Nucleophilic Halo-Michael Addition under Lewis-Base Activation

Víctor Laina-Martín,^{†a} Ignacio Pérez,^{†a} Jose A. Fernández-Salas,^a* and José Alemán^{a,b}*

a. Departamento de Química Orgánica (Módulo 1), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049-Madrid, Spain. E-mail: jose.aleman@uam.es; webpage: www.uam.es/jose.aleman

b. Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain.

1. General methods and starting materials										
2. Optimization of the reaction conditions										
2.1. Optimization of the eta -chlorination reaction										
2.2. Optimization of the β -bromination reaction										
3. Synthesis and characterization data of α , β -unsaturated <i>N</i> -acyloxazolidinones 1										
3.1. General procedure A: Synthesis of α , β -unsaturated <i>N</i> -acyloxazolidinones 1										
3.2. General procedure B: Synthesis of α , β -unsaturated <i>N</i> -acyloxazolidinones 1										
4. General procedure C for the nucleophilic halogenation of α, β -unsaturated N-										
acyloxazolidinones. Synthesis of 3 and 4 12										
5. General procedure D for the nucleophilic bromination to diverse Michael acceptors 19										
6. General procedures for the removal of the chiral auxiliary24										
6.1. General procedure E: removal of the chiral auxiliary to the alcohol										
6.2. General procedure F: removal of the chiral auxiliary to the carboxylic acid										
7. NMR spectra27										
8. Single Crystal X-Ray Structure of compound 4e 67										

1. General methods and starting materials.

All solvents were dried using activated 4Å molecular sieves and stored under nitrogen. 4Å molecular sieves, 1.6-2.5 mm of particle size, were activated by microwave (700W) (3 x 60 sec) and subsequent cycles of vacuum/nitrogen. For thin layer chromatography (TLC) silica gel plates with fluorescence indicator 254 nm were used and compounds were visualized by irradiation with UV light and/or by treatment with a solution of potassium permanganate in water followed by heating. Flash column chromatography was performed using Geduran[®] Silica Gel 60 (0.040-0.063 nm) or latrobeads 6RS-8060 silica gel and compressed air. Cyclohexane and ethyl acetate for flash chromatography were acquired from commercial sources and were used without previous purification. Optical rotation was recorded on a Perkin-Elmer 241 MC Polarimeter in cells with 10 cm path length; the specific solvents and concentrations (in g/100 mL) are indicated. NMR spectra were acquired on a Bruker Avance 300 MHz spectrometer, running at 300, 75 and 282 MHz for ¹H, ¹³C and ¹⁹F respectively. Chemical shifts (δ) are reported in ppm relative to residual solvent signals (CDCl₃, 7.26 ppm for ¹H NMR and 77.0 ppm for ¹³C NMR respectively). ¹³C and ¹⁹F spectra were acquired on a broad band decoupled mode. The following abbreviations are used to describe peak patterns when appropriate: s (singlet), d (doublet), t (triplet), q (quartet), quint (quintet), m (multiplet), bs (broad singlet). Electrospray ionization has been used for measuring the exact mass (indicated for each case): MS (ESI) (Electrospray ionization mass spectroscopy) was acquired with an Agilent Technologies 6120 Quadrupole LC/MS. In this technique, MassWorks software ver. 4.0.0.0 (Cerno Bioscience) was used for the formula identification. MassWorks is a MS calibration software which calibrates for isotope profile as well as for mass accuracy, allowing highly accurate comparisons between calibrated and theoretical spectra.1

Crystal of compound **4e** was mounted at low temperature in inert oil on a glass fiber. Data were collected on a *Bruker X8 APPEX II* CCD-based diffractometer, equipped with a graphite monochromated MoK α (radiation source $\lambda = 0.71073$ Å).

¹ a) Y. Wang and M. Gu, *Anal. Chem.*, 2010, **82**, 7055; b) Y. Wang, Methods for Operating MS Instrument Systems, United States Patent No. 6,983,213, **2006**; c) N. Ochiaia, K. Sasamoto, K. MacNamara *Journal of Chromatography A*, 2012, **1270**, 296; d) H.-P. Ho, R.-Y. Lee, C.-Y. Chen, S.-R. Wang, Z.-G. Li and M.-R. Lee, *Rapid Commun. Mass Spectrom.* 2011, **25**, 25.

2. Optimization of the reaction conditions.

2.1. Optimization of the β -chlorination reaction.^a

	0 II	0				ÇI	
\nearrow	Ņ^	لر 0 + C	hlorosilane	promoter		\blacktriangleright	M _N _N
	R'`.			solvent, T 16h		7	R ^{'''}
Entry	R	Chlorosilane	Promoter	Solvent	т (°С)	Conversion (%)	d.r.
1	<i>i</i> Pr	Allyl	-	DCM	25	<10	-
2	<i>i</i> Pr	Allyl	Yb(OTf)₃	DCM	25	57	60:40
3	<i>i</i> Pr	Allyl	Yb(OTf)₃	THF	25	n.r.	-
4	<i>i</i> Pr	Allyl	Yb(OTf)₃	Toluene	25	n.r.	-
5	<i>i</i> Pr	Allyl	Yb(OTf)₃	MeCN	25	30	60:40
6	<i>i</i> Pr	Allyl	Yb(OTf)₃	CHCl₃	25	-	-
7	<i>i</i> Pr	Allyl	Yb(OTf)₃	HFB	25	20	87:13
8	<i>i</i> Pr	Allyl ^b	Yb(OTf)₃	HFB	25	50	87:13
9	<i>i</i> Pr	Allyl	THTO	HFB	25	48	87:13
10	<i>i</i> Pr	Allyl	PPh₃ oxide	HFB	25	n.r.	-
11	<i>i</i> Pr	Allyl	Phenol	HFB	25	n.r.	-
12	<i>i</i> Pr	Allyl	PPh₃	HFB	25	n.r.	-
13	<i>i</i> Pr	Allyl	DMSO	HFB	25	21	85:15
14	<i>i</i> Pr	TMSCI	THTO	HFB	25	10	-
15	<i>i</i> Pr	TMS- SiMe₂Cl	THTO	HFB	25	n.r.	-
16	<i>i</i> Pr	TBACI	THTO	HFB	25	n.r.	-
17	<i>i</i> Pr	PhSiCl₃	THTO	HFB	25	47	86:14
18	<i>i</i> Pr	SiCl ₄	THTO	HFB	25	25	86:14
19	<i>i</i> Pr	Allyl ^b	THTO	HFB	4	87	80:20
20	<i>i</i> Pr	Allyl ^b	THTO	HFB	25	100	80:20
21	<i>i</i> Pr	Allyl ^b	THTO	Hexane	25	100	66:34
22	<i>i</i> Pr	Allyl ^b	THTO	1,2-DCB	25	100	60:40
23	<i>i</i> Pr	Allyl ^b	THTO	DCM	-78	15	60:40
24	<i>i</i> Pr	Allyl ^b	ТНТО	DCM:HFB (3:1)	-78	80	70:30
25	Ph	Allyl ^b	THTO	HFB	25	100	80:20
26	Ph	Allyl ^b	Yb(OTf)₃	HFB	25	50	80:20
27	<i>t</i> Bu	Allyl ^b	THTO	HFB	25	100	87:13
28	<i>t</i> Bu	Allyl ^b	THTO + Yb(OTf) ₃	HFB	25	100	91:9
29	<i>t</i> Bu	Allyl ^b	Yb(OTf)₃	HFB	25	22	93:7
30	<i>t</i> Bu	Allyl ^b	THTO	HFB ^c	25	80	95:5
31	<i>t</i> Bu	Allyl ^b	Yb(OTf)₃	HFB℃	25	20	95:5
32	<i>t</i> Bu	Allyl ^d	THTO	HFB	25	78	95:5
33	<i>t</i> Bu	Allyl ^d	THTO	HFB ^e	25	82	94:6
34	<i>t</i> Bu	Allyl ^d	THTO	HFB ^f	25	81	92:8
35	<i>t</i> Bu	Allyl ^g	THTO	HFB℃	25	94 (82)	96:4
36	<i>t</i> Bu	Allyl ^g	THTO	DCM ^c	25	95	92:8

37	<i>t</i> Bu	Allyl ^g	THTO	THF ^c	25	n.r.	-
38	<i>t</i> Bu	Allyl ^g	THTO	Toluene ^c	25	82	95:5
39	<i>t</i> Bu	Allyl ^g	THTO	MeCN ^c	25	80	75:25
40	<i>t</i> Bu	Allyl ^g	-	HFB℃	25	n.r.	-

^a Standard conditions: 0.1 mmol of Michael acceptor, 0.1 mmol of silane and Yb(OTf)₃ (20mol%) or THTO (0.1 mmol) in 1.2 mL of solvent were used. ^b 3 equivalents of silane and THTO were used. ^c 2.5 mL of solvent were used. ^d 2 equivalents of allyltrichlorosilane and THTO were used. ^e 0.9 mL of HFB were used. ^f 0.6 mL of HFB were used. ^g 4 equivalents of silane and THTO were used.

2.2. Optimization of the β -bromination reaction.^a

5

6

tBu

tBu

2

2

^a Standard conditions: 0.1 mmol of Michael acceptor, 0.3 mmol of tribromo(phenyl)silane and THTO (0.3 mmol) in 2.5 mL of hexafluorobenzene were used.

25

25

50

60

91:9

91:9

2.5

1.8

3. Synthesis and characterization data of α , β -unsaturated *N*-acyloxazolidinones 1.

3.1. General procedure A: Synthesis of α, β -unsaturated N-acyloxazolidinones 1.

A previously oven-dried round bottom flask was charged with a magnetic stirrer and the corresponding oxazolidinone (1.4 mmol, 1.0 eq.)² under nitrogen atmosphere. Then, anhydrous THF (5 mL) was added. The reaction mixture was cooled to -78 °C and *n*-BuLi (2.5M in hexanes, 1.1 eq.) was added dropwise. The reaction mixture was allowed to get room temperature and stirred for 1h. The solution was cooled again to -78 °C and another solution of the corresponding α , β -unsaturated acyl chloride (1.4 mmol, 1.0 eq.) in anhydrous THF (5 mL) was added dropwise under nitrogen atmosphere. The reaction mixture was stirred overnight at room temperature. The mixture was quenched with saturated NH₄Cl (aq) and the aqueous phases were extracted with EtOAc (2 x 5 mL). The organic phases were combined and dried over MgSO₄, filtered and concentrated under reduced pressure. The crude mixture was purified by column chromatography using silica gel and the eluent indicated in each case.

3.2. General procedure B: Synthesis of α , β -unsaturated N-acyloxazolidinones 1.

It was prepared following a modified procedure described in the literature:³ A previously ovendried round bottom flask was charged with a magnetic stirrer and the corresponding $\alpha_{\mu}\beta_{\mu}$

² They were prepared following a procedure described in the literature: A.-R. Silva, V. Guimaraes, A.-P. Carvalho and J. Pires, *Catal. Sci. Technol.* 2013, **3**, 659.

