A Facile Assembly of Bifunctional, Magnetically Retrievable Mesoporous Silica for Enantioselective Cascade Reactions

Zhongrui Zhao \ddagger, Fengwei Chang \ddagger, Tao Wang, Lijian Wang, Lingbo Zhao, Cheng Peng, and Guohua Liu*
Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China

CONTENTS

\qquadExperimental.S2
Figure S1. FT-IR spectra of 4 and catalyst 5. S3
Figure S2. TG/DTA curves of 4 and catalyst 5 S4
Figure S3. Solid-state ${ }^{13} \mathrm{C}$ CP/MAS NMR spectra of $\mathbf{4}^{\prime}$ and catalyst $\mathbf{5}^{\prime}$. S5
Figure S4. Solid ${ }^{-}$state ${ }^{29}$ Si MAS NMR spectra of $\mathbf{4}^{\prime}$ and catalyst $\mathbf{5}^{\prime}$ S5
Figure S5. (a) SEM and TEM (b) images of catalyst 5. S6
Figure S6. Nitrogen adsorption-desorption isotherms of 4 and catalyst 5.. S6
Figure S7. Time course for the cascade reaction of (E)-1-(4-styrylphenyl)thanone catalyzed by 5 S7
Table S1. Optimizing reaction conditions for the Suzuki cross-coupling/ATH cascade reaction of 4- iodoacetophenone and phenylboronic acid. S7
Figure S8. HPLC analyses for chiral products. S8
Table S2. Reusability of catalyst 5 in the Suzuki cross-coupling/ATH cascade reaction of $4-$ iodoacetophenone and phenylboronic acid. S42
Figure S9. HPLC analyses for the 5-catalyzed Suzuki cross-coupling/ATH cascade reaction of 4- iodoacetophenone and phenylboronic acid S42
Table S3. Reusability of catalyst 5 in the successive reduction/ATH of (E)-1-(4-styrylphenyl)than-1- one. S46
Figure S10. HPLC analyses for the 5-catalyzed reduction/ATH of (E)-1-(4-styrylphenyl)thanone. S46
Figure S11. Characterizations of chiral products. S49

