₂₀O Exact Mass: 300.1514

3ca was prepared according to general procedure using **1c** and **2a** and was purified by silica gel column chromatography (petroleum ether/EtOAc = $100/1 \sim 20/1$) to obtain **3ca** as colorless oil (85% yield). The ¹H NMR data matched those reported in the literature¹: ¹H NMR (400 MHz, CDCl₃) δ 7.55-7.49 (m, 2H), 7.46-7.37 (m, 3H), 7.34-7.26 (m, 4H), 7.12 (d, J = 2.0 Hz, 1H), 7.08-7.02 (m, 2H), 6.86 (d, J = 8.2 Hz, 1H), 4.58 (d, J = 8.7 Hz, 1H), 4.15 (d, J = 8.7 Hz, 1H), 2.97 (d, J = 13.2 Hz, 1H), 2.93 (d, J = 13.2 Hz, 1H), 1.42 (s, 3H);

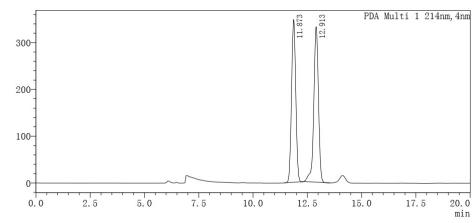
¹³C NMR (101 MHz, CDCl₃) δ 159.2, 141.4, 137.5, 135.3, 133.8, 130.4, 128.6, 127.9, 127.3, 126.8, 126.5, 126.5, 122.3, 109.8, 82.5, 46.7, 46.3, 24.4.

The enantiomeric purity was established by HPLC analysis using a chiral column: OD-H column, 30 °C, *n*-Hexane/*i*-Propanol = 98/2 as eluent, 254 nm, 1 mL/min. tR = 6.5 min (minor), 7.0 min (major).

Optical Rotation: $[\alpha]_D^{30}$ 63.2 (c 0.58, CHCl₃) for 93% ee.

(R)-3-benzyl-5-chloro-3-methyl-2,3-dihydrobenzofuran (**3da**)

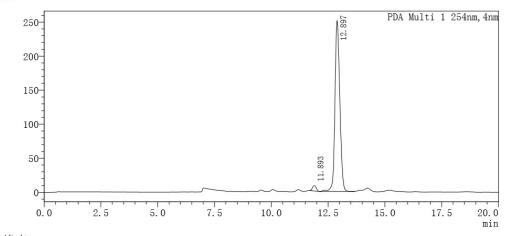
Chemical Formula: C₁₆H₁₅CIO Exact Mass: 258.0811


3da was prepared according to general procedure using **1d** and **2a** and was purified by silica gel column chromatography (petroleum ether/EtOAc = $100/1 \sim 20/1$) to obtain **3da** as colorless oil (88% yield). The ¹H NMR data matched those reported in the literature¹: ¹H NMR (400 MHz, CDCl₃) δ 7.31-7.21 (m, 3H), 7.09 (dd, J = 8.4, 2.3 Hz, 1H), 7.04-6.97 (m, 2H), 6.89 (d, J = 2.3 Hz, 1H), 6.68 (d, J = 8.5 Hz, 1H), 4.53 (d, J = 8.8 Hz, 1H), 4.09 (d, J = 8.8 Hz, 1H), 2.90 (d, J = 13.3 Hz, 1H), 2.86(d, J = 13.3 Hz, 1H), 1.35 (s, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 158.2, 137.0, 136.8, 130.3, 128.0, 126.7, 125.0, 123.6, 110.7, 82.3, 46.5, 46.5, 24.5;

The enantiomeric purity was established by HPLC analysis using a chiral column: OD-H column, 30 °C, *n*-Hexane/*i*-Propanol = 99/1 as eluent, 254 nm, 0.5 mL/min. tR = 11.8 min (minor), 12.9 min (major).

Optical Rotation: $[\alpha]_D^{30}$ 10.0 (c 0.5, CHCl₃) for 95% ee.

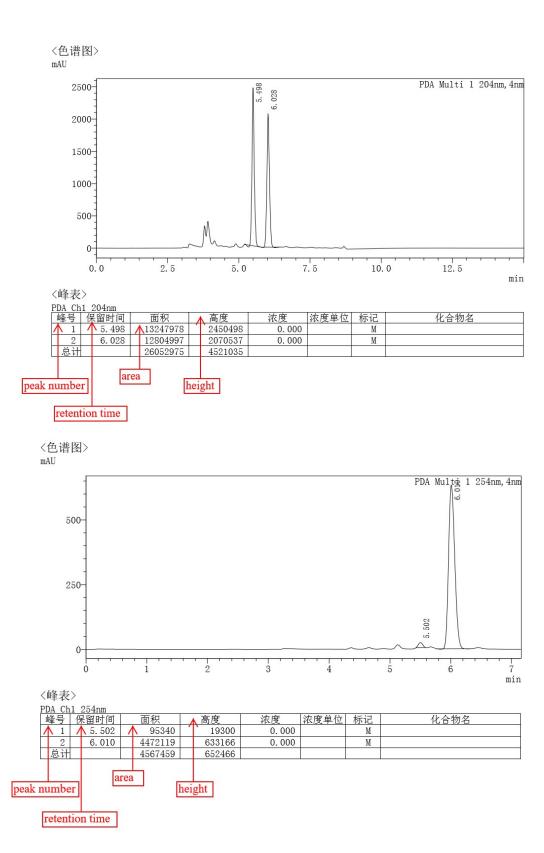


〈峰表〉

〈色谱图〉 mAU

(R)-3-benzyl-5-bromo-3-methyl-2,3-dihydrobenzofuran (3ea)

Chemical Formula: C₁₆H₁₅BrO Exact Mass: 302.0306


3ea was prepared according to general procedure using **1e** and **2a** and was purified by silica gel column chromatography (petroleum ether/EtOAc = $100/1 \sim 20/1$) to obtain **3ea** as colorless oil (69% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.31-7.20 (m, 4H), 7.06-6.96 (m, 3H), 6.64 (d, J = 8.4 Hz, 1H), 4.52 (d, J = 8.8 Hz, 1H), 4.08 (d, J = 8.8 Hz, 1H), 2.90 (d, J = 13.3 Hz, 1H), 2.84 (d, J = 13.3 Hz, 1H), 1.35 (s, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 158.7, 137.3, 137.0, 130.9, 130.3, 128.0, 126.7, 126.5, 112.1, 111.3, 82.3, 46.55, 46.51, 24.5;

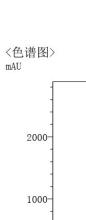
HRMS: (ESI) calcd for C₁₆H₁₅BrNaO⁺[M+Na]⁺ 325.0198; found 325.0199.

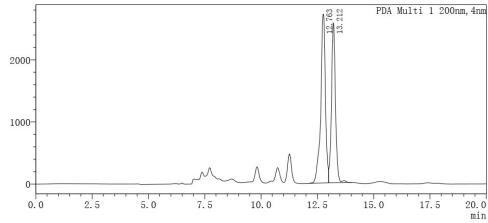
The enantiomeric purity was established by HPLC analysis using a chiral column: OD-H column, 30 °C, *n*-Hexane/*i*-Propanol = 98/2 as eluent, 254 nm, 1 mL/min. tR = 5.5 min (minor), 6.0 min (major).

Optical Rotation: $[\alpha]_D^{30}$ 33.5(c 0.33, CHCl₃) for 96% ee.