³ W. Zhi, J. Li, D. Zou, Y. Wu and Y. Wu, J. Org. Chem. 2017, 82, 12286.

unsaturated carboxylic acid (1.2 eq.) under nitrogen atmosphere. Then, DCM (3 mL) was added and the reaction mixture was cooled to 0 °C. Oxalylchloride (1.2 eq.) was added dropwise, followed by the addition of two drops of DMF, and the reaction mixture was stirred overnight at room temperature. Then, the solvent was evaporated under reduced pressure and the crude mixture was redissolved in anhydrous THF (5 mL). Another round bottom flask previously ovendried was charged with a magnetic stirrer and the (S)-4-(tert-butyl)oxazolidin-2-one (1.0 eq.) under nitrogen atmosphere. Then, anhydrous THF (5 mL) was added, the reaction mixture was cooled to -78 °C and n-BuLi (2.5M in hexanes, 1.1 eq.) was added dropwise. The reaction mixture was allowed to get room temperature and stirred for 1h. The solution was cooled again to -78 °C and another solution of the corresponding α,β -unsaturated acyl chloride solution previously prepared (1.2 eq.) was added dropwise under nitrogen atmosphere and the reaction mixture was stirred overnight at room temperature. The mixture was quenched with saturated NH₄Cl (aq) and the aqueous phases were extracted with EtOAc (2 x 5 mL). The organic phases were combined and dried over MgSO₄, filtered and concentrated under reduced pressure. The crude mixture was purified by column chromatography using silica gel and the eluent indicated in each case.

(S,E)-3-(But-2-enoyl)-4-isopropyloxazolidin-2-one (1a)³

Following general procedure A, crotonoyl chloride (0.13 mL, 1.4 mmol, 1.0 eq.), (*S*)-4-isopropyloxazolidin-2-one (181 mg, 1.4 mmol, 1.0 eq.) and *n*-BuLi (0.61 mL, 1.54 mmol, 1.1 eq.), gave **1a** as a yellow oil (88% yield). Eluent: cyclohexane: ethyl acetate from 95:5 to 3:1. The ¹H-NMR is in accordance

with the literature.

¹**H-NMR:** δ 7.26 (m, 1H), 7.12 (m, 1H), 4.47 (m, 1H), 4.29 (t, *J* = 8.8 Hz, 1H), 4.22 (dd, *J* = 7.2, 3.2 Hz, 1H), 2.40 (m, 1H), 1.95 (dd, *J* = 6.8, 1.6 Hz, 3H), 0.92 (dd, *J* = 17.6, 7.2 Hz, 6H) ppm.

(S,E)-3-(But-2-enoyl)-4-phenyloxazolidin-2-one (SI1)³

Following general procedure A, crotonoyl chloride (0.13 mL, 1.4 mmol, 1.0
eq.), (S)-4-phenyloxazolidin-2-one (228 mg, 1.4 mmol, 1.0 eq.) and *n*-BuLi
(0.61 mL, 1.54 mmol, 1.1 eq.), gave SI1 as a white solid (77% yield). Eluent:

cyclohexane: ethyl acetate from 95:5 to 2:1. The ¹H-NMR is in accordance with the literature.

¹**H-NMR:** δ 7.43 – 7.25 (m, 6H), 7.10 (dq, *J* = 15.2, 6.8 Hz, 1H), 5.49 (dd, *J* = 8.7, 3.9 Hz, 1H), 4.70 (t, *J* = 8.8 Hz, 1H), 4.28 (dd, *J* = 8.9, 3.9 Hz, 1H), 1.94 (dd, *J* = 6.8, 1.5 Hz, 3H) ppm.

(S,E)-3-(But-2-enoyl)-4-(tert-butyl)oxazolidin-2-one (1b)³

Following general procedure A, crotonoyl chloride (0.13 mL, 1.4 mmol, 1.0 eq.), (*S*)-4-(*tert*-butyl)oxazolidin-2-one (200 mg, 1.4 mmol, 1.0 eq.) and *n*-BuLi (0.61 mL, 1.54 mmol, 1.1 eq.), gave **1b** as a white solid (81% yield). Eluent: cyclohexane: ethyl acetate from 95:5 to 2:1. The ¹H-NMR is in

accordance with the literature.

¹**H-NMR:** δ 7.31 – 7.25 (m, 1H), 7.21 – 7.07 (m, 1H), 4.51 (dd, *J* = 7.2, 2.1 Hz, 1H), 4.32 – 4.20 (m, 2H), 1.96 (dd, *J* = 6.6, 1.4 Hz, 3H), 0.93 (s, 9H) ppm.

(S,E)-4-(tert-Butyl)-3-(pent-2-enoyl)oxazolidin-2-one (1c)

Following general procedure B, (*E*)-pent-2-enoic acid (0.14 mL, 1.25 mmol, 1.2 eq.), oxalyl chloride (0.11 mL, 1.25 mmol, 1.2 eq.), (*S*)-4-(*tert*-butyl)oxazolidin-2-one (150 mg, 1.05 mmol, 1.0 eq.) and *n*-BuLi (0.5 mL, 1.15 mmol, 1.1 eq.), gave **1c** as a yellow oil (56% yield). Eluent:

cyclohexane: ethyl acetate from 95:5 to 2:1. $[\alpha]^{20}_{D}$ = +85.3 (*c* 1.07, CHCl₃).

¹**H-NMR**: δ 7.31 – 7.13 (m, 2H), 4.52 (dd, *J* = 7.2, 2.1 Hz, 1H), 4.33 – 4.20 (m, 2H), 2.39 – 2.24 (m, 2H), 1.11 (t, *J* = 7.4 Hz, 3H), 0.95 (s, 9H) ppm.

¹³C-NMR: δ 165.5, 154.7, 152.9, 119.6, 65.2, 60.8, 35.9, 25.8, 25.6, 12.2 ppm.

HRMS (ESI⁺): calculated for C₁₂H₂₀NO₃ [M+H]⁺: 226.1438; found: 226.1451.

(S,E)-4-(tert-Butyl)-3-(oct-2-enoyl)oxazolidin-2-one (1d)

Following general procedure B, (*E*)-oct-2-enoic acid (0.19 mL,
 1.25 mmol, 1.2 eq.), oxalyl chloride (0.11 mL, 1.25 mmol, 1.2 eq.),
 (*S*)-4-(*tert*-butyl)oxazolidin-2-one (150 mg, 1.05 mmol, 1.0 eq.)
 and *n*-BuLi (0.5 mL, 1.15 mmol, 1.1 eq.), gave 1d as a yellow oil

(90% yield). Eluent: cyclohexane: ethyl acetate 4:1. $[\alpha]^{20}_{D}$ = +69.9 (*c* 1.21, CHCl₃).

¹**H-NMR:** δ 7.30 – 7.09 (m, 2H), 4.52 (dd, *J* = 7.2, 2.0 Hz, 1H), 4.33 – 4.19 (m, 2H), 2.33 – 2.23 (m, 2H), 1.57 – 1.43 (m, 2H), 1.39 – 1.27 (m, 4H), 0.95 (s, 9H), 0.92 – 0.86 (m, 3H) ppm.

¹³**C-NMR:** δ 165.5, 154.7, 151.8, 120.3, 65.2, 60.8, 35.9, 32.7, 31.4, 27.7, 25.6, 22.4, 13.9 ppm.

HRMS (ESI⁺): calculated for C₁₅H₂₆NO₃ [M+H]⁺: 268.1907; found: 268.1920.

(S,E)-4-(tert-Butyl)-3-(4-methylpent-2-enoyl)oxazolidin-2-one (1e)³

Following general procedure B, (*E*)-4-methylpent-2-enoic acid (0.15 mL, 1.25 mmol, 1.2 eq.), oxalyl chloride (0.11 mL, 1.25 mmol, 1.2 eq.), (*S*)-4- (*tert*-butyl)oxazolidin-2-one (150 mg, 1.05 mmol, 1.0 eq.) and *n*-BuLi (0.5 mL, 1.15 mmol, 1.1 eq.), gave **1e** as a yellow oil (62% yield). Eluent:

cyclohexane: ethyl acetate from 95:5 to 2:1. The ¹H-NMR is in accordance with the literature.

¹**H-NMR:** δ 7.26 – 7.05 (m, 2H), 4.52 (dd, *J* = 7.3, 1.9 Hz, 1H), 4.33 – 4.19 (m, 2H), 2.62 – 2.47 (m, 1H), 1.10 (d, *J* = 6.8 Hz, 6H), 0.95 (s, 9H) ppm.

(S)-4-(tert-Butyl)-3-cinnamoyloxazolidin-2-one (1f)

Following general procedure A, cinnamoyl chloride (233 mg, 1.4 mmol, 1.0 eq.), (*S*)-4-(*tert*-butyl)oxazolidin-2-one (200 mg, 1.4 mmol, 1.0 eq.) and *n*-BuLi (0.61 mL, 1.54 mmol, 1.1 eq.), gave **1f** as a yellow solid (97% yield). Eluent: cyclohexane: ethyl acetate from 95:5 to 3:1. $[\alpha]^{20}_{D}$ =

+117.2 (*c* 1.07, CHCl₃).

¹**H-NMR:** δ 7.95 (d, *J* = 15.7 Hz, 1H), 7.84 (d, *J* = 15.7 Hz, 1H), 7.67 – 7.58 (m, 2H), 7.43 – 7.34 (m, 3H), 4.59 (dd, *J* = 7.0, 2.2 Hz, 1H), 4.38 – 4.23 (m, 2H), 0.97 (s, 9H) ppm.

¹³C-NMR: δ 165.5, 154.7, 146.3, 134.6, 130.6, 128.8, 128.6, 117.1, 65.2, 61.0, 36.0, 25.6 ppm.

HRMS (ESI⁺): calculated for C₁₆H₂₀NO₃ [M+H]⁺: 274.1438; found: 274.1451.

(S,E)-4-(tert-Butyl)-3-(3-(4-nitrophenyl)acryloyl)oxazolidin-2-one (1g)

Following general procedure A, (*E*)-3-(4-nitrophenyl)acryloyl chloride (296 mg, 1.4 mmol, 1.0 eq.), (*S*)-4-(*tert*-butyl)oxazolidin-2-one (200 mg, 1.4 mmol, 1.0 eq.) and *n*-BuLi (0.61 mL, 1.54 mmol, 1.1 eq.), gave **1g** as a yellow solid (93%

yield). Eluent: cyclohexane: ethyl acetate 7:3. $[\alpha]^{20}_{D}$ = +114.4 (*c* 1.03, CHCl₃).

¹**H-NMR:** δ 8.24 (d, *J* = 8.8 Hz, 2H), 8.06 (d, *J* = 15.7 Hz, 1H), 7.82 (d, *J* = 15.7 Hz, 1H), 7.75 (d, *J* = 8.8 Hz, 2H), 4.58 (dd, *J* = 6.9, 2.3 Hz, 1H), 4.40 – 4.27 (m, 2H), 0.97 (s, 9H) ppm.

¹³C-NMR: δ 164.7, 154.7, 148.6, 142.9, 140.7, 129.0, 124.1, 121.4, 65.4, 61.1, 36.0, 25.6 ppm.

HRMS (ESI⁺): calculated for C₁₆H₁₉N₂O₅ [M+H]⁺: 319.1288; found: 319.1262.