Experimental

1. General: All experiments, which are sensitive to moisture or air, were carried out under an Ar atmosphere using the standard Schlenk techniques. Tetraethoxysilane (TEOS), 1,4-bis(triethyoxysilyl)ethane, cetyltrimethylammonium bromide (CTAB), fluorocarbon surfactant ($\mathrm{FC}-4: \quad\left[\mathrm{C}_{3} \mathrm{~F}_{7} \mathrm{O}\left(\mathrm{CF}\left(\mathrm{CF}_{3}\right) \mathrm{CF}_{2} \mathrm{O}\right)_{2} \mathrm{CF}\left(\mathrm{CF}_{3}\right) \mathrm{CONH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}^{+}\right.$ $\left.\left.\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{CH}_{3}\right] \mathrm{I}^{-}\right)$, 4-(2-(trimethoxysilyl)ethyl)benzene-1-sulfonyl chloride, 4-(methylphenylsulfonyl)-1,2-diphenylethylenediamine [(S,S)-TsDPEN], PdCl_{2}, $(\text { MesityleneRuCl })_{2}$ were purchased from Sigma-Aldrich Company Ltd and used as received. Compound of (S,S)-4-(trimethoxysilyl)ethyl)phenylsulfonyl-1,2-diphenylethylenediamine [J. Mater. Chem. 2010, 20, 1970-1975.] were synthesized according to the reported literature.
2. Characterization: Ru and Pd loading amounts in the catalyst were analyzed using an inductively coupled plasma optical emission spectrometer (ICP, Varian VISTA-MPX). Fourier transform infrared (FT-IR) spectra were collected on a Nicolet Magna 550 spectrometer using KBr method. Scanning electron microscopy (SEM) images were obtained using a JEOL JSM-6380LV microscope operating at 20 kV . Transmission electron microscopy (TEM) images were performed on a JEOL JEM2010 electron microscope at an acceleration voltage of 220 kV . Nitrogen adsorption isotherms were measured at 77 K with a Quantachrome Nova 4000 analyzer. The samples were measured after being outgassed at 423 K overnight. Pore size distributions were calculated by using the BJH model. The specific surface areas ($S_{\text {BET }}$) of samples were determined from the linear parts of BET plots ($p / p_{0}=0.05-1.00$). Solid state NMR experiments were explored on a Bruker AVANCE spectrometer at a magnetic field strength of 9.4 T with ${ }^{1} \mathrm{H}$ frequency of $400.1 \mathrm{MHz},{ }^{13} \mathrm{C}$ frequency of 100.5 MHz and ${ }^{29} \mathrm{Si}$ frequency of 79.4 MHz with 4 mm rotor at two spinning frequency of 5.5 kHz and 8.0 kHz , TPPM decoupling is applied in the during acquisition period. ${ }^{1} \mathrm{H}$ cross polarization in all solid state NMR experiments was employed using a contact time of 2 ms and the pulse lengths of $4 \mu \mathrm{~s}$.
3. General procedure for the preparation of catalyst 5. In a typical synthesis, (First step for the preparation of $\mathbf{3}$) the obtained solids $\mathbf{1}(0.20 \mathrm{~g})$ were suspended in an alkaline solution $(0.35 \mathrm{~mL}$ of NaOH $(2.0 \mathrm{M})$ in mixed 125.0 mL of water and 50.0 mL of ethanol with ultrasonication for 20 minutes. After that, an aqueous solution $(0.04 \mathrm{~g}$, 0.044 mmol$)$ of $\mathrm{FC}-4$ (FC-4: $\left.\left[\mathrm{C}_{3} \mathrm{~F}_{7} \mathrm{O}\left(\mathrm{CF}\left(\mathrm{CF}_{3}\right) \mathrm{CF}_{2} \mathrm{O}\right)_{2} \mathrm{CF}\left(\mathrm{CF}_{3}\right) \mathrm{CONH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}^{+}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{CH}_{3}\right] \mathrm{I}^{-}\right)$, 0.08 g (0.22 mmol) of cetyltrimethylammonium bromide (CTAB) and $0.20 \mathrm{~mL}(25 \mathrm{wt} \%)$ of $\mathrm{NH}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ in 3.0 mL of water) was added, and the mixture was stirred at $38^{\circ} \mathrm{C}$ for another 30 minutes. Next, $0.89 \mathrm{~g}(2.50 \mathrm{mmol})$ of $1,2-$ bis(triethoxysilyl)ethane and $0.15 \mathrm{~g}(0.30 \mathrm{mmol})$ of (S, S)-ArDpen-siloxane (2) in 2.0 mL of ethanol (2 minutes later) were added at room temperature, and the mixture was stirred under vigorous stirring for further 1.5 h . Finally, the temperature was raised to $80^{\circ} \mathrm{C}$ and the mixture was stirred at $80^{\circ} \mathrm{C}$ for another 3 h . After cooling the above mixture down to room temperature, the solid was collected by filtration to afford the $\mathrm{ArDpen} @ \mathrm{SiO}_{2} @ \mathrm{Pd} / \mathrm{C} @ \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathbf{3})$ as a black powder. (Second step for the selective etching) To remove the surfactant, the collected $\mathbf{3}$ were dispersed in 120 mL of solution ($80 \mathrm{mg}(1.0 \mathrm{mmol})$ of ammonium nitrate in 120 mL (95%) of ethanol), and the mixture was stirred at $60^{\circ} \mathrm{C}$ for 10 h . After cooling the above mixture down to room temperature, the solids were filtered and washed with excess water and ethanol, and dried at $60{ }^{\circ} \mathrm{C}$ under vacuum overnight to afford the ArDpen@ $\mathrm{Pd} / \mathrm{C}^{\mathrm{C}} \mathrm{Fe}_{3} \mathrm{O}_{4}$ (4) as a dark-gray powder. (Third step for the coordination) 50.0 mg of $\left(\mathrm{MesRuCl}_{2}\right)_{2}(0.086 \mathrm{mmol})$ was added to a suspension of $4(0.50 \mathrm{~g})$ in 20.0 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature, and the resulting mixture was stirred at $25^{\circ} \mathrm{C}$ for 12 h . The solids were filtered and rinsed with excess dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After Soxhlet extraction for 4.0 h in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the solids were collected and dried at $60^{\circ} \mathrm{C}$ under vacuum overnight to
afford the magnetic catalyst 5 as a light-gray powder. An inductively coupled plasma optical emission spectrometer (ICP-OES) analysis showed that the Pd and Ru loadings were $41.63 \mathrm{mg}(0.39 \mathrm{mmol}$ of Pd) and 9.27 mg (0.091 mmol of Ru) per gram of catalyst, respectively. ${ }^{13} \mathrm{C}$ CP/MAS NMR (161.9 MHz): 161.5-121.1 (\underline{C} of Ph and Ar groups), 109.7, 106.2 (\underline{C} of mesitylene), 78.2-72.9 ($\underline{C} \mathrm{H}$ of -NCHPh), 67.8-64.2 (\underline{C} of $-\mathrm{N}_{\underline{C}} \mathrm{H}_{2}$ and $-\mathrm{N}_{\mathrm{C}} \mathrm{H}_{3}$ in CTAB molecule), 38.4-28.7 $\left(\underline{\mathrm{C}} \mathrm{H}_{2}\right.$ of $-\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{Ar}$ and $\underline{\mathrm{C}}$ of $\underline{\mathrm{C}} \mathrm{H}_{3} \underline{\mathrm{C}} \mathrm{H}_{2}-$ in CTAB molecule), $24.4\left(\underline{C} \mathrm{H}_{3}\right.$ of mesitylene), 15.0-0.9 $\left(\underline{C} \mathrm{H}_{2}\right.$ of $\left.-\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{Si}\right) \mathrm{ppm} .{ }^{29} \mathrm{Si}$ MAS/NMR (79.4 $\mathrm{MHz}): \mathrm{T}^{2}(\delta=-57.7 \mathrm{ppm}), \mathrm{T}^{3}(\delta=-65.9 \mathrm{ppm}), \mathrm{Q}^{3}(\delta=-102.6 \mathrm{ppm}), \mathrm{Q}^{4}(\delta=-112.7 \mathrm{ppm})$.
4. General procedure for the enantioselective cascade reactions. A typical procedure was as follows. (For successive reduction/ATH enantioselective cascade reductions of styryl-substituted aromatic ketones) Catalyst $5\left(21.98 \mathrm{mg}, 2.0 \mu \mathrm{~mol}\right.$ of $\mathrm{Ru}, 8.57 \mu \mathrm{~mol}$ of Pd , based on ICP analysis), $\mathrm{HCO}_{2} \mathrm{Na}(1.0$ mmol), ketones (0.10 mmol), and 4.0 mL of the mixed solvents (${ }^{(} \mathrm{PrOH} / \mathrm{H}_{2} \mathrm{O} \mathrm{v} / \mathrm{v}=3 / 1$) were added sequentially to a 10.0 mL round-bottom flask. The mixture was then stirred at $50^{\circ} \mathrm{C}$ for $6-12 \mathrm{~h}$. (For successive reduction/ATH enantioselective cascade reductions of styryl-substituted aromatic ketones: catalyst 5 ($21.98 \mathrm{mg}, 2.0 \mu \mathrm{~mol}$ of $\mathrm{Ru}, 8.57 \mu \mathrm{~mol}$ of Pd , based on ICP analysis), $\mathrm{HCO}_{2} \mathrm{Na}$ (1.0 mmol), iodoacetophenones (0.10 mmol) and boronic acids $(0.12 \mathrm{mmol})$, and 4.0 mL of the mixed solvents $\left({ }^{i} \mathrm{PrOH} / \mathrm{H}_{2} \mathrm{O} \mathrm{v} / \mathrm{v}=3 / 1\right)$ were added sequentially to a 10.0 mL round-bottom flask. The mixture was then stirred at $60^{\circ} \mathrm{C}$ for $12-16 \mathrm{~h}$). During this period, the reaction was monitored constantly by TLC. After completion of the reaction, the catalyst was separated by centrifugation ($10,000 \mathrm{rpm}$) for the recycling experiment. The aqueous solution was extracted with ethyl ether $(3 \times 3.0 \mathrm{~mL})$. The combined ethyl ether extracts were washed with aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and brine, and then dehydrated with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of ethyl ether, the residue was purified by silica gel flash column chromatography to afford the desired product. The $e e$ values were determined using an HPLC analysis with a UV-Vis detector and a Daicel chiralcel column ($\Phi 0.46 \times 25 \mathrm{~cm}$).