(R)-3-benzyl-5-fluoro-3-methyl-2,3-dihydrobenzofuran (**3fa**)

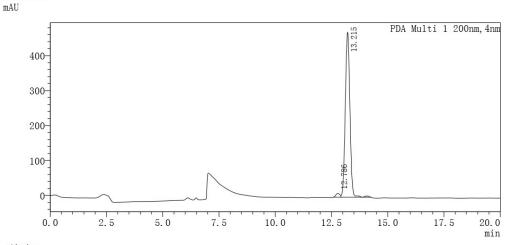
Chemical Formula: C₁₆H₁₅FO Exact Mass: 242.1107


3fa was prepared according to general procedure using **1f** and **2a** and was purified by silica gel column chromatography (petroleum ether/EtOAc = $100/1\sim20/1$) to obtain **3fa** as colorless oil (69% yield). The ¹H NMR data matched those reported in the literature¹: ¹H NMR (400 MHz, CDCl₃) δ 7.30-7.21 (m, 3H), 7.04-6.97 (m, 2H), 6.85-6.76 (m, 1H), 6.69-6.60 (m, 2H), 4.52 (d, J = 8.7 Hz, 1H), 4.09 (d, J = 8.7 Hz, 1H), 2.90 (d, J = 13.3 Hz, 1H), 1.35 (s, 3H);


¹³C NMR (101 MHz, CDCl₃) δ 157.4 (d, J = 237.0 Hz), 155.4, 137.1, 136.3 (d, J = 7.6 Hz), 130.3, 128.0, 126.6, 114.3 (d, J = 24.2 Hz), 110.5 (d, J = 24.6 Hz), 109.8 (d, J = 8.5 Hz), 82.5, 46.7, 46.4, 24.4;

¹⁹F NMR (376 MHz, CDCl₃) δ -124.03;

The enantiomeric purity was established by HPLC analysis using a chiral column: OD-H column, 30 °C, *n*-Hexane/*i*-Propanol = 99/1 as eluent, 254 nm, 0.5 mL/min. tR = 12.7 min (minor), 13.2 min (major).


Optical Rotation: $[\alpha]_D^{30}$ -29.9 (c 0.4, CHCl₃) for 96% ee.

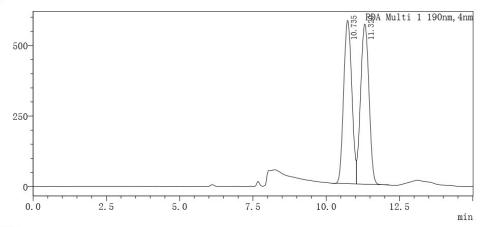
〈峰表〉 PDA Ch1 200nm 峰号 保留时间 1 12.763 面积 高度 2718128 浓度 浓度单位 标记 化合物名 ↑39557409 0.000 M 31664985 71222394 2575854 5293982 13. 212 0.000 V M 总计 area peak number height retention time

〈色谱图〉

(R)-3-benzyl-3,6-dimethyl-2,3-dihydrobenzofuran (3ga)

Chemical Formula: C₁₇H₁₈O Exact Mass: 238.1358

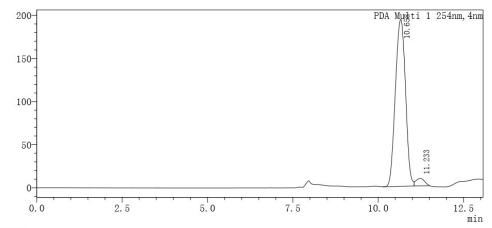
3ga was prepared according to general procedure using **1g** and **2a** and was purified by silica gel column chromatography (petroleum ether/EtOAc = $100/1 \sim 20/1$) to obtain **3ga** as colorless oil (76% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.30-7.20 (m, 3H), 7.07-7.01 (m, 2H), 6.83 (d, J = 7.5 Hz, 1H), 6.69 (m, 1H), 6.62 (m, 1H), 4.50 (d, J = 8.7 Hz, 1H), 4.06 (d, J = 8.7 Hz, 1H), 2.90 (d, J = 13.3 Hz, 1H), 2.86 (d, J = 13.3 Hz, 1H), 2.33 (s, 3H), 1.34 (s, 3H);


¹³C NMR (101 MHz, CDCl₃) δ 159.7, 138.3, 137.7, 131.9, 130.4, 127.9, 126.4, 122.9, 121.0, 110.4, 82.2, 46.6, 45.9, 24.6, 21.5;

HRMS: (ESI) calcd for C₁₇H₁₈NaO⁺[M+Na]⁺ 261.1250; found 261.1276.

The enantiomeric purity was established by HPLC analysis using a chiral column: OD-H column, 30 °C, *n*-Hexane/*i*-Propanol = 99.5/0.5 as eluent, 254 nm, 0.5 mL/min. tR = 10.6 min (major), 11.2 min (minor).

Optical Rotation: $[\alpha]_D^{30}$ -11.6 (c 0.38, CHCl₃) for 93% ee.

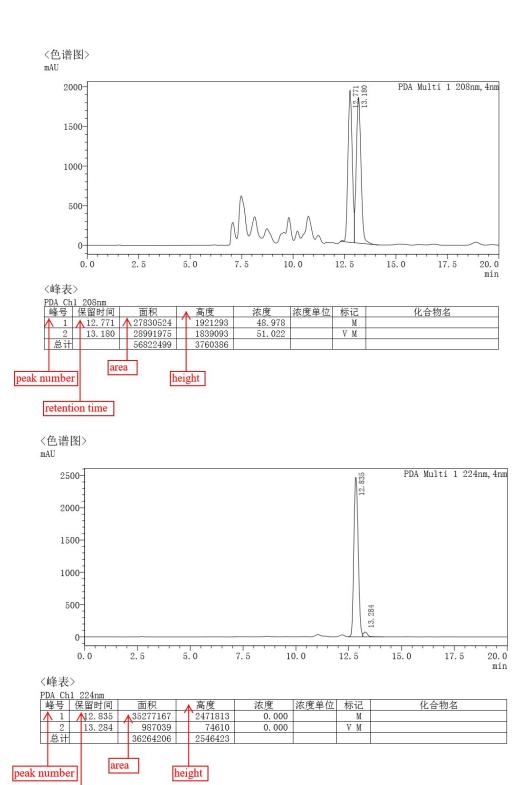


〈峰表〉

〈色谱图〉

mAU

(R)-3-benzyl-6-chloro-3-methyl-2,3-dihydrobenzofuran (**3ha**)


Chemical Formula: C₁₆H₁₅CIO Exact Mass: 258.0811

3ha was prepared according to general procedure using **1h** and **2a** and was purified by silica gel column chromatography (petroleum ether/EtOAc = $100/1\sim20/1$) to obtain **3ha** as colorless oil (80% yield). The ¹H NMR data matched those reported in the literature¹: ¹H NMR (400 MHz, CDCl₃) δ 7.29-7.21 (m, 3H), 7.04-6.95 (m, 2H), 6.88-6.73 (m, 3H), 4.53 (d, J = 8.7 Hz, 1H), 4.11 (d, J = 8.7 Hz, 1H), 2.89 (d, J = 13.2 Hz, 1H), 2.85 (d, J = 13.2 Hz, 1H), 1.35 (s, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 160.4, 137.1, 133.4, 130.3, 128.0, 126.6, 124.0, 120.3, 110.4, 82.7, 46.5, 45.9, 24.5;

The enantiomeric purity was established by HPLC analysis using a chiral column: OD-H column, 30 °C, *n*-Hexane/*i*-Propanol = 99/1 as eluent, 254 nm, 0.5 mL/min. tR = 12.8 min (major), 13.2 min (minor).

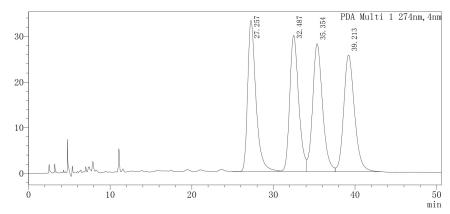
Optical Rotation: $[\alpha]_D^{30}$ -41.9 (c 0.25, CHCl₃) for 94% ee.

retention time

(S)-3-methyl-3-((E)-3-(4-(((R)-3-methyl-2,3-dihydrobenzofuran-3 yl)methyl)phenyl) allyl)-2,3-dihydrobenzofuran (**4aa**)

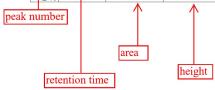
4aa was prepared according to general procedure using **1a** (0.4 mmol, 104.8 mg) and **2u** (0.1 mmol, 14.9 mg) and was purified by silica gel column chromatography (petroleum ether/EtOAc = 100/1~30/1) to obtain **4aa** as colorless oil (17.4 mg, 44% yield).