(S,E)-4-(tert-Butyl)-3-(3-(2-chlorophenyl)acryloyl)oxazolidin-2-one (1h)

Following general procedure A, (*E*)-3-(2-chlorophenyl)acryloyl chloride (281 mg, 1.4 mmol, 1.0 eq.), (*S*)-4-(*tert*-butyl)oxazolidin-2-one (200 mg, 1.4 mmol, 1.0 eq.) and *n*-BuLi (0.61 mL, 1.54 mmol, 1.1 eq.), gave **1h** as a yellow oil (87% yield). Eluent: cyclohexane: ethyl acetate 7:3.

 $[\alpha]^{20}_{D} = +100.1 (c \ 1.05, \ CHCl_3).$

¹**H-NMR:** δ 8.25 (d, *J* = 15.7 Hz, 1H), 7.94 (d, *J* = 15.7 Hz, 1H), 7.81 – 7.73 (m, 1H), 7.44 – 7.38 (m, 1H), 7.36 – 7.24 (m, 2H), 4.59 (dd, *J* = 6.7, 2.6 Hz, 1H), 4.38 – 4.27 (m, 2H), 0.98 (s, 9H) ppm.

¹³C-NMR: δ 164.9, 154.6, 141.5, 135.1, 132.7, 131.2, 130.0, 128.0, 127.0, 119.6, 65.2, 60.9, 35.8, 25.5 ppm.

HRMS (ESI⁺): calculated for C₁₆H₁₉CINO₃ [M+H]⁺: 308.1048; found: 308.1065.

(S,E)-4-(tert-Butyl)-3-(3-(4-chlorophenyl)acryloyl)oxazolidin-2-one (1i)

Following general procedure B, (*E*)-3-(4-chlorophenyl)acrylic acid (307 mg, 1.68 mmol, 1.2 eq.), oxalyl chloride (0.15 mL, 1.68 mmol, 1.2 eq.), (*S*)-4-(*tert*-butyl)oxazolidin-2-one (200 mg, 1.4 mmol, 1.0 eq.) and *n*-BuLi (0.61 mL, 1.54 mmol, 1.1 eq.), gave **1i** as a yellow

solid (66% yield). Eluent: cyclohexane: ethyl acetate from 95:5 to 3:1. $[\alpha]^{20}_D$ = +111.8 (c 1.46, CHCl₃).

¹**H-NMR:** δ 7.93 (d, *J* = 15.7 Hz, 1H), 7.78 (d, *J* = 15.7 Hz, 1H), 7.55 (d, *J* = 8.4 Hz, 2H), 7.37 (d, *J* = 8.4 Hz, 2H), 4.59 (dd, *J* = 7.0, 2.3 Hz, 1H), 4.39 – 4.22 (m, 2H), 0.98 (s, 9H) ppm.

¹³**C-NMR:** δ 165.3, 154.7, 144.8, 136.5, 133.1, 129.7, 129.1, 117.7, 65.3, 61.0, 36.0, 25.6 ppm.

HRMS (ESI⁺): calculated for C₁₆H₁₉ClNO₃ [M+H]⁺: 308.1048; found: 308.1061.

(S,E)-4-(tert-Butyl)-3-(3-(4-fluorophenyl)acryloyl)oxazolidin-2-one (1j)

Following general procedure A, (*E*)-3-(4-fluorophenyl)acryloyl chloride (260 mg, 1.4 mmol, 1.0 eq.), (*S*)-4-(*tert*-butyl)oxazolidin-2-one (200 mg, 1.4 mmol, 1.0 eq.) and *n*-BuLi (0.61 mL, 1.54 mmol, 1.1 eq.), gave **1j** as a yellow solid (59% yield). Eluent: cyclohexane:

ethyl acetate from 95:5 to 3:1. $[\alpha]^{20}_{D}$ = +113.1 (*c* 0.64, CHCl₃).

¹**H-NMR:** δ 7.88 (d, *J* = 15.7 Hz, 1H), 7.79 (d, *J* = 15.7 Hz, 1H), 7.66 – 7.57 (m, 2H), 7.13 – 7.02 (m, 2H), 4.58 (dd, *J* = 7.1, 2.2 Hz, 1H), 4.41 – 4.21 (m, 2H), 0.98 (s, 9H) ppm.

¹³C-NMR: δ 165.4, 164.1 (d, J = 251.8 Hz), 154.7, 145.0, 130.9 (d, J = 3.4 Hz), 130.5 (d, J = 8.6 Hz), 116.9 (d, J = 2.5 Hz), 116.0 (d, J = 22.0 Hz), 65.3, 61.0, 36.0, 25.6 ppm.

¹⁹**F-NMR:** δ -109.0 ppm.

HRMS (ESI⁺): calculated for C₁₆H₁₉FNO₃ [M+H]⁺: 292.1343; found: 292.1360.

(S,E)-4-(tert-Butyl)-3-(3-(3-methoxyphenyl)acryloyl)oxazolidin-2-one (1k)

Following general procedure B, (*E*)-3-(3-methoxyphenyl)acrylic acid (299 mg, 1.68 mmol, 1.2 eq.), oxalyl chloride (0.15 mL, 1.68 mmol, 1.2 eq.), (*S*)-4-(*tert*-butyl)oxazolidin-2-one (200 mg, 1.4 mmol, 1.0 eq.) and *n*-BuLi (0.61 mL, 1.54 mmol, 1.1 eq.), gave **1k** as a yellow oil (88%

yield). Eluent: cyclohexane: ethyl acetate 7:3. $[\alpha]^{20}_{D}$ = +87.9 (c 1.04, CHCl₃).

¹H-NMR: δ 7.93 (d, J = 15.7 Hz, 1H), 7.80 (d, J = 15.7 Hz, 1H), 7.36 - 7.18 (m, 2H), 7.14 - 7.09 (m, 1H), 6.99 - 6.89 (m, 1H), 4.58 (dd, J = 7.0, 2.3 Hz, 1H), 4.37 - 4.21 (m, 2H), 3.84 (s, 3H), 0.97 (s, 9H) ppm.

¹³C-NMR: δ 165.5, 159.9, 154.7, 146.3, 136.0, 129.8, 121.3, 117.4, 116.6, 113.3, 65.3, 61.0, 55.3, 36.0, 25.7 ppm.

HRMS (ESI⁺): calculated for C₁₇H₂₂NO₄ [M+H]⁺: 304.1543; found: 304.1564.

(S,E)-4-(tert-Butyl)-3-(3-(4-methoxyphenyl)acryloyl)oxazolidin-2-one (11)

Following general procedure B, (*E*)-3-(4-methoxyphenyl)acrylic acid (299 mg, 1.68 mmol, 1.2 eq.), oxalyl chloride (0.15 mL, 1.68 mmol, 1.2 eq.), (*S*)-4-(*tert*-butyl)oxazolidin-2-one (200 mg, 1.4 mmol, 1.0 eq.) and *n*-BuLi (0.61 mL, 1.54 mmol, 1.1 eq.), gave **1**

as a yellow oil (68% yield). Eluent: cyclohexane: ethyl acetate from 95:5 to 3:1. $[\alpha]^{20}_{D}$ = +122.2 (c 0.93, CHCl₃).

¹**H-NMR:** δ 7.81 (s, 2H), 7.57 (d, *J* = 8.8 Hz, 2H), 6.90 (d, *J* = 8.8 Hz, 2H), 4.58 (dd, *J* = 7.0, 2.3 Hz, 1H), 4.35 – 4.22 (m, 2H), 3.84 (s, 3H), 0.97 (s, 9H) ppm.

¹³C-NMR: δ 165.7, 161.7, 154.8, 146.2, 130.4, 127.4, 114.6, 114.3, 65.2, 60.9, 55.4, 36.0, 25.6 ppm.

HRMS (ESI⁺): calculated for C₁₇H₂₂NO₄ [M+H]⁺: 304.1543; found: 304.1552.

(S,E)-4-(tert-Butyl)-3-(2-methylpent-2-enoyl)oxazolidin-2-one (1m)

Following general procedure B, (*E*)-2-methylpent-2-enoic acid (192 mg, 1.68 mmol, 1.2 eq.), oxalyl chloride (0.15 mL, 1.68 mmol, 1.2 eq.), (*S*)-4- (*tert*-butyl)oxazolidin-2-one (200 mg, 1.4 mmol, 1.0 eq.) and *n*-BuLi (0.61 mL, 1.54 mmol, 1.1 eq.), gave **1m** as a yellow oil (79% yield). Eluent:

cyclohexane: ethyl acetate 4:1. $[\alpha]^{20}_{D}$ = +16.6 (*c* 0.31, CHCl₃).

¹**H-NMR**: δ 6.27 – 6.17 (m, 1H), 4.57 (dd, *J* = 6.6, 4.6 Hz, 1H), 4.32 – 4.24 (m, 2H), 2.29 – 2.19 (m, 2H), 1.95 – 1.90 (m, 3H), 1.06 (t, *J* = 7.6 Hz, 3H), 0.94 (s, 9H) ppm.

¹³C-NMR: δ 172.3, 154.0, 142.9, 130.0, 64.7, 60.3, 35.8, 25.4, 21.9, 13.5, 12.8 ppm.

HRMS (ESI⁺): calculated for C₁₃H₂₁NO₃Na [M+Na]⁺: 262.1413; found: 262.1419.

4. General procedure C for the nucleophilic halogenation of α , β unsaturated *N*-acyloxazolidinones. Synthesis of 3 and 4.

The corresponding α , β -unsaturated *N*-acyloxazolidinone **1** (0.1 mmol, 1.0 eq.) was dissolved in hexafluorobenzene (2.5 mL) in a vial. Then, tetrahydrothiophene 1-oxide (40 μ L, 0.4 mmol, 4.0 eq.) and the corresponding halosilane⁴ (0.4 mmol, 4.0 eq.) were sequentially added and the reaction was stirred for 16 hours. Finally, the crude mixture was purified by flash column chromatography using latrobeads silica gel and eluting with the solvent indicated in each case.

(S)-4-(tert-Butyl)-3-((S)-3-chlorobutanoyl)oxazolidin-2-one (3b)

Following general procedure C, (S,E)-3-(but-2-enoyl)-4-(*tert*-butyl)oxazolidin-2-one **1b** (21.1 mg, 0.1 mmol, 1.0 eq.), tetrahydrothiophene 1-oxide (40 μ L, 0.4 mmol, 4.0 eq.) and allyltrichlorosilane (60 μ L, 0.4 mmol, 0.4 eq.), gave **3b** as a colorless oil (82%)

yield). Eluent: cyclohexane: ethyl acetate 4:1. $[\alpha]^{20}_{D}$ = +53.9 (*c* 0.98, CHCl₃).

¹**H-NMR:** δ 4.63 – 4.50 (m, 1H), 4.46 (dd, *J* = 7.1, 2.0 Hz, 1H), 4.37 – 4.21 (m, 2H), 3.44 (dd, *J* = 16.8, 8.8 Hz, 1H), 3.30 (dd, *J* = 16.7, 4.5 Hz, 1H), 1.62 (d, *J* = 6.5 Hz, 3H), 0.94 (s, 9H) ppm.

¹³C-NMR: δ 169.6, 154.6, 65.6, 61.1, 52.9, 45.7, 35.8, 25.7, 25.2 ppm.

HRMS (ESI⁺): calculated for C₁₁H₁₉NO₃Cl [M+H]⁺: 248.1048; found: 248.1058.