Figure S1. FT-IR spectra of 4 and catalyst 5.

Figure S2. TG/DTA curves of 4 and catalyst 5.

Explanation: The TG/DTA curves of ArDpen@Pd/C@Fe $\mathrm{CO}_{4}(\mathbf{4})$ and catalyst 5 was treated in the air as shown above. For the ArDpen @ $\mathrm{Pd} / \mathrm{C} @ \mathrm{Fe}_{3} \mathrm{O}_{4}(4)$, an endothermic peak around 351 K with weight loss of (100-93.1) 6.9% could be attributed to the release of physical adsorption water. In addition, the weight loss of (93.1-66.2) 28.9% between 440 K and 1200 K could be assigned to the oxidation of the organic moieties (including alkyl-linked ArDPEN moiety, alkyl fragments and part of the residual surfactants). Because the totally weight loss of organic moieties was 28.9% per 93.1% the extracted catalyst when eliminated the part of water, meaning the whole weight loss 31.1% of the oxidation of the organic molecules per 100% materials.

For catalyst 5, it was found easily that a similar endothermic peak around 349 K with weight loss of (100-91.9) 8.1% were strongly similar to that of parent $\mathbf{4}$ due to the release of physical adsorption water. It was worth mentioning that the all exothermic peaks were combined into one complicated exothermic peak between 400 K and 1200 K with weight loss of (91.9-62.0) 29.9% could be assigned to the oxidation of organic molecules (including alkyl-linked MesityleneRuArDPEN complexes, alkyl fragments and part of the residual surfactants). Because the totally weight loss of organic moieties was 29.9% per 91.9% the extracted catalyst when eliminated the part of water, meaning the whole weight loss 32.5% of the oxidation of the organic molecules per 100% materials.

As compared the weight loss of $\mathbf{5}$ with $\mathbf{4}$, the weight loss of the MesityleneCl moieties was 1.4% (32.531.1) per 100% materials. This finding means that the mole amounts of [MesityleneCl] in $\mathbf{5}$ is 0.009003 $\mathrm{mol} \%(\mathrm{Mr}=155.5)$, demonstrating the $9.1741 \mathrm{mg}(0.09003 \mathrm{mmol}$ of Ru$)$ of the Ru loading per gram of 5.

Figure S3. Solid-state ${ }^{13} \mathrm{C}$ CP/MAS NMR spectra of $\mathbf{4}^{\prime}$ and catalyst $\mathbf{5}^{\prime}$.

Figure S4. Solid-state ${ }^{29}$ Si MAS NMR spectra of $\mathbf{4}^{\prime}$ and catalyst $\mathbf{5}^{\prime}$.

Figure S5. (a) SEM and TEM (b) images of catalyst 5.

Figure S6. Nitrogen adsorption-desorption isotherms of $\mathbf{4}$ and catalyst 5.

Figure S7. Time course for the cascade reaction of (E)-1-(4-styrylphenyl)ethanone catalyzed by 5 (the reaction was performed with $2.0 \mathrm{mmol} \% \mathrm{Ru}$ and $8.57 \mathrm{mmol} \% \mathrm{Pd}$ of catalyst 5 , 1 equivalent of $(E)-1-(4-$ styrylphenyl)ethan-1-one, and 10.0 equivalent of HCOONa at $50^{\circ} \mathrm{C}$)

Table S1. Optimizing reaction conditions for the Suzuki cross-coupling/ATH cascade reaction of 4iodoacetophenone and phenylboronic acid.

Entry	Solvent	base (H-resource)	${ }^{\circ} \mathbf{C}$	Time (h)	Yield (\%)
1	${ }^{i} \mathrm{PrOH}$	$\mathrm{K}_{2} \mathrm{CO}_{3}(1.0$ equiv.)	70	6	99
2	${ }^{i} \mathrm{PrOH}$	$\mathrm{K}_{2} \mathrm{CO}_{3}(1.0$ equiv.)	60	3	99
3	${ }^{i} \mathrm{PrOH}$	$\mathrm{HCOONa}(10.0$ equiv.)	60	3	98
4	$\mathrm{H}_{2} \mathrm{O}$	$\mathrm{HCOONa}(10.0$ equiv.)	60	3	68
5	${ }^{i} \mathrm{PrOH}$	$\mathrm{HCOONa}(10.0$ equiv.)	50	3	90
6	${ }^{i} \mathrm{PrOH} / \mathrm{H}_{2} \mathrm{O}(2 / 1)$	$\mathrm{HCOONa}(10.0$ equiv.)	60	3	93
7	${ }^{i} \mathrm{PrOH} / \mathrm{H}_{2} \mathrm{O}(3 / 1)$	$\mathrm{HCOONa}(10.0$ equiv.)	60	3	99
8	${ }^{i} \mathrm{PrOH} / \mathrm{H}_{2} \mathrm{O}(4 / 1)$	HCOONa (10.0 equiv.)	60	3	99

