Supporting Information

Formation of an NHC-Stabilized Heterocyclic Housane and its Isomerization into a Cyclopentenyl Anion Analogue

Benedikt J. Guddorf,^[a] Christian Mück-Lichtenfeld,^[b] Alexander Hepp,^[a] Felicitas Lips^{[a]*}

Westfälische Wilhelms-Universität Münster [a] Institut für Anorganische und Analytische Chemie, Corrensstraße 28-30, 48149 Münster, (Deutschland) [b] Institut für Organische Chemie and Center for Multiscale Theory and Computation, Corrensstraße 40, 48149 Münster, (Deutschland)

Table of content

- 1. General experimental procedures (S2)
- 2. Details of synthesis of 1, ¹H, ¹³C, ²⁹Si and ³¹P NMR spectra for 1, UV-Vis spectra for 1 (S3 S11)
- Details of synthesis of 2, ¹H, ¹³C, ²⁹Si and ³¹P NMR spectra for 2, UV-Vis spectra for 2 (S12 S19)
- 4. Details of synthesis of 3, ¹H, ¹³C, ²⁹Si and ³¹P NMR spectra for 3, UV-Vis spectra for 3 (S20 S27)
- 5. X-ray crystallographic data and collection parameters for 1, 2 and 3 (S28 S33)
- 6. DFT calculations for **1** (S34 S40)
- 7. DFT calculations for **2** (**S**41 **S**47)
- 8. Investigation into the mechanism for the formation of 1 (S48 S55)
- 9. References (S56)
- 10. Cartesian Coordinates and Electronic Energies of all Structures (S57 S65)

1. General experimental procedures

All reactions were performed with the use of modified Schlenk techniques with additional manipulations using a MBraun Glovebox. All solvents were dried over sodium benzophenone or CaH₂, distilled and stored over 4 Å molecular sieves prior to use. Silicon tetrachloride was purchased from Aldrich and used without further purification. The starting material $E^{[S1]}$ and 1,3-diisopropyl-4,5-dimethyl-imidazol-2-ylidene (NHC^{iPr2Me2})^[S2] were prepared according to literature procedures. All NMR data were obtained on Bruker Avance I and III spectrometer and were referenced to the deuterated solvent (C₆D₆, THF-*d*₈, PhMe-*d*₈) according to an IUPAC recommendation. Additionally, the ¹H and ¹³C NMR spectra were referenced internally to residual solvent resonances at 300 K. ¹H, ¹³C, and ²⁹Si NMR spectra were referenced to tetramethylsilane (TMS; $\delta = 0$ ppm). ³¹P NMR spectra were referenced to H₃PO₄. Further explanation of the ²⁹Si NMR experiments: ²⁹Si DEPT-19.5 = ²⁹Si NMR measurement with Distortionless Enhancement Polarization Transfer method, pulse angle 19.5°, coupling to 9 protons as polarization source with coupling ${}^{2}J_{Si-H} = 7$ Hz; ${}^{29}Si{}^{1}H{}IG =$ Inverse gated decoupled ²⁹Si proton decoupled NMR measurement; ²⁹Si{/} = ²⁹Si proton coupled NMR measurement. ${}^{13}C$ DEPT-135 = Distortionless Enhancement of Polarization Transfer using a 135 degree decoupler pulse. All ¹³C NMR spectra were recorded proton decoupled.

IR spectra were recorded as KBr pellets on a Shimadzu IR PRESTIGE 21. UV-visible spectra were recorded as dilute THF solutions in 1 mL quartz cuvettes using an Agilent Cary 100 spectrometer. Mass spectrometry was performed with a Varian MAT 212 Micromass Quattro LC-Z device. CHN elemental analysis was performed with a Vario EL III CHN Instrument. Melting points were measured in glass capillaries sealed under argon gas by using a Stuart Melting Point Apparatus SMP3 and are uncorrected.

2. Details for the synthesis and spectroscopic data for 1

Synthesis of 1: The NHC-coordinated trisilacyclopropylidene E (280 mg, 0.38 mmol, 1.0 eq.) was dissolved in 50 mL THF and *t*BuCP (0.15 ml, 1.5 mmol, 4.0 eq.) was added at room temperature. The reaction was stirred for 16 h under the exclusion of light. The resulting yellow solution was concentrated to a volume of 1 mL and 5 mL *n*-hexane was slowly added. Pale yellow crystals of **1** suitable for X-ray diffraction analysis were obtained at room temperature after 16 h.

Yield: 260 mg (0.31 mmol, 82%), pale yellow crystals.

¹**H-NMR** (300 K, 400 MHz, C₆D₆) δ /ppm: 7.01 (s, 1H, Mes'), 6.99 (s, 1H, Mes), 6.69 (overlapping, 2H, Mes'), 6.66 (overlapping, 2H, Mes & Mes'), 6.62 (overlapping, sept., ³*J*_{HH} = 6.8 Hz, 1H, *CH*(CH₃)₂'), 6.60 (s, 1H, Mes), 6.57 (s, 1H, Mes), 5.51 (sept., ³*J*_{HH} = 6.8 Hz, 1H, *CH*(CH₃)₂, 3.82 (s, 3H *ortho*-CH₃), 3.80 (s, 3H *ortho*-CH₃'), 3.20 (s, 3H *ortho*-CH₃'), 2.79 (s, 3H *ortho*-CH₃), 2.27 (s, 3H *ortho*-CH₃'), 2.27 (s, 3H *para*-CH₃'), 2.20 (s, 3H *ortho*-CH₃), 2.19 (s, 3H *ortho*-CH₃), 2.16 (s, 3H *para*-CH₃), 2.08 (s, 3H *para*-CH₃'), 2.05 (s, 3H *para*-CH₃), 1.89 (s, 3H *ortho*-CH₃'), 1.47 (s, 6H, [C(CH₃)]₂'), 1.44 (s, 6H, [C(CH₃)]₂), 1.37 (s, 9H, C(CH₃)₃), 1.23 (d, ³*J*_{HH} = 6.8 Hz, 3H, CH(CH₃)₂), 1.20 (d, ³*J*_{HH} = 6.8 Hz, 6H, CH(CH₃)₂'), 0.90 (d, ³*J*_{HH} = 6.8 Hz, 3H, CH(CH₃)₂).

¹³C{¹H}-NMR (300 K, 100 MHz, C₆D₆) δ /ppm: 174.2 (d, ²J_{CP} = 9.2 Hz, NCN), 146.2 (d, ²J_{CP} = 1.6 Hz, *ipso*-C_{Mes}), 146.1 (*ortho*-C_{Mes}), 145.1 (*ortho*-C_{Mes}), 144.8 (*ipso*-C_{Mes}), 144.7 (*ortho*-C_{Mes}), 144.5 (*ipso*-C_{Mes}), 143.6 (d, ³J_{CP} = 1.2 Hz, *ortho*-C_{Mes}), 143.3 (*ortho*-C_{Mes}), 142.7 (*ortho*-C_{Mes}), 141.9 (*ortho*-C_{Mes}), 141.3 (*ortho*-C_{Mes}), 140.8 (d, ²J_{CP} = 4.3 Hz, *ipso*-C_{Mes}), 137.2 (*para*-C_{Mes}), 137.0 (*para*-C_{Mes}), 136.7 (*para*-C_{Mes}), 135.2 (*para*-C_{Mes}), 130.9 (*meta*-C_{Mes}), 130.3 (*meta*-C_{Mes}), 129.7 (*meta*-C_{Mes}), 129.1 (*meta*-C_{Mes}), 129.0 (*meta*-C_{Mes}), 128.9 (*meta*-C_{Mes}), 128.1 (*meta*-C_{Mes}), 128.0 (*meta*-C_{Mes}), 127.0 ([C(CH₃)]₂),

125.7 ([$C(CH_3)$]₂'), 53.7 (d, ¹ J_{CP} = 45.4 Hz, PCtBu), 53.3 ($CH(CH_3)_2$ '), 51.9 (d, ⁴ J_{CP} = 20.6 Hz, CH(CH₃)₂), 39.3 (d, ² J_{CP} = 12.5 Hz, C(CH₃)₃), 33.8 (d, ³ J_{CP} = 7.8 Hz, C(CH₃)₃), 32.0 (d, ⁵ J_{CP} = 2.4 Hz, ortho-CH₃'), 28.6 (ortho-CH₃'), 27.8 (ortho-CH₃), 27.4 (ortho-CH₃'), 26.9 (ortho-CH₃), 26.2 (d, ⁴ J_{CP} = 23.6 Hz, ortho-CH₃), 25.2 (ortho-CH₃'), 24.6 (d, ⁴ J_{CP} = 13.5 Hz, ortho-CH₃), 21.5 (CH(CH₃)₂'), 21.4 (d, ⁴ J_{CP} = 2.5 Hz, CH(CH₃)₂), 21.2 (para-CH₃'), 21.0 (para-CH₃), 20.9 (CH(CH₃)₂'), 20.9 (para-CH₃), 20.8 (para-CH₃'), 20.5 (CH(CH₃)₂), 10.1 ([C(CH₃)]₂), 9.9 ([C(CH₃)]₂').

³¹**P**{¹**H**}-**NMR** (300 K, 162 MHz, C₆D₆) δ/ppm: -158.6 (P-C*t*Bu).

³¹**P**{/}-**NMR** (300 K, 162 MHz, C₆D₆) δ /ppm: -158.6 (d, ⁵*J*_{PH} = 9.9 Hz, P-C*t*Bu).

²⁹Si DEPT-19.5-NMR (300 K, 80 MHz, C₆D₆) δ/ppm: 23.6 (Mes₂SiC), -13.0 (Mes₂SiP).

²⁹Si{¹H}IG-NMR (300 K, 80 MHz, C₆D₆) δ /ppm: 23.6 (s, Mes₂S*i*C*t*Bu), -13.0 (d, ¹*J*_{SiP} = 40.8 Hz, Mes₂S*i*P), -112.9 (d, ¹*J*_{SiP} = 46.8 Hz, S*i*-NHC).

Melting point: 182 °C (decomposition).

CHN-analysis: C₅₂H₇₃N₂Si₃ + 1 THF calc. C, 73.63; H, 8.94; N 3.07; found C, 73.48; H, 8.95, N, 2.97.

MS (ESI, positve mode): calc.: m/z = 841.48919 [M-H]⁺, found: m/z = 841.49116 [M-H].⁺

FT-IR (KBr-pellet) \tilde{v} /cm⁻¹: 2970 (vs), 2951 (vs), 2916 (vs), 2858 (vs), 2725 (m), 2467 (w), 2405 (w), 1749 (w), 1716 (w), 1634 (m), 1603 (vs), 1547 (m), 1460 (vs), 1404 (s), 1379 (vs), 1368 (vs), 1356 (vs), 1339 (s), 1315 (m), 1290 (s), 1233 (s), 1213 (s), 1194 (s), 1167 (m), 1134 (w), 1109 (w), 1067 (s), 1026 (s), 951 (w), 926 (w), 907 (w), 881 (w), 847 (vs), 790 (w), 743 (s), 600 (vs), 571 (s), 552 (s), 507 (w), 478 (w), 451 (m), 424 (m).

UV/vis (c = $1.7 \cdot 10^{-4}$ mol/L in THF): $\lambda_{max} = 375$ nm ($\epsilon = 5705$ L mol⁻¹ cm⁻¹).

Figure S1. ¹H-NMR-spectrum (300 K, 400 MHz, C₆D₆) of compound 1.

Figure S2. ${}^{13}C{}^{1}H$ -NMR-spectrum (300 K, 100 MHz, C₆D₆) of compound 1.

Figure S3. $^{13}C{^{1}H}$ -NMR-spectrum (300 K, 100 MHz, C₆D₆) zoom 60-0 ppm of compound 1.

Figure S4. ${}^{13}C{}^{1}H$ -NMR-spectrum (300 K, 100 MHz, C₆D₆) of compound **1** zoom into the region 180-120 ppm.

Figure S5. ¹³C DEPT-135-NMR-spectrum (300 K, 100 MHz, C₆D₆) of compound 1.

Figure S6. 29 Si{ 1 H}IG-NMR-spectrum (300 K, 80 MHz, C₆D₆) of compound 1.

Figure S7. ${}^{31}P{}^{1}H$ -NMR-spectrum (300 K, 162 MHz, C₆D₆) of compound 1.

Figure S8. ${}^{31}P{/}$ -NMR-spectrum (300 K, 162 MHz, C₆D₆) of compound 1.

Figure S9. H,C-HSQC-NMR-spectrum (300 K, C₆D₆) of compound 1.

Figure S10. H,C-HMBC-NMR-spectrum (300 K, C₆D₆) of compound 1.

Figure S11. H,Si-HMBC-NMR-spectrum (300 K, C₆D₆) of compound 1.

Figure S12. UV-Vis-spectrum (293 K, THF, $\lambda = 300-800$ nm) of compound 1.

Figure S13. ESI-MS-spectrum (positive mode) of compound 1.

Fig. S14. FT-IR-spectrum (KBr pellet) of compound 1.

3. Details for the synthesis and spectroscopic data for 2

Synthesis of 2: A yellow solution of **1** (170 mg, 0.2 mmol) in THF (5 mL) was irradiated with UV-light (high-pressure mercury lamp) for 2 h. The solution darkens to red during irradiation. During this reaction an ice bath was used to keep the reaction at ca. 0 °C. It was concentrated to a volume of 2 mL and was layered with 2 mL of *n*-hexane. Gold yellow crystals of **2** suitable for X-ray diffraction analysis formed at room temperature after 16 h. This reaction also takes place when **1** is heated to 60 °C for 16 hours.

Yield: 130 mg (0.15 mmol, 77%), gold yellow crystals.

¹**H-NMR** (300 K, 400 MHz, C₆D₆) δ /ppm: 7.13 (s, 1H, Mes'), 6.85 (s, 2H, Mes and Mes'), 6.80 (s, 1H, Mes'), 6.75 (s, 1H, Mes), 6.54 (s, 1H, Mes), 6.44 (s, 1H, Mes), 6.36 (s, 1H, Mes'), 5.37-5.22 (m, 2H, CH(CH₃)₂), 3.46 (s, 3H, *ortho*-CH₃'), 3.25 (s, 3H, *ortho*-CH₃'), 3.18 (s, 3H, *ortho*-CH₃), 3.02 (s, 3H, *ortho*-CH₃), 2.77 (s, 3H, *ortho*-CH₃), 2.67 (s, 3H, *ortho*-CH₃'), 2.53 (s, 3H, *ortho*-CH₃'), 2.24 (s, 3H, *para*-CH₃'), 2.16 (s, 3H, *para*-CH₃'), 2.15 (s, 3H, *para*-CH₃), 2.13 (s, 3H, *ortho*-CH₃), 2.05 (s, 3H, *para*-CH₃), 1.36 (d, ³*J*_{HH} = 7.0 Hz, CH(CH₃)₂'), 1.34 (s, 3H, [C(CH₃)]₂), 1.31 (s, 9H, C(CH₃), 1.29 (s, 3H, [C(CH₃)]₂'), 1.17 (d, ³*J*_{HH} = 7.0 Hz, CH(CH₃)₂'), 1.04 (d, ³*J*_{HH} = 7.0 Hz, CH(CH₃)₂), 1.02 (d, ³*J*_{HH} = 7.0 Hz, CH(CH₃)₂).