¹H NMR (400 MHz, CDCl₃): δ 7.25-7.11 (m, 5H), 7.01-6.87 (m, 5H), 6.81 (ddt, J = 15.5, 8.0, 0.7 Hz, 2H), 6.50-6.35 (m, 1H), 6.09 (dt, J = 15.7, 7.5 Hz, 1H), 4.51 (d, J = 8.7 Hz, 1H), 4.46 (d, J = 8.7 Hz, 1H), 4.18 (d, J = 8.6 Hz, 1H), 4.08 (d, J = 8.7 Hz, 1H), 3.05-2.80 (m, 2H), 2.53 (dd, J = 7.6, 1.3 Hz, 2H), 1.42 (s, 3H), 1.38 (s, 3H);

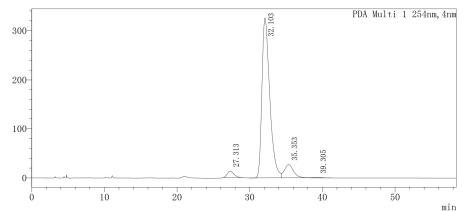

¹³C NMR (101 MHz, CDCl₃): δ 159.5, 136.7, 135.5, 134.9, 134.8, 133.1, 130.5, 128.2, 125.7, 125.2, 123.3, 122.9, 120.5, 120.3, 109.7, 82.0, 81.8, 46.3, 46.3, 45.6, 44.2, 25.0, 24.6;

HRMS: (ESI) calcd for C₂₈H₂₈NaO₂⁺[M+Na]⁺ 419.1982; found 419.1971;

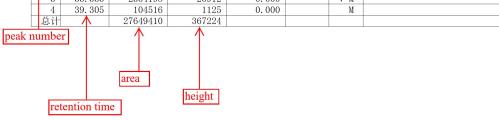
The enantiomeric purity was established by HPLC analysis using a chiral column: OJ-H column, 30 °C, *n*-Hexane/*i*-Propanol = 95/5 as eluent, 254 nm, 1 mL/min. tR = 27.3 min, 32.5 min, 35.4 min, 39.2 min.


Optical Rotation: $[\alpha]_D^{30}$ -24.1 (c 0.4, CHCl₃) for 92% ee.

〈色谱图〉 mAU


〈峰表〉

PDA Ch1 274nm 峰号 保留时间 1 27.257 浓度单位 标记 M V M 化合物名 高度 浓度 2322186 33055 24. 941 3 32.487 2275318 29847 24. 438 V M 35.354 2362690 28005 25.376 4 39. 213 2350467 25566 25. 245 V M 9310661 116473


〈色谱图〉

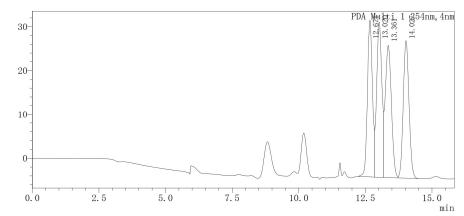
mAU

〈峰表〉

PDA Ch1 254nm 峰号 保留时间 1 27.313 面积 874348 24316349 高度 13405 325782 浓度 0.000 标记 M 浓度单位 化合物名 M V M 0.000 3 32. 103 35. 353 2354198 0.000 26912 M 39.305 104516 1125 0.000

(S)-5-chloro-3-methyl-3-((E)-3-(4-(((R)-3-methyl-2,3-dihydrobenzofuran-3-yl)methyl)phenyl)allyl)-2,3-dihydrobenzofuran (4ah)

4ah was prepared according to general procedure using **3au** (0.1 mmol, 25.0 mg) and **1h** (0.2 mmol, 60.0 mg) and was purified by silica gel column chromatography (petroleum ether/EtOAc = 100/1~30/1) to obtain **4ah** as colorless oil (28.4 mg, 66% yield).

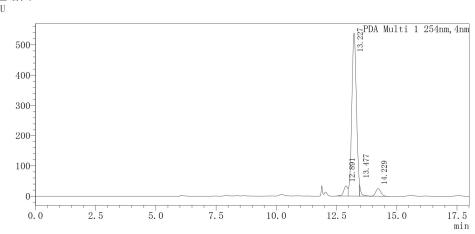

¹H NMR (400 MHz, CDCl₃): δ 7.22-7.09 (m, 3H), 7.00 (d, J = 7.9 Hz, 1H), 6.98-6.90 (m, 3H), 6.89-6.84 (m, 2H), 6.80-6.73 (m, 2H), 6.37 (d, J = 15.6 Hz, 1H), 6.03 (dt, J = 15.4, 7.5 Hz, 1H), 4.47 (t, J = 8.5 Hz, 2H), 4.18 (d, J = 8.7 Hz, 1H), 4.06 (d, J = 8.7 Hz, 1H), 2.86 (d, J = 5.8 Hz, 2H), 2.47 (dt, J = 7.7, 1.5 Hz, 2H), 1.38 (s, 3H), 1.35 (s, 3H); ¹³C NMR (400 MHz, CDCl₃): δ 160.5, 159.6, 136.9, 135.5, 134.8, 133.7, 133.6, 130.7, 128.3, 125.8, 124.8, 123.6, 123.4, 120.7, 120.4, 110.6, 109.8, 82.8, 81.9, 46.4, 46.4, 45.5, 44.3, 25.2, 24.7;

HRMS: (APCI) calcd for C₂₈H₂₈ClO₂⁺[M+H]⁺ 431.1772; found 431.1766;

The enantiomeric purity was established by HPLC analysis using a chiral column: AD-H column, 30 °C, *n*-Hexane/*i*-Propanol = 95/5 as eluent, 254 nm, 0.5 mL/min. tR = 12.7 min, 13.0 min, 13.4 min, 14.0 min.

Optical Rotation: $[\alpha]_D^{30}$ -32.6 (c 0.2, CHCl₃) for 92% ee.

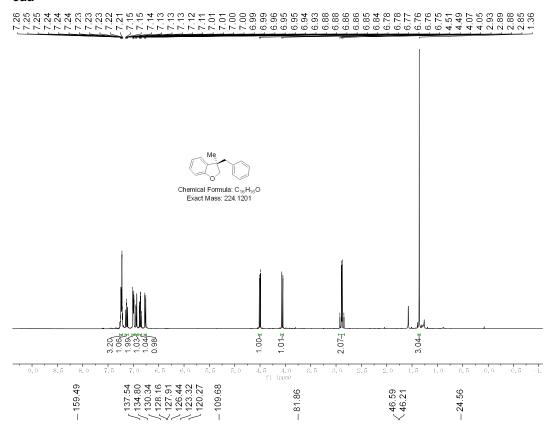
〈色谱图〉 mAU

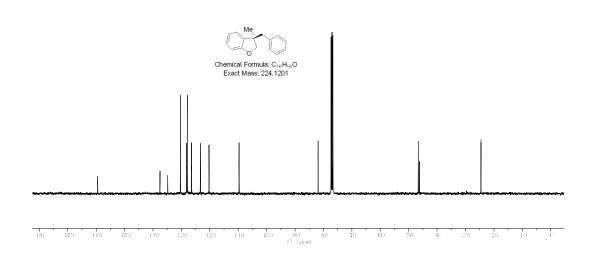


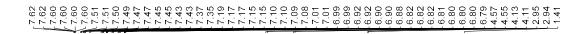
〈峰表〉

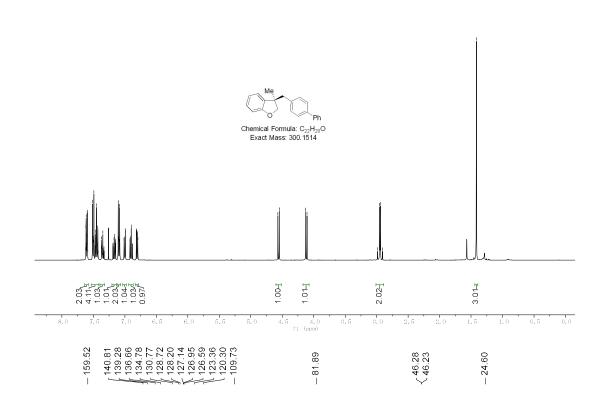
	1.4.10	,						
		1 254nm						
ĺ	峰号	保留时间	面积	高度	浓度	浓度单位	标记	化合物名
	↑ 1	12.671	466840	35749	24. 440		M	
ĺ	7 2	13.020	497663	35361	26.054		V M	
	3	13. 361	474674	30121	24. 851		V M	
ĺ	4	14.027	470933	31360	24. 655		V M	
	总计	\wedge	1910110	132590				
ole r	umbe		1	\wedge				