Reaction conditions: Catalyst $5(38.50 \mathrm{mg}, 3.50 \mu \mathrm{~mol}$ of $\mathrm{Ru}, 15.0 \mu \mathrm{~mol}$ of Pd, based on ICP analysis), iodoacetophenones (1.0 mmol), boronic acids (1.20 mmol), and 10.0 mL of co-solvents were added sequentially to a 10.0 mL round-bottom flask. Yields were determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis.

Figure S8．HPLC analyses for chiral products．
（S）－1－（［1，1＇－biphenyl］－4－yl）ethan－1－ol（8a）：（HPLC：Chiracel AD－H，detected at 254 nm ，eluent： n － hexane $/ 2$－propanol $=97 / 3$ ，flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}, \mathrm{t}_{1}=19.1 \mathrm{~min}($ major $\left.), \mathrm{t}_{2}=21.8 \mathrm{~min}\right)$ ．

Table view of compound		RetTime ［min］	Peak	Area	Height \uparrow	Area\%
－－化合物表视图						
IDF	名称	保留时间	崔	面积	高度	面积x
1	RT16． 273	16.273		29062298	1157381	98.0529
2	RT18．111	18.111		577094	24437	1.9471

（S）－1－（4＇－fluoro－［1，1＇－biphenyl］－4－yl）ethanol（8b）：（HPLC：Chiracel AD－H，detected at 254 nm ，eluent： n －hexane $/ 2$－propanol $=97 / 3$ ，flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}, \mathrm{t}_{1}=20.0 \mathrm{~min}($ major $\left.), \mathrm{t}_{2}=23.1 \mathrm{~min}\right)$ ．

－ 化合物表视图 $^{\text {a }}$						
ID＊	名解	保留时间	峰き	面积	高度	面积x
1	RT19．984	19．984	1	37610519	1091614	49.9786
2	RT23． 153	23.153	2	37642766	952890	50.0214

Table view of

comp	pound Name	RetTime ［min］	Peak \uparrow	Area \uparrow	Height \uparrow		
可化合物表视图							
ID	名称	保鼻时间	峰	面积	高度	面积x	
1	RT16． 273	16.273		29062298	1157381		98.0529
2	RT18．111	18.111		577094	24437		1． 9471

（S）－1－（4＇－chloro－［1，1＇－biphenyl］－4－yl）ethanol（8c）：（HPLC：Chiracel AD－H，detected at 254 nm ，eluent： n－hexane $/ 2$－propanol $=97 / 3$ ，flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}, \mathrm{t}_{1}=20.0 \mathrm{~min}$（major）， $\mathrm{t}_{2}=26.2 \mathrm{~min}$ ．

Table view of

compound		RetTime ［min］	Peak	Area \uparrow	Height \uparrow	$\text { Area } \%$
	Name \uparrow					
－ 化合物表视图						
ID＊	名称	保留时间	嵮	面积	高度	面积x
1	RT16． 273	16.273		29062298	1157381	98.0529
2	RT18．111	18.111		577094	24437	1.9471

（S）－1－（3＇－chloro－［1，1＇－biphenyl］－4－yl）ethanol（8d）：（HPLC：Chiracel AD－H，detected at 254 nm ，eluent： n－hexane $/ 2$－propanol $=97 / 3$ ，flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}, \mathrm{t}_{1}=17.6 \mathrm{~min}($ major $), \mathrm{t}_{2}=19.9 \mathrm{~min}$ ．）

Table view of compound		RetTime ［min］	Peak	Area \uparrow		
可化合物表视图						
ID＊	名称	保留时间	峌	面积	高度	面积x
1	RT16． 273	16.273		29062298	1157381	98.0529
2	RT18．111	18.111		577094	24437	1.9471

（S）－1－（4＇－（trifluoromethyl）－［1，1＇－biphenyl］－4－yl）ethanol（8e）：（HPLC：Chiracel AD－H，detected at 254 nm ，eluent： n －hexane $/ 2$－propanol $=97 / 3$ ，flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}, \mathrm{t}_{1}=14.3 \mathrm{~min}($ major $), \mathrm{t}_{2}=$ 19.8 min ）．

므化合	表视图					
ID＊	名称	保留时间	垸	面积	高度	面积x
1	RT14．327	14.327	1	10142838	309187	50.7120
2	RT19．815	19.815	2	9858015	235404	49.2880
4 1 ｜参数 λ 结果 A 组参数 \wedge 组结果／					1	

－－化合物表视图						
ID＊	名妳	保留时间	峰	面积	高度	面积×
\％	RT15． 955	15． 955	1	1054952	33847	97． 1651
2	RT20． 137	20.137	2	30779	802	2． 8349
4 ${ }^{\text {V }}$ \参数 λ 结果 $/$ 组参数 λ 组结果／						

Table view of

compound		RetTime ［min］ \uparrow	Peak	$\begin{gathered} \text { Area } \\ \uparrow \end{gathered}$	Height \uparrow	Area\％ \uparrow	
－化合物表视图							
ID：	名称	保畕时间	峔	面积	高度	面积x	
1	RT16． 273	16.273		29062298	1157381		98.0529
2	RT18．111	18.111		577094	24437		1.9471