¹³C{¹H}-NMR (300 K, 100 MHz, C₆D₆) δ/ppm: 158.1 (d, ²*J*_{CP} = 24.1 Hz, NCN), 148.2 (*ortho*-C_{Mes}[·]), 147.6 (d, ²*J*_{CP} = 14.8 Hz, *ipso*-C_{Mes}), 146.4 (*ortho*-C_{Mes}[·]), 145.9 (*ortho*-C_{Mes}), 145.4 (*ortho*-C_{Mes}[·]), 144.8 (*ortho*-C_{Mes}), 143.2 (*ortho*-C_{Mes}[·]), 141.7 (*ortho*-C_{Mes}), 140.7 (*ipso*-C_{Mes}[·]), 137.9 (*ipso*-C_{Mes}[·]), 136.6 (*para*-C_{Mes}[·]), 136.2 (d, ²*J*_{CP} = 3.3 Hz, *ipso*-C_{Mes}) 135.7 (*para*-C_{Mes}), 135.5 (*para*-C_{Mes}), 130.3 (*meta*-C_{Mes}), 130.1 (*meta*-C_{Mes}), 129.8 (*meta*-C_{Mes}[·]), 129.2 (*meta*-C_{Mes}[·]), 129.1 (*meta*-C_{Mes}), 128.8 (*meta*-C_{Mes}[·]), 127.9 (*meta*-C_{Mes}), 127.1 ([*C*(CH₃)]₂), 126.9 ([*C*(CH₃)]₂[′]), 101.3 (d, ²*J*_{CP} = 14.5 Hz, *C*-*t*Bu), 54.9 (*C*H(CH₃)₂), 54.5 (*C*H(CH₃)₂[′]), 38.6 (d, ³*J*_{CP} = 3.8 Hz, *C*(CH₃)₃), 37.0 (C(*C*H₃)₃), 31.6 (*ortho*-CH₃), 25.2 (*ortho*-CH₃), 27.7 (*ortho*-CH₃), 27.1 (*ortho*-CH₃[′]), 26.9 (*ortho*-CH₃), 25.2 (*ortho*-CH₃), 27.1 (*ortho*-CH₃), 26.9 (*ortho*-CH₃), 25.2 (*ortho*-CH₃), 27.1 (*ortho*-CH₃), 27.1 (*ortho*-CH₃), 25.2 (*ortho*-CH₃), 25.2 (*ortho*-CH₃), 27.1 (*ortho*-CH₃), 27.1 (*ortho*-CH₃), 25.2 (*ortho*

CH₃'), 24.8 (*ortho*-CH₃'), 22.1 (d, ${}^{4}J_{CP} = 4.6$ Hz, CH(CH₃)₂), 22.0 (d, ${}^{4}J_{CP} = 2.9$ Hz, CH(CH₃)₂'), 21.2 (*para*-C_{Mes}'), 21.0 (overlapping, *para*-C_{Mes} *and para*-C_{Mes}'), 20.9 (*para*-C_{Mes}), 20.7 (CH(CH₃)₂), 20.3 (CH(CH₃)₂'), 9.7 (overlapping, [C(CH₃)]₂ and [C(CH₃)]₂').

³¹P{¹H}-NMR (300 K, 162 MHz, C₆D₆) δ/ppm: -195.0 (s).

³¹**P**{/}-**NMR** (300 K, 162 MHz, C₆D₆) δ/ppm: -195.0 (s).

²⁹Si{¹H}IG-NMR (300 K, 80 MHz, C₆D₆) δ /ppm: 96.3 (d, ¹*J*_{SiP} = 139.8 Hz, *Si*-NHC), -6.7 (d, ¹*J*_{SiP} = 67.7 Hz, (Mes₂*Si*P), -19.9 (d, ²*J*_{SiP} = 11.9 Hz, (Mes₂*Si*C*t*Bu).

Melting point: 194 °C (decomposition).

CHN-analysis: calc.: C, 74.23; H, 8.75; N, 3.33; found: C, 74.25; H, 8.72; N, 3.26.

MS (ESI, positve mode): calc.: m/z = 841.48919 [M-H]⁺, found: m/z = 841.49085 [M-H]⁺.

FT-IR (KBr-pellet) \tilde{v} /cm⁻¹: 3063 (m), 3019 (s), 2968 (s), 2924 (s), 2857 (m), 2731 (m), 1956 (w), 1892 (w), 1811 (w), 1771 (w), 1601 (s), 1549 (m), 1530 (m), 1454 (s), 1439 (s), 1406 (m), 1375 (m), 1323 (vs), 1242(m), 1157 (vs), 1126 (s), 1069 (vs), 1024 (s), 988 (w), 922(m), 876 (w), 851 (s), 800 (w), 770 (w), 745 (s), 694 (s), 654 (m), 623 (m), 602 (w), 557 (w), 517 (w), 498 (w), 478 (w), 434 (w), 413 (w).

UV/vis (c = $2.1 \cdot 10^{-4}$ mol/L in THF): $\lambda_{max} = 418$ nm ($\epsilon = 1715$ L mol⁻¹ cm⁻¹).

Figure S16. ${}^{13}C{}^{1}H$ -NMR-spectrum (300 K, 100 MHz, C₆D₆) of compound 2.

Figure S17. ¹³C DEPT-135-NMR-spectrum (300 K, 100 MHz, C₆D₆) of compound 2.

Figure S18. ²⁹Si{¹H}IG-NMR-spectrum (300 K, 80 MHz, C₆D₆) of compound 2.

300 280 260 240 220 200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -300 -320 -340 -360 -380 -400 δ (ppm)

Figure S19. ${}^{31}P{}^{1}H$ -NMR-spectrum (300 K, 162 MHz, C₆D₆) of compound 2.

300 280 260 240 220 200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -300 -320 -340 -360 -380 -400 δ (ppm)

Figure S20. ${}^{31}P{/}$ -NMR-spectrum (300 K, 162 MHz, C₆D₆) of compound 2.

Figure S21. H,C-HSQC-NMR-spectrum (300 K, C₆D₆) of compound 2.

Figure S22. H,C-HMBC-NMR-spectrum (300 K, C₆D₆) of compound 2.

Figure S23. H,H-ROESY-NMR-spectrum (300 K, 400 MHz, C₆D₆) of compound 2.

Figure S24. UV-Vis-spectrum (293 K, THF, $\lambda = 300-800$ nm) of compound 2.

Figure S25. ESI-MS-spectrum (positive mode) of compound 2.

SHIMADZU

Figure S26. FT-IR-spectrum (KBr pellet) of compound 2.

4. Details for the synthesis and spectroscopic data for 3

Synthesis of 3: A solution of W(CO)₅THF (110 mg, 3.1 mmol, 1.1 eq. W(CO)₆ in 10 mL of THF was freshly prepared within 4 h of irradiation with a high pressure mercury lamp at ambient conditions. The solution of W(CO)₅THF was added dropwise to the solution of 2 (250 mg, 0.3 mmol, 1 eq., dissolved in 20 mL of THF) at room temperature. During this process, the colour changed gradually to dark red within 30 min. and the reaction was stirred for additional 16 h. The solution was concentrated to a volume of 5 mL and was layered with the same amount of *n*-hexane. Red orange crystals of **3** suitable for X-ray diffraction analysis were obtained after 16 h at ambient conditions.

Yield: 304 mg (0.26 mmol, 87%), red orange crystals.

¹**H-NMR** (300 K, 400 MHz, THF-d₈) δ/ppm 6.87 (s, 1H, *meta*-H_{Mes}), 6.76 (s, 1H, *meta*-H_{Mes}), 6.68 (s, 1H, *meta*-H_{Mes}), 6.57 (s, 1H, *meta*-H_{Mes}), 6.34 (overlapping, 2H, 2x *meta*-H_{Mes}), 6.19 (s, 1H, *meta*-H_{Mes}), 6.02 (s, 1H, *meta*-H_{Mes}), 5.73 (br, 1H, CH(CH₃)₂), 5.10 (sept., ³J_{HH} = 6.9 Hz, 1H, CH(CH₃)₂'), 3.15 (s, 3H, *ortho*-CH₃), 3.01 (s, 3H, *ortho*-CH₃'), 2.72 (s, 3H, *ortho*-CH₃'), 2.43 (s, 3H, [C(CH₃)]₂), 2.41 (s, 3H, [C(CH₃)]₂'), 2.35 (s, 3H, *ortho*-CH₃), 2.32 (s, 3H, *ortho*-CH₃'), 2.27 (s, 3H, *ortho*-CH₃'), 2.23 (s, 3H, *para*-CH₃'), 2.11 (overlapping, 6H, *para*-CH₃ and *ortho*-CH₃), 2.03 (s, 3H, *para*-CH₃), 2.01 (s, 3H, *para*-CH₃'), 1.84 (d, ³J_{HH} = 6.9 Hz, 3H, CH(CH₃)₂'), 1.77 (d, ³J_{HH} = 6.9 Hz, 3H, CH(CH₃)₂), 1.70, (d, ³J_{HH} = 6.9 Hz, 3H, CH(CH₃)₂) 1.67 (d, ³J_{HH} = 6.9 Hz, 3H, CH(CH₃)₂'), 1.28 (s, 3H, *ortho*-CH₃), 0.98 (s, 9H, C(CH₃)₃).

¹³C{¹H}-NMR (300 K, 100 MHz, THF-d₈) δ /ppm: 200.9 (br, CO_{ax.}), 200.0 (t, ¹J_{CW} = 126 Hz, 4x CO_{ep.}), 151.2 (d, ²J_{CP} = 18.6 Hz, NCN), 147.3 (*ortho*-C_{Mes'}), 146.5 (*ortho*-C_{Mes'}), 145.7 (*ortho*-C_{Mes}), 144.9 (*ortho*-C_{Mes}), 144.4 (br, *ortho*-C_{Mes'}), 142.9 (*ortho*-C_{Mes'}), 141.7 (*ortho*-C_{Mes}), 141.3 (br, *ipso*-C_{Mes}), 140.1 (*ipso*-C_{Mes'}), 138.1 (*ipso*-C_{Mes'}), 137.9 (*para*-C_{Mes}), 137.5 (*para*-C_{Mes'}), 136.6 (*para*-C_{Mes}), 136.4 (*para*-C_{Mes'}), 135.3 (br, *ipso*-C_{Mes}), 131.6 ([C(CH₃)]₂), 131.2 (*meta*-C_{Mes}), 130.7 (*meta*-C_{Mes'}), 130.1 (*meta*-C_{Mes'}), 129.9 (*meta*-C_{Mes'}), 129.9 (*meta*-C_{Mes'}), 130.1 (*meta*-C_{Mes'}), 129.9 (*meta*-C_{Mes'}), 120.1 (*meta*-C_{Mes'}), 129.9 (*meta*-C_{Mes'}), 120.1 (*meta*

C_{Mes}), 129.7 (*meta*-C_{Mes}'), 129.5 (*meta*-C_{Mes}'), 129.1 (*meta*-C_{Mes}), 129.0 (*meta*-C_{Mes}), 126.4 (br, C=Si), 56.1 (*C*H(CH₃)₂'), 55.7 (d, ⁴J_{CP} = 4.6 Hz *C*H(CH₃)₂), 40.3 (d, ³J_{CP} = 2.4 Hz, *C*(CH₃)₃), 37.2 (C(*C*H₃)₃), 33.4 (*ortho*-CH₃'), 31.0 (d, ²J_{CP} = 17.0 Hz, *ortho*-CH₃), 29.7 (*ortho*-CH₃), 28.6 (*ortho*-CH₃), 27.8 (*ortho*-CH₃'), 27.0 (d, ²J_{CP} = 16.8 Hz, *ortho*-CH₃), 26.4 (*ortho*-CH₃'), 25.1 (*ortho*-CH₃'), 23.4 (CH(*C*H₃)₂'), 22.6 (CH(*C*H₃)₂'), 21.6 (CH(*C*H₃)₂) 21.0 (overlapping, CH(*C*H₃)₂ and *para*-CH₃), 20.9 (*para*-CH₃), 20.8 (overlapping, *para*-CH₃ and *para*-CH₃') 10.8 ([C(*C*H₃)]₂'), 10.4 ([C(*C*H₃)]₂).

³¹P{¹H}-NMR (300 K, 162 MHz, THF-d₈) δ /ppm: -257.6 (s, ¹*J*_{PW} = 135 Hz, P-W(CO)₅).

³¹P{/}-NMR (300 K, 162 MHz, THF-d₈) δ /ppm: -257.6 (s, ¹*J*_{PW} = 135 Hz, P-W(CO)₅).

²⁹Si{¹H}IG-NMR (300 K, 80 MHz, THF-d₈) δ /ppm: 93.7 (d, ¹*J*_{SiP} = 80.5 Hz, Si{NHC}), -7.5 (d, ¹*J*_{SiP} = 43.6 Hz, (Mes₂*Si*P)), -16.4 (s, (Mes₂*Si*C-*t*Bu).

Melting point: 203 °C (decomposition).

CHN-analysis: calc.: C, 58.75; H, 6.31; N, 2.40; found: C, 58.79; H, 6.68; N, 2.24.

MS (ESI, positive mode): calc.: m/z = 1165.41520 [M-H]⁺, found: m/z = 1165.41708 [M-H]⁺.

FT-IR (KBr-pellet): \tilde{v} /cm⁻¹: 2953 (m), 2916 (m), 2868(m), 2052(s), 1965 (vs), 1906 (vs), 1873 (vs), 1620 (vw), 1603 (w), 1543 (vw), 1458 (w), 1447 (w), 1383 (w), 1373 (w), 1308 (vw), 1287 (vw), 1244 (m), 1200 (w), 1155 (w), 1047 (vw), 1024 (vw), 984 (vw), 907 (vw), 874 (w), 847 (w), 787 (w), 598 (w), 584 (w), 565 (vw), 552 (vw), 511 (vw), 465 (w).

UV/vis (c = $9.2 \cdot 10^{-5}$ mol/L in THF): $\lambda_{max} = 464$ nm ($\epsilon = 4520$ L·mol⁻¹·cm⁻¹), 336 nm ($\epsilon = 9520$ L·mol⁻¹·cm⁻¹).

Figure S27. ¹H-NMR-spectrum (300 K, 400 MHz, C₆D₆) of compound 3.

Figure S28. ${}^{13}C{}^{1}H$ -NMR-spectrum (300 K, 100 MHz, C₆D₆) of compound 3.

Figure S30. ${}^{31}P{}^{1}H$ -NMR-spectrum (300 K, 162 MHz, C₆D₆) of compound 3.

Figure S31. ${}^{31}P{/}$ -NMR-spectrum (300 K, 162 MHz, C₆D₆) of compound 3.

Figure S32. H,C-HSQC-NMR-spectrum (300 K, C₆D₆) of compound 3.

Figure S33. H,C-HMBC-NMR-spectrum (300 K, C₆D₆) of compound 3.

Figure S34. H,H-COSY-NMR-spectrum (300 K, C₆D₆) of compound 3.

Figure S35. H,H-ROESY-NMR-spectrum (300 K, C₆D₆) of compound 3.

Figure S36. ESI-MS-spectrum (positive mode) (300 K, C₆D₆) of compound 3.

Figure S37. FT-IR spectrum (KBr-pellet) of compound 6.

Figure S38. UV-VIS-spectrum (THF, $\lambda = 300-800$ nm) of compound 3.