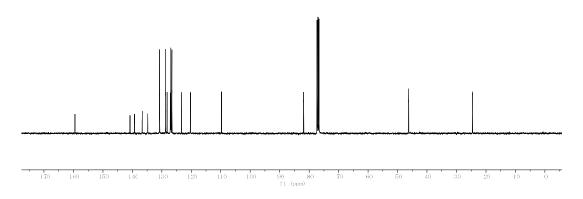
〈色谱图〉 mAU



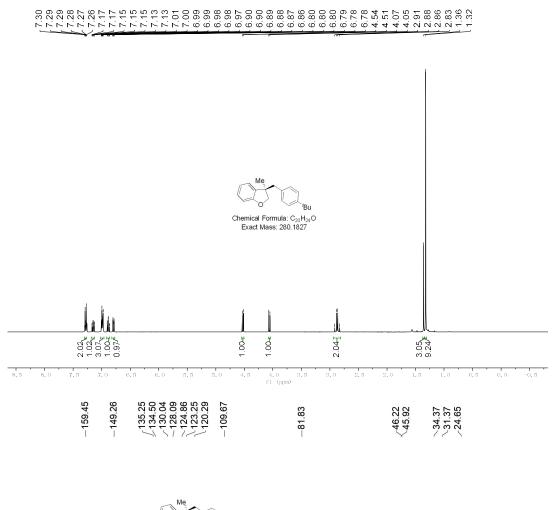

PDA Ch1 254nm											
I	峰号	保留时间	面积	高度	浓度	浓度单位	标记	化合物名			
/	1	12.891	383968	33240	0.000		M				
	2	13. 227	7252663	538845	0.000		V M				
	3	13. 477	127849	30860	0.000		V M				
	4	14. 229	368805	25067	0.000		M				
	总计	\wedge	8133286	628012							