(S)-4-(tert-Butyl)-3-((S)-3-chloropentanoyl)oxazolidin-2-one (3c)

Following general procedure C, (S,E)-4-(tert-butyl)-3-(pent-2-enoyl)oxazolidin-2-one **1c** (22.5 mg, 0.1 mmol, 1.0 eq.), tetrahydrothiophene 1-oxide (40 μ L, 0.4 mmol, 4.0 eq.) and

⁴ Tribromo(phenyl)silane was prepared following a reported procedure: A. Iwataa, Y. Toyoshimaa, T. Hayashidaa, T. Ochia, A. Kunaia and J. Ohshita, *J. Organomet. Chem.*, 2003, **667**, 90.

allyltrichlorosilane (60 μ L, 0.4 mmol, 0.4 eq.), gave **3c** as a yellow oil (76% yield). Eluent: cyclohexane: ethyl acetate from 9:1 to 3:1. $[\alpha]^{20}_{D} = +49.1$ (*c* 0.35, CHCl₃).

¹**H-NMR:** δ 4.46 (dd, *J* = 7.1, 2.1 Hz, 1H), 4.44 – 4.34 (m, 1H), 4.34 – 4.22 (m, 2H), 3.44 (dd, *J* = 16.6, 9.2 Hz, 1H), 3.30 (dd, *J* = 16.6, 4.0 Hz, 1H), 1.98 – 1.75 (m, 2H), 1.08 (t, *J* = 7.3 Hz, 3H), 0.95 (s, 9H) ppm.

¹³**C-NMR:** δ 169.8, 154.7, 65.6, 61.1, 59.4, 43.9, 35.8, 31.4, 25.7, 10.8 ppm.

HRMS (ESI⁺): calculated for C₁₂H₂₁NO₃Cl [M+H]⁺: 262.1205; found: 262.1215.

(S)-4-(*tert*-Butyl)-3-((S)-3-chlorooctanoyl)oxazolidin-2-one (3d)

Following general procedure C, (*S*,*E*)-4-(*tert*-butyl)-3-(oct-2enoyl)oxazolidin-2-one **1d** (26.7 mg, 0.1 mmol, 1.0 eq.), tetrahydrothiophene 1-oxide (40 μ L, 0.4 mmol, 4.0 eq.) and allyltrichlorosilane (60 μ L, 0.4 mmol, 0.4 eq.), gave **3d** as a yellow

oil (83% yield, 92:8 dr). Eluent: cyclohexane: ethyl acetate 4:1. $[\alpha]^{20}_{D}$ = +25.8 (c 0.78, CHCl₃).

¹**H-NMR:** δ 4.51 – 4.38 (m, 2H), 4.34 – 4.22 (m, 2H), 3.44 (dd, *J* = 16.6, 9.2 Hz, 1H), 3.29 (dd, *J* = 16.6, 4.0 Hz, 1H), 1.87 – 1.74 (m, 2H), 1.66 – 1.40 (m, 2H), 1.40 – 1.24 (m, 4H), 0.95 (s, 9H), 0.93 – 0.86 (m, 3H) ppm.

¹³**C-NMR:** δ 169.8, 154.7, 65.6, 61.1, 58.0, 44.2, 38.2, 35.8, 31.2, 25.7, 25.6, 22.5, 13.9 ppm.

HRMS (ESI⁺): calculated for C₁₅H₂₇NO₃Cl [M+H]⁺: 292.0543; found: 292.0531.

(S)-4-(*tert*-butyl)-3-((R)-3-chloro-4-methylpentanoyl)oxazolidin-2-one (3e)

Following general procedure C, (S,E)-4-(*tert*-butyl)-3-(4-methylpent-2enoyl)oxazolidin-2-one **1e** (23.9 mg, 0.1 mmol, 1.0 eq.), tetrahydrothiophene 1-oxide (40 µL, 0.4 mmol, 4.0 eq.) and allyltrichlorosilane (60 µL, 0.4 mmol, 0.4 eq.), gave **3e** as a yellow oil (70%

yield). Eluent: cyclohexane: ethyl acetate from 9:1 to 3:1. $[\alpha]^{20}_{D}$ = +77.3 (*c* 1.00, CHCl₃).

¹**H-NMR:** δ 4.55 – 4.37 (m, 2H), 4.35 – 4.22 (m, 2H), 3.47 (dd, *J* = 16.4, 10.2 Hz, 1H), 3.29 – 3.17 (m, 1H), 2.05 (ddd, *J* = 13.4, 6.7, 4.2 Hz, 1H), 1.07 (d, *J* = 6.7 Hz, 3H), 1.03 (d, *J* = 6.7 Hz, 3H), 0.95 (s, 9H) ppm.

¹³**C-NMR:** δ 170.1, 154.7, 65.6, 64.1, 61.2, 41.8, 35.8, 34.3, 25.7, 19.7, 17.3 ppm.

HRMS (ESI⁺): calculated for C₁₃H₂₃NO₃Cl [M+H]⁺: 276.1361; found: 276.1325.

(S)-3-((S)-3-Bromobutanoyl)-4-(tert-butyl)oxazolidin-2-one (4a)

Following general procedure C, (*S*,*E*)-3-(but-2-enoyl)-4-(*tert*-butyl)oxazolidin-2-one **1b** (21.1 mg, 0.1 mmol, 1.0 eq.), tetrahydrothiophene 1-oxide (40 μ L, 0.4 mmol, 4.0 eq.) and tribromo(phenyl)silane (75 μ L, 0.4 mmol, 0.4 eq.), gave **4a** as a yellow oil

(86% yield). Eluent: cyclohexane: ethyl acetate 4:1. $[\alpha]^{20}_{D}$ = +57.1 (*c* 0.30, CHCl₃).

¹**H-NMR:** δ 4.65 – 4.51 (m, 1H), 4.45 (dd, *J* = 7.0, 2.2 Hz, 1H), 4.35 – 4.23 (m, 2H), 3.61 (dd, *J* = 17.1, 8.9 Hz, 1H), 3.39 (dd, *J* = 17.1, 4.6 Hz, 1H), 1.80 (d, *J* = 6.7 Hz, 3H), 0.94 (s, 9H) ppm.

¹³**C-NMR:** δ 169.7, 154.6, 65.6, 61.1, 46.2, 43.4, 35.8, 26.3, 25.7 ppm.

HRMS (ESI⁺): calculated for C₁₁H₁₉NO₃Br [M+H]⁺: 292.0543; found: 292.0531.

(S)-3-((R)-3-Bromo-4-methylpentanoyl)-4-(*tert*-butyl)oxazolidin-2-one (4b)

Following general procedure C, (*S*,*E*)-4-(*tert*-butyl)-3-(4-methylpent-2enoyl)oxazolidin-2-one **1e** (23.9 mg, 0.1 mmol, 1.0 eq.), tetrahydrothiophene 1-oxide (40 μ L, 0.4 mmol, 4.0 eq.) and tribromo(phenyl)silane (75 μ L, 0.4 mmol, 0.4 eq.), gave **4b** as a yellow oil

(78% yield). Eluent: cyclohexane: ethyl acetate 4:1. $[\alpha]^{20}_{D}$ = +59.2 (*c* 0.45, CHCl₃).

¹**H-NMR:** δ 4.56 – 4.43 (m, 2H), 4.34 – 4.23 (m, 2H), 3.68 (dd, *J* = 16.8, 10.3 Hz, 1H), 3.31 (dd, *J* = 16.8, 3.2 Hz, 1H), 2.02 – 1.87 (m, 1H), 1.06 (d, *J* = 6.7 Hz, 3H), 1.02 (d, *J* = 6.7 Hz, 3H), 0.94 (s, 9H) ppm.

¹³**C-NMR:** δ 170.2, 154.7, 65.6, 61.2, 58.2, 42.2, 35.8, 34.5, 25.7, 20.8, 18.2 ppm.

HRMS (ESI⁺): calculated for C₁₃H₂₃NO₃Br [M+H]⁺: 320.0856; found: 320.0843.

(S)-3-((R)-3-Bromo-3-phenylpropanoyl)-4-(tert-butyl)oxazolidin-2-one (4c)

Following general procedure C, (S)-4-(*tert*-butyl)-3cinnamoyloxazolidin-2-one **1f** (27.3 mg, 0.1 mmol, 1.0 eq.), tetrahydrothiophene 1-oxide (40 μ L, 0.4 mmol, 4.0 eq.) and tribromo(phenyl)silane (75 μ L, 0.4 mmol, 0.4 eq.), gave **4c** as a dark

yellow oil (81% yield). Eluent: cyclohexane: ethyl acetate 4:1. $[\alpha]^{20}_{D}$ = +45.8 (*c* 0.35, CHCl₃).

¹**H-NMR:** δ 7.52 – 7.46 (m, 2H), 7.38 – 7.27 (m, 3H), 5.53 (dd, *J* = 8.9, 5.8 Hz, 1H), 4.44 (dd, *J* = 6.6, 2.6 Hz, 1H), 4.36 – 4.21 (m, 2H), 4.03 (dd, *J* = 17.0, 8.9 Hz, 1H), 3.86 (dd, *J* = 17.0, 5.8 Hz, 1H), 0.83 (s, 9H) ppm.

¹³**C-NMR:** δ 169.4, 154.6, 140.8, 128.8, 128.7, 127.4, 65.6, 61.2, 48.0, 44.8, 35.7, 25.5 ppm.

HRMS (ESI⁺): calculated for C₁₆H₂₁NO₃Br [M+H]⁺: 354.0700; found: 354.0714.

(S)-3-((R)-3-Bromo-3-(4-nitrophenyl)propanoyl)-4-(tert-butyl)oxazolidin-2-one (4d)

Following general procedure C, (*S*,*E*)-4-(*tert*-butyl)-3-(3-(4nitrophenyl)acryloyl)oxazolidin-2-one **1g** (31.8 mg, 0.1 mmol, 1.0 eq.), tetrahydrothiophene 1-oxide (40 μ L, 0.4 mmol, 4.0 eq.) and tribromo(phenyl)silane (75 μ L, 0.4 mmol, 0.4 eq.), gave **4d**

and **4d'** as a yellow oil (85% yield, 90:10 *dr*). Eluent: cyclohexane: ethyl acetate from 9:1 to 4:1. $[\alpha]^{20}_{D} = +67.2 \ (c \ 1.25, CHCl_3).$

¹**H-NMR:** δ 8.21 (d, *J* = 8.7 Hz, 2H), 7.66 (d, *J* = 8.7 Hz, 2H), 5.54 (dd, *J* = 8.2, 6.5 Hz, 1H), 4.42 (dd, *J* = 6.8, 2.4 Hz, 1H), 4.36 – 4.26 (m, 2H), 3.98 (dd, *J* = 17.2, 8.2 Hz, 1H), 3.88 (dd, *J* = 17.2, 6.5 Hz, 1H), 0.83 (s, 9H) ppm.

¹³C-NMR: δ 168.7, 154.5, 147.8, 147.7, 128.5, 124.0, 65.7, 61.2, 45.1, 44.8, 35.7, 25.5 ppm.

HRMS (ESI⁺): calculated for C₁₆H₂₀N₂O₅Br [M+H]⁺: 399.0550; found: 399.0563.