5. Details of the single crystal x-ray diffraction analysis

Crystals of $1(\cdot THF)$ and $2(\cdot solvent)$ and $3(\cdot 0.5C_6H_{14}\cdot THF \cdot solvent)$ were removed from a Schlenk tube under an argon atmosphere and covered with a layer of hydrocarbon oil. A suitable crystal was selected, attached to a glass fiber and quickly placed in a low temperature Argon stream. The data were collected at 100 K on a Bruker Venture with Mo K_a radiation ($\lambda = 0.71073$ Å). The crystal structure was solved by direct methods using SHELX version 6.1 program package.^[S3] Non-hydrogen atoms were refined anisotropically. Absorption corrections were applied using SADABS program (*SADABS*, an empirical absorption correction program, part of the SAINTPlus NT version 5.0 package; Bruker AXS: Madison, WI 1998). Data collected were corrected for Lorentz and polarization effects with Saint^[S3] and absorption using Blessing's method and merged as incorporated with the program.^[S4,S5] The SHELXTL^[S6] program package was now implemented to determine the space group based upon intensity statistics. The structure was determined by direct methods with a majority of the non-hydrogen atoms from the molecule of interest being located directly using the program XT.^[S7] Refinement of the structure was achieved using the program XL.^[S8] Difference-Fourier least-squares refinement cycles were required to locate the remaining non-hydrogen atoms.

5.1. Refinement details

For compound $1(\cdot THF)$ the molecular structure and the co-crystallized THF solvent molecule were refined without any restraints.

For compound $2(\cdot$ solvent) two positions for THF molecules were found in the asymmetric unit. However, refining these molecules results in large anisotropic parameters and short H····H from one THF molecule to the molecular structure of **2**. Therefore, the Platon squeeze^[S9] routine was applied which results in 1.88 THF molecules in the asymmetric unit. Additionally, one reflex was omitted because it was affected by the beamstop.

During the refinement of compound $3(\cdot 0.5C_6H_{14}\cdot THF \cdot solvent)$ half a molecule of hexane and one molecule of THF and a disordered THF molecule was found in the asymmetric unit besides a highly disordered molecule which could not be clearly identified as THF or hexane. Therefore, the Platon squeeze^[S9] routine was employed to account for the latter two highly disordered solvent molecules. Additionally, five reflexes were omitted.

Table S1. Crystal data and structure refinement for $1(\cdot THF)$, $2(\cdot solvent)$ and $3(\cdot 0.5C_6H_{14}\cdot THF \cdot solvent)$.

Compound	1(·THF)	2(·solvent)	3 (·0.5C ₆ H ₁₄ ·THF	
			·solvent)	
Empirical formula	$C_{56}H_{81}N_2OPSi_3$	$C_{52}H_{73}N_2PSi_3$	$C_{64}H_{88}N_2O_6PSi_3W$	
Formula weight /g·mol ⁻¹	913.46	841.36	1280.45	
Crystal color, shape	pale yellow, plate	yellow, block	orange, plate	
Crystal size /mm ³	0.190×0.528×0.622	0.164×0.261×0.278	0.478×0.678×0.889	
Crystal system	monoclinic	triclinic	triclinic	
Space group	$P2_{1}/n$	<i>P</i> -1	<i>P</i> -1	
a /Å	13.9104(9)	12.4344(6)	14.1641(8)	
b /Å	21.1124(7)	14.9016(7)	14.7127(9)	
<i>c</i> /A	17.7837(7)	16.3149(7)	19.0224(12)	
α /°	90	89.3050(10)	69.805(2)	
$\beta/^{\circ}$	90.887(4)	68.4160(10)	71.090(2)	
$\gamma / ^{\circ}$	90	88.9410(10)	70.621(2)	
$V/\text{\AA}^3$	5222.1(4)	2810.5(2)	3409.9(4)	
Ζ	4	2	2	
T/K	100(2)	100(2)	100(2)	
Completeness to θ 25.24° /%	99.7	96.7	98.2	
$ ho_{ m calc}/ m g\cdot m cm^{-3}$	1.162	0.994	1.247	
μ (Mo) /mm ⁻¹	0.161	0.144	1.816	
2Θ range /°	2.99-54.29	4.41-54.29	4.67-54.29	
Reflections measured	68237	11948	39092	
Independent reflections	11547	30315	14787	
<i>R</i> (int)	0.0260	0.0487	0.0404	
Ind. reflections $(I > 2\sigma(I))$	10371	10254	13915	
Parameters	581	537	715	
Restraints	0	0	0	
$R_1(I > 2\sigma(I))$	0.0492	0.0469	0.0324	
wR_2 (all data)	0.1359	0.1254	0.0847	
GooF (all data)	1.040	1.077	1.043	
Max. peak/hole /e ⁻ ·Å ⁻³	1.401/-0.765	0.478 /-0.383	1.828 /-1.784	
Absorption correction type	multi-scan	multi-scan	multi-scan	
Min. /Max. transmission	0.6359 /0.7455	0.6191 /0.7455	0.4274 /0.7455	

Figure S39. Molecular structure of compound 1.

Selected distances /Å

P1–C1 1.9249(17), P1–Si1 2.2728(6), Si1–C1 1.9744(17), Si1–C6 1.9774(17), N1–C6 1.357(2), N2–C6 1.361(2), P1–Si3 2.2798(6), Si2–Si3 2.4764(6), Si2–C1 1.9378(17), C1–C2 1.570(2), C2–C3 1.534(2), C2–C4 1.534(2), C2–C5 1.526(2), Si2–C26 1.9481(17), Si2–C17 1.9235(17), Si2–C35 1.9269(17), Si3–C44 1.9346(18).

Selected angle /°

C1-P1-Si1 55.37(5), C1-Si1-P1 53.34(5), P1-C1-Si1 71.29(6), Si1-P1-Si3 86.45(2), Si2-C1-Si1 105.67(8), P1-C1-Si2 99.74(7), C1-Si2-Si3 86.27(5), P1-Si3-Si2 76.65(2), C1-P1-Si3 92.36(5), C6-Si1-P1 103.83(6), C1-Si1-C6 110.29(7), C17-Si2-C26 100.09(7), C35-Si3-P1 106.08(5), C44-Si3-P1 120.63(6), C17-Si2-Si3 113.20(5), C26-Si2-Si3 122.47(5), C17-Si2-C1 127.53(7), C35-Si3-C44 103.95(7), C1-Si2-C26 109.31(7), C35-Si3-Si2 123.72(5), C44-Si3-Si2 123.09(6), C2-C1-P1 112.64(11), C2-C1-Si2 123.70(11), C2-C1-Si1 127.45(11), C5-C2-C3 108.22(15), C5-C2-C4 107.05(15), C3-C2-C4 105.41(15), C5-C2-C1 111.02(14), C5-C2-C4 107.05(14), C4-C2-C1 112.47(13).

Figure S40. Molecular structure of compound 2.

Selected distances /Å

Si1–C6 1.9141(18), P1–Si1 2.0960(6), P1–Si3 2.2603(7), Si1–C1 1.7351(18),

Si2-C1 1.8677(18), Si2-Si3 2.5385(7), Si2-C17 1.9289(18), Si2-C26 1.9348(18),

Si3-C44 1.9393(17), Si3-C35 1.9482(18), N1-C6 1.346(2), N2-C6 1.345(2),

C1-C2 1.554(2), C2-C3 1.538(3), C2-C4 1.540(3), C2-C5 1.536(3).

Selected angles /°

Si1-P1-Si3 92.17(2), C1-Si1-P1 133.37(6), Si1-C1-Si2 107.33(9), C1-Si2-Si3 104.91(6), P1-Si3-Si2 102.23(2), C6-Si1-P1 106.21(6), C1-Si1-C6 120.42(8), C2-C1-Si1 125.44(13), C2-C1-Si2 125.95(13), C1-Si2-C17 105.74(8), C1-Si2-C26 116.63(8), C17-Si2-C26 112.86(8), C17-Si2-Si3 116.81(6), C26-Si2-Si3 100.04(5), C44-Si3-C35 107.66(7), C44-Si3-P1 113.45(6), C35-Si3-P1 100.37(6), C44-Si3-Si2 106.85(6), C35-Si3-Si2 126.14(6), C5-C2-C3 107.38(15), C5-C2-C4 107.29(16), C3-C2-C4 106.39(16), C5-C2-C1 111.94(15), C3-C2-C1 112.95(15), C4-C2-C1 110.58(15).

Figure S41. Molecular structure of compound 3.

Selected distances /Å

P1–Si1 2.1512(10), Si1–C1 1.737(3), Si1–C6 1.931(3), Si2–C1 1.886(3), P1–Si3 2.3025(9), Si2–Si3 2.5101(10), Si2–C31 1.926(3), Si2–C22 1.928(3), Si3–C49 1.927(3), Si3–C40 1.941(3), W1–C18 1.961(3), W1–C17 2.025(3), W1–C21 2.036(3), W1–C19 2.047(4), W1–C20 2.053(4), W1–P1 2.6502(7), O1–C17 1.149(4), O2–C18 1.161(4), O3–C19 1.146(4), O4–C20 1.135(4), O5–C21 1.137(4), C1–C2 1.557(4), C2–C4 1.537(4), C2–C5 1.537(4), C2–C3 1.540(3)

<u>Selected angles /°</u> Si1-P1-Si3 95.90(4), Si1-P1-W1 106.81(3), Si3-P1-W1 126.21(3), C1-Si1-C6 122.06(12), C1-Si1-P1 126.63(9), Si1-C1-Si2 110.73(14), C6-Si1-P1 109.58(8), C1-Si2-C31 114.95(11), C1-Si2-C22 104.84(11), C31-Si2-C22 113.39(11), C1-Si2-Si3 106.49(8), C31-Si2-Si3 99.79(8), C22-Si2-Si3 117.62(8), C49-Si3-C40 104.45(12), C49-Si3-P1 102.88(9), C40-Si3-P1 114.27(8), C49-Si3-Si2 130.48(9), C40-Si3-Si2 105.00(8), P1-Si3-Si2 100.07(3), C18-W1-C17 89.44(13), C18-W1-C21 83.68(13), C17-W1-C21 95.59(12), C18-W1-C19 92.07(13), C17-W1-C19 177.25(13), C21-W1-C19 86.86(14), C18-W1-C20 86.72(14), C17-W1-C20 83.79(14), C21-W1-C20 170.40(13), C19-W1-C20 94.00(16), C18-W1-P1 171.75(10), C17-W1-P1 94.84(8), C21-W1-P1 88.87(9), C19-W1-P1 83.96(9), C20-W1-P1 100.73(10).

6. Computational details

6.1. Methods

All structures were optimized without geometry constraints with density functional theory (DFT), using the resolution of the identity approximation^[S10] and an atom-pairwise dispersion correction (D3).^[S11] A flexible triple zeta basis set (def2-TZVP)^[S12] was used in all calculations. Optimizations were performed with the TPSS^[S13] functional. For the calculation of zero point vibrational energies and free enthalpy contributions (G₂₉₈), a rotor approximation was applied for vibrational modes with wave numbers below 100 cm⁻¹.^[S14] All geometry optimizations and vibrational frequency calculations were performed with the TURBOMOLE 7.3 program.^[S15]

6.2. DFT-optimized structure of 1 (opt-1)

Comparison of the structural parameters of the DFT-optimized structure with those obtained from single crystal X-ray diffraction.

Figure S42. DFT-optimized structure of 1 (opt-1).

Parameter	TPSS-D3/def2-TZVP	From crystal structure
P1–Si1	2.2869	2.2728
Sil–C1	1.9784	1.9744
C1–P1	1.9427	1.9249
C1–Si2	1.9137	1.9378
Si2–Si3	2.3458	2.4764
Si3–P1	2.2711	2.2798
Sil–C6	1.9497	1.9773
Si2–C17	1.8888	1.9235
Si2–C26	1.8943	1.9481
Si3-C35	1.8777	1.9346
Si3-C44	1.8867	1.9269
P1-Si1-C1	53.596	53.338
Si1-C1-P1	71.351	71.291
C1-P1-Si1	55.052	55.370
P1-C1-Si2	101.964	99.742
C1-Si2-Si3	87.543	86.273
Si2-Si3-P1	80.910	76.649
Si3-P1-C1	89.015	92.358

Table S2.Bond lengths /Å and angles /° of opt-1.

angle between the three-membered ring and the four-membered ring

6.3. Natural Population Analysis of opt-1

Atom	Charge	Atom	Charge	
<i>P1</i>	-0.19	NI	-0.31	
Si1	0.51	N2	-0.32	
<i>C1</i>	-1.08	C17	-0.48	
Si2	1.35	C26	-0.49	
Si3	0.96	C35	-0.48	
<i>C6</i>	0.08	<i>C44</i>	-0.47	

Table S3.Partial atomic charges calculated from NPA^[S16] analysis of **opt-1**.

6.4. Calculated Wiberg Bond Indices of opt-1

Table S4.
Gaussian.^[S19]Wiberg Bond Orders^[S17] of **opt-1** calculated with the NBO^[S18] program of

	opt-1
P1–Si1	0.83
Sil–C6	0.80
Sil-Cl	0.73
C1–Si2	0.74
Si2–Si3	0.88
Si3–P1	0.91
P1–C1	0.91
Si2-C17	0.74
Si2-C26	0.75
Si3–C35	0.80
Si3–C44	0.78

6.5. Calculated Molecular orbitals for opt-1 (Isovalue set at +/- 0.05 a.u.)

S37

HOMO-15 (-6.921 eV)

HOMO-13 (-6.517 eV)

HOMO-12 (-6.299 eV)

HOMO-16 (-7.141 eV)

Figure S43. Molecular orbitals of opt-1 isosurface set at +/-0.05 a.u..

6.6. DFT-optimized structure of opt-1 in the triplet state

Table S5.Total energies and ZPE corrected energies for **opt-1** in the singlet and in the
triplet state.

Parameter	TPSS-D3/def2-TZVP		
opt-1 in the singlet state			
Total energy /Hartree	-2716.996979854		
Total energy – ZPE /Hartree	-2716.3268037		
opt-1 in the triplet state			
Total energy /Hartree	-2716.957911944		
Total energy – ZPE /Hartree	-2716.2886932		
ΔE (Singlet \rightarrow Triplet) /kcal·mol ⁻¹	23.91		

Parameter	TPSS-D3/def2-TZVP	From crystal structure
P1–Si1	2.3311	2.2728
Si1–C1	3.3240	1.9744
C1–P1	1.8046	1.9249
C1–Si2	1.8496	1.9378
Si2–Si3	2.3329	2.4764
Si3–P1	2.2731	2.2798
Si1–C6	1.9226	1.9773
Si2-C17	1.8843	1.9235
Si2-C26	1.8822	1.9481
Si3–C35	1.8817	1.9346
Si3-C44	1.8854	1.9269
P1-Si1-C1	31.409	53.338
Si1-C1-P1	42.314	71.291
C1-P1-Si1	106.277	55.370
P1-C1-Si2	106.182	99.742
C1-Si2-Si3	85.326	86.273
Si2-Si3-P1	78.736	76.649
Si3-P1-C1	88.162	92.358

Table S6.Bond lengths /Å and angles $/^{\circ}$ of **opt-1** in the triplet state.

7. DFT-optimized structure of 2 (opt-2)

Comparison of the structural parameters of the DFT-optimized structure with those obtained from single crystal X-ray diffraction.

Figure S45. DFT-optimized structure of 2 (opt-2).

Parameter	TPSS-D3/def2-TZVP	From crystal structure
P1–Si1	2.1125	2.0960
Si1–C1	1.7479	1.7351
C1–Si2	1.8452	1.8677
Si2–Si3	2.3877	2.5385
Si3–P1	2.2477	2.2603
Si1–C6	1.9256	1.9141
Si2-C17	1.8899	1.9289
Si2-C26	1.8873	1.9348
Si3-C35	1.8884	1.9482
Si3-C44	1.8876	1.9393
P1-Si1-C1	138.069	133.368
Si1-C1-Si2	103.835	107.325
C1-Si2-Si3	104.437	104.906
Si2-Si3-P1	109.231	102.232
Si3-P1-Si1	84.201	92.168
P1-Si1-C6	106.262	106.205
C6-Si1-C1	115.654	120.423

Table S7.Bond lengths /Å and angles /° of **opt-2**.