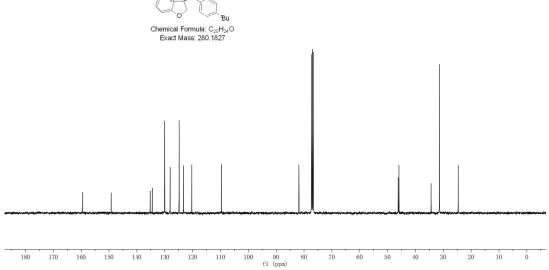

5. Copies of the ¹H, ¹³C and ¹⁹F NMR spectra

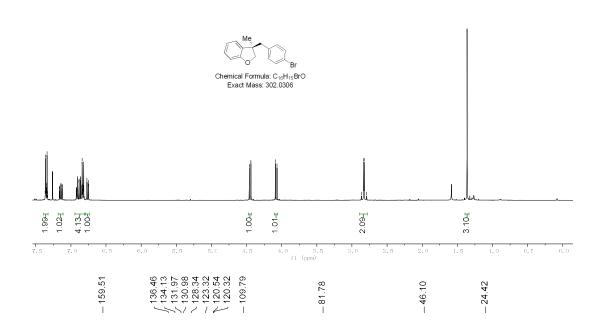

3aa

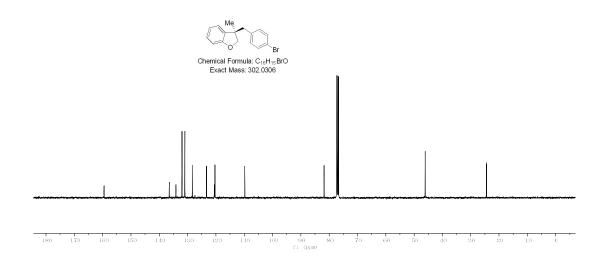


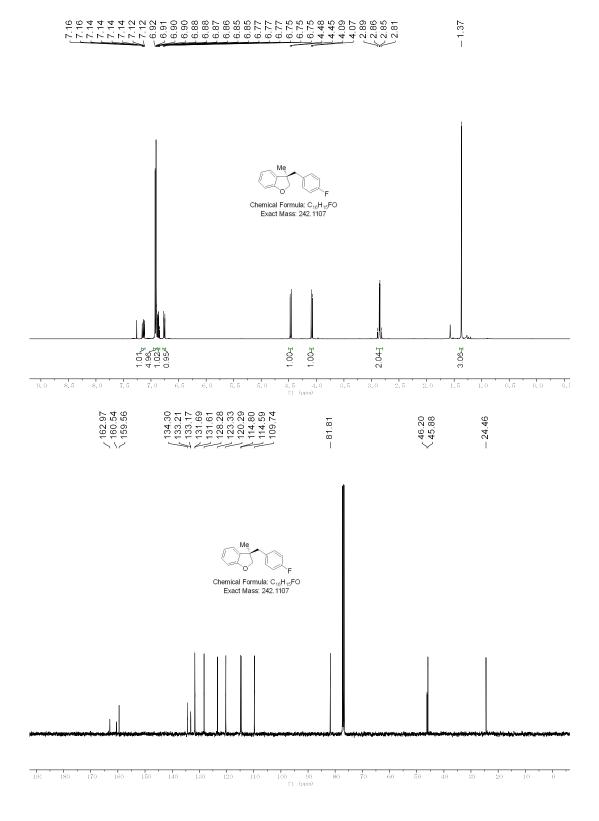
3ab

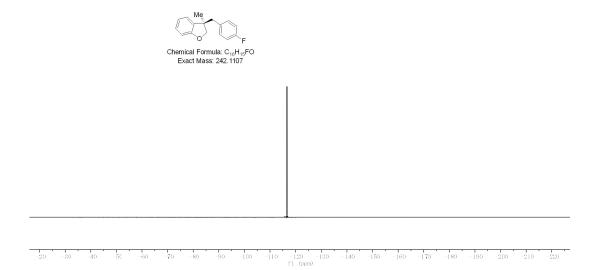


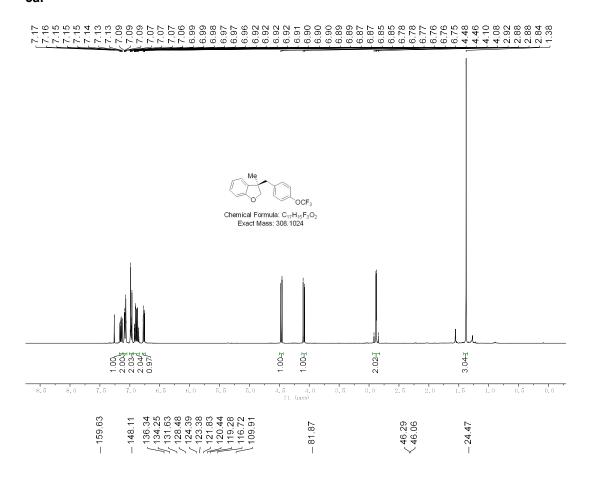


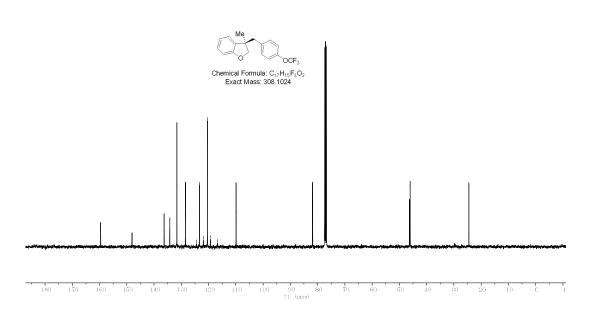

3ac

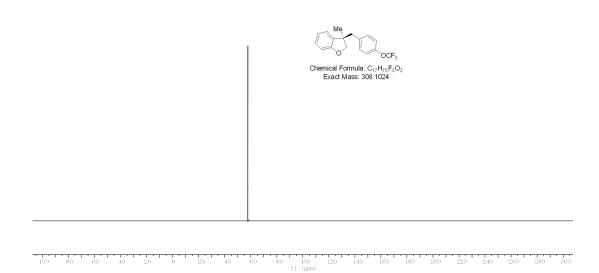


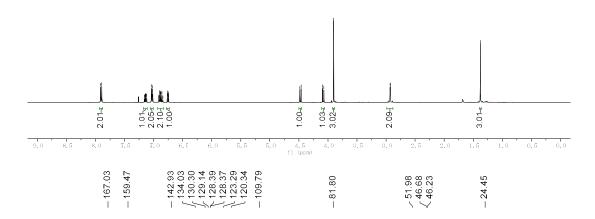


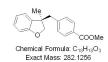


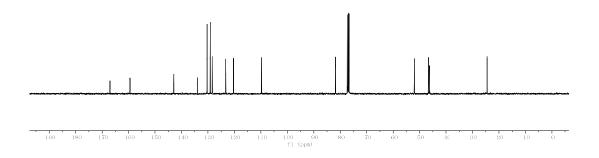


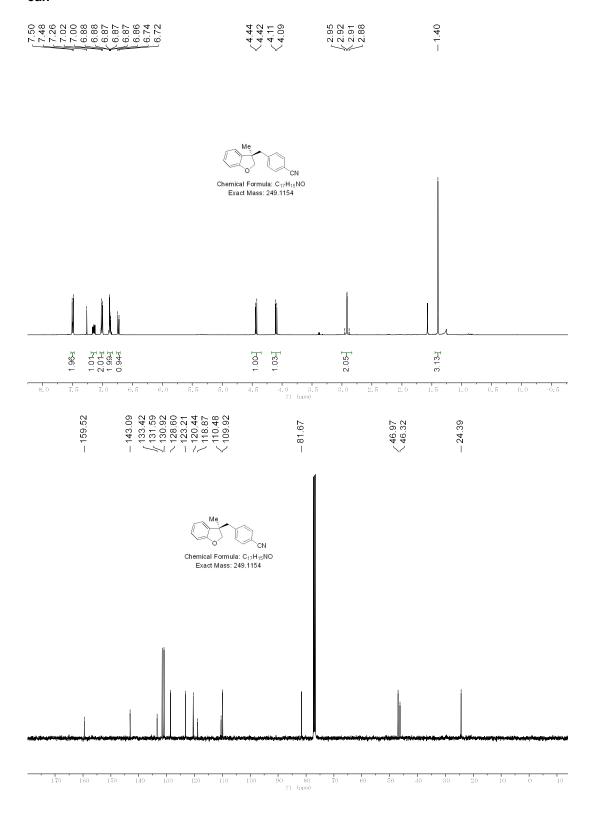


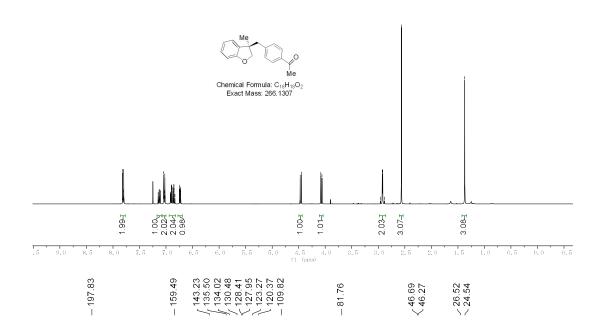


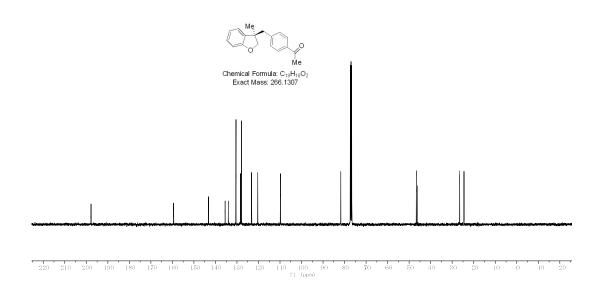


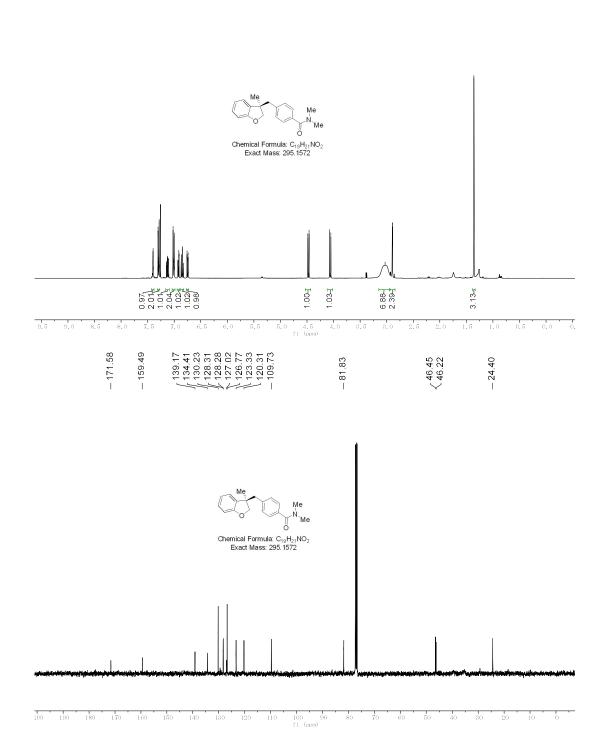