（S）－1－（3＇－（trifluoromethyl）－［1，1＇－biphenyl］－3－yl）ethan－1－ol（8f）：（HPLC：Chiracel AD－H，detected at 254 nm ，eluent：n－hexane $/ 2$－propanol $=97 / 3$ ，flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}, \mathrm{t}_{1}=13.9 \mathrm{~min}$（major）， $\mathrm{t}_{2}=$ 15.1 min ．）

Table view of compound		RetTime ［min］ \uparrow	Peak	Area \uparrow		
可化合物表视图						
ID：	名称	保畕时间		面积	高度	面积x
1	RT16． 273	16.273		29062298	1157381	98.0529
2	RT18．111	18.111		577094	24437	1.9471

（S）－1－（4＇－methyl－［1，1＇－biphenyl］－4－yl）ethanol（8g）：（HPLC：Chiracel AD－H，detected at 254 nm ，eluent： n－hexane $/ 2$－propanol $=97 / 3$ ，flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}, \mathrm{t}_{1}=15.5 \mathrm{~min}($ major $), \mathrm{t}_{2}=20.8 \mathrm{~min}$ ．$)$

Table view of compound		RetTime ［min］	Peak \uparrow	Area \uparrow	Height \uparrow	$\begin{gathered} \text { Area } \% \\ 4 \end{gathered}$
可化合物表视图						
ID＊	名称	保留时问	㟨	面积	高度	面积x
1	RT16． 273	16.273		29062298	1157381	98.0529
2	RT18．111	18.111		577094	24437	1.9471

（S）－1－（3＇－methyl－［1，1＇－biphenyl］－4－yl）ethanol（8h）：（HPLC：Chiracel AD－H，detected at 254 nm ，eluent： n－hexane $/ 2$－propanol $=97 / 3$ ，flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}, \mathrm{t}_{1}=34.6 \mathrm{~min}($ major $), \mathrm{t}_{2}=38.3 \mathrm{~min}$ ．$)$

－ 化合物表视图						
ID＊	名称	保留时间	峰	面积	高度	面积x
1	RT34．678	34.678	1	5100761	90544	50.3999
2	RT38． 308	38.308	2	5019808	81629	49.6001

Table view of

compound		RetTime ［min］ \uparrow	Peak	Area	Height	Area\％
	Name		\uparrow	\uparrow		
口化合物表视图						
ID	名称	保留时间	峰	面积	高度	面积x
1	RT16．273	16.273	1	29062298	1157381	98.0529
2	RT18．111	18.111	2	577094	24437	1.9471

(S)-1-(4'-methoxy-[1,1'-biphenyl]-4-yl)ethanol (8i): (HPLC: Chiracel AD-H, detected at 254 nm , eluent: n-hexane $/ 2$-propanol $=97 / 3$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}, \mathrm{t}_{1}=31.2 \mathrm{~min}($ major $), \mathrm{t}_{2}=36.0 \mathrm{~min}$.)

（S）－1－（4－（thiophen－3－yl）phenyl）ethan－1－ol（8j）：（HPLC：Chiracel AD－H，detected at 254 nm ，eluent： n － hexane $/ 2$－propanol $=97 / 3$ ，flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}, \mathrm{t}_{1}=28.4 \mathrm{~min}, \mathrm{t}_{2}=33.5 \mathrm{~min}$（major））．

Table view of compound		RetTime ［min］ \uparrow	Peak \uparrow	Area		
	Name					
－ 化合物表视图						
ID＊	名称	保畄时间	峔	面积	高度	面积x
1	RT16． 273	16.273		29062298	1157381	98.0529
2	RT18．111	18.111		577094	24437	1.9471

（S）－1－（［1，1＇－biphenyl］－3－yl）ethanol（8k）：（HPLC：Chiracel AD－H，detected at 254 nm ，eluent： n － hexane $/ 2$－propanol $=97 / 3$ ，flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}, \mathrm{t}_{1}=18.1 \mathrm{~min}, \mathrm{t}_{2}=19.8 \mathrm{~min}$（major））．

compound		RetTime ［min］ \uparrow	Peak	Area	Height	Area\％
	Name					
－化合物表视图						
ID	名称	保留时间	峰	面积	高度	面积x
1	RT16．273	16.273	1	29062298	1157381	98.0529
2	RT18．111	18.111	2	577094	24437	1.9471

（S）－1－（4＇－fluoro－［1，1＇－biphenyl］－3－yl）ethanol（81）：（HPLC：Chiracel AD－H，detected at 254 nm ，eluent： n－hexane $/ 2$－propanol $=97 / 3$ ，flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}, \mathrm{t}_{1}=21.1 \mathrm{~min}, \mathrm{t}_{2}=23.4 \mathrm{~min}$（major） ）．

－ 化合物表视图 $^{\text {a }}$						
ID＊	名称	保留时间	峰	面积	高度	面积x
1	RT21． 133	21.133	1	2611782	70430	50.0428
2	RT23． 402	23.402	2	2607317	64381	49．9572
1 1 \参数入结果 $/$ 组参数 人组结果／						

－ 化合物表视图 $^{\text {a }}$						
ID＊	名称	保留时间	峰き	面积	高度	面积×
1	RT20． 332	20.332	1	375076	9454	2． 4642
2	1RT22．711	22.711	2	14845774	314556	97.5358
1－\参数 λ 结果 $/$ 组参数入组结果／						

Table view of

comp	ound Name	RetTime ［min］	Peak	Area	Height \uparrow		
可化合物表视图							
ID	名称	保留时间	巄	面积	高度	面积x	
1	RT16． 273	16.273		29062298	1157381		98.0529
2	RT18．111	18.111		577094	24437		1.9471