7.1. Natural Population Analysis of opt-2

Atom	Charge	Atom	Charge
P1	-0.62	NI	-0.29
Si1	1.04	N2	-0.29
<i>C1</i>	-1.27	<i>C17</i>	-0.47
Si2	1.33	C26	-0.47
Si3	0.96	C35	-0.46
<i>C6</i>	0.08	C44	-0.46
	1		

Table S8.Partial atomic charges calculated from NPA^[S16] analysis of **opt-2**.

7.2. Calculated Wiberg Bond Indices of opt-2

Table S9.
Gaussian.^[S19]Wiberg Bond Orders^[S17] of **opt-2** calculated with the NBO^[S18] program of

	opt-2
P1–Si1	1.43
Sil–C6	0.67
Sil-Cl	1.22
C1–Si2	0.82
Si2–Si3	0.81
Si3–P1	0.98
P1–C1	0.98
Si2-C17	0.74
Si2-C26	0.74
Si3–C35	0.77
Si3–C44	0.77

7.3. Calculated Molecular orbitals for opt-2 (Isovalue set at +/- 0.05 a.u.)

HOMO-8 (-5.712 eV)

HOMO-7 (-5.685 eV)

HOMO-6 (-5.621 eV)

HOMO-10 (-6.003 eV)

HOMO-11 (-6.063 eV)

HOMO-12 (-6.136 eV)

Figure S46. Molecular orbitals of opt-2 isosurface set at +/-0.05 a.u..

7.4. DFT-optimized structure of opt-2 in the triplet state

Table S10.Total energies and ZPE corrected energies for **opt-2** in the singlet and in the
triplet state.

Parameter	TPSS-D3/def2-TZVP		
opt-2 in the singlet state			
Total energy /Hartree	-2717.0097832		
Total energy – ZPE /Hartree	-2716.3395232		
opt-2 in the triplet state			
Total energy /Hartree	-2716.969982781		
Total energy – ZPE /Hartree	-2716.3001551		
ΔE (Singlet \rightarrow Triplet) /kcal·mol ⁻¹	24.70		

Figure S47. Calculated molecular structure of opt-2 in the triplet state.

Parameter		TPSS-D3/def2-TZVP	From crystal structure
_	P1–Si1	2.2086	2.0960
	Si1–C1	1.8710	1.7351
	C1–Si2	1.8623	1.8677
	Si2–Si3	2.3605	2.5385
	Si3–P1	2.2291	2.2603
	Si1–C6	1.9581	1.9141
	Si2-C17	1.8911	1.9289
	Si2-C26	1.8906	1.9348
	Si3-C35	1.8860	1.9482
	Si3-C44	1.8872	1.9393
	P1-Si1-C1	112.538	133.368
	Si1-C1-Si2	113.290	107.325
	C1-Si2-Si3	103.428	104.906
	Si2-Si3-P1	101.821	102.232
	Si3-P1-Si1	92.421	92.168
	P1-Si1-C6	98.261	106.205
	C6-Si1-C1	109.948	120.423

Table S11.Bond lengths /Å and angles $/^{\circ}$ of **opt-2** in the triplet state.

8. Postulated Mechanism for the formation of model compound opt-1

8.1. Method

All structures and transitions states were optimized and thermodynamical corrections calculated as described in section 4.1 (TPSS-D3/def2-TZVP). In addition, single point calculations were performed with the hybrid functional PW6B95(-D3)^[S20] and the def2-TZVP triple zeta basis set. Free energies of solvation were obtained with the COSMO-RS^[S21] model for 298 K using THF as solvent.

8.2. Energies

Table S12: DFT-calculated energies (PW6B95-D3//TPSS-D3/def2-TZVP), thermostatistical free energy contributions (G(298)) and solvation free energies (COSMO-RS(THF)) for all reported intermediates and transition structures.

	TPSS-D3/ def2-TZVP	G(298)	PW6B95-D3/ def2-TZVP	COSMO-RS THF	$\Delta E^{a)}$ (PW6B95-D3)	$\Delta G_{298,solv}{}^{a)}$ (PW6B95-D3)
	$[E_h]$	[kcal/mol]	$[E_h]$	[kcal/mol]	[kcal/mol]	[kcal/mol]
opt-E	-2179.4998466	301.134	-2181.6246249	-20.143	0.0	0.0
tBuCP	-537.4181496	58.862	-537.8915124	-1.764	0.0	0.0
NHC	-383.6660079	90.683	-384.0682716	-5.609		
		Intermedi	ates and Transition	structures		
Int-1	-2716.9366954	374.981	-2719.5321832	-24.991	-10.1	1.8
Int-2	-2716.9492949	374.681	-2719.5449013	-25.330	-18.0	-6.8
Int-3	-2716.9655093	375.459	-2719.5603764	-24.575	-27.8	-15.0
Int-4	-2716.9835629	376.509	-2719.5817497	-27.172	-41.2	-29.9
Int-5	-2333.1807567	265.398	-2335.3750041	-15.975	+45.7	
opt-1	-2716.9971106	376.905	-2719.5952621	-24.983	-49.7	-35.8
opt-2	-2717.0098165	375.477	-2719.6091807	-27.947	-58.4	-48.9
TS1	-2716.9370956	375.374	-2719.5284893	-26.535	-7.8	3.0
TS2	-2716.9571692	376.056	-2719.5528923	-25.317	-23.1	-10.4
TS3	-2716.9467102	375.306	-2719.5422081	-24.766	-16.4	-3.9
TS4	-2716.9685027	376.625	-2719.5661567	-26.184	-31.4	-19.0

a) Energy and Free energy relative to separated Silylene and tBu-C=P

8.3. Optimized Structures

Figure S48 Optimized molecular structures (TPSS-D3/def2-TZVP) of intermediates and transition structures of the formation of **opt-1** from the NHC-coordinated silylene and *t*Bu-C=P. Interatomic distances are given in Å.

Int-1

Int-2

Int-3

Int-4

TS4

opt-1

opt-2

Int-5

opt-E + *t*-BuCP \rightarrow **Int-5** + NHC

 $\Delta G_{298,solv(THF)} = +46.0 \ kcal/mol$

9. References

- 1. B. J. Guddorf, A. Hepp, F. Lips, Chem. Eur. J. 2018, 24, 10334-10338.
- 2. N. Kuhn, T. Kratz, *Synthesis*, **1993**, *6*, 561–562.
- 3. Bruker (2010) SMART APEX (2012-10.6) and (2012) SAINT (Version 8.27a). Bruker AXS Inc., Madison, Wisconsin, USA.
- 4. An Empirical Correction for Absorption Anisotropy, Blessing, R. H. (1995). Acta Cryst., A51, 33–38.
- 5. Sheldrick, G.M., SADABS (2012/1) 'Siemens Area Detector Absorption Correction' Universität Göttingen, Göttingen, Germany.
- 6. Sheldrick, G.M., (2002). SHELXTL. Version 6.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- 7. Sheldrick, G. M., (1997). SHELXS97. Universität Göttingen: Göttingen, Germany.
- 8. Sheldrick, G. M., SHELXL2014 structure refinement program.
- a) P. v. d. Sluis, A. L. Spek, Acta Crystallogr., Sect. A: Found. Crystallogr. 1990, 46, 194–201; b) A. L. Spek, Acta Cryst. 2015, C71, 9–18.
- 10. R. Ahlrichs, Phys. Chem. Chem. Phys. 2004, 6, 5119–5121.
- 11. a) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104, 1–19; b)
 S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456–1465.
- 12. F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297-3305.
- 13. J. Tao, J. P. Perdew, V. N. Staroverov, G. E. Scuseria, *Phys. Rev. Lett.* **2003**, *91*, 146401, 1–4.
- 14. S. Grimme, Chem. Eur. J. 2012, 18, 9955–9964.
- 15. TURBOMOLE V7.0 2015, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH.
- 16. A. E. Reed, R. B. Weinstock, F. Weinhold. J. Chem. Phys. 1985, 83, 735-746.
- 17. K. Wiberg, Tetrahedron 1968, 24, 1083–1096.
- 18. NBO Version 6.0, E. D. Glendening, A. E. Reed, J. E. Carpenter, F. Weinhold.
- Gaussian 16, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
- 20. Y. Zhao, D. G. Truhlar, J. Phys. Chem. A 2005, 109, 5656–5667.
- 21. a) A. Klamt, J. Phys. Chem. 1995, 99, 2224–2235. b) F. Eckert and A. Klamt, COSMOtherm, Version C3.0; COSMOlogic GmbH & Co. KG, Leverkusen, Germany, 2013.

10. Cartesian Coordinates of all Compounds

10.1. Cartesian coordinates of opt-1 in the triplet state

Housa	ane in the tr	iplet state	
Energ	gy(tpss-d3/de 22187 Hartree	f2-TZVP) = -27	16.9579119 +
Lowes	st Freg. = 8.	76 cm^-1	
Р	0.4973806	-0.1442606	2.0022333
Si	2.4824073	-1.1963330	1.3801693
Si	-0.4667995	0.8434876	0.1961799
Si	-1.6634134	-1.1556626	0.3151981
N	4.0131599 3.2346318	0.1452667 1 6574312	-0.6839028
C	-0.7896995	-1.4068655	1.9259612
С	-1.1009673	-2.3291648	3.0879858
С	-1.9460948	-1.5401881	4.1181053
H	-1.3906214	-0.6647362	4.4708998
H U	-2.8813491	-1.1963059	3.6645030
С	0.1919042	-2.8189983	3.7658289
Н	0.7858162	-1.9729618	4.1311756
Н	-0.0446595	-3.4652784	4.6199577
H	0.8123847	-3.3843726	3.0623764
С	-1.9137398	-3.5405050	2.5930515
н	-1.3431706	-4.1190990 -4.2019256	1.8588425 3.4304248
Н	-2.8486143	-3.2158116	2.1229134
С	3.2365663	0.3011090	0.4391625
С	4.4598240	1.3679245	-1.1719639
С	3.9617195	2.3253827	-0.3341619
С	4.2813685	-1.1400551	-1.3153930
п С	5 2902787	-1.8513581	-2 4007243
H	5.5430319	2.5347422	-2.5787513
Н	4.7507582	1.1190036	-3.2811783
Н	6.2256732	0.9218590	-2.3150030
С	4.0783243	3.8084354	-0.3744647
H	4.6410768	4.1131122	-1.2593950
н Н	4.5961127 3 0904247	4.2048178 4 2802584	-0 4240190
C	2.6006140	2.3315886	1.7738130
Н	2.3952403	1.5908315	2.5475501
С	-1.3971928	2.3893588	0.7431968
С	-2.1906283	3.1083144	-0.1710251
С ц	-2.9538366	4.20022/3	0.2385520
С	-2.9426513	4.5985018	1.5772904
C	-2.1652445	3.8981022	2.5001800
Н	-2.1557930	4.2001856	3.5443844
С	-1.4027590	2.8052286	2.0854506
С	0.5330337	1.2478371	-1.3457643
C	1 /301887	2.3/10023	-1.7669694
н	1.5804286	3.8837951	-3.2617918
С	1.8984199	1.8084062	-3.7532282
С	1.7043271	0.4867633	-3.3453063
Н	2.0581661	-0.3333146	-3.9656741
С	1.0376453	0.2104823	-2.1530080
C	-3.5445163	-0.0231276	0.3351883
C	-5.5815944	0.0405103	1.0520149
Н	-6.0604830	0.8781038	1.5526356
С	-6.3572306	-0.9699418	0.4797661
С	-5.7354465	-2.0411179	-0.1632801
H C	-6.3354162	-2.8311643	-0.0078994
C	-4.3431392 -1.0713239	-2.1000946 -2.3471232	-U.2341339 -1.0191945
č	-1.5884955	-2.2935078	-2.3262497
С	-1.0429836	-3.0672428	-3.3496259
Н	-1.4567999	-3.0102448	-4.3532267
С	0.0405962	-3.9092285	-3.0867848
С	0.5688701	-3.9759121	-1.7967764
п	1.412/221	-4.02/0003	-1.3032332

С	0.0168849	-3,2023038	-0.7746963
H	1.6598799	2.7997757	1.4679095
Н	3,2775700	3.0964352	2.1632442
Н	5,2813003	-1.4998045	-1.0533855
н	4 1973060	-1 0355296	-2 3990562
н	-0 8104839	2 2508045	2 8114754
н	-2 2196437	2 8028411	-1 2148330
н	-3 5413896	5 4464886	1 8987942
ц Ц	0 8034243	-0 8223968	-1 8501182
п	0.0934243	2 2020710	1 1640724
п	0.3723109	3.3939/10	-1.1040/24
Н	2.4061919	2.0235396	-4.6899956
Η	-3.8692952	-2.9417228	-0.7339089
Н	-3.5978664	0.7710120	1.4269036
Н	-7.4416279	-0.9224365	0.5348492
Н	-2.4200450	-1.6280967	-2.5493233
Н	0.4518427	-3.2375156	0.2210204
Н	0.4688666	-4.5106140	-3.8845304

10.2. Cartesian coordinates of opt-2 in the triplet state

5-membered Ring in the triplet state Energy(tpss-d3/def2-TZVP)= -2716.9699828 + 0.6698277 Hartree Lowest Freq. = 6.36 cm^-1

LOW	est freq. = 6 .	36 CIII. = 1	
P	14.4604718	4.4861126	10.2063629
Si	12.8665484	6.0148906	10.2245047
Si	11.3871076	3.8292803	11.8854538
Si	13.7226898	3.5584342	12.0941758
Ν	13.1568490	7.5517127	7.6988971
Ν	12.4713829	5.5554333	7.2775457
С	11.2214988	5.3290513	10.7938906
С	9.9295283	6.1491927	10.6738336
С	8.6692631	5.3139788	10.9722984
Н	8.5554149	4.4955458	10.2548571
Н	8.7095672	4.8843968	11.9770685
Н	7.7752543	5.9471694	10.9110059
С	9.9922169	7.3203894	11.6860783
Н	10.0195163	6.9410735	12.7105857
Н	10.8926418	7.9219416	11.5166525
Н	9.1087880	7.9633840	11.5750593
С	9.7738241	6.7526928	9.2623847
H	9.7723322	5.9693627	8.4959403
Н	8.8278351	7.3034118	9.1901807
Н	10.5885191	7.4512996	9.0415593
С	12,8076428	6.3827389	8.3022072
Ĉ	13.0387260	7.4628872	6.3135364
Ĉ	12.5998276	6.1939512	6.0471861
Ĉ	13.6036288	8.7459848	8.4137966
H	13.5323759	8.5259855	9,4833549
С	13.3642001	8.5979735	5,4056272
H	13.2085097	8.3008971	4.3664067
Н	14.4086968	8.9130041	5.5137692
Н	12.7311505	9.4705580	5.6052694
С	12.2944741	5.5142264	4.7576654
H	11.2520099	5.1775394	4.7182965
Н	12,9330128	4.6362859	4,6057080
Н	12,4594350	6.1998881	3,9239130
С	12.0530404	4.1647920	7.4419901
H	12.1017236	3,9264502	8,5038145
С	10.5753024	4.0669492	13.5768591
Ĉ	9.5640356	3.2325844	14.0828569
Ċ	9.0118015	3.4496172	15.3457255
н	8.2293338	2.7913803	15.7153526
C	9.4597496	4.5122433	16,1323086
Ĉ	10.4626313	5.3545185	15.6490740
н	10.8234534	6.1797744	16.2574916
С	11.0125897	5.1302983	14.3884610
C	10.7024097	2.2412343	11.1214165
C	10.1398634	2.2036535	9.8362762
C	9.7117258	1.0062351	9.2619356
H	9.2761624	1.0050210	8.2653137
			5.2000107