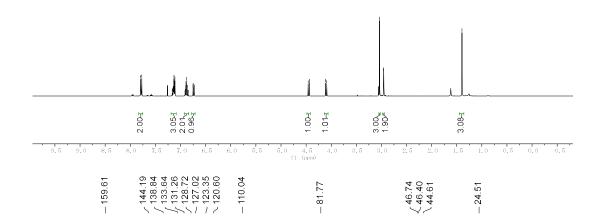


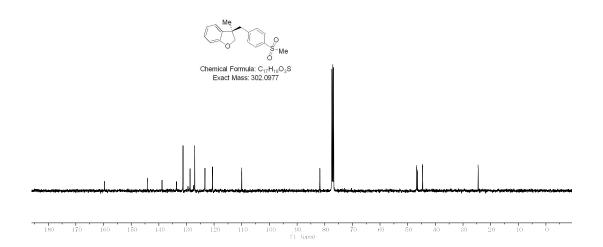


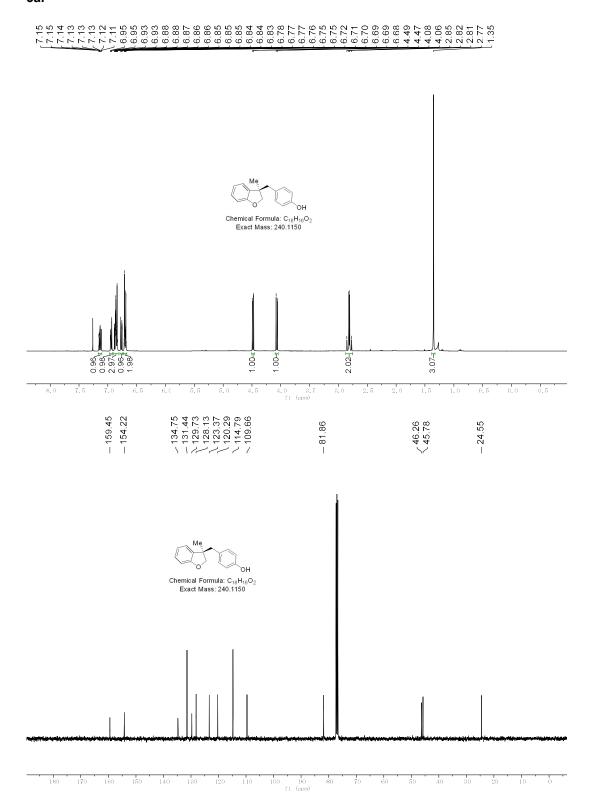




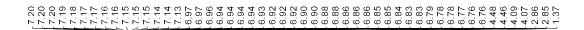


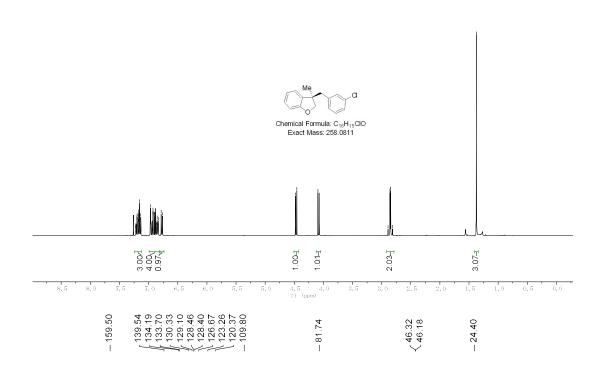


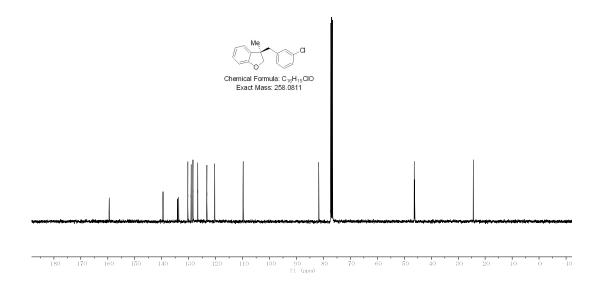


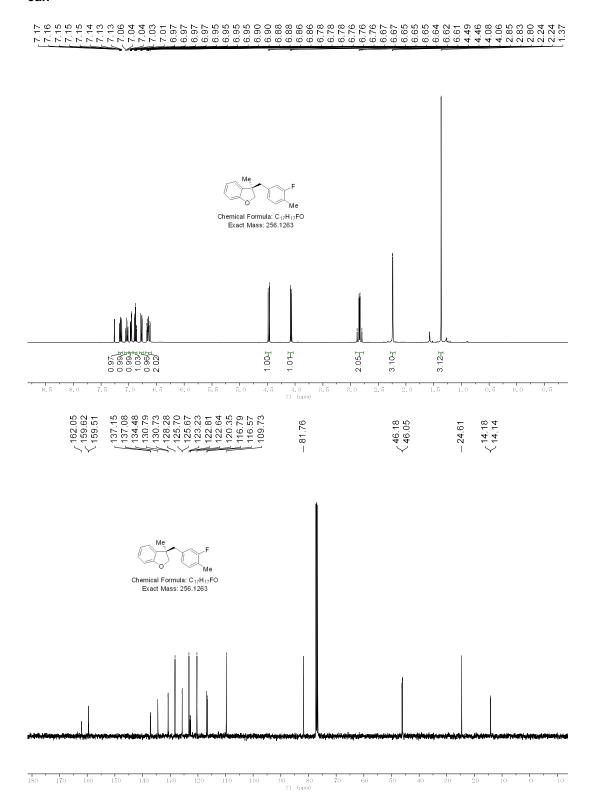


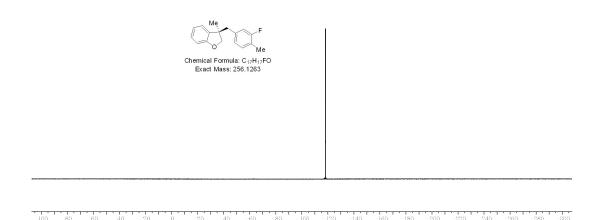
1.36

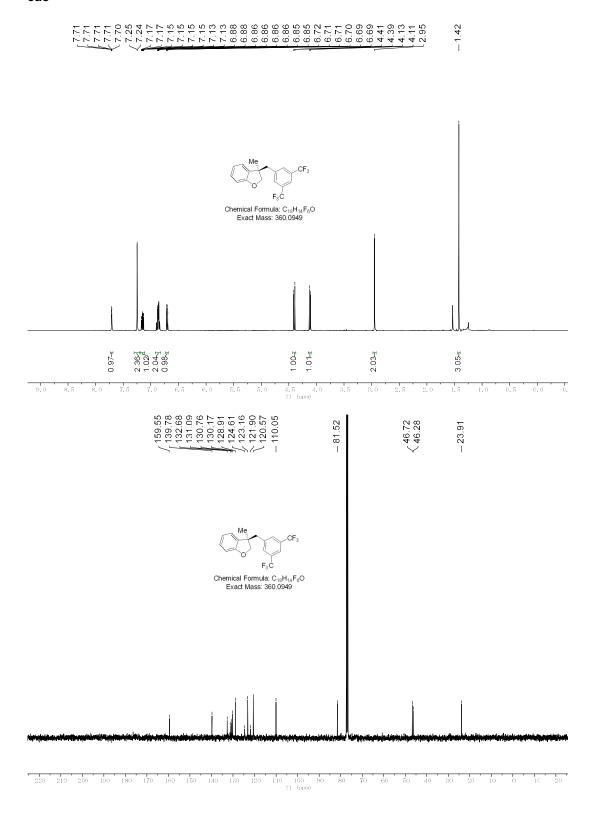




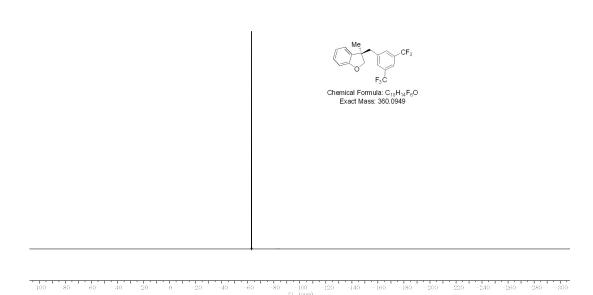

3al

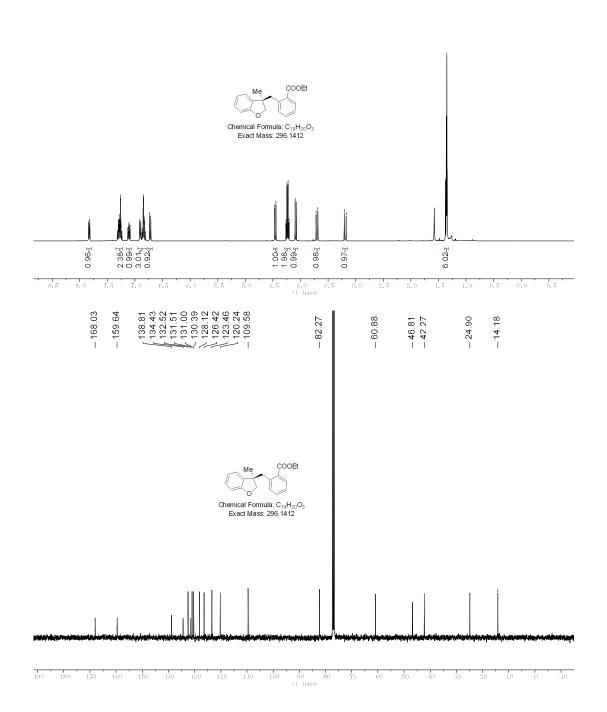

3am

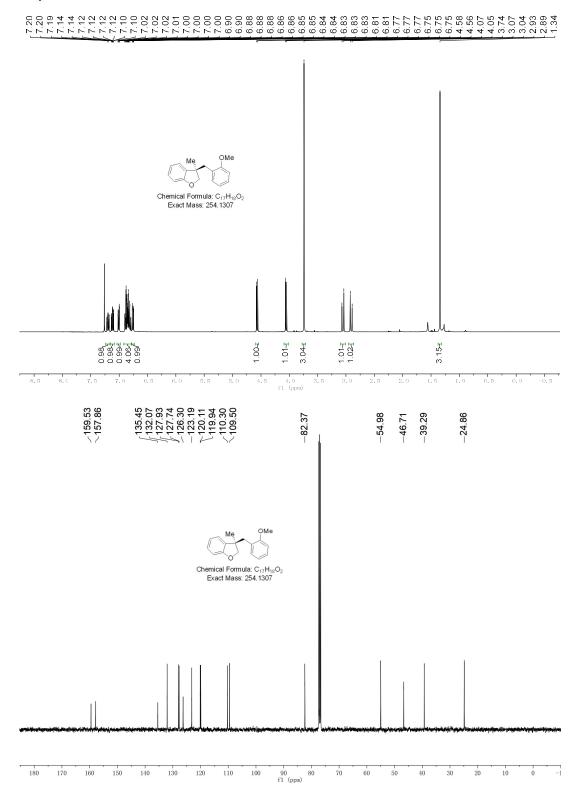




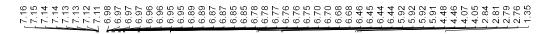
3an

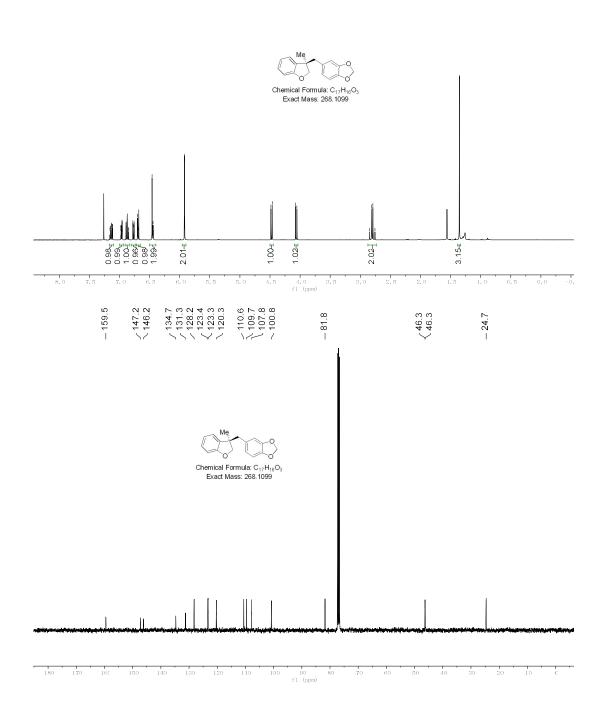


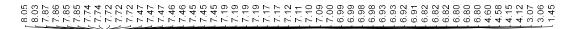


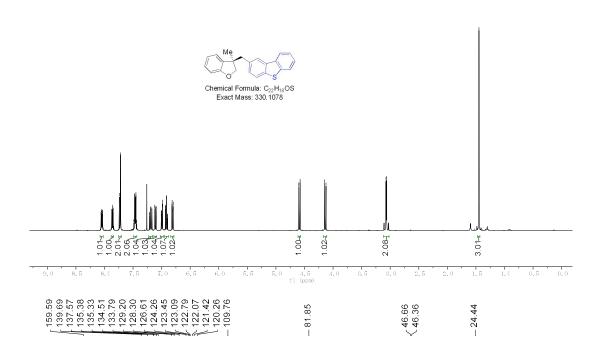