（S）－1－（4＇－chloro－［1，1＇－biphenyl］－3－yl）ethanol（8m）：（HPLC：Chiracel AD－H，detected at 254 nm ，eluent： n－hexane $/ 2$－propanol $=97 / 3$ ，flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}, \mathrm{t}_{1}=22.2 \mathrm{~min}, \mathrm{t}_{2}=25.4 \mathrm{~min}$（major） ）

－${ }^{\text {－化合物表视图 }}$						
ID	名称	保留时间	㨍	面积	高度	面积：
1	RT22．276	22.276	1	1214208	30711	50.0071
2	RT25． 437	25.437	2	1213865	27531	49.9929
4 $\mathrm{V}^{\text {P }}$ 参数 λ 结果 组参数 组结果／					1	

Table view of compound		RetTime ［min］	Peak 4	Area	Height \uparrow	
	Name					
－ 化合物表视園						
ID＊	名称	保留时间	詮考	面积	高度	面积x
1	RT16． 273	16.273		29062298	1157381	98.0529
2	RT18． 111	18.111		577094	24437	1.9471

(S)-1-(3'-chloro-[1,1'-biphenyl]-3-yl)ethanol (8n): (HPLC: Chiracel AD-H, detected at 254 nm , eluent: n-hexane $/ 2$-propanol $=97 / 3$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}, \mathrm{t}_{1}=16.4 \mathrm{~min}, \mathrm{t}_{2}=19.6 \mathrm{~min}($ major $)$).

（S）－1－（4＇－（trifluoromethyl）－［1，1＇－biphenyl］－3－yl）ethanol（80）：（HPLC：Chiracel AD－H，detected at 254 nm ，eluent： n －hexane $/ 2$－propanol $=97 / 3$ ，flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}, \mathrm{t}_{1}=17.8 \mathrm{~min}$（major）， $\mathrm{t}_{2}=20.1 \mathrm{~min}$ ）．

－ 化合物表视图						
ID＊	名称	保留时间	㟉	面积	高度	面积＊
1	RT17． 896	17.896	1	51754939	1579956	49.9229
2	RT20． 167	20.167	2	51914871	1225897	50.0771

Table view of

comp	pound Name	RetTime ［min］	Peak \uparrow	Area \uparrow	Height \uparrow	$i^{\text {Area } \%}$
－化合物表视图						
ID	名称	保留时间	㙖	面积	高度	面积x
1	R716． 273	16.273		29062298	1157381	98.0529
2	RT18．111	18.111		577094	24437	1． 9471

（S）－1－（（4＇－methyl－［1，1＇－biphenyl］－3－yl）ethanol（8p）：（HPLC：Chiracel AD－H，detected at 254 nm ， eluent：nhexane $/ 2$－propanol $=97 / 3$ ，flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}, \mathrm{t}_{1}=18.4 \mathrm{~min}, \mathrm{t}_{2}=22.0 \mathrm{~min}($ major $)$ ）．

可化合物表视图						
ID＊	名称	保留时间	峰き	面积	高度	面积：
1	RT18． 448	18.448	1	732203	21988	50.2275
2	RT22．070	22.070	2	725571	19222	49.7725
1－${ }^{\text {d }}$ 参数 λ 结果 组参数 λ 组结果／$^{\text {／}}$						

（S）－1－（（3＇－methyl－［1，1＇－biphenyl］－3－yl）ethanol（8q）：（HPLC：Chiracel AD－H，detected at 254 nm ，eluent： nhexane $/ 2$－propanol $=97 / 3$ ，flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}, \mathrm{t}_{1}=14.6 \mathrm{~min}, \mathrm{t}_{2}=17.2 \mathrm{~min}$（major））

Table view of compound		RetTime ［min］	Peak	Area \uparrow	Height	$i^{\text {Area } \%}$
－ 化合物表视图 $^{\text {a }}$						
IDF	名称	保留时间	竬	面积	高度	面积x
1	RT16． 273	16.273		29062298	1157381	98.0529
2	RT18．111	18.111		577094	24437	1.9471

(S)-1-((4'-methoxy-[1,1'-biphenyl]-3-yl)ethanol (8r): (HPLC: Chiracel AD-H, detected at 254 nm , eluent: n-hexane $/ 2$-propanol $=97 / 3$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}, \mathrm{t}_{1}=36.0 \mathrm{~min}, \mathrm{t}_{2}=41.8 \mathrm{~min}($ major $)$).

(S)-1-(3-(thiophen-3-yl)phenyl)ethan-1-ol (8s): (HPLC: Chiracel AD-H, detected at 254 nm , eluent: nhexane $/ 2$-propanol $=97 / 3$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}, \mathrm{t}_{1}=28.4 \mathrm{~min}, \mathrm{t}_{2}=30.8 \mathrm{~min}($ major $)$) .

Table view of

（S，S）－1，1＇－（［1，1＇－biphenyl］－4，4＇－diyl）diethanol（8t）：（HPLC：Chiracel AD－H，detected at 254 nm ， eluent： n －hexane $/ 2$－propanol $=92.5 / 7.5$ ，flow rate $\left.=1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}\right)$ ．

－－化合物表视图						
ID 7	名称	保留时间	崯	面积	高度	面积 ${ }^{\text {x }}$
1	RT30． 089	30.089	1	2394397	33256	25． 1914
2	RT37． 741	37.741	2	4708024	53748	49.5331
3	RT41．984	41.984	3	2402385	24645	25.2755

(S)-1-(4-phenethylphenyl)ethan-1-ol: (10a) (HPLC: Chiracel OB-H, detected at 254 nm , eluent: n hexane $/ 2$-propanol $=99 / 1$, flow rate $=0.8 \mathrm{~mL} / \mathrm{min}, 25{ }^{\circ} \mathrm{C}$).