С	9.8369778	-0.1895591	9.9703573
С	10.3925398	-0.1775402	11.2508688
Η	10.5053406	-1.1056834	11.8048245
С	10.8239065	1.0222698	11.8134187
С	14.3254504	4.3936750	13.6740697
С	15.1077615	5.5588170	13.6301613
С	15.4962255	6.2110192	14.8010622
Н	16.1013005	7.1125663	14.7444689
С	15.1089589	5.7071238	16.0436053
С	14.3280765	4.5517154	16.1091053
Н	14.0115190	4.1608712	17.0727102
С	13.9377886	3.9073983	14.9363139
С	14.2239265	1.7390226	12.0991498
С	14.8823739	1.1218804	13.1751282
С	15.2213864	-0.2316375	13.1324399
Η	15.7322665	-0.6881030	13.9766765
С	14.9113688	-0.9962108	12.0071875
С	14.2671207	-0.3983956	10.9222490
Н	14.0218740	-0.9865955	10.0415958
С	13.9289652	0.9519319	10.9712284
Η	12.7310281	3.5094319	6.8900644
Η	11.0318069	4.0389292	7.0720524
Н	12.9623148	9.5934035	8.1574020
Η	14.6400187	8.9736318	8.1510501
Η	15.4069038	5.9569332	12.6628751
Н	13.3023154	3.0274593	15.0042395
Η	15.4096316	6.2144391	16.9566601
Η	15.1423074	1.7069783	14.0533709
Η	13.4233317	1.4068685	10.1223727
Η	10.0331381	3.1320406	9.2812793
Η	9.5062479	-1.1250582	9.5270215
Η	11.2814587	1.0078573	12.7997796
Η	15.1739064	-2.0504568	11.9738134
Н	11.8031791	5.7854283	14.0303615
Н	9.0308978	4.6818496	17.1165089
Η	9.1984812	2.4068124	13.4774234

10.3. Cartesian coordinates of NHCcoordinated trisilacyclopropylidene E

NHC-0	coordinated	trisilacyc	lopropylidene
E(TPS	SS-D3/def2-TZ	VP) = -2	179.499846642
(conv	v)		
Lowes	st Freq. =	13.79 cm^-1	
Si	-2.2392002	-0.6021097	0.2808929
Si	-1.2107360	1.2161319	1.4331843
Si	-0.2489497	0.2287984	-0.5233551
С	-1.9018210	2.6931577	0.4325901
N	-1.1337845	3.7084689	-0.0719786
С	-1.9172944	4.6845573	-0.6843815
С	0.3206690	3.7379807	0.0256985
С	-3.2160350	4.2892925	-0.5341553
N	-3.1873162	3.0782469	0.1599454
С	-4.3789779	2.3787008	0.6266652
Н	0.7685458	3.1718408	-0.7953493
Н	0.6103219	3.2804884	0.9752660
Н	0.6557052	4.7758684	-0.0072770
Н	-4.9646035	3.0414007	1.2709010
Н	-4.0481288	1.5084607	1.1931328
Н	-4.9861307	2.0473534	-0.2183446
С	-1.3311472	5.8602799	-1.3844541
С	-4.4898636	4.9128321	-0.9885229
Н	-4.2794732	5.8286577	-1.5451129
Н	-5.1399820	5.1738385	-0.1445685
Н	-5.0542006	4.2386198	-1.6439978
Н	-0.7751854	6.5114270	-0.6990495
Н	-2.1261173	6.4559802	-1.8385668
Н	-0.6464364	5.5424341	-2.1794695
Н	3.5642728	-1.5809140	2.1764012
С	3.0399111	-1.6414281	1.2260061
С	1.9614977	-0.7935831	0.9705214
С	1.2606855	-0.8542320	-0.2452892
С	1.6786954	-1.8002643	-1.1998710
Н	1.1429059	-1.8850118	-2.1430879
С	2.7609949	-2.6425321	-0.9531501
Н	3.0665746	-3.3671575	-1.7037242

С	3.4440226	-2.5660660	0.2631736
Н	4.2830264	-3.2283267	0.4594804
Η	1.6471115	-0.0745992	1.7249154
Η	-1.4506295	-5.5590809	3.1544041
С	-1.6143060	-4.6236368	2.6259965
С	-1.0252865	-3.4448344	3.0861207
Η	-0.4007249	-3.4595530	3.9757527
С	-1.2410926	-2.2450811	2.4103533
Н	-0.7901838	-1.3290900	2.7870998
С	-2.0374630	-2.1956562	1.2527454
С	-2.6200715	-3.3947214	0.8025483
Н	-3.2386946	-3.3880991	-0.0922017
С	-2.4170417	-4.5939545	1.4839425
Н	-2.8808980	-5.5077944	1.1208947
Н	-5.0280786	-1.2583552	1.0130012
С	-5.0543977	-0.9499375	-0.0302301
С	-6.2792767	-0.8804430	-0.6910433
Н	-7.1948063	-1.1386141	-0.1646917
С	-6.3318375	-0.4767579	-2.0280891
Н	-7.2866908	-0.4176331	-2.5434549
С	-5.1488783	-0.1696713	-2.7022425
Н	-5.1787352	0.1204575	-3.7496417
С	-3.9231406	-0.2510336	-2.0394617
Н	-3.0074281	-0.0343596	-2.5817042
С	-3.8509646	-0.6231915	-0.6858955
Н	1.9322190	0.6308477	-2.5066976
С	1.0859931	1.2135544	-2.8616190
С	-0.1258684	1.1813881	-2.1425676
С	-1.1900919	1.9621564	-2.6353834
Н	-2.1394319	1.9683177	-2.1073719
С	-1.0532503	2.7371464	-3.7846991
Н	-1.8950067	3.3276130	-4.1390239
С	0.1573531	2.7542129	-4.4817420
Н	0.2654877	3.3562918	-5.3797935
С	1.2253960	1.9862757	-4.0146574
Н	2.1720217	1.9892839	-4.5493195

10.4. Cartesian coordinates of *t*Bu-C≡P

tBuCP				
E (TPSS	S-D3/def2-TZ	VP)	= -!	537.4181496253
(conv)				
Lowest	: Freq. =	142.92	cm^-1	
P	0.2134127	0.01	59388	0.0067967
С	1.7645359	0.02	25578	0.0608395
С	3.2289315	0.02	84933	0.1115802
С	3.6889385	-0.00	57781	1.5895806
Н	3.3128189	0.86	67656	2.1310120
Н	4.7840804	-0.00	10600	1.6305754
Н	3.3221255	-0.90	80330	2.0869292
С	3.7705899	-1.21	68112	-0.6320677
Н	4.8658737	-1.21	52111	-0.5956556
Н	3.4533193	-1.20	94255	-1.6785670
Н	3.4042592	-2.13	49148	-0.1643077
С	3.7584118	1.31	40334	-0.5697471
Н	3.3838565	2.20	45066	-0.0572022
Н	3.4404992	1.35	53848	-1.6152799
Н	4.8536880	1.32	08930	-0.5337130

10.5. Cartesian coordinates of opt-1

opt-	1		
E(TP	SS-D3/def2-TZV	/P) =	-2716.997110593
(con	V)		
Lowe	st Freq. =	14.68 cm^-	1
Si	-2.5378845	0.2347239	0.6343386
Si	-1.0718861	2.8962556	1.7103978
Si	-0.3331543	0.6124042	-0.0722501
С	-1.1566297	4.8413951	1.8207963
Ν	-2.1884125	5.7184795	1.9986058
С	-1.7247419	6.9797805	2.3778009
С	-3.6059695	5.3913985	1.8724256
С	-0.3631244	6.8924025	2.4456375
Ν	-0.0403791	5.5777460	2.1184532
С	1.3110963	5.0339931	2.0831292
Н	-3.6826958	4.4252831	1.3703065

Н	-4.1056458	6.1608678	1.2791199
Н	-4.0664452	5.3352083	2.8637498
Н	1.7833140	5,2271101	1,1154827
ц	1 2303318	3 9523307	2 2/20/31
11	1 0056027	5.9523307	2.2423431
п	1.9036027	J.40J411J	2.0/9/930
C	-2.6415/43	8.1259326	2.631/224
С	0.6665369	7.9136813	2.7859052
Н	0.1883018	8.8794291	2.9626443
Н	1.3921756	8.0398175	1.9736869
Н	1.2235098	7.6447480	3.6915579
н	-3 2132396	8 3937083	1 7350541
ц ц	-2 0664331	0.0026007	2 0373760
п	-2.0004331	9.0020907	2.9373700
н	-3.36058/5	/.8990338	3.42/6291
Н	3.8978305	1.5296393	2.5441773
С	3.1145598	0.8075576	2.3253006
С	2.0839644	1.1397241	1.4465980
С	1.0634868	0.2266233	1.1394328
С	1.1103181	-1.0367687	1.7519207
ц	0 3287115	-1 7640003	1 5398062
C	2 1210520	1 2744720	2 6205200
	2.1319320	-1.3/44/30	2.0393290
н	2.1416/49	-2.3551508	3.1082437
С	3.1383144	-0.4515426	2.9283041
Н	3.9348802	-0.7108569	3.6206597
Н	2.0680494	2.1242044	0.9870380
Н	-3.7095052	-1.5896262	5.9964539
С	-3.4872118	-1.2473831	4.9889054
C	-2 2552360	-0 6552663	1 7052431
	1 5141417	0.0332003	F 401400C
п	-1.514141/	-0.5353662	5.4914826
C	-1.9682632	-0.2202844	3.4119634
Н	-1.0087113	0.2437393	3.2032741
С	-2.9072147	-0.3672393	2.3742306
С	-4.1416110	-0.9686336	2.6791380
Н	-4.8813219	-1.1023693	1.8931889
С	-4.4313947	-1.4031892	3,9725041
н	-5 3919029	-1 8651284	4 1869797
11	A 2011475	0 0220241	1 6005060
п	-4.3911473	0.9550241	-1.0093902
C	-4.3612123	-0.1538413	-1.561/985
С	-5.0728059	-0.9077238	-2.4964560
Н	-5.6625187	-0.4079001	-3.2608171
С	-5.0262188	-2.3013693	-2.4500249
Н	-5.5756372	-2.8909456	-3.1791890
С	-4.2710682	-2.9366557	-1.4613720
н	-4 2306814	-4 0221824	-1 4213797
C	-3 5631632	-2 1790864	-0 5302970
	-3.3031032	-2.1790004	-0.002970
п	-2.9/564/3	-2.0800020	0.2319349
C	-3.5903812	-0.//30316	-0.564183/
Н	2.2553157	-0.3163572	-1.1707622
С	1.5019744	-0.6136066	-1.8965079
С	0.1496010	-0.3132196	-1.6528720
С	-0.7957763	-0.7424042	-2.6020082
Н	-1.8495661	-0.5364629	-2.4454414
C	-0 4071421	-1 4344281	-3 7475785
ц ц	_1 1500700	_1 7600954	-1 1600133
п С	-1.1390790	1 71100014	-4.4009133
C	0.9420258	-1./118031	-3.9/531/5
Н	1.2461173	-2.2523841	-4.8678808
С	1.8969913	-1.2985319	-3.0460752
Н	2.9492807	-1.5153133	-3.2123006
Ρ	-2.6887757	2.4496944	0.1556852
С	-0.7793641	2,4690444	-0.1994284
C	-0 3155129	3 3536341	-1 3832767
c	-0 7655630	A 017130A	-1 2449752
с ц	_1 0/02/07	1 0C0/017	1 000E0E0
п	-1.0403404	4.0094U1/	-1.0333930
н	-0.5/50507	5.3568917	-2.1802883
Н	-0.2299216	5.3327175	-0.4436934
С	1.2187666	3.3038226	-1.4842132
Н	1.5714509	3.9110264	-2.3270697
Н	1.5677981	2.2769066	-1.6403593
Н	1.6820862	3.6880175	-0.5689381
 C	_0 0112044	2 8200504	-2 7032210
	0.7112044	2.0200000	2./UJZZIO 2.6520110
п	-2.003433/	2.0339014	-2.0339118
н	-0.5885425	1./956992	-2.8988695
Н	-0.5911805	3.4469306	-3.5452520

10.6. Cartesian coordinates of opt-2

opt-2	2			
E (TPS	SS-D3/def2-TZV	P) =	-271	17.009817681
(conv	7)			
Lowes	st Freq. =	4.19 c	m^-1	
Si	-2.4963328	-0.7671	178	0.8290076
Si	-1.6599515	1.9879	593	1.3502648
Si	-0.4524500	-0.0603	715 -	0.1827478
C	-1 8098340	3 7620	856	2 0828702
N	1 2545020	1 2241	555	2.0020702
IN G	-1.2545038	4.2241	555	3.228/438
C	-1.6896/8/	5.5182	281	3.50/9520
С	-0.3439915	3.4393	227	4.0617381
С	-2.5479532	5.8625	779	2.4966748
Ν	-2.6058710	4.7644	309	1.6400286
С	-3.4333791	4.6738	675	0.4368897
Н	-0.1793794	2.4814	915	3.5635618
Н	-0.7932525	3.2691	563	5.0429807
н	0 6081175	3 9641	883	4 1686050
и П	-1 1669199	1 02/1	000	0 6955790
п 11	2 2000200	4.9241	520	0.00000709
н	-3.3900260	3.642/	577	0.0792690
Н	-3.05/3464	5.3534	944 -	0.3320110
С	-1.2367478	6.2721	646	4.7097571
С	-3.3221221	7.1108	594	2.2507881
Н	-3.1079873	7.8431	358	3.0318859
Н	-4.4018607	6.9212	942	2.2530013
Н	-3.0635908	7.5604	334	1,2852095
н	-1 5127008	5 7544	108	5 6356846
и и	-1 6988329	7 2612	328	A 7268221
11	0 1400000	6 4067	121	4.7200221 4.7126166
п	-0.1400990	1 0001	434	4./133133
н	3.3934862	-1.2231	508	2.8321133
C	2.6944295	-1.6052	044	2.0916788
С	1.8010274	-0.7384	483	1.4612050
С	0.8867495	-1.2004	445	0.5018256
С	0.8914109	-2.5755	888	0.2072050
Н	0.1701363	-2.9765	089 -	0.5016327
С	1.7784140	-3.4487	281	0.8329041
H	1.7508548	-4.5096	774	0.5988217
C	2 6853577	-2 9644	840	1 7773747
с u	2.000000777	-3 6/51	033	2 2722252
п	1 7000000	-3.0431	000	1 7007100
н	1.7908923	0.3166	087	1./28/126
Н	-0.9405013	-5.4230	4/6	3.9003072
С	-1.2650051	-4.5531	034	3.3351390
С	-0.7695839	-3.2856	803	3.6512356
Н	-0.0531498	-3.1668	869	4.4600335
С	-1.1827449	-2.1757	393	2.9203327
Н	-0.7878691	-1.1932	105	3.1692889
С	-2.0908817	-2.2995	621	1.8539005
Ĉ	-2.5870773	-3.5785	263	1.5591901
u u	-3 20022/0	-3 7050	876	0 7476108
С	2 1705223	-3.7030	010	2 2021640
C	-2.1795525	-4.0955	937	2.2921040
н	-2.5/65/80	-5.6///	533	2.046/880
Н	-5.21/59/6	0.1952	922	0.0198052
С	-4.9373118	-0.5716	352 -	0.7001521
С	-5.7886543	-0.8743	495 -	1.7643522
Н	-6.7370005	-0.3519	443 -	1.8666624
С	-5.4234970	-1.8456	137 -	2.6973490
Н	-6.0820141	-2.0787	934 -	3.5301484
С	-4.2040073	-2.5117	748 -	2.5607811
Н	-3,9053959	-3.2588	431 -	3.2915738
Ċ	-3 3585172	-2 2030	939 -	1 4973600
U U	-2 3080300	-2 7000	955 _	1 4005305
п	-2.3909399	1 2200	900 -	1.4223323
C	-3./08/45/	-1.2306	852 -	0.5428661
Н	1.0902554	-1.5969	526 -	2.338/2/1
С	0.2600074	-1.0867	793 -	2.8210721
С	-0.6046880	-0.2917	545 -	2.0523545
С	-1.6561023	0.3641	376 -	2.7175804
Н	-2.3477757	0.9761	498 -	2.1419727
С	-1.8420931	0.2299	058 -	4.0910092
Н	-2.6704868	0.7370	855 -	4.5790777
C	-0.9742543	-0.5712	038 -	4.8366295
ч	-1 1100370	-0 6037	252	5 9079710
 C	1.11.00012	_1 0000/	031 -	A 100//21
C II	0.0/00949	-1.22/4	034 -	4.1304431 4.7720106
Н	0./608639	-1.8485	α/6 –	4.//39196
Р	-3.2911136	0.8901	977	2.1228109
С	-0.2803135	1.7087	/97	0.3141011
С	0.7441593	2.7085	394 -	0.2448437
С	0.0415206	3.7089	666 -	1.1882642