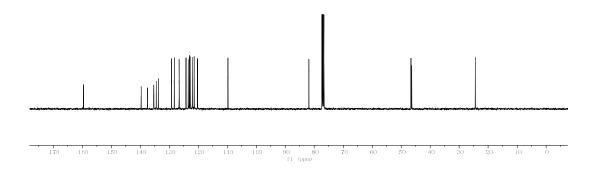
Зар

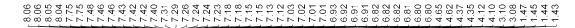


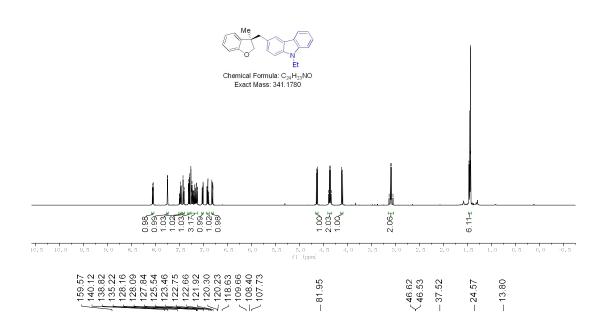


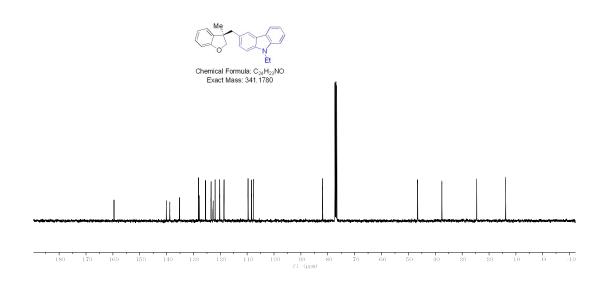


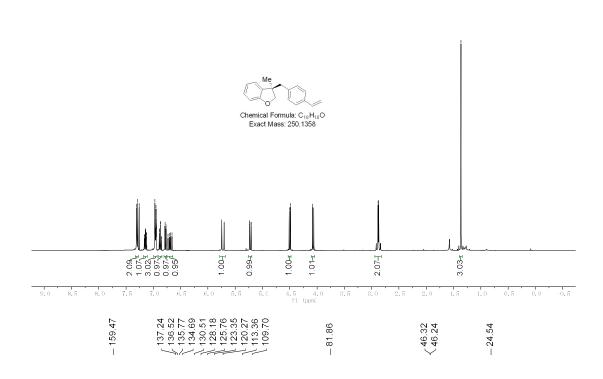


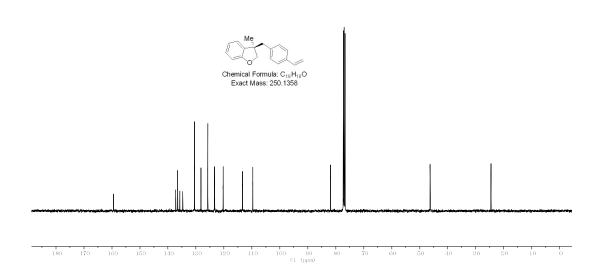


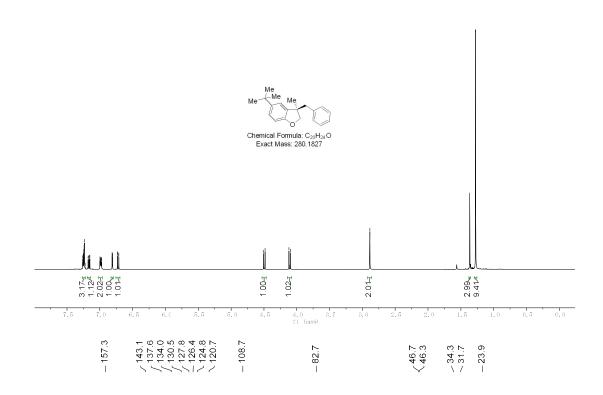


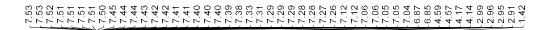


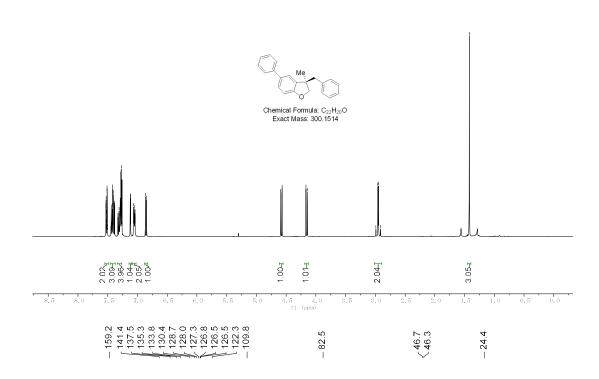


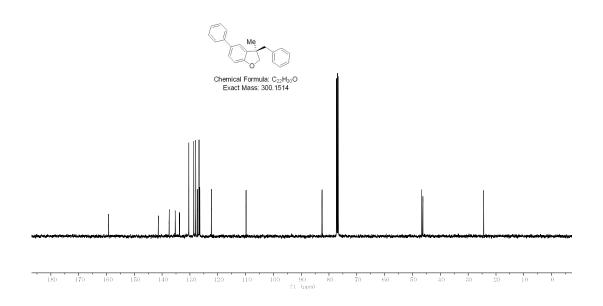




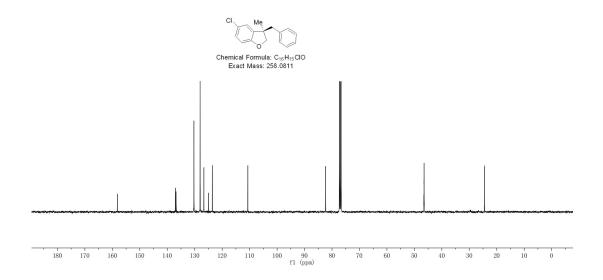


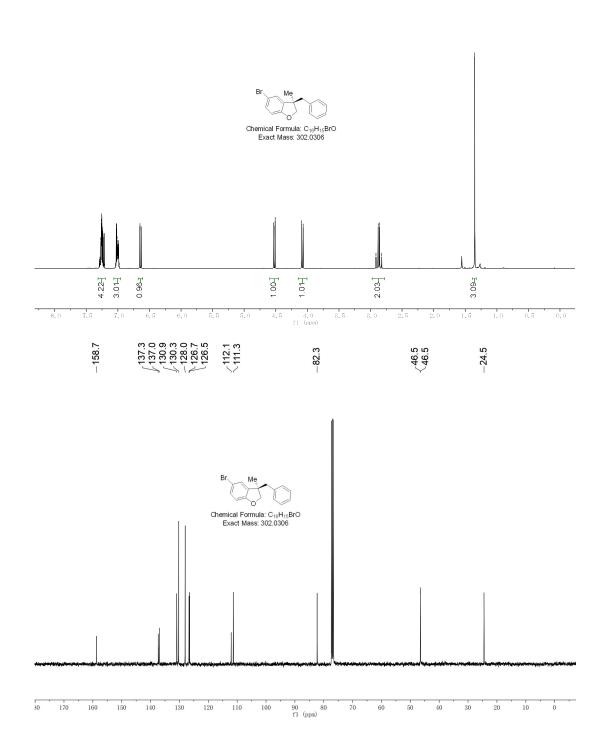

3ba

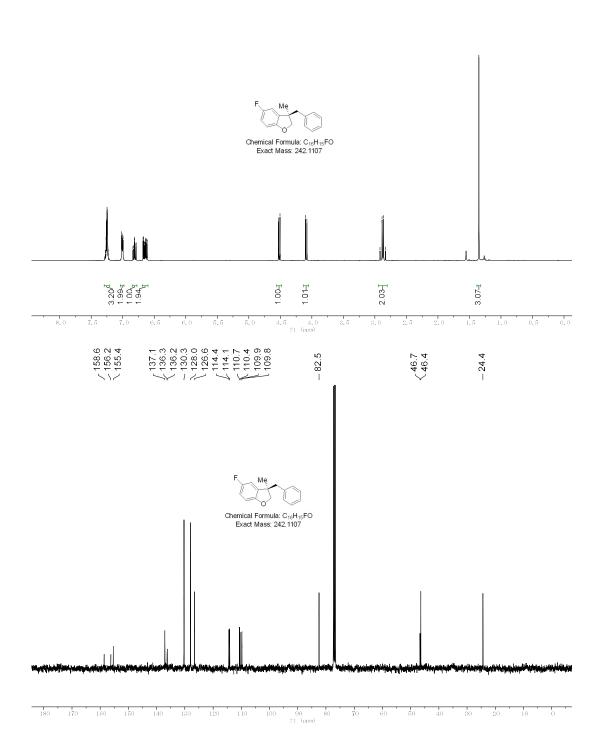


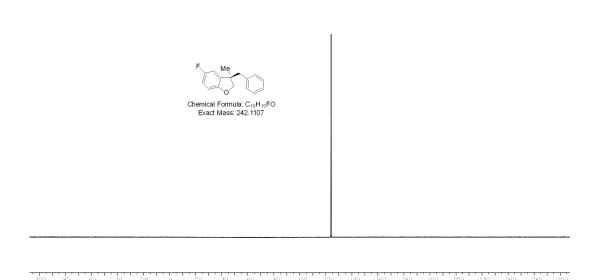



3ca

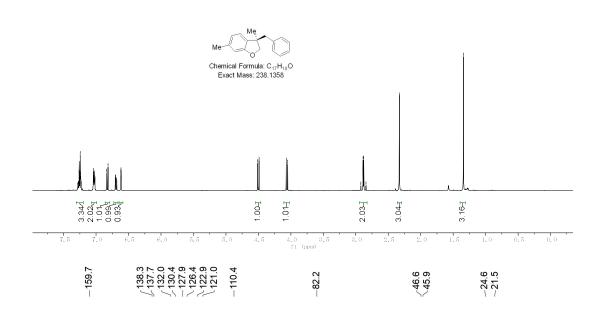


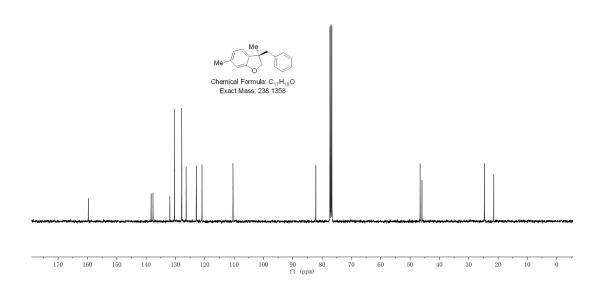

3da

