Supporting Information

Rose Bengal-Functionalized Porous Organic Polymer for Carboxylative Cyclization of Propargyl Alcohols with CO₂

Xiaoxiao Yu,^{a, b} Zhenzhen Yang,^a Fengtao Zhang,^{a, b} Zhenghui Liu,^{a, b} Peng Yang,^{a, b} Hongye

Zhang,^a Bo Yu,^a Yanfei Zhao,^a and Zhimin Liu^{*a, b}

^a Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China ^b University of Chinese Academy of Sciences, Beijing 100049, China.

E-mail: <u>liuzm@iccas.ac.cn</u>

Table of Contents

1.	General experimental methods
2.	Synthetic procedures
3.	Supplementary Figures
Figure S1	
Figu	re S24
Figu	re S34
Figu	re S45
Figu	re S55
Figu	re S66
Figu	re S76
Figu	re S87
Figu	re S97
Figure S10	
Figure S11	
Table S19	
4. with	Charactrization (NMR) of the products of carboxylative cyclization of propargyl alcohols CO ₂ 10

1. General experimental methods

Materials

All reagents and solvents were purchased from commercial sources and were used without further purification, unless indicated otherwise.

Instrumentation

Liquid ¹H and ¹³C NMR spectra were recorded on Bruck 400 spectrometer. Solid-state NMR experiments were performed on a Bruker WB Avance II 400 MHz spectrometer. The ¹³C CP/MAS NMR spectra were recorded with a 4-mm double-resonance MAS probe and with a sample spinning rate of 10.0 kHz; a contact time of 2 ms (ramp 100) and pulse delay of 3 s were applied. FTIR spectra of the samples were collected on a TENSOR 27 FTIR at a resolution of 2 cm⁻¹. Gas sorption isotherms were obtained with Micromeritics TriStar II 3020 and Micromeritics ASAP 2020 M+C accelerated surface area and porosimetry analyzers at certain temperature. The samples were outgassed at 140 °C for 8 h before the measurements. Surface areas were calculated from the adsorption data using Brunauer-Emmett-Teller (BET) methods. The pore-size-distribution curves were obtained from the adsorption branches using non-local density functional theory (NLDFT) method. Field emission scanning electron microscopy (SEM) observations were performed on a Hitachi SU8020 microscope operated at an accelerating voltage of 15.0 kV. (HR) Transmission electron microscopy (TEM) images were obtained with a JEOL JEM-1011 and JEM-2100F instrument operated at 200 kV. The thermal properties of the materials were evaluated using a thermogravimetric analysis (TGA) instrument (STA PT1600 Linseis) over the temperature range of 25 to 800 °C under air with a heating rate of 10 °C/min. The content of Ag in the Ag@RB-POP was determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES VISTA-MPX). X-ray photoelectron spectroscopy (XPS) was performed on an ESCAL Lab 220i-XL spectrometer at a pressure of $\sim 3 \times 10^{-9}$ mbar (1 mbar = 100 Pa) using Al Ka as the excitation source (1486.6 eV) and operated at 15 kV and 20 mA. The binding energies were referenced to the C_{1s} line at 284.8 eV from adventitious carbon. The XRD analysis was performed on a D/MAX-RC diffractometer operating at 30 kV and 100 mA with $Cu_{K\alpha}$ radiation.

2. Synthetic procedures

(1) Synthetic procedure for RB-POP

Typically, Rose bengal (1 mmol), 1,4-diethynylbenzene (2 mmol), tetrakis(triphenylphosphine) palladium (20 mg) and cuprous iodide (10 mg) were dissolved in the mixture of 4 mL of N,N-dimethylformamide and 4 mL of triethanolamine. Then the reaction mixture was heated to 90 °C and stirred for 72 h under a nitrogen atmosphere. After cooling down to room temperature, the solid was collected by filtration and washed with distilled water, tetrahydrofuran and ethanol for three times. After being extracted in a Soxhlet extractor with ethanol, H₂O and THF (1: 1: 1) for 48 h, **RB-POP** as deep red solid was collected and dried in vacuum oven at 80 °C for 24 h. The yield was 88% for **RB-POP**.