(S)-3-((R)-3-Bromo-3-(2-chlorophenyl)propanoyl)-4-(tert-butyl)oxazolidin-2-one (4e)

Following general procedure C, (*S*,*E*)-4-(*tert*-butyl)-3-(3-(2-chlorophenyl)acryloyl)oxazolidin-2-one **1h** (30.8 mg, 0.1 mmol, 1.0 eq.), tetrahydrothiophene 1-oxide (40 μ L, 0.4 mmol, 4.0 eq.) and tribromo(phenyl)silane (75 μ L, 0.4 mmol, 0.4 eq.), gave **4e** as a white

solid (72% yield). Eluent: cyclohexane: ethyl acetate from 95:5 to 3:1. $[\alpha]^{20}_{D}$ = +39.3 (*c* 1.51, CHCl₃).

¹**H-NMR:** δ 7.64 (dd, *J* = 7.7, 1.8 Hz, 1H), 7.42 – 7.18 (m, 3H), 5.98 (dd, *J* = 8.8, 5.8 Hz, 1H), 4.44 (dd, *J* = 6.3, 2.8 Hz, 1H), 4.34 – 4.24 (m, 2H), 4.13 (dd, *J* = 17.4, 8.8 Hz, 1H), 3.84 (dd, *J* = 17.4, 5.8 Hz, 1H), 0.85 (s, 9H) ppm.

¹³C-NMR: δ 169.0, 154.6, 138.1, 133.0, 130.0, 129.7, 128.7, 127.5, 65.6, 61.2, 43.6, 43.0, 35.7, 25.5 ppm.

HRMS (ESI⁺): calculated for C₁₆H₂₀NO₃BrCl [M+H]⁺: 388.0310; found: 388.0325.

(S)-3-((R)-3-Bromo-3-(4-chlorophenyl)propanoyl)-4-(tert-butyl)oxazolidin-2-one (4f)

Following general procedure C, (*S*,*E*)-4-(*tert*-butyl)-3-(3-(4-chlorophenyl)acryloyl)oxazolidin-2-one **1i** (30.8 mg, 0.1 mmol, 1.0 eq.), tetrahydrothiophene 1-oxide (40 μ L, 0.4 mmol, 4.0 eq.) and tribromo(phenyl)silane (75 μ L, 0.4 mmol, 0.4 eq.), gave **4f** and **4f'**

as a yellow oil (71% yield, 90:10 dr). Eluent: cyclohexane: ethyl acetate 4:1. $[\alpha]^{20}_{D}$ = +49.1 (c 0.51, CHCl₃).

¹**H-NMR:** δ 7.42 (d, *J* = 8.5 Hz, 2H), 7.32 (d, *J* = 8.5 Hz, 2H), 5.49 (dd, *J* = 8.7, 6.0 Hz, 1H), 4.43 (dd, *J* = 6.9, 2.2 Hz, 1H), 4.34 – 4.26 (m, 2H), 3.97 (dd, *J* = 17.0, 8.6 Hz, 1H), 3.84 (dd, *J* = 16.8, 6.2 Hz, 1H), 0.84 (s, 9H) ppm.

¹³**C-NMR:** δ 169.1, 154.6, 139.4, 134.5, 129.0, 128.8, 65.6, 61.2, 46.7, 44.8, 35.7, 25.5 ppm.

HRMS (ESI⁺): calculated for C₁₆H₂₀NO₃BrCl [M+H]⁺: 388.0310; found: 388.0322.

(S)-3-((R)-3-Bromo-3-(4-fluorophenyl)propanoyl)-4-(tert-butyl)oxazolidin-2-one (4g)

Following general procedure C, (*S*,*E*)-4-(*tert*-butyl)-3-(3-(4-fluorophenyl)acryloyl)oxazolidin-2-one **1j** (29.1 mg, 0.1 mmol, 1.0 eq.), tetrahydrothiophene 1-oxide (40 μ L, 0.4 mmol, 4.0 eq.) and tribromo(phenyl)silane (75 μ L, 0.4 mmol, 0.4 eq.), gave **4g** and **4g'**

as a yellow oil (79% yield, 95:5 dr). Eluent: cyclohexane: ethyl acetate 4:1. $[\alpha]^{20}_{D}$ = +95.7 (c 0.94, CHCl₃).

¹**H-NMR:** δ 7.53 – 7.43 (m, 2H), 7.12 – 6.97 (m, 2H), 5.51 (dd, *J* = 8.6, 6.1 Hz, 1H), 4.43 (dd, *J* = 6.7, 2.4 Hz, 1H), 4.34 – 4.25 (m, 2H), 3.98 (dd, *J* = 17.0, 8.6 Hz, 1H), 3.86 (dd, *J* = 17.0, 6.2 Hz, 1H), 0.83 (s, 9H) ppm.

¹³**C-NMR:** δ 169.2, 162.6 (d, *J* = 248.4 Hz), 154. 6, 136.8 (d, *J* = 3.4 Hz), 129.3 (d, *J* = 8.4 Hz), 115.7 (d, *J* = 21.8 Hz), 65.6, 61.1, 46.9, 45.0, 35.7, 25.5 ppm.

¹⁹**F-NMR:** δ -112.6 ppm.

HRMS (ESI⁺): calculated for C₁₆H₂₀NO₃BrF [M+H]⁺: 372.0605; found: 372.0618.

(S)-3-((R)-3-Bromo-3-(3-methoxyphenyl)propanoyl)-4-(tert-butyl)oxazolidin-2-one (4h)

Following general procedure C, (*S*,*E*)-4-(*tert*-butyl)-3-(3-(3-methoxyphenyl)acryloyl)oxazolidin-2-one **1k** (30.3 mg, 0.1 mmol, 1.0 eq.), tetrahydrothiophene 1-oxide (40 μ L, 0.4 mmol, 4.0 eq.) and tribromo(phenyl)silane (75 μ L, 0.4 mmol, 0.4 eq.), gave **4h** as a yellow

oil (61% yield). Eluent: cyclohexane: ethyl acetate from 98:2 to 3:1. $[\alpha]^{20}_{D}$ = +99.9 (c 1.01, CHCl₃).

¹**H-NMR:** δ 7.29 – 7.21 (m, 1H), 7.10 – 7.01 (m, 2H), 6.86 – 6.80 (m, 1H), 5.49 (dd, *J* = 8.8, 5.8 Hz, 1H), 4.44 (dd, *J* = 6.6, 2.5 Hz, 1H), 4.33 – 4.23 (m, 2H), 3.99 (dd, *J* = 16.9, 8.8 Hz, 1H), 3.92 – 3.84 (m, 1H), 3.82 (s, 3H), 0.84 (s, 9H) ppm.

¹³**C-NMR:** δ 169.3, 159.8, 154.6, 142.2, 129.8, 119.6, 114.5, 112.9, 65.5, 61.2, 55.3, 47.9, 44.7, 35.7, 25.5 ppm.

HRMS (ESI⁺): calculated for C₁₇H₂₃NO₄Br [M+H]⁺: 384.0805; found: 384.0798.

(S)-3-((2S,3S)-3-Bromo-2-methylpentanoyl)-4-(tert-butyl)oxazolidin-2-one (4i)

Following general procedure C, (*S*,*E*)-4-(*tert*-butyl)-3-(2-methylpent-2enoyl)oxazolidin-2-one **1m** (23.9 mg, 0.1 mmol, 1.0 eq.), tetrahydrothiophene 1-oxide (40 μ L, 0.4 mmol, 4.0 eq.) and tribromo(phenyl)silane (75 μ L, 0.4 mmol, 0.4 eq.), gave **4i** as a yellow oil

(55% yield). Eluent: cyclohexane: ethyl acetate 4:1. $[\alpha]^{20}_{D}$ = +23.4 (*c* 0.14, CHCl₃).

¹**H-NMR:** δ 4.55 – 4.45 (m, 2H), 4.37 – 4.23 (m, 2H), 3.95 (qd, *J* = 6.7, 3.7 Hz, 1H), 2.05 – 1.87 (m, 2H), 1.24 (d, *J* = 6.7 Hz, 3H), 1.10 (t, *J* = 7.3 Hz, 3H), 0.97 (s, 9H) ppm.

¹³C-NMR: δ 173.3, 154.6, 65.4, 61.1, 60.2, 43.7, 35.8, 26.9, 25.7, 12.5, 12.1 ppm.

HRMS (ESI⁺): calculated for C₁₃H₂₂NO₃BrNa [M+Na]⁺: 342.0675; found: 342.0667.

The relative stereochemistry between the bromide and the methyl substituents was determined as *syn*. The coupling constant of 3.7 Hz between H_1 and H_2 can only be assumed if both hydrogens are in a *syn* disposition.⁵

 $^{^5}$ Following Karplus equation: $^3J_{gauche}\text{=}$ 2-5 Hz and $^3J_{anti}$ = 8 – 15 Hz

5. General procedure D for the nucleophilic bromination to diverse Michael acceptors.

The corresponding Michael acceptor (0.1 mmol, 1.0 eq.) was dissolved in dichloromethane (2.5 mL) in a vial. Then, tetrahydrothiophene 1-oxide (40 μ L, 0.4 mmol, 4.0 eq.) and the tribromo(phenyl)silane (75 μ L, 0.4 mmol, 4 eq.) were added and the reaction was stirred for 16 hours. Finally, the crude mixture was purified by flash column chromatography using latrobeads silica gel and eluting with the solvent indicated in each case.

3-Bromobutanenitrile (7a)⁶

Br Following general procedure D, (E)-but-2-enenitrile (8 μL, 0.1 mmol, 1 eq.) gave
 7a as a yellow oil (92% yield). Eluent: cyclohexane: ethyl acetate 9:1. The NMR is in accordance with the literature.

¹**H-NMR**: δ 4.29 – 4.17 (m, 1H), 2.95 (d, *J* = 6.7, Hz, 2H), 1.84 (dd, *J* = 6.7, 1.0 Hz, 3H) ppm.

¹³**C-NMR:** δ 116.5, 40.0, 29.7, 25.4 ppm.

3-Bromo-3-phenylpropanenitrile (7b)

Following general procedure D, cinnamonitrile (13 μ L, 0.1 mmol, 1 eq.) gave **7b** as a yellow oil (70% yield). Eluent: cyclohexane: ethyl acetate 9:1.

¹**H-NMR:** δ 7.65 – 7.29 (m, 5H), 5.14 (t, *J* = 7.1 Hz, 1H), 3.29 (dd, *J* = 17.0, 7.1 Hz, 1H), 3.22 (dd, *J* = 17.0, 7.1 Hz, 1H) ppm.

¹³**C-NMR:** δ 138.7, 129.5, 129.1, 127.0, 116.4, 45.3, 29.4 ppm.

The desired mass for HRMS was not detected.

⁶ National Institute of Advanced Industrial Science and Technology (AIST).

3-Bromobutanoic acid (7c)⁷

Br O Following general procedure D, methyl crotonate (11 μ L, 0.1 mmol, 1.0 eq.) OH gave **7c** as a yellow oil (55% yield). Eluent: cyclohexane: ethyl acetate 4:1. The ¹H-NMR is in accordance with the literature.