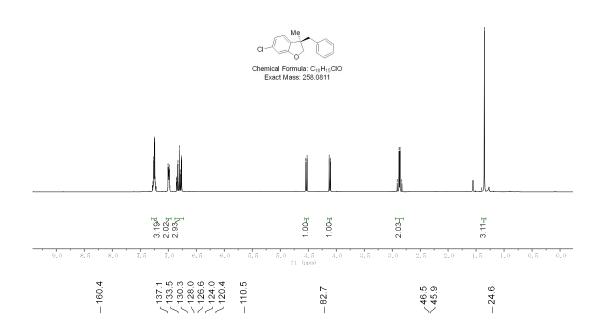


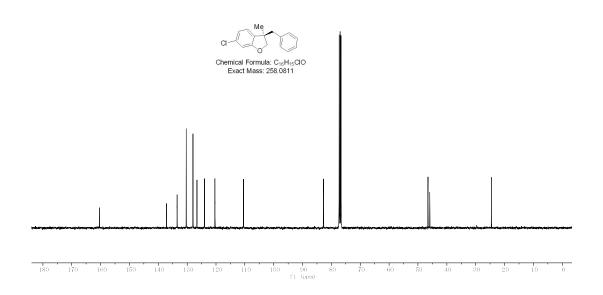


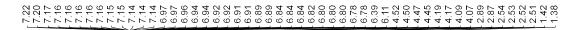
3ea

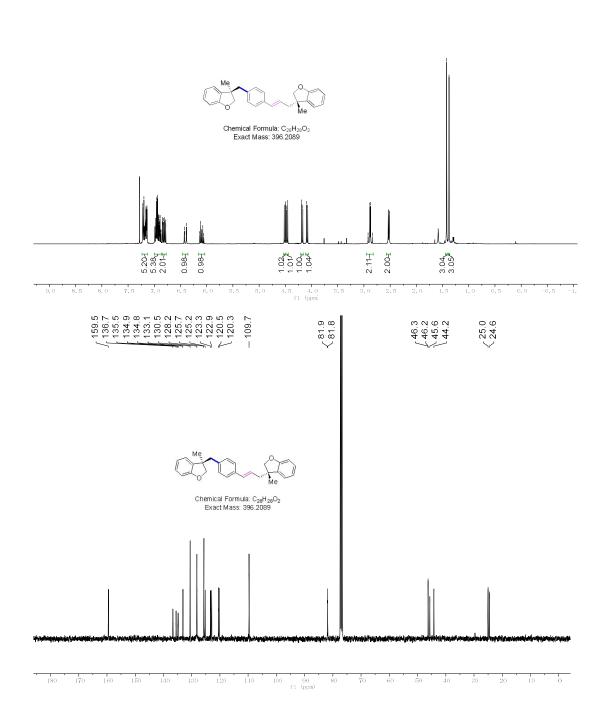

7.22 7.22 8.23 7.22

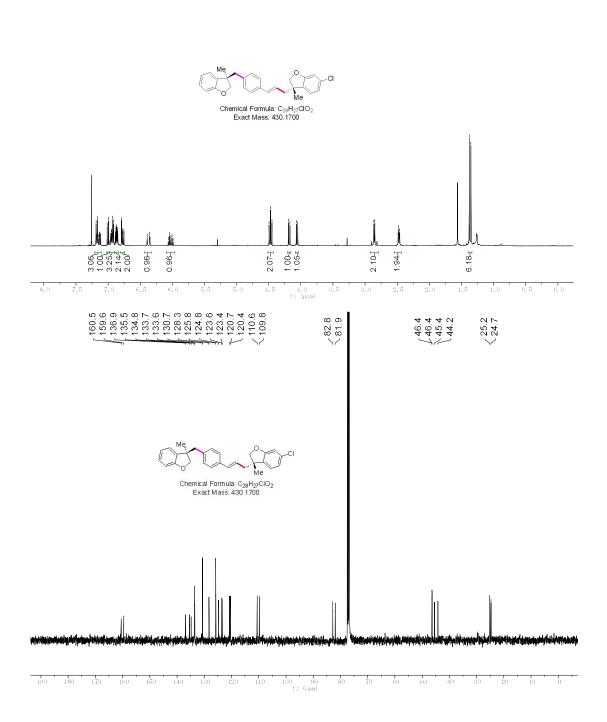



3ga




3ha




4aa

6. References

- [1] (a) You, W. and Brown, M. K., J. Am. Chem. Soc., 2015, 137, 14578. (b) Zhang, Z., Xu, B., Qian, Y., Wu, L., Wu, Y., Zhou, L., Liu, Y. and Zhang, J., Angew. Chem. Int. Ed., 2018, 57, 10373. (c) Carmona, R. C., Köster, O. D. and Correia, C. R. D., Angew. Chem. Int. Ed., 2018, 57, 12067.
- [2] Grigg, R., Sansano, J. M., Santhakumar, V., Sridharan, V., Thangavelanthum, R., Thornton-Pett, M. and Wilson, D., *Tetrahedron*, 1997, **53**, 11803.