Н	-0.4715285	3.1736156	-1.9927385
Н	0.7618391	4.4085801	-1.6342937
Н	-0.7043412	4.2916818	-0.6341434
С	1.4358193	3.4987361	0.8843272
Н	2.2027548	4.1708135	0.4772915
Н	1.9163785	2.8150875	1.5923491
Н	0.7109729	4.1116047	1.4310539
С	1.8374706	1.9792519	-1.0506946
Н	1.4036496	1.4446089	-1.9007519
Н	2.3678640	1.2531566	-0.4266252
Н	2.5693142	2.6999092	-1.4369860

10.	7. Cartesian	coor	dinate	s of Int-1
E (T	-ı PSS-D3/def2-T. nv)	ZVP)	= ·	-2716.936695402
Low	est Freq. =	14.2	1 cm^-1	
Si	-2.1645749	0.7	834807	0.4835277
Si	-0.7635569	2.6	076607	0.2518741
si	0 0987865	0 4	559601	0 0472731
C C	-0 5945009	3 3	155177	2 1226544
C NT	-0.3643096	3.3 2 E	100007	2.1220344
	-1.0031030	3.3	023907	2.901JJ4Z
	-1.1462515	3.1	433372	4.2851115
	-3.0110486	3.0	836279	2.5944009
C	0.2131318	3.5	850699	4.23/2654
N	0.5277098	3.3	332713	2.9037859
С	1.8864363	3.1	963103	2.3877764
Н	-3.6128245	3.0	294674	3.2258130
H	-3.0926287	3.3	611739	1.5562966
H	-3.3464020	4.7	218990	2.6917534
H	2.4060057	4.1	572068	2.4477478
H	1.8105301	2.8	773821	1.3471099
H	2.4260974	2.4	404479	2.9598422
С	-2.0650122	4.0	010275	5.4276616
С	1.2443577	3.6	245842	5.3112541
H	0.7756582	3.8	520737	6.2710511
Н	2.0039750	4.3	906055	5.1159602
Н	1.7589778	2.6	609712	5.4057054
H	-2.6383350	4.9	242084	5.2837593
H	-1.4943481	4.0	981528	6.3537843
H	-2.7775580	3.1	770189	5.5491469
H	4.2062670	-0.3	633539	2.8915123
2	3.1670752	-0.6	363386	2.7227366
;	2.4444500	-0.0	296805	1.6950132
	1,1020091	-0.3	659895	1.4371859
	0.5186797	-1.3	522526	2.2528651
T	-0.5134255	-1.6	438932	2.0751397
~	1 2308782	-1 9	586084	3 2884316
н	0 7505905	-2 7	142670	3 9049643
~	2 5575585	-1 5	996096	3 5294175
- -	3 1160449	-2 0	727365	1 3327103
1	2 0300/01	2.0	166020	1 0762740
1 J	_1 3317032	0.7	100929	5 0103/07
-1 ~	-4.5517052	0.0	100007	4 0100075
~	-3.9193073	0.1	102039	4.0102073
, T	-2.5516859	0.3	410667	4.0312830
1	-1.8924963	0.4	U/2813	2.4939869
-	-2.02/153/	0.4	749916	3.34/2411
1	-0.9613113	0.6	533199	3.2289553
2	-2.8458536	0.3	828615	2.2044588
2	-4.2180385	0.1	414333	2.4081223
H	-4.8769271	0.0	615357	1.5466859
2	-4.7499016	0.0	129927	3.6922036
ł	-5.8135372	-0.1	722659	3.8211091
H	-4.0596083	2.5	697456	-0.9426067
C	-4.2605360	1.5	627120	-1.3004524
C	-5.2452393	1.3	602976	-2.2667912
H	-5.8123684	2.2	052904	-2.6484095
С	-5.4940011	0.0	750169	-2.7511641
Н	-6.2571213	-0.0	842515	-3.5082451
С	-4.7530990	-1.0	039737	-2.2657880
Н	-4.9385069	-2.0	057551	-2.6448599

-3.7685466

-3.1890577

-3.5052475

2.7634499

2.0733947

C H

С

H C -0.7971351

-1.6441136

0.4884018

-0.6314949

-1.2993150

-0.9383490

-0.7953305

-0.9055205

-1.7407731

С	0.7312455	-0.2436173	-1.5839144
С	-0.1346228	-0.4104387	-2.6793315
Н	-1.1793588	-0.1320495	-2.5783418
С	0.3259621	-0.9307227	-3.8880237
Н	-0.3639764	-1.0528167	-4.7189101
С	1.6668565	-1.2901154	-4.0311255
Н	2.0284379	-1.6894057	-4.9751137
С	2.5397130	-1.1417773	-2.9524294
Н	3.5838300	-1.4279102	-3.0525763
Ρ	-1.1846250	2.6605837	-2.1817889
С	-0.8157108	3.8776509	-1.0474117
С	-0.6457311	5.3770848	-1.1620443
С	0.7428123	5.7587590	-0.6068782
Н	0.8319296	5.4500192	0.4416839
Н	0.8976720	6.8436623	-0.6601552
Н	1.5345596	5.2648585	-1.1793892
С	-0.7719795	5.8399703	-2.6201732
Н	-0.6606531	6.9286772	-2.6912024
Н	-1.7475465	5.5577096	-3.0298133
Н	-0.0055390	5.3659727	-3.2420328
С	-1.7313562	6.0602749	-0.3021034
Н	-1.6414913	5.7495153	0.7452628
Н	-2.7304087	5.7880326	-0.6583910
Н	-1.6306678	7.1519662	-0.3467082

10.8. Cartesian coordinates of Int-2

Int-	-2		
E(TF	SS-D3/def2-TZ	VP) = -	2716.949294854
(con	ıv)		
Lowe	est Freq. =	9.91 cm^-1	
Si	-3.0270538	0.3911712	0.7876280
Si	-0.6493500	2.8445383	0.2330791
Si	-0.8467103	0.5507113	-0.0943110
С	-1.4246285	3.3649111	1.8997026
Ν	-2.6387687	3.9178557	2.1379395
С	-2.8099103	4.1576551	3.4967269
С	-3.6577348	4.1152742	1.1018542
С	-1.6573798	3.7463443	4.1158018
N	-0.8264768	3.2659193	3.1132363
С	0.4886909	2.6726119	3.3400825
Н	-3.8114226	3.1540592	0.5914812
Н	-3.3235119	4.8780101	0.3941586
Н	-4.5810507	4,4353742	1.5831276
н	1,1728100	3.4198421	3.7508310
н	0.8698262	2.3071089	2.3848456
н	0.3885484	1.8290453	4.0251694
C	-4.0652849	4.7093744	4.0756282
C	-1 2660104	3 7306403	5 5507263
н	-2 0633072	4 1611890	6 1594295
н	-0 3523937	4 3103939	5 7269157
н	-1 0979983	2 7041998	5 8938580
н	-4.3162536	5.6879804	3.6517011
н	-3 9493434	4 8279153	5 1548123
н	-4 9106572	4 0337927	3 9023249
н	3 9176636	-0 2215062	1 4677101
C	2 9484264	-0 6736983	1 2705276
Ċ	1 9024377	0 1045991	0 7727079
Ċ	0 6397989	-0 4503278	0 5065516
C	0.4617837	-1.8265177	0.7507074
н	-0 5091219	-2 2811202	0 5665404
C	1 5064158	-2 6102909	1 2397843
н	1 3470498	-3 6706178	1 4181275
C	2 7512548	-2 0353552	1 5060910
н	3 5633090	-2 6455289	1 8924707
н	2 0719673	1 1605109	0 5719826
н	-2 4289802	0 3270207	6 6250590
C	-2 5032118	0.3583660	5 5406684
c	-1 1697629	-0 1455238	1 7465556
u u	-0 5852936	-0 5747855	5 2139087
C	-1 5000200	-0 1306740	3 35/1/50
	-1.3000443	-0.1300740	2 7606046
п	-0.7774655	-0.3300330	2.7000040
C	-2./149040	0.0949431	2.1020203
U U	-3./330000	U.JU44849 1 2077247	3.JJZ3U/J
п	-4.0311310	1.30//24/	3.0043039
C II	-3.64032/4	0.8840609	4.9260825
Н	-4.4581681	1.2676691	5.5328011

Н	-3.2898209	-1.2216780	-1.7049178
С	-3.3416489	-1.9435359	-0.8923088
С	-3.4725592	-3.2957243	-1.1988713
Н	-3.5194494	-3.6106971	-2.2389374
С	-3.5450597	-4.2461446	-0.1761864
Н	-3.6509965	-5.3017040	-0.4124888
С	-3.4874311	-3.8209067	1.1513769
Η	-3.5501924	-4.5482899	1.9582051
С	-3.3410478	-2.4652815	1.4532984
Н	-3.2799227	-2.1621133	2.4955411
С	-3.2541241	-1.4897540	0.4412242
Н	0.9026505	-0.7212883	-2.1874311
С	0.1037328	-0.2048491	-2.7139688
С	-0.8763087	0.4821656	-1.9798926
С	-1.9002069	1.1363293	-2.6914063
Н	-2.6808153	1.6537185	-2.1370959
С	-1.9409504	1.1054730	-4.0845770
Н	-2.7421800	1.6142426	-4.6146470
С	-0.9577365	0.4161532	-4.7974237
Η	-0.9889799	0.3886837	-5.8834636
С	0.0627929	-0.2410291	-4.1085962
Н	0.8283352	-0.7829866	-4.6584261
Ρ	-1.0433868	4.3168847	-1.3795592
С	0.3717746	4.2221691	-0.4524623
С	1.6827392	4.9463682	-0.3810579
С	1.7034144	5.7440521	0.9437326
Н	0.8995894	6.4866323	0.9610839
Н	2.6629349	6.2627047	1.0519661
Н	1.5730477	5.0738384	1.7995929
С	2.8317496	3.9181274	-0.3686331
Н	3.7981305	4.4335775	-0.3269315
Н	2.8076077	3.2936468	-1.2667945
Н	2.7507325	3.2645234	0.5061752
С	1.8431425	5.9075702	-1.5703957
Н	1.0197927	6.6294230	-1.5956061
Η	1.8372649	5.3536206	-2.5147147
Н	2.7869425	6.4595346	-1.4968386

10.9. Cartesian coordinates of Int-3

Int	-3		
E(T	PSS-D3/def2-T2	ZVP) =	-2716.965509309
(coi	nv)		
Low	est Freq. =	9.24 cm^-1	L
Si	-2.4003358	0.1534012	1.4198290
Si	-0.6196854	2.7296453	1.1927409
Si	-0.3119389	0.5398514	0.4337698
С	0.8939969	3.6120215	1.9369546
Ν	0.9361525	4.4614353	2.9963111
С	2.2445421	4.8462761	3.2706677
С	-0.2450422	4.8724149	3.7611278
С	3.0393375	4.2251810	2.3428142
Ν	2.1873867	3.4815624	1.5307121
С	2.6293888	2.6537965	0.4063142
Н	-0.3246617	4.2725376	4.6713401
Н	-1.1221508	4.6983380	3.1205598
Н	-0.1510212	5.9302582	4.0150957
Н	3.3775192	3.2014249	-0.1702954
Η	1.7695215	2.4344257	-0.2273599
Η	3.0494807	1.7134970	0.7720639
С	2.5888733	5.7686049	4.3881247
С	4.5140765	4.2599060	2.1369349
Η	4.9843037	4.8645479	2.9151494
Н	4.7782782	4.6974410	1.1666782
Н	4.9483315	3.2545300	2.1791542
Н	2.1463800	6.7610278	4.2422311
Η	3.6722844	5.8893791	4.4524417
Н	2.2307252	5.3832160	5.3493355
Н	2.7070263	-0.1596227	4.4141673
С	2.2825823	-0.6174101	3.5237869
С	1.4755270	0.1364325	2.6705840
С	0.9007612	-0.4249848	1.5178485
С	1.1580767	-1.7843271	1.2601958
Η	0.7030807	-2.2617721	0.3955317
С	1.9605691	-2.5438225	2.1091892
Н	2.1296419	-3.5959541	1.8957723
С	2.5288302	-1.9610796	3.2436328

Н	3.1481975	-2.5549037	3.9103840
Н	1.2573131	1.1714625	2.9238137
Н	-1.7063883	-4.5104814	4.7786793
С	-1.8579248	-3.6331909	4.1551105
С	-2.6297498	-3.7224249	2.9948672
Н	-3.0832443	-4.6703042	2.7150648
С	-2.8174340	-2.5980397	2.1910579
Н	-3.4182646	-2.6796550	1.2881029
С	-2.2394413	-1.3614395	2.5277342
С	-1.4820584	-1.2881341	3.7108934
Н	-1.0359043	-0.3401868	4.0004246
С	-1.2870686	-2.4105874	4.5132017
Н	-0.6885379	-2.3326688	5.4173675
Н	-2.7225693	-0.8455537	-1.3904675
С	-3.7181776	-0.6034564	-1.0266278
С	-4.8174079	-0.7876202	-1.8664404
Н	-4.6719866	-1.1702584	-2.8735684
С	-6.1003832	-0.4780386	-1.4139547
Н	-6.9575637	-0.6142231	-2.0679838
С	-6.2790881	0.0086639	-0.1172776
Н	-7.2767607	0.2496445	0.2406804
С	-5.1772618	0.1922823	0.7165172
Н	-5.3278193	0.5790367	1.7221517
С	-3.8750420	-0.1041879	0.2776656
н	2.0759682	-0.6295029	-1.0143125
С	1,4070288	-0.2211960	-1.7681554
Ĉ	0.1866315	0.3575658	-1.3726346
Ĉ	-0.6485644	0.8753909	-2.3820266
Н	-1.5963383	1.3317660	-2.1087111
С	-0.2828364	0.8162572	-3.7250901
н	-0.9472120	1.2216613	-4.4839986
С	0.9319982	0.2348815	-4.0961919
н	1,2169682	0.1843689	-5.1435834
С	1,7760969	-0.2826152	-3.1126533
н	2.7232112	-0.7373110	-3.3929935
P	-2 2728451	2 1716027	2 6297505
Ċ	-2 2124223	3 5126673	1 4087730
ĉ	-3 2514444	4 0954043	0 4661446
C	-4.6272721	4.0614684	1.1558039
н	-4 9297731	3 0268249	1 3472483
н	-5 3907283	4 5326928	0 5244402
н	-4 5884841	4 5886470	2 1151113
C	-2 8611378	5 5605312	0 1824337
ц	-3 5718554	6 0335501	-0 5083931
ц	-1 8624568	5 6027459	-0 2687593
н	-2 8387822	6 1377270	1 1131635
C	-3 330000022	3 3/50/16	_0 8770460
с ц	-3.5339223	2 201/010	-0.07766205
п ц	-3.JOI40J4 -2 3772/01	2.2914910	-0.1100293
п u	-2.3//2491 _/ 1103/61	3.4000420 3.77037/3	-1 507/000
r1	-4.1123401	5.1195143	-1.JZ/4023