¹**H-NMR:** δ 4.53 – 4.37 (m, 1H), 3.08 – 2.83 (m, 2H), 1.78 (d, *J* = 6.7 Hz, 3H) ppm.

3-Bromo-1,5-diphenylpentan-1-one (7d)

Following general procedure D, (*E*)-1,5-diphenylpent-2-en-1-one (23.6 mg, 0.1 mmol, 1 eq.) gave **7d** as a yellow oil (80% yield). Eluent: cyclohexane: ethyl acetate 4:1.

¹**H-NMR:** δ 7.96 – 7.91 (m, 2H), 7.68 – 7.53 (m, 1H), 7.52 – 7.41 (m, 2H), 7.37 – 7.15 (m, 5H), 4.59 4.65 – 4.53 (m, 1H), 3.75 (dd, *J* = 17.4, 7.3 Hz, 1H), 3.43 (dd, *J* = 17.4, 6.1 Hz, 1H), 3.05 – 2.91 (m, 1H), 2.88 – 2.76 (m, 1H), 2.35 – 2.09 (m, 2H) ppm.

¹³**C-NMR:** δ 196.5, 140.6, 136.5, 133.5, 128.7, 128.7, 128.5, 128.1, 126.2, 49.3, 47.7, 40.5, 33.8 ppm.

HRMS (ESI⁺): calculated for C₁₇H₁₇BrONa [M+Na]⁺: 339.0354; found: 339.0341.

4-Bromotetrahydro-2H-pyran-2-one (7e)

Following general procedure D, 5,6-dihydro-2H-pyran-2-one (9 μ L, 0.1 mmol, 1 eq.) gave **7e** as a yellow oil (65% yield). Eluent: cyclohexane: ethyl acetate 7:3.

¹**H-NMR**: δ 4.67 (ddd, *J* = 11.9, 7.8, 4.3 Hz, 1H), 4.52 – 4.43 (m, 1H), 4.43 – 4.34 (m, 1H), 3.23 (dd, *J* = 18.2, 5.6, 1H), 3.03 (ddd, *J* = 18.2, 6.3, 1.1 Hz, 1H), 2.45 – 2.30 (m, 1H), 2.31 – 2.17 (m, 1H) ppm.

¹³**C-NMR:** δ 167.20, 66.7, 41.0, 40.8, 32.3 ppm.

The desired mass for HRMS was not detected.

⁷ G.-A. Olah, R. Karpeles and S.-C. Narang, *Synthesis*, 1982, **11**, 963.

4-Bromodihydrofuran-2(3H)-one (7f)⁸

Following general procedure D, furan-2(5H)-one (8 μ L, 0.1 mmol, 1 eq.) gave **7f** as a yellow oil (60% yield). Eluent: cyclohexane: ethyl acetate 4:1. The NMR is in accordance with the literature.

¹**H-NMR**: δ 4.73 – 4.60 (m, 1H), 4.59 – 4.51 (m, 1H), 3.23 – 3.06 (m, 1H), 2.98 – 2.88 (m, 1H), 2.89 – 2.85 (m, 1H) ppm.

¹³**C-NMR:** δ 173.5, 75.5, 39.8, 39.3 ppm.

3-Bromo-1-(piperidin-1-yl)butan-1-one (7g)

Following general procedure D, (*E*)-1-(piperidin-1-yl)but-2-en-1-one (15 mg, 0.1 mmol, 1 eq.) gave 7g as a yellow oil (40% yield). Eluent: cyclohexane: ethyl acetate 4:1.

¹**H-NMR:** δ 4.61 (h, *J* = 6.7 Hz, 1H), 3.69 – 3.56 (m, 1H), 3.56 – 3.46 (m, 1H), 3.49 – 3.33 (m, 2H), 3.06 (dd, *J* = 15.6, 7.0 Hz, 1H), 2.75 (dd, *J* = 15.6, 6.7 Hz, 1H), 1.78 (d, *J* = 6.7 Hz, 3H), 1.71 – 1.50 (m, 6H) ppm.

¹³**C-NMR:** δ 167.8, 46.8, 45.5, 44.1, 42.9, 26.6, 26.5, 25.5, 24.5 ppm.

HRMS (ESI⁺): calculated for C₉H₁₆NOBrNa [M+Na]⁺: 256.0307; found: 256.0309.

4-Bromo-1-ethylpiperidin-2-one (7h)

Following general procedure D, 1-benzyl-5,6-dihydropyridin-2(1H)-one (19 mg, 0.1 mmol, 1 eq.) gave **7h** as a yellow oil (70% yield). Eluent: cyclohexane: ethyl acetate 4:1.

¹H-NMR: δ 7.38 - 7.22 (m, 1H), 4.68 (d, J = 14.7 Hz, 1H), 4.58 (d, J = 14.7 Hz, 1H), 4.48 - 4.40 (m, 1H), 3.48 (ddd, J = 12.6, 7.4, 5.1 Hz, 1H), 3.27 - 3.08 (m, 2H), 3.00 - 2.92 (m, 1H), 2.39 - 2.09 (m, 1H) ppm.

¹³**C-NMR:** δ 166.4, 136.5, 128.7, 128.1, 127.6, 50.1, 44.4, 43.5, 42.4, 32.2 ppm.

HRMS (ESI⁺): calculated for C₁₂H₁₄NOBrNa [M+Na]⁺: 290.0151; found: 290.0145.

⁸ N.-J. Van Zee and V. Dragojlovic, Org. Lett., 2009, **11**, 3190.

3,4-Dibromo-4-phenylbutan-2-one (8a)⁹

Following general procedure D, (*E*)-4-phenylbut-3-en-2-one (14.6 mg, 0.1 mmol, 1 eq.) gave **8a** as a brown solid (75% yield). Eluent: cyclohexane: ethyl acetate 90:10. The ¹H-NMR is in accordance with the literature.

¹**H-NMR:** δ 7.51 – 7.34 (m, 5H), 5.32 (d, *J* = 11.7 Hz, 1H), 4.93 (d, *J* = 11.7 Hz, 1H), 2.48 (s, 3H) ppm.

¹³**C-NMR:** δ 198.3, 137.8, 129.3, 128.9, 128.1, 52.8, 49.5, 26.9 ppm.

1,2-Dibromo-1-nitrohexane (8b)

Following general procedure D, (*E*)-1-nitrohex-1-ene (13.0 mg, 0.1 mmol, Br 1 eq.) gave **8b** as a yellow oil (55% yield). Eluent: cyclohexane: ethyl acetate 95:5.

¹**H-NMR:** δ 5.97 (d, *J* = 10.1 Hz, 1H), 4.52 (ddd, *J* = 10.1, 9.3, 2.8 Hz, 1H), 2.24 – 2.08 (m, 1H), 1.93 – 1.79 (m, 1H), 1.65 – 1.29 (m, 4H), 0.96 (t, *J* = 7.2 Hz, 3H) ppm.

¹³**C-NMR:** δ 80.6, 50.9, 33.6, 28.3, 21.8, 13.7 ppm.

The desired mass for HRMS was not detected.

2,3-Dibromotetrahydrothiophene (SI2)

-S Br Br

¹**H-NMR:** δ 5.86 – 5.79 (m, 1H), 5.03 (d, *J* = 3.9 Hz, 1H), 3.51 – 3.40 (m, 1H), 3.39 – 3.29 (m, 1H), 2.96 – 2.80 (m, 1H), 2.58 – 2.46 (m, 1H) ppm.

¹³**C-NMR:** δ 65.1, 58.8, 36.1, 31.8 ppm.

The desired mass for HRMS was not detected.

1-Bromotetrahydro-1H-thiophen-1-ium bromide (SI3)¹⁰

THTO (30 μ L, 0.3 mmol, 1.0 eq.) and 2.5 mL of HFB were added in a vial. Then, the tribromo(phenyl)silane (56 μ L, 0.3 mmol, 1.0 eq.) was added and the reaction mixture was stirred for 5 min. The mixture was filtrated through a Buchner funnel

⁹ K.-M. Kim and I.-H. Park, *Synthesis*, 2004, **16**, 2641.

¹⁰ G. E. Wilson Jr. and R. Albert, *J. Org. Chem.*, 1973, **38**, 2156.

and a yellow solid **SI3** was isolated and immediately stored under nitrogen atmosphere. The ¹H-NMR is in accordance with the literature.

¹**H-NMR:** δ 3.37 (bs, 4H), 2.30 (bs, 4H) ppm.

6. General procedures for the removal of the chiral auxiliary.

6.1. General procedure E: removal of the chiral auxiliary to the alcohol.

The corresponding β -halogenated oxazolidinone (0.1 mmol, 1.0 eq.) was dissolved in THF (0.8 mL) and water (0.2 mL) in a vial. Then, the mixture was cooled to 0 °C and NaBH₄ (15.1 mg, 0.4 mmol, 4.0 eq.) was added. The reaction was stirred for 16 h at room temperature. After that, the THF was evaporated under reduced pressure and the residue was diluted with water and extracted with AcOEt (3 x 3 mL). The organic phases were combined and dried over MgSO₄, filtered and evaporated. Finally, the crude mixture was purified by flash column chromatography using latrobeads silica gel and eluting with the solvent indicated in each case.

(R)-3-Bromo-3-phenylpropan-1-ol (9a)

Following general procedure E, (*S*)-3-((*R*)-3-bromo-3-phenylpropanoyl)-4-(tert-butyl)oxazolidin-2-one **4c** (35.4 mg, 0.1 mmol, 1.0 eq.) gave **9a** as a yellow oil (58% yield). Eluent: cyclohexane: ethyl acetate 3:1. $[\alpha]^{20}_{D} = -2.7$ (*c*

1.1*,* CHCl₃).

¹H-NMR: 7.46 - 7.28 (m, 5H), 5.23 (dd, J = 9.2, 5.8 Hz, 1H), 3.91 - 3.81 (m, 1H), 3.80 - 3.70 (m, 1H), 2.59 - 2.43 (m, 1H), 2.40 - 2.27 (m, 1H) ppm.

¹³**C-NMR:** δ 141.8, 128.8, 128.4, 127.3, 60.7, 52.0, 42.2 ppm.

The desired mass for HRMS was not detected.

(R)-3-Bromo-3-(4-chlorophenyl)propan-1-ol (9b)

Following general procedure E, (*S*)-3-((*R*)-3-bromo-3-(4-chlorophenyl)propanoyl)-4-(tert-butyl)oxazolidin-2-one **4f** (38.8 mg, 0.1 mmol, 1.0 eq.) gave **9b** as a yellow oil (60% yield). Eluent: cyclohexane: ethyl acetate 3:1. $[\alpha]^{20}_{D}$ = -2.9 (*c* 0.99, CHCl₃).

¹**H-NMR:** δ 7.36 (d, *J* = 8.9 Hz, 2H), 7.31 (d, *J* = 8.9 Hz, 2H), 5.19 (dd, *J* = 9.2, 5.7 Hz, 1H), 3.90 – 3.80 (m, 1H), 3.78 – 3.69 (m, 1H), 2.53 – 2.40 (m, 1H), 2.36 – 2.25 (m, 1H) ppm.

¹³**C-NMR:** δ 140.4, 134.2, 128.9, 128.7, 60.4, 50.7, 42.1 ppm.

The desired mass for HRMS was not detected.