(2) Synthetic procedure for Ag@RB-POP

In a round-bottom flask equipped with a nitrogen inlet and a reflux condenser, $AgBF_4$ (6 mg) dissolved in 20 mL of THF and **RB-POP** (300 mg) were added under nitrogen. The mixture was kept stirring for 24 h at 80 °C in dark. The resulting solid was isolated by filtration and washed with THF, and then purified using Soxhlet extraction (THF) for 24 h. **Ag@RB-POP** was obtained as a brown

powder after drying at 80 °C under vacuum for 12 h. The Ag@porous carbon was prepared in the same way using various supports.

(3) General procedure for carboxylative cyclization reaction

Typically, propargyl alcohols (i.e., **1a-1k**, 0.5 mmol), **Ag@RB-POP** (20 mg), DBU (0.5 mmol) and CH₃CN (2 mL) were successively added into a stainless steel autoclave with a Teflon tube (16 mL inner volume) under N₂ atmosphere. The autoclave was sealed and charged with CO₂ up to 1 MPa at room temperature, then was moved to an oil bath of 30 °C and stirred for 12 h. After reaction, the yield of **2a~2k** were determined by NMR using mesitylene as an internal standard and CDCl₃ as the solvent. The pure products of **2a~2i** was obtained by column chromatography on silica gel using petroleum ether/ethyl acetate (from 10:1 to 1:1) as eluent and identified by NMR spectra.

(4) Recycling test of Ag@RB-POP

After reaction, the catalyst was recycled by filtration, washed with 50 mL CH_2Cl_2 , and then dried under vacuum at 40 °C for 24 h. The recycled catalyst was reused for the next run without further purification.

3. Supplementary Figures

Figure S1 FTIR spectrum of RB-POP. The spectrum was recorded as KBr pellets.

Figure S2 CP/MAS ¹³C NMR spectrum for RB-POP.

Figure S3 TGA analysis on RB-POP and Ag@RB-POP in air, with a ramping rate of 10 °C min.

Figure S4 BET plot of RB-POP.

Figure S5 (a) SEM and (b) TEM images of RB-POP. Scale bar, (a) 200 nm, (b) 20 μ m.

Figure S6 PXRD-pattern of RB-POP and Ag@RB-POP.

Figure S7 EDS profile of Ag@RB-POP

Figure S8 (A) The(HR)TEM of Ag@RB-POP, Scale bar 200 nm, (B) to (H) are the compositional EDS mapping of Ag@RB-POP using scanning transmission electron microscopy. Scale bar 200 nm.

Figure S9. XPS spectra: (A) survey spectra, (B) C1s, (C) C11s for RB-POP and Ag@RB-POP (D) Ag 3d for Ag@RB-POP -After

Figure S10 Isosteric heats of adsorption (Qst) for CO₂ adsorption by RB-POP and porous carbon. The isosteric heats of adsorption (Qst) are calculated by fitting the CO₂ adsorption isotherms at 273 K and 298 K and applying of the Clausius-Clapeyron equation.

Figure S11 Recyclability test of **Ag@RB-POP**. Reaction conditions: **1a**, 0.5 mmol; **Ag@RB-POP**, 20 mg (Ag was 0.01 mol% based on **1a**); DBU, 0.5 mmol; CO₂ 1 MPa; CH₃CN, 2 mL; 30 °C, 12 h. ^b Determined by ¹H NMR (CDCl₃, 400 MHz) using mesitylene as an internal standard.

^a Reaction condition: **1a**, 0.5 mmol; **Ag@ RB-POP**, 20 mg (Ag was 0.01 mol% based on **1a**); base, 0.5 mmol; CO₂ 1 MPa; CH₃CN, 2 mL; 30 °C, 12 h. ^b Determined by ¹H NMR (CDCl₃, 400 MHz) using mesitylene as an internal standard.

4. Charactrization (NMR) of the products of carboxylative cyclization of propargyl alcohols with CO₂.