10.10. Cartesian coordinates of Int-4

In	t-4		
Ε (TPSS-D3/def2-TZ	ZVP) =	-2716.983562871
(c	onv)		
Lot	west Freq. =	15.28 cm^-	·1
Si	-2.2937462	0.3520107	1.1118906
Si	-0.3694690	2.4199858	0.9158198
Si	-0.0191179	0.1787944	0.4799219
С	0.6351848	3.6328370	1.9935556
Ν	1.3103280	3.3300883	3.1368186
С	1.9871454	4.4412285	3.6274465
С	1.2557226	2.0313854	3.8067616
С	1.7253080	5.4683187	2.7586959
Ν	0.9011988	4.9480963	1.7656521
С	0.3592816	5.7271253	0.6493102
Η	0.6367095	1.3682356	3.2015320
Η	0.8109801	2.1474050	4.7982661
Η	2.2571729	1.6057251	3.8906573
Η	-0.2243169	6.5633391	1.0416158
Η	-0.2969976	5.0643106	0.0738426
Η	1.1796005	6.1026412	0.0316311
С	2.7982289	4.3943278	4.8755939
С	2.1653558	6.8910427	2.7668191
Η	2.7998133	7.0814507	3.6348680
Η	1.3092494	7.5737868	2.8157912

Н	2.7381438	7.1405253	1.8663734	С	1.5068324	4.4070749	-2.5981054
ч	2 1863165	1 1169704	5 7/18219	N	0 3196693	1 0527986	-1 9660236
п	2.1003103	4.1109/04	J./410219	IN C	0.3190093	4.0327988	-1.9000230
Н	3.2379947	5.3738422	5.0733881	C	-1.0011479	4.1092274	-2.5877634
Н	3.6135079	3.6657365	4.7975418	H	3.0801453	2.2748378	0.4969523
Н	4.3981354	-0.7971745	2.6812716	н	1.8663971	3.1617481	1,4605530
Ċ	2 2011016	1 1500064	0 500000	11	2 2661024	2 0020007	0 0251005
C	3.3044040	-1.1302904	2.3230044	п	3.3331024	3.9920007	0.9231003
С	2.4824359	-0.4054841	1.7716108	H	-1.2531606	5.1437462	-2.8348869
С	1.1671756	-0.8490015	1.5405653	Н	-1.7195456	3.7176198	-1.8685858
Ċ	0 79/1326	-2 0890754	2 0867449	ц	-1 0130199	3 / 868931	-3 /850/1/
0	0.7941320	-2.0090734	2.000/449	п	-1.0130199	3.4000931	-3.4030414
Н	-0.2134252	-2.4635781	1.9270866	C	3.9868988	4.3408210	-1.8090942
С	1.6883858	-2.8452593	2.8453554	С	1.5395327	4.9188283	-3.9958334
Н	1 3722421	-3 7979097	3 2623355	н	2 5699536	5 1117255	-4 3011372
~	2.0052557	0.007000	2 0 0 0 2 5 1 4	11	0.0752557	5 0F21610	1.00011072
C	2.9853557	-2.380/339	3.0683314	н	0.9/5355/	2.8231018	-4.0969623
Н	3.6829487	-2.9696159	3.6578822	H	1.1073140	4.1900515	-4.6912845
Н	2.8052261	0.5448865	1.3478649	Н	4.3625846	5.0672403	-1.0788597
ц	-3 5398510	-2 9139916	5 7637815	ц	1 2150269	1 7036292	-2 8061276
	3.3350310	2.0100000	1.0001500	11	4.2450205	9.7050252	2.0001270
C	-3.305328/	-2.3085686	4.8921530	Н	4.51/0/9/	3.3959863	-1.643/854
С	-4.2230984	-2.1961556	3.8473557	H	3.2546839	-0.6667306	2.3407330
н	-5 1771598	-2 7144783	3 9040091	C	2 6719863	-0 9120015	1 4559136
~	2 0170440	1 4000010	0.705(010	Ő	1 5017260	0.0120010	1 1770015
C	-3.91/0449	-1.4232310	2.7256210	C	1.501/200	-0.20/963/	1.1//9015
Н	-4.6369764	-1.3533677	1.9138548	С	0.7181914	-0.5049545	0.0465870
С	-2.6938976	-0.7384446	2.6203883	С	1,1482302	-1.5532999	-0.7870237
Ĉ	_1 7001503	_0 9677572	3 6003000	- ц	0 5590196	_1 0203022	_1 6615331
C	-1.7001393	-0.0077372	5.0005292	п	0.5569460	-1.0203022	-1.0013331
Н	-0.8291364	-0.3575383	3.6378216	С	2.3205671	-2.2595170	-0.5150862
С	-2.0811234	-1.6412538	4.8092005	Н	2.6326565	-3.0645937	-1.1757992
н	-1 3562581	-1 7292110	5 6150311	C	3 0891907	-1 9391445	0 6056044
	1.5502501	1.7292110	0.0100011		5.0051507	1.)))1111	0.0000044
Н	-2.5080094	-2.1484958	-0.3/4409/	Н	3.9999526	-2.491/144	0.8202419
С	-3.3063912	-1.5151654	-0.7586650	H	1.1720300	0.5746118	1.8590701
С	-4.1303251	-2.0028422	-1.7724506	Н	-0.7848453	-0.5840748	6.4112306
	2 0746254	2 0044210	0 1651120		1 1507075	0 2072010	E 1000130
н	-3.9/46254	-3.0044318	-2.1651130	C	-1.159/0/5	-0.39/2919	5.4080430
С	-5.1473249	-1.1980549	-2.2879283	С	-0.6899977	-1.1505661	4.3311219
Η	-5.7897428	-1.5714942	-3.0812017	Н	0.0517847	-1.9296199	4.4916179
C	-5 3307774	0 0915152	-1 7852737	C	-1 1728958	-0 9066363	3 0445034
	6 1171670	0.0010102	2.1032137		1.1/20000	1 5064007	0.0100547
н	-6.11/16/2	0.7251622	-2.18/8145	H	-0./98/342	-1.5064037	2.2190547
С	-4.5004869	0.5729876	-0.7731285	С	-2.1363629	0.0880683	2.7945890
Н	-4.6405895	1.5842863	-0.4032309	C	-2.5875618	0.8362684	3.8987153
Ċ	2 4750520	0.2210452	0.2266020		2 2262027	1 6102520	2 7270062
C	-3.4/50520	-0.2210452	-0.2300928	н	-3.3263937	1.0102030	3.1319903
Н	2.2137647	-1.2982868	-0.8691503	С	-2.1135039	0.5971445	5.1886354
С	1.5282597	-0.9785479	-1.6501276	Н	-2.4824492	1.1915420	6.0209013
Ċ	0 3806517	-0 2401333	-1 3115107	ц	-1 9182672	-0 0500800	-1 0/20058
C	0.5000517	0.2401555	1.511510/	11	4.9102072	0.0550055	1.0420000
С	-0.4987656	0.1339894	-2.3447086	С	-4.8851072	-0.9625133	-0.4360697
Η	-1.3907397	0.7034449	-2.0964922	С	-5.7473837	-2.0118736	-0.7487072
C	-0 2289470	-0 2072893	-3 6687507	н	-6 4164952	-1 9283604	-1 6021118
	0.2200470	0.2072055	4 4517400	11	5.4104992	2 1 4 0 2 5 0 5	1.0021110
Н	-0.92314/3	0.08/2651	-4.451/488	C	-5./625282	-3.1623505	0.0421579
С	0.9206539	-0.9323646	-3.9889914	H	-6.4376786	-3.9810012	-0.1927328
Н	1,1273420	-1.2012728	-5.0218759	С	-4.9107822	-3.2442220	1.1449953
C	1 7000517	-1 3190706	-2 0750033	U U	_/ 0211595	_1 1314010	1 77/07/3
C	1./99031/	-1.3109/00	-2.9/59955	п	-4.9211383	-4.1314010	1.//42/43
Н	2.6927651	-1.8894985	-3.2169059	С	-4.0411729	-2.1953841	1.4447987
Ρ	-1.9829068	2.9130521	-0.3901202	Н	-3.3843612	-2.2809759	2.3062460
C	-2 2004147	2 2156260	1 /182105	C	-3 9952931	-1 0208061	0 6542681
č	2.2004147	2.2130200	1.4102103		1 0010000	1.0200001	0.0342001
C	-2.9838561	3.00546//	2.4886200	Н	1.0212003	0.6550952	-2.543/529
С	-4.4895703	2.7580215	2.2743988	С	0.0250109	0.7663106	-2.9664822
Н	-4 7958115	3 1279390	1 2901842	C	-1 0990660	0 6467577	-2 1255319
TT	E 0027220	2 2747507	2 0207706	Ő	2.000000	0.7077050	2.1200010
н	-3.083/326	3.2/4/50/	3.038//86	C	-2.306//84	0.1911238	-2./148689
Н	-4.7189423	1.6876411	2.3288115	H	-3.2515246	0.7119834	-2.0913070
С	-2.5982450	2.5375245	3.9034776	С	-2.5109503	1.0549645	-4.0783615
н	-3 1566892	3 1022280	4 6610461	ц	-3 5043645	1 1601049	-4 5069185
11	1 5001012	0 7010015		п	1 2005005	1 1 4 7 9 6 7 9 9	4.0000100
Н	-1.5281813	2./018816	4.0/68626	C	-1.3825997	1.1672582	-4.8937672
Н	-2.8084646	1.4754387	4.0453173	Н	-1.4922261	1.3577768	-5.9581301
С	-2.7195837	4,5162872	2.3953604	C	-0.1113200	1.0197197	-4.3316380
U U	_2 0100400	A 001000E	1 2016160		0 773/700	1 0064105	_/ 050000
ri -	-2.9109426	4.001U995	1.3013130	Н	0.1/34/92	1.0904105	-4.909823/
Н	-1.6769731	4.7415028	2.6501831	P	-1.0226649	3.4398328	2.4291820
Н	-3.3614386	5.0562065	3.1024279	С	-2.1645088	3.3678828	1.1082139
				Ċ	-3 4580061	4 0968603	0 8418602
				~	2.400001		0.0410002
				C	-3.0923350	5.5/46908	0.3522053

10.11. Cartesian coordinates of TS1

TS1 E(TP	SS-D3/def2-T	ZVP) = -	2716.937095600
Lowe	st Freq. =	-37.91 cm^-1	
Si	-2.8629024	0.4604923	1.0640360
Si	-0.6440178	2.6319018	0.4333396
Si	-0.8974433	0.4302696	-0.2522771
С	0.5521415	3.5975086	-0.7092355
Ν	1.9001498	3.6716283	-0.5495693
С	2.5123178	4.1630208	-1.6993181
С	2.6046893	3.2451772	0.6604204

-2.5681687

-4.0003622

-2.4357076

-4.2277118

-5.1324117

-4.5042435

-3.6192544

-4.3560391

-3.8246765

-4.6425549

-5.2632538

Η

Н

Н

С

Η Н

Н

С

Н Η

Н

6.0104074

6.1560629

5.6493939

3.5245096

4.1157585

2.4857268

3.5358633

4.0313783

4.4095663

2.9905987

4.6299619

1.4082367

0.3532672

-0.3220153

-0.3575167

-0.5446604

-0.1517788

-1.2680080

2.0897038

2.9699928

2.2740702

1.9446504

10.12. Cartesian coordinates of TS2

TS2				
E (TPS	SS-D3/def2-T2	ZVP)	= •	-2716.957169181
(conv	7)			
Lowes	st Freq. =	-70.84	cm^-1	
Si	-2.5235331	0.741	19087	0.7080324
Si	-0.4445265	2.463	35920	1.2707135
Si	-0.1868799	0.279	91203	0.6877082
C	0.8034513	3.714	45869	1.9008196
N	0.7095195	4./5	96847 10951	2.7780629
C	-0 5199195	5 170	102J1 27271	2.93/9219
c	2 8371326	4 704	17936	2 1495671
N	2.1203197	3.69	16812	1.5190531
С	2.6679129	2.712	27623	0.5806552
Н	-0.2958346	5.45	71515	4.4726088
Н	-1.2251694	4.340	08224	3.4158614
Н	-0.9633975	6.029	98620	2.9156641
Н	3.6620377	3.03	72309	0.2739888
Н	2.0199530	2.642	23390	-0.2968089
Н	2.7274609	1.72	54264	1.0474342
С	2.1344274	6.56	14480	3.8277124
С	4.2943170	4.92.	35241	1.9298720
H	4.6353391	5./6	/9181 20457	2.5324492
п u	4.J1/02/3	J.14:	504J/	2 2177102
п u	4.0030773	7 3 2 9	57389	3 5467728
н	3 1637376	6 919	94609	3 7592005
Н	1.9337806	6.314	47727	4.8771338
н	1.5700720	-1.01	50534	5.2113811
С	1.1493687	-1.379	99299	4.2776195
С	0.8818733	-0.489	93625	3.2377272
С	0.3308001	-0.93	17853	2.0230552
С	0.0525522	-2.304	44648	1.8889822
Н	-0.4100033	-2.674	48769	0.9773976
С	0.3179953	-3.19	78178	2.9239697
Н	0.0767616	-4.250	04672	2.8046571
С	0.8678001	-2.73	72733	4.1216287
Н	1.0661115	-3.432	23464	4.9331104
H	1.0851810	4 000	LU928	3.3/5/210
С	-3 5135927	-3 110	14976	3 2941741
C	-3.7054768	-3.13	14207	1.9114946
Н	-4.0239833	-4.048	37663	1.4209574
С	-3.4892708	-1.970	51486	1.1582986
Н	-3.6375415	-2.010)3824	0.0803473
С	-3.0807587	-0.773	30592	1.7607591
С	-2.9046220	-0.776	68796	3.1538861
Н	-2.5845339	0.139	98643	3.6472559
С	-3.1126358	-1.920	66643	3.9153424
Н	-2.9578799	-1.902	28059	4.9915064
Н	-2.1114437	0.694	49153	-2.2596010
C	-3.1839609	0.63	25017	-2.0939831
U U	-3 6446263	0.50	53017 52077	-1 1002492
С	-5 4278073	0.53	78525	-2 9850181
н	-6.1041179	0.514	42060	-3.8355566
C	-5.9355097	0.514	47150	-1.6853199
H	-7.0096681	0.474	15090	-1.5219554
С	-5.0641685	0.53	54812	-0.5950003
Н	-5.4683098	0.493	30974	0.4139813
С	-3.6747237	0.620	04202	-0.7789456
Н	1.8614418	-1.753	30559	-0.2163459
С	1.7190449	-1.050	02883	-1.0338173
С	0.8021057	0.004	42853	-0.8894034
С	0.6527936	0.902	20796	-1.9634376
H	-0.0502836	1.72	52266	-1.8663541
C	1.3868962	0.75	11731	-3.1380686
п	1.2326254 2.2011560	1.45 _0 20/	JJJJ⊥/ S5/60	-3.9004991
U U	2 9621070 2 9621070	-0.300	00400 00101	-J.2049030 -/ 1905720
п С	2.00049/U 2 4549601	-0.42	56351	-4.1003/20 -2 2102776
H	3.1580198	-2.020	961.58	-2.3031924
P	-2.5459905	2.572	25394	2.0371655
С	-1.9033495	2.852	21009	0.2279778
С	-2.2984586	4.06	92332	-0.5944901
С	-3.8097298	4.032	29466	-0.9013738