6.2. General procedure F: removal of the chiral auxiliary to the carboxylic acid.

The corresponding β -halogenated oxazolidinone (0.1 mmol, 1.0 eq.) was dissolved in THF (0.8 mL) and water (0.2 mL) in a vial. Then, the mixture was cooled to 0 °C and H₂O₂ (aq. solution 30%, 40 µL, 0.4 mmol, 4.0 eq.) was added and the mixture was stirred for 5 minutes. LiOH (6.3 mg, 0.15 mmol, 1.5 eq.) was then added and the reaction was stirred for 1h at 0 °C. After that, the THF was evaporated under reduced pressure and the residue was diluted with water and extracted with Et₂O (3 x 3 mL). The organic phases were combined and dried over MgSO₄, filtered and evaporated. Finally, the crude mixture was purified by flash column chromatography using latrobeads silica gel and eluting with the solvent indicated in each case.

(S)-3-Chlorobutanoic acid (10a)¹¹

¹**H-NMR:** δ 4.50 – 4.35 (m, 1H), 2.86 (dd, *J* = 16.3, 7.9 Hz, 1H), 2.76 (dd, *J* = 16.3, 6.0 Hz, 1H), 1.60 (d, *J* = 6.6 Hz, 3H) ppm.

¹³**C-NMR:** δ 175.3, 52.2, 44.7, 24.9 ppm.

(S)-3-Chlorooctanoic acid (10b)

Following general procedure F, (S)-4-(tert-butyl)-3-((S)-3- OH chlorooctanoyl)oxazolidin-2-one **3d** (31 mg, 0.1 mmol, 1.0 eq.) gave **10b** as a yellow oil (55% yield) after distillation under reduced pressure (154 °C, 22 mmHg). $[\alpha]^{20}_{D}$ = +1.1 (*c* 0.50, CHCl₃).

¹**H-NMR:** δ 4.35 – 4.22 (m, 1H), 2.81 (d, *J* = 6.9 Hz, 2H), 1.66 – 1.40 (m, 3H), 1.40 – 1.22 (m, 5H), 0.90 (t, *J* = 6.6 Hz, 3H) ppm.

¹¹ Y. Tanaka, H. Sakuraba and H. Nakanishi, J. Org. Chem., 1990, 55, 564.

 $^{13}\text{C-NMR:}~\delta$ 152.8, 57.4, 37.9, 31.1, 25.9, 22.5, 22.5, 13.9 ppm.

HRMS (ESI⁺): calculated for C₈H₁₆ClO₂ [M+H]⁺: 179.0834; found: 179.0847.

7. NMR spectra.

(S,E)-4-(tert-Butyl)-3-(oct-2-enoyl)oxazolidin-2-one (1d)

(S)-4-(tert-Butyl)-3-cinnamoyloxazolidin-2-one (1f)

(S,E)-4-(tert-Butyl)-3-(3-(4-nitrophenyl)acryloyl)oxazolidin-2-one (1g)

(S,E)-4-(tert-Butyl)-3-(3-(2-chlorophenyl)acryloyl)oxazolidin-2-one (1h)

(S,E)-4-(tert-Butyl)-3-(3-(4-chlorophenyl)acryloyl)oxazolidin-2-one (1i)

(S,E)-4-(tert-Butyl)-3-(3-(4-fluorophenyl)acryloyl)oxazolidin-2-one (1j)

(S,E)-4-(tert-Butyl)-3-(3-(4-methoxyphenyl)acryloyl)oxazolidin-2-one (11)

(S,E)-4-(tert-Butyl)-3-(2-methylpent-2-enoyl)oxazolidin-2-one (1m)

(S)-4-(tert-Butyl)-3-((S)-3-chlorobutanoyl)oxazolidin-2-one (3b)

(S)-4-(tert-Butyl)-3-((S)-3-chloropentanoyl)oxazolidin-2-one (3c)

(S)-4-(tert-Butyl)-3-((S)-3-chlorooctanoyl)oxazolidin-2-one (3d)

(S)-4-(tert-butyl)-3-((R)-3-chloro-4-methylpentanoyl)oxazolidin-2-one (3e)

(S)-3-((S)-3-Bromobutanoyl)-4-(tert-butyl)oxazolidin-2-one (4a)

(S)-3-((R)-3-Bromo-4-methylpentanoyl)-4-(tert-butyl)oxazolidin-2-one (4b)

(S)-3-((R)-3-Bromo-3-phenylpropanoyl)-4-(tert-butyl)oxazolidin-2-one (4c)

(S)-3-((R)-3-Bromo-3-(4-nitrophenyl)propanoyl)-4-(tert-butyl)oxazolidin-2-one (4d)

(S)-3-((R)-3-Bromo-3-(2-chlorophenyl)propanoyl)-4-(tert-butyl)oxazolidin-2-one (4e)

(S)-3-((R)-3-Bromo-3-(4-chlorophenyl)propanoyl)-4-(tert-butyl)oxazolidin-2-one (4f)

(S)-3-((R)-3-Bromo-3-(4-fluorophenyl)propanoyl)-4-(tert-butyl)oxazolidin-2-one (4g)

(S)-3-((R)-3-Bromo-3-(3-methoxyphenyl)propanoyl)-4-(tert-butyl)oxazolidin-2-one (4h)

(S)-3-((2S,3S)-3-Bromo-2-methylpentanoyl)-4-(tert-butyl)oxazolidin-2-one (4i)

3-Bromobutanenitrile (7a)

3-Bromo-3-phenylpropanenitrile (7b)

3-Bromobutanoic acid (7c)

3-Bromo-1,5-diphenylpentan-1-one (7d)

4-Bromotetrahydro-2H-pyran-2-one (7e)

4-Bromodihydrofuran-2(3H)-one (7f)

3-Bromo-1-(piperidin-1-yl)butan-1-one (7g)

4-Bromo-1-ethylpiperidin-2-one (7h)

3,4-Dibromo-4-phenylbutan-2-one (8a)

1,2-Dibromo-1-nitrohexane (8b)

2,3-Dibromotetrahydrothiophene SI2

(R)-3-Bromo-3-phenylpropan-1-ol (9a)

(R)-3-Bromo-3-(4-chlorophenyl)propan-1-ol (9b)

(S)-3-Chlorobutanoic acid (10a)

(S)-3-Chlorooctanoic acid (10b)

8. Single Crystal X-Ray Structure of compound 4e.

A clear colourless prismatic-like specimen of $C_{16}H_{19}BrCINO_3$, approximate dimensions 0.219 mm x 0.355 mm x 0.429 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured.

The total exposure time was 1.67 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using an orthorhombic unit cell yielded a total of 56068 reflections to a maximum θ angle of 25.34° (0.83 Å resolution), of which 3131 were independent (average redundancy 17.907, completeness = 100.0%, R_{int} = 3.75%, R_{sig} = 1.52%) and 2946 (94.09%) were greater than $2\sigma(F^2)$. The final cell constants of <u>a</u> = 7.0480(2) Å, <u>b</u> = 12.9076(3) Å, <u>c</u> = 18.7303(5) Å, volume = 1703.95(8) Å³, are based upon the refinement of the XYZ-centroids of 9803 reflections above 20 $\sigma(I)$ with 5.374° < 20 < 46.00°. Data were corrected for absorption effects using the multiscan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.734. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.4040 and 0.6020.

The final anisotropic full-matrix least-squares refinement on F^2 with 202 variables converged at R1 = 2.84%, for the observed data and wR2 = 8.58% for all data. The goodness-of-fit was 1.192.

The largest peak in the final difference electron density synthesis was 0.457 e⁻/Å³ and the largest hole was -0.220 e⁻/Å³ with an RMS deviation of 0.063 e⁻/Å³. On the basis of the final model, the calculated density was 1.515 g/cm³ and F(000), 792 e⁻.

Table 1. Sample and crystal data.				
Identification code 02882JorgeHumbrias				
Chemical formula	C ₁₆ H ₁₉ BrClNO	$C_{16}H_{19}BrCINO_3$		
Formula weight	388.68 g/mol			
Temperature	296(2) K			
Wavelength	0.71073 Å			
Crystal size	0.219 x 0.355 x 0.429 mm			
Crystal habit	clear colourless prismatic			
Crystal system	orthorhombic			
Space group	P 21 21 21			
Unit cell dimensions	a = 7.0480(2) Å	α = 90°		
	b = 12.9076(3) Å	β = 90°		
	c = 18.7303(5) Å	γ = 90°		
Volume	1703.95(8) ų			
Z	4			
Density (calculated)	1.515 g/cm ³			
Absorption coefficient	Absorption coefficient 2.580 mm ⁻¹			
F(000) 792				

 Table 2. Data collection and structure refinement.

Theta range for data collection	1.92 to 25.34°		
Index ranges	-8<=h<=8, -15<=k<=15, -22<=l<=22		
Reflections collected	56068		
Independent reflections	3131 [R(int) = 0.0375]		
Coverage of independent reflections	100.0%		
Absorption correction	multi-scan		
Max. and min. transmission	0.6020 and 0.4040		
Refinement method	Full-matrix least-squares on F ²		
Refinement program	SHELXL-2014/7 (Sheldrick, 2014)		
Function minimized	$\Sigma w (F_o^2 - F_c^2)^2$		
Data / restraints / parameters	3131 / 0 / 202		
Goodness-of-fit on F ²	1.192		
Δ/σ_{max}	0.001		

Final R indices	2946 data; I>2σ(I)	R1 = 0.0284, wR2 = 0.0740
	all data	R1 = 0.0320, wR2 = 0.0858
Weighting scheme	w=1/[σ ² (F _o ²)+(0.0458P) ² +0.5981P where P=(F _o ² +2F _c ²)/3	
Absolute structure parameter	0.0(0)	
Largest diff. peak and hole	0.457 and -0.220 eÅ ⁻³	
R.M.S. deviation from mean	0.063 eÅ ⁻³	

Table 3. Atomic coordinates and equivalent isotropic atomic displacement parameters (\AA^2) .

U(eq) is defined as one third of the trace of the U_{ij} tensor.

	x/a	y/b	z/c	U(eq)
Br1	0.45685(8)	0.44691(4)	0.70546(2)	0.05026(17)
C1	0.4494(9)	0.2521(3)	0.4466(3)	0.0477(11)
C2	0.3411(10)	0.2662(4)	0.3328(3)	0.0665(17)
С3	0.3983(7)	0.3749(4)	0.3555(2)	0.0407(10)
C4	0.5785(6)	0.4166(3)	0.3186(2)	0.0373(10)
C5	0.7478(9)	0.3477(5)	0.3294(4)	0.0701(17)
C6	0.5369(9)	0.4285(5)	0.2391(3)	0.0616(14)
C7	0.6249(10)	0.5244(4)	0.3482(3)	0.0676(17)
C8	0.3786(7)	0.4325(3)	0.4829(2)	0.0393(10)
C9	0.4202(8)	0.4053(3)	0.5600(2)	0.0457(12)
C10	0.4278(7)	0.5007(4)	0.6061(2)	0.0415(11)
C11	0.5854(6)	0.5751(3)	0.5908(2)	0.0369(10)
C12	0.7525(8)	0.5463(4)	0.5566(3)	0.0489(11)
C13	0.8943(8)	0.6169(5)	0.5411(3)	0.0611(15)
C14	0.8693(9)	0.7198(5)	0.5596(3)	0.0600(14)
C15	0.7083(9)	0.7496(4)	0.5934(3)	0.0544(14)
C16	0.5705(7)	0.6788(3)	0.6092(2)	0.0434(11)
Cl1	0.3676(3)	0.72412(11)	0.65196(10)	0.0750(5)
N1	0.4227(5)	0.3583(3)	0.43263(18)	0.0356(8)
01	0.4141(7)	0.1992(3)	0.3868(2)	0.0692(12)
02	0.4970(7)	0.2116(3)	0.5007(2)	0.0640(12)
03	0.3163(6)	0.5149(3)	0.46474(18)	0.0530(9)

Table 4. Bond lengths (Å).