Table view of

（S）－1－（4－（4－fluorophenethyl）phenyl）ethan－1－ol：（10b）（HPLC：Chiracel OB－H，detected at 254 nm ， eluent： n－hexane $/ 2$－propanol $=99 / 1$ ，flow rate $=0.8 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}$ ）．

－ 化合物表视图 $^{\text {a }}$							6d视图
ID＊	名称	保留时间	崯	面积	高度	面积x	
1	RT37． 103	37.103	1	7777028	58647		50.8190
2	RT43． 171	43.171	2	7526352	40681		49.1810

Table view of

(S)-1-(4-(3-fluorophenethyl)phenyl)ethan-1-ol: (10c) (HPLC: Chiracel OB-H, detected at 254 nm , eluent: n-hexane $/ 2$-propanol $=99 / 1$, flow rate $=0.8 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}$).

Table view of

（S）－1－（4－（4－chlorophenethyl）phenyl）ethan－1－ol：（10d）（HPLC：Chiracel OB－H，detected at 254 nm ， eluent： n －hexane $/ 2$－propanol $=98 / 2$ ，flow rate $=1 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}$ ）．

Table view of compound		RetTime ［min］ \uparrow	Peak	Area	Height	Area\％
	Name					
므化合物表视图						
ID	名称	保留时间	鹳	面积	高度	面积x
1	RT16．273	16.273	1	29062298	1157381	98.0529
2	｜RT18．111	18.111	2	577094	24437	1.9471

(S)-1-(4-(4-methylphenethyl)phenyl)ethan-1-ol: (10e) (HPLC: Chiracel OB-H, detected at 254 nm , eluent: n-hexane $/ 2$-propanol $=98 / 2$, flow rate $=0.8 \mathrm{~mL} / \mathrm{min}, 25{ }^{\circ} \mathrm{C}$).

Table view of

（S）－1－（4－（3－methylphenethyl）phenyl）ethan－1－ol：（10f）（HPLC：Chiracel OB－H，detected at 254 nm ， eluent：n－hexane $/ 2$－propanol $=98 / 2$ ，flow rate $=1 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}$ ）．

Table view of

compound		RetTime ［min］ \uparrow	Peak	Area	Height \uparrow		
	Name \uparrow						
－化合物表视图							
ID：	名称	保鼻时间	峰	面积	高度	面积x	
1	R716． 273	16.273		29062298	1157381		98.0529
2	KT18．111	18.111		577094	24437		1.9471

（S）－1－（4－（4－methoxyphenethyl）phenyl）ethan－1－ol：（10g）（HPLC：Chiracel OB－H，detected at 254 nm ， eluent： n－hexane $/ 2$－propanol $=98 / 2$ ，flow rate $=1 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}$ ）．

Table view of

compound		RetTime ［min］	Peak \uparrow	Area \uparrow	Height \uparrow	$i_{i}^{\text {Area } \%}$
	Name					
－ 代合物表视图						
ID：	名称	保留时间		面积	高度	面积x
1	RT16． 273	16.273		29062298	1157381	98.0529
2	RT18．111	18.111		577094	24437	1.9471

（S）－1－（3－phenethylphenyl）ethan－1－ol：（10h）（HPLC：Chiracel OJ－H，detected at 254 nm ，eluent：n－ hexane $/ 2$－propanol $=98 / 2$ ，flow rate $=1 \mathrm{~mL} / \mathrm{min}, 25{ }^{\circ} \mathrm{C}$ ）．

Table view of

comp	ound Name	RetTime ［min］	Peak	Area	Height \uparrow	Area\%
－ 代合物表视图						
ID	名称	保㽞时间	㟽	面积	高度	面积x
1	RT16． 273	16.273		29062298	1157381	98.0529
2	RT18．111	18.111		577094	24437	1.9471

（S）－1－（3－（4－fluorophenethyl）phenyl）ethan－1－ol：（10i）（HPLC：Chiracel OJ－H，detected at 254 nm ， eluent：n－hexane $/ 2$－propanol $=97 / 3$ ，flow rate $=1 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}$ ）．

Table view of

compound		RetTime ［min］ \uparrow	Peak	Area \uparrow	Height \uparrow	Area\%
	Name					
－ 化合物表视图 $^{\text {a }}$						
ID	名称	保留时间	竬	面积	高度	面积 ${ }^{\text {x }}$
1	RT16． 273	16.273		29062298	1157381	98.0529
2	KT18．111	18.111		577094	24437	1.9471

(S)-1-(3-(3-fluorophenethyl)phenyl)ethan-1-ol: (10j) (HPLC: Chiracel OJ-H, detected at 254 nm , eluent: n-hexane $/ 2$-propanol $=97 / 3$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, 25{ }^{\circ} \mathrm{C}$).

（S）－1－（3－（4－chlorophenethyl）phenyl）ethan－1－ol：（10k）（HPLC：Chiracel OJ－H，detected at 254 nm ， eluent：n－hexane $/ 2$－propanol $=97 / 3$ ，flow rate $=1 \mathrm{~mL} / \mathrm{min}, 25{ }^{\circ} \mathrm{C}$ ）．

Table view of

comp	ound Name	RetTime ［min］ \uparrow	Peak	Area \uparrow	Height \uparrow	$\text { Area } \%$
－化合物表视图						
ID＊	名称	保留时间	峰	面积	高度	面积x
1	RT16．273	16.273	1	29062298	1157381	98.0529
2	RT18．111	18.111	2	577094	24437	1.9471

(S)-1-(3-(4-methylphenethyl)phenyl)ethan-1-ol: (101) (HPLC: Chiracel OJ-H, detected at 254 nm , eluent: n-hexane $/ 2$-propanol $=97 / 3$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, 25{ }^{\circ} \mathrm{C}$).