H	-4.0707745	3.1513736	-1.4900631
H	-4.1037553	4.9294955	-1.4615666
H	-4.3820783	4.0029918	0.0324542
С	-1.9945801	5.3824886	0.1544172
H	-2.3298837	6.2556820	-0.4210456
H	-0.9161384	5.4785619	0.3320671
H	-2.5142226	5.3870307	1.1194901
2	-1.5125608	4.0558797	-1.9176680
H	-1.7451600	3.1520006	-2.4890295
H	-0.4329300	4.0779544	-1.7211211
H	-1.7673612	4.9275120	-2.5335668

10.13. Cartesian coordinates of TS3

TS3			
E (TE	SS-D3/def2-T	ZVP) =	-2716.946710219
(cor	177)	,	
T 0110	at Emor -	120 04 cm	1
LOWE	st rreq	-129.94 Cill -	-1
Sı	-2.2144135	0.3959606	1.8737466
Si	-1.3657024	3.1991353	3 1.7232847
Si	-1.5323738	1.6631585	0.0316277
C	-1 0019130	5 0245487	7 1 9053401
NT	1 1000504	5.0243407	2.000000
IN	-1.1282594	5.8654307	2.9765738
С	-0.6905137	7.1497451	2.6525462
С	-1.6688979	5.4765360) 4.2744704
С	-0.2567998	7.1045656	1.3567621
N	-0 4409527	5 7936653	0 9193954
11	0.1000027	5.7550055	0.0100000
C	-0.161/260	5.3141/44	-0.4328598
Н	-1.0394587	5.8875434	5.0672071
Н	-1.6784167	4.3840003	4.3239109
Н	-2.6933361	5.8421349	4.3859464
ч	-1 0139101	5 503/771	-1 0924665
11	1.0133101	4 0004771	1.0524005
Н	0.0234901	4.2384801	=0.391/465
Н	0.7260999	5.8189102	-0.8168143
С	-0.7363007	8.2744903	3.6276003
С	0.3148724	8.1665311	0.4828796
н	0 3204664	9 1206132	2 1 0139674
11	0.0200000	0 000050	
н	-0.2/20882	8.2929534	-0.4341654
Н	1.3472218	7.9396752	2 0.1902030
Н	-1.7527763	8.4361393	4.0046819
Н	-0.4023500	9.1972054	3.1483920
н	-0 0863956	8 0903455	5 4 4 9 1 4 9 1 3
TT	2 5400520	1 7450043	0 0706761
п	3.3409339	1.7459043	-0.0708781
С	2.6466529	1.3234623	-0.5232294
С	1.3831931	1.7339731	-0.0951532
С	0.2046467	1.2149221	-0.6541194
С	0.3480284	0.2604574	-1.6789740
U U	-0 5413400	_0 1592171	-2 1/500/9
п а	-0.5415400	-0.1302171	-2.1439940
С	1.6044123	-0.1642472	-2.1100934
Н	1.6850662	-0.9103059	9 -2.8970871
С	2.7598175	0.3684429	-1.5339239
Н	3.7398743	0.0424166	5 -1.8721752
и Ц	1 3025701	2 4690810	0 7073934
11	1 7224705	2.900010	1 2002477
Н	1./324/25	-3.0/62565	4.30834//
С	0.9865404	-2.4303453	3.8523619
С	-0.3539566	-2.8185370) 3.8265354
Н	-0.6536902	-3.7676161	4.2642515
C	-1 3094120	-1 9915830	3 2348282
11	2 2400051	2 2074640	2 2120202
п	-2.3490031	-2.30/4043	5.2130231
С	-0.9477728	-0.7618725	2.6583894
С	0.4072618	-0.3893568	3 2.6975290
Н	0.7132370	0.5526297	2.2499245
C	1 3663273	-1 2120234	1 3 2858738
11	2 /101220	0 0000700	2 2000700
п	2.4101330	-0.9080799	3.2902307
Н	-2.659//32	-1.9559285	0.1/454//
С	-3.6344160	-1.7041480	0.5887183
С	-4.7471814	-2.4575724	0.2181876
Н	-4.6348101	-3.2882152	-0.4738264
C	-6 006/130	-2 1302222	0 7313121
	0.0004139	2.1332232	
н	-0.8/68552	-2.7211326	0.4400112
С	-6.1419959	-1.0724234	1.6204949
Н	-7.1194365	-0.8213571	2.0245588
С	-5.0231769	-0.3247049	1.9897252
н	-5 1388110	0 506958/	2 6800233
	2 7E10170	0 6001045	
C	-3./5181/8	-0.020124/	1.4///003
Н	-0.9978540	2.7898465	-2.6841769
С	-2.0138594	2.4003675	-2.7034606

С	-2.5334355	1.7659034	-1.5629953
С	-3.8293342	1.2293076	-1.6386550
Н	-4.2476162	0.7382467	-0.7654305
С	-4.5818085	1.3283908	-2.8072047
С	-4.0623672	1.9962756	-3.9195539
Н	-4.6552540	2.0910779	-4.8255588
С	-2.7761306	2.5344844	-3.8654311
Н	-2.3647825	3.0493165	-4.7303995
Р	-2.8562151	2.2333626	3.0512278
С	-3.2230200	2.8282469	1.3186872
С	-4.3405393	3.8328688	1.0249218
С	-5.6743337	3.0612370	0.9254421
Н	-5.6119626	2.2745708	0.1708276
Н	-6.4932699	3.7422312	0.6594843
Н	-5.9127048	2.5960790	1.8875336
С	-4.5034619	4.9105961	2.1167687
Н	-5.3817066	5.5389004	1.9156524
Н	-3.6229759	5.5614396	2.1421141
Н	-4.6283701	4.4481233	3.1022924
С	-4.0764431	4.5516564	-0.3110193
Н	-4.0027474	3.8446756	-1.1385477
Н	-3.1366238	5.1140351	-0.2524622
Н	-4.8848172	5.2616338	-0.5274269
Н	-5.5773590	0.8937303	-2.8486586

10.14. Cartesian coordinates of TS4

TS4						
E(TPSS-D3/def2-TZVP) = -2716.968502674						
(con	v)					
Lowe	st Freq. =	-77.75	5 cm^-	1		
Si	-2.3691357	0.10	516579	1.2335008		
Si	-0.5032018	2.11	L96122	2.0922740		
Si	-0.1346538	0.31	L34030	0.5634487		
С	-0.0449704	3.50	526971	3.2474829		
Ν	0.2006995	3.30	543451	4.5793035		
С	0.7367324	4.50)37585	5.1673811		
С	-0.0888468	2.1	171375	5,2860498		
Ĉ	0.8386548	5.44	412523	4.1736267		
N	0 3605312	4 84	143456	3 0103857		
C	0.2689023	5 53	204845	1 7169887		
u u	-0.3019107	1 31	500286	1 5346718		
и П	-0.9603195	2.2	1010200	5 03/1669		
11	0.7702020	1 01	17002	5.9341000		
п	0.1792039	1.04	21/002	1 7757707		
н	-0.4601753	0.33	330293 700750	1.//5//8/		
H	-0.0662666	4./	/88/39	0.9836598		
н	1.2486357	5.94	211491	1.4442535		
С	1.08/0154	4.50	089515	6.6136/58		
С	1.3361406	6.84	447023	4.2036528		
Н	1.6242865	7.11	L81672	5.2208232		
Н	0.5669391	7.54	192037	3.8669696		
Н	2.2117982	6.9	759832	3.5573586		
Н	0.2194660	4.34	491616	7.2465143		
Н	1.4456294	5.50	586423	6.8670321		
Н	1.8763481	3.85	526803	6.8707787		
Н	3.2552032	-0.86	573315	4.1921892		
С	2.6408218	-1.23	391663	3.3748643		
С	1.8787496	-0.35	522501	2.6117104		
С	1.0889926	-0.79	928417	1.5419108		
С	1.0988128	-2.17	709341	1.2547083		
Н	0.5074079	-2.54	180298	0.4223605		
С	1.8378606	-3.06	588707	2.0243237		
Н	1.8085891	-4.13	314141	1.7955273		
С	2.6134400	-2.60)47587	3.0888744		
Н	3.1937381	-3.30	2.0877	3.6874326		
Н	1.8805422	0.7	02048	2.8554718		
н	-3 6358182	-2 90	138137	5 9866428		
Ċ	-3 4023150	-2 34	186107	5 0817549		
c	-1 /10592/	-2.0	527105	4 1622609		
u u	-5 /3113/1	-2.00	762841	1 3517927		
C	-4 1074615	-1 3/	160520	2 0070513		
U U	-1 0000113	-1 11	100020	2.33/3313		
п С	4.2002443 _2 7076022	-1.12	102070	2.20J0J3J 2 720/620		
c	1 7065400	-0.9	1203/3	2./204020		
	-1./303408	-1.22	209044 250202	3.0040033 3.4653073		
п	-0.//08335	-0.92	2005503	3.40339/3		
C	-2.09186/3	-1.90	y∠558	4.82//582		
Н	-1.2986813	-2.18	337100	5.5304939		

Н	-3.3421431	-2.4709440	0.3481241
С	-3.7139101	-1.7571303	-0.3842830
С	-4.4265883	-2.2246079	-1.4880869
Н	-4.6054914	-3.2902956	-1.6068421
С	-4.9060276	-1.3246197	-2.4412401
Н	-5.4603515	-1.6859714	-3.3034805
С	-4.6680976	0.0412315	-2.2815609
Н	-5.0350773	0.7477748	-3.0219049
С	-3.9571009	0.5025923	-1.1738384
Н	-3.7635123	1.5661483	-1.0691537
С	-3.4669069	-0.3844587	-0.1996337
Н	2.4237640	-0.5876657	-0.7120182
С	1.7075822	-0.4532864	-1.5186224
С	0.4019928	-0.0261952	-1.2220193
С	-0.4964853	0.1252423	-2.2925628
Н	-1.5045923	0.4751929	-2.0919626
С	-0.1175894	-0.1652077	-3.6003428
Н	-0.8386364	-0.0618619	-4.4075122
С	1.1883577	-0.5804840	-3.8760415
Н	1.4899827	-0.7938050	-4.8984289
С	2.1026765	-0.7158569	-2.8322405
Н	3.1224957	-1.0319702	-3.0382301
P	-1.2974659	2.5979947	0.0734925
С	-2.3462450	2.0117855	1.5771259
С	-3.4694810	2.8552919	2.2057854
С	-4.7984527	2.5779949	1.4770701
Н	-4.7373044	2.8926838	0.4311124
Н	-5.6180719	3.1285794	1.9554812
Н	-5.0440167	1.5110198	1.4963823
С	-3.6315278	2.4648717	3.6881909
Н	-4.4766582	3.0000945	4.1394564
Н	-2.7237884	2.7229374	4.2452527
Н	-3.8020250	1.3903733	3.7984746
С	-3.1830088	4.3632793	2.1209835
Н	-2.9987734	4.6648005	1.0845889
Н	-2.3052913	4.6255003	2.7208084
Н	-4.0363481	4.9338383	2.5079880

10.15 Cartesian coordinates of Int-5

Int	-5		
E(TI	PSS-D3/def2-TZ	VP) = -2333.	180756727
(coi	nv)		
Lowe	est Freq. =	5.82 cm^-1	
Int	5 (014/c1/tps	s-d3.def2-TZV	VP)
Si	-0.9033896	1.3443983	0.2110211
Si	-0.8954523	-0.7676400	1.0648923
Si	0.2500140	0.9665135	2.3425764
С	-4.8191855	3.8767048	0.6720560
С	-4.3513698	3.1098537	1.7419323
Н	-4.9020779	3.0872309	2.6785201
С	-3.1757394	2.3750781	1.6121406
С	-2.4469767	2.3826568	0.4089864
С	-2.4275048	-1.1646954	2.0799775
С	-3.6981464	-1.1484993	1.4776833
С	-4.8472820	-1.4145983	2.2203488
Н	-5.8212331	-1.3904799	1.7390310
С	-4.7469107	-1.7012438	3.5829964
С	1.4267899	2.2505048	-3.7606333
С	1.5909766	3.0811227	-2.6498918
H	2.2661735	3.9311641	-2.7009850
С	0.8967044	2.8145590	-1.4714867
С	0.0186586	1.7196886	-1.3804337
С	-0.1397949	0.9000170	-2.5111200
С	0.5600107	1.1596820	-3.6901816
Н	0.4290132	0.5109055	-4.5521219
С	-0.1241378	-2.2816531	0.2866855
C	0.7792352	-2.1905868	-0./8/8861
C	1.3468868	-3.33550/8	-1.3429276
н	2.03/8384	-3.2459295	-2.1//4/89
C	1.0255284	-4.5956982	-0.834/083
U TI	0.1281229	-4./042392 5.6004400	0.228//10
п	-0.1297013	-J.0024409	0.02000/4
C	-0.4423907	-3.3309100	3 1512103
c	-3 /95217/	-1 7186705	J.4J42403 / 1000600
	- 3.4932174	-1./100/0J	5 0610640
п	-3.414143/	-1.9332100	3.∠0⊥064∠

С	-4.1043690	3.9034441	-0.5259335	Н	1.0443264	3.4564934	-0.6061736
Н	-4.4615619	4.5019883	-1.3599469	Н	-0.8124274	0.0471488	-2.4628855
С	-2.9301676	3.1615823	-0.6571792	Н	1.9741879	2.4528927	-4.6772087
Ρ	2.0012681	0.5685872	1.0316385	С	4.9593252	-1.6403606	-0.0605255
С	3.3341919	0.1475742	0.3723499	Н	4.1517713	-2.3451969	-0.2763037
С	4.5265704	-0.1955007	-0.4093981	Н	5.2150675	-1.7204560	0.9998440
Н	-5.6427251	-1.9034289	4.1639255	Н	5.8383511	-1.9125374	-0.6563326
Н	-1.3765622	-1.4463822	3.9446102	С	4.1853599	-0.1017627	-1.9171643
Н	-3.7864509	-0.9079655	0.4210067	Н	3.8499417	0.9057859	-2.1750393
Н	-1.1455819	-3.6556105	1.6067485	Н	3.3882939	-0.8041877	-2.1744881
Н	1.4682726	-5.4882062	-1.2683109	Н	5.0750430	-0.3459362	-2.5094345
Η	1.0350694	-1.2169220	-1.1944617	С	5.6692427	0.7919271	-0.0732639
Н	-2.3812974	3.1878231	-1.5956196	Н	5.3763246	1.8163019	-0.3205791
Н	-5.7343841	4.4534574	0.7741376	Н	6.5617502	0.5304849	-0.6533901
Η	-2.8234014	1.7850565	2.4554524	Н	5.9168610	0.7481244	0.9911211