Br1-C10	1.996(4)	C1-02	1.188(6)
C1-01	1.335(6)	C1-N1	1.408(6)
C2-01	1.426(7)	C2-C3	1.521(7)
C2-H2A	0.97	C2-H2B	0.97
C3-N1	1.470(5)	C3-C4	1.543(6)
C3-H3	0.98	C4-C5	1.502(7)
C4-C6	1.526(7)	C4-C7	1.532(7)
C5-H5A	0.96	C5-H5B	0.96
C5-H5C	0.96	C6-H6A	0.96
C6-H6B	0.96	C6-H6C	0.96
C7-H7A	0.96	C7-H7B	0.96
C7-H7C	0.96	C8-O3	1.200(5)
C8-N1	1.378(6)	C8-C9	1.515(6)
C9-C10	1.505(6)	C9-H9A	0.97
C9-H9B	0.97	C10-C11	1.496(6)
C10-H10	0.98	C11-C16	1.387(6)
C11-C12	1.391(7)	C12-C13	1.384(8)
C12-H12	0.93	C13-C14	1.383(9)
C13-H13	0.93	C14-C15	1.355(9)
C14-H14	0.93	C15-C16	1.366(7)
C15-H15	0.93	C16-Cl1	1.740(5)

Table 5. Bond angles (°).

02-C1-01	122.8(4)	02-C1-N1	128.7(5)
01-C1-N1	108.5(4)	01-C2-C3	105.3(4)
01-C2-H2A	110.7	C3-C2-H2A	110.7
O1-C2-H2B	110.7	C3-C2-H2B	110.7
H2A-C2-H2B	108.8	N1-C3-C2	99.9(4)
N1-C3-C4	113.2(4)	C2-C3-C4	114.5(4)
N1-C3-H3	109.6	C2-C3-H3	109.6
C4-C3-H3	109.6	C5-C4-C6	110.1(4)
C5-C4-C7	108.7(5)	C6-C4-C7	107.6(4)
C5-C4-C3	112.7(4)	C6-C4-C3	108.3(4)
C7-C4-C3	109.3(4)	C4-C5-H5A	109.5
C4-C5-H5B	109.5	H5A-C5-H5B	109.5
C4-C5-H5C	109.5	H5A-C5-H5C	109.5
H5B-C5-H5C	109.5	C4-C6-H6A	109.5
C4-C6-H6B	109.5	H6A-C6-H6B	109.5
C4-C6-H6C	109.5	H6A-C6-H6C	109.5

H6B-C6-H6C	109.5	C4-C7-H7A	109.5
С4-С7-Н7В	109.5	H7A-C7-H7B	109.5
C4-C7-H7C	109.5	H7A-C7-H7C	109.5
H7B-C7-H7C	109.5	O3-C8-N1	120.4(4)
03-C8-C9	123.1(4)	N1-C8-C9	116.5(4)
C10-C9-C8	111.4(4)	C10-C9-H9A	109.3
C8-C9-H9A	109.3	С10-С9-Н9В	109.3
С8-С9-Н9В	109.3	H9A-C9-H9B	108.0
C11-C10-C9	116.2(4)	C11-C10-Br1	109.0(3)
C9-C10-Br1	104.8(3)	C11-C10-H10	108.9
C9-C10-H10	108.9	Br1-C10-H10	108.9
C16-C11-C12	115.8(4)	C16-C11-C10	121.1(4)
C12-C11-C10	123.0(4)	C13-C12-C11	122.2(5)
C13-C12-H12	118.9	C11-C12-H12	118.9
C14-C13-C12	119.2(5)	C14-C13-H13	120.4
C12-C13-H13	120.4	C15-C14-C13	119.8(5)
C15-C14-H14	120.1	C13-C14-H14	120.1
C14-C15-C16	120.4(5)	C14-C15-H15	119.8
C16-C15-H15	119.8	C15-C16-C11	122.6(5)
C15-C16-Cl1	117.3(4)	C11-C16-Cl1	120.0(4)
C8-N1-C1	125.4(4)	C8-N1-C3	122.9(4)
C1-N1-C3	109.9(4)	C1-O1-C2	110.6(4)

Table 6. Torsion angles (°).

01-C2-C3-N1	-23.3(6)	O1-C2-C3-C4	98.0(5)
N1-C3-C4-C5	56.9(6)	C2-C3-C4-C5	-56.8(6)
N1-C3-C4-C6	178.9(4)	C2-C3-C4-C6	65.2(5)
N1-C3-C4-C7	-64.1(5)	C2-C3-C4-C7	-177.8(5)
O3-C8-C9-C10	-16.3(7)	N1-C8-C9-C10	161.4(4)
C8-C9-C10-C11	-65.3(6)	C8-C9-C10-Br1	174.4(3)
C9-C10-C11-C16	155.9(4)	Br1-C10-C11-C16	-86.0(5)
C9-C10-C11-C12	-22.9(6)	Br1-C10-C11-C12	95.2(5)
C16-C11-C12-C13	-0.8(7)	C10-C11-C12-C13	178.1(4)
C11-C12-C13-C14	-0.4(8)	C12-C13-C14-C15	0.8(8)
C13-C14-C15-C16	0.0(8)	C14-C15-C16-C11	-1.3(8)
C14-C15-C16-Cl1	-179.5(4)	C12-C11-C16-C15	1.6(7)
C10-C11-C16-C15	-177.2(4)	C12-C11-C16-Cl1	179.8(4)
C10-C11-C16-Cl1	0.9(6)	O3-C8-N1-C1	-162.8(5)
C9-C8-N1-C1	19.5(7)	O3-C8-N1-C3	0.4(7)
C9-C8-N1-C3	-177.3(4)	O2-C1-N1-C8	-25.4(9)

155.4(5)	O2-C1-N1-C3	169.5(6)
-9.7(6)	C2-C3-N1-C8	-145.2(5)
92.5(5)	C2-C3-N1-C1	20.3(6)
-102.0(5)	02-C1-01-C2	174.0(6)
-6.8(6)	C3-C2-O1-C1	19.7(7)
	155.4(5) -9.7(6) 92.5(5) -102.0(5) -6.8(6)	155.4(5) O2-C1-N1-C3 -9.7(6) C2-C3-N1-C8 92.5(5) C2-C3-N1-C1 -102.0(5) O2-C1-O1-C2 -6.8(6) C3-C2-O1-C1

Table 7. Anisotro	pic atomic dis	placement	parameters	(Ų)).

The anisotropic atomic displacement factor exponent takes the form: $-2\pi^2$ [$h^2 a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}$]

	U 11	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U 12
Br1	0.0588(3)	0.0549(3)	0.0371(2)	0.0052(2)	0.0008(2)	-0.0084(2)
C1	0.059(3)	0.032(2)	0.052(3)	0.005(2)	0.013(3)	-0.002(2)
C2	0.086(5)	0.063(4)	0.051(3)	-0.005(3)	-0.005(3)	-0.031(3)
C3	0.039(2)	0.046(3)	0.037(2)	0.0009(19)	- 0.0021(18)	-0.003(2)
C4	0.038(3)	0.038(2)	0.036(2)	0.0007(17)	0.0022(18)	- 0.0032(18)
C5	0.051(3)	0.084(4)	0.076(4)	0.026(4)	0.010(3)	0.015(3)
C6	0.057(3)	0.087(4)	0.041(2)	0.004(3)	0.003(3)	-0.002(3)
C7	0.085(4)	0.055(3)	0.062(3)	-0.008(3)	0.020(3)	-0.031(3)
C8	0.041(2)	0.038(2)	0.039(2)	0.0028(19)	0.0033(18)	-0.005(2)
C9	0.063(3)	0.033(2)	0.041(2)	0.0058(18)	-0.001(2)	-0.009(2)
C10	0.048(3)	0.042(2)	0.035(2)	0.0019(18)	-0.001(2)	-0.004(2)
C11	0.038(2)	0.038(2)	0.034(2)	0.0027(17)	- 0.0023(17)	0.0003(18)
C12	0.055(3)	0.041(3)	0.050(3)	0.000(2)	0.001(2)	0.004(2)
C13	0.036(3)	0.094(4)	0.053(3)	0.013(3)	0.009(2)	0.002(3)
C14	0.061(3)	0.059(3)	0.061(3)	0.011(3)	-0.002(3)	-0.020(3)
C15	0.066(4)	0.043(3)	0.054(3)	0.008(2)	-0.007(3)	-0.015(3)
C16	0.049(3)	0.035(2)	0.046(2)	0.0026(18)	0.002(2)	0.005(2)
Cl1	0.0721(10)	0.0544(8)	0.0987(12)	-0.0142(8)	0.0230(9)	0.0128(7)
N1	0.040(2)	0.0309(17)	0.0363(18)	0.0037(14)	0.0009(15)	- 0.0017(16)
01	0.106(4)	0.0376(18)	0.064(2)	- 0.0078(17)	0.011(2)	-0.020(2)
02	0.094(3)	0.0376(17)	0.061(2)	0.0126(16)	0.009(2)	0.0099(19)
03	0.072(3)	0.0392(18)	0.0481(19)	0.0030(15)	0.0071(18)	0.0144(17)
Table 8. Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å²).

		• •		
	x/a	y/b	z/c	U(eq)
H2A	0.2042	0.2602	0.3297	0.08
H2B	0.3954	0.2492	0.2866	0.08
H3	0.2926	0.4227	0.3473	0.049
H5A	0.7724	0.3403	0.3796	0.105
H5B	0.8564	0.3778	0.3065	0.105
H5C	0.7227	0.2808	0.3090	0.105
H6A	0.6415	0.4628	0.2163	0.092
H6B	0.4238	0.4689	0.2329	0.092
H6C	0.5194	0.3613	0.2182	0.092
H7A	0.6631	0.5185	0.3972	0.101
H7B	0.5144	0.5677	0.3450	0.101
H7C	0.7260	0.5545	0.3209	0.101
H9A	0.3223	0.3592	0.5777	0.055
H9B	0.5406	0.3692	0.5627	0.055
H10	0.3065	0.5374	0.6024	0.05
H12	0.7695	0.4773	0.5438	0.059
H13	1.0050	0.5955	0.5185	0.073
H14	0.9627	0.7683	0.5489	0.072
H15	0.6915	0.8188	0.6058	0.065

Table 9. Hydrogen bond distances (Å) and angles (°).

	Donor- H	Acceptor- H	Donor- Acceptor	Angle
C15- H15 O3	0.93	2.67	3.316(6)	127.2