（S）－1－（3－（3－methylphenethyl）phenyl）ethan－1－ol：（10m）（HPLC：Chiracel OJ－H，detected at 254 nm ， eluent：n－hexane $/ 2$－propanol $=97 / 3$ ，flow rate $=1 \mathrm{~mL} / \mathrm{min}, 25{ }^{\circ} \mathrm{C}$ ）．

Table view of compound		RetTime ［min］ \uparrow	Peak	Area	Height	$\text { Area } \%$
	Name f					
［口化合物表视图						
ID＊	名称	保留时间	㭠き	面积	高度	面积x
1	RT16．273	16.273	1	29062298	1157381	98.0529
2	｜RT18．111	18.111	2	577094	24437	1.9471

(S)-1-(3-(4-methoxyphenethyl)phenyl)ethan-1-ol: (10n) (HPLC: Chiracel AS-H, detected at 254 nm , eluent: n -hexane $/ 2$-propanol $=96 / 4$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}$).

Table view of

Table S2. Reusability of catalyst 5 in the Suzuki cross-coupling/ATH cascade reaction of 4iodoacetophenone and phenylboronic acid. ${ }^{[a]}$

Entry	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
Yield [\%]	96	96	96	95	94	94	94	93	91	82
ee [\%]	96	96	95	95	95	95	93	93	93	90

${ }^{\text {a }}$ Reaction conditions: catalyst $5\left(219.80 \mathrm{mg}, 20.0 \mu \mathrm{~mol}\right.$ of $\mathrm{Ru}, 85.70 \mu \mathrm{~mol}$ of Pd , based on ICP analysis), $\mathrm{HCO}_{2} \mathrm{Na}(10.0$ mmol), iodoacetophenones (1.0 mmol) and boronic acids (1.2 mmol), and 40.0 mL of (${ }^{i} \mathrm{PrOH} / \mathrm{H}_{2} \mathrm{O} \mathrm{v} / \mathrm{v}=3 / 1$) were added sequentially to a 100.0 mL round-bottom flask. The mixture was then stirred at $60^{\circ} \mathrm{C}$ for 12 h . Yields were determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis and $e e$ values were determined by chiral HPLC analysis.

Figure S9. HPLC analyses for the 5-catalyzed Suzuki cross-coupling/ATH cascade reaction of 4iodoacetophenone and phenylboronic acid.

Recycling experiment part:

Recycle 1.

Recycle 2.

Recycle 3.

Recycle 4.

Recycle 5.

Recycle 6.

Recycle 7.

Recycle 8.

Recycle 9.

Recycle 10

Table view of

Table S3. Reusability of catalyst 5 in the successive reduction/ATH of (E)-1-(4-styrylphenyl)than-1one. ${ }^{[a]}$

Entry	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
Yield [\%]	97	97	95	96	94	94	93	92	91	83
ee [\%]	98	98	97	97	96	95	95	95	95	95

${ }^{\text {a }}$ Reaction conditions: Catalyst $5\left(219.80 \mathrm{mg}, 20.0 \mu \mathrm{~mol}\right.$ of $\mathrm{Ru}, 85.70 \mu \mathrm{~mol}$ of Pd , based on ICP analysis), $\mathrm{HCO}_{2} \mathrm{Na}(10.0$ $\mathrm{mmol}),(E)-1$-(4-styrylphenyl)than-1-one (1.0 mmol), and 40.0 mL of co-solvents (${ }^{i} \mathrm{PrOH} / \mathrm{H}_{2} \mathrm{O} \mathrm{v} / \mathrm{v}=3 / 1$) were added sequentially to a 100.0 mL round-bottom flask. The mixture was then stirred at $50^{\circ} \mathrm{C}$ for 6 h . Yields were determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis and $e e$ values were determined by chiral HPLC analysis.

Figure S10. HPLC analyses for the 5-catalyzed reduction/ATH of (E)-1-(4-styrylphenyl)than-1-one.

Recycling experiment part:

Recycle 1.

Recycle 2.

Recycle 3.

Recycle 4.

Recycle 5.

Recycle 6.

Recycle 7.

Recycle 8.

Recycle 9.

Table view of

Figure S11. The characterizations of chiral products (The ${ }^{1} \mathrm{H}$ NMR and GC - MS spectra of all chiral products).

(S)-1-([1,1'-biphenyl]-4-yl)ethan-1-ol (8a).

(S)-1-(4'-fluoro-[1,1'-biphenyl]-4-yl)ethan-1-ol (8b).

(S)-1-(4'-chloro-[1,1'-biphenyl]-4-yl)ethan-1-ol (8c).

(S)-1-(3'-chloro-[1,1'-biphenyl]-4-yl)ethan-1-ol (8d)

(S)-1-(4'-(trifluoromethyl)-[1,1'-biphenyl]-4-yl)ethan-1-ol (8e)

$$
\begin{aligned}
& \underbrace{\sim}
\end{aligned}
$$

(S)-1-(3'-(trifluoromethyl)-[1,1'-biphenyl]-4-yl)ethan-1-ol (8f)

$\xrightarrow[1]{\infty}$

(S)-1-(4'-methyl-[1,1'-biphenyl]-4-yl)ethan-1-ol (8g)

$\underset{i}{i}$

\int
\mid

(S)-1-(3'-methyl-[1,1'-biphenyl]-4-yl)ethan-1-ol (8h).

$\underset{\sim}{\infty} \stackrel{\circ}{\sigma} \underset{\sim}{\sigma} \underset{\sim}{\gamma}$
运

(S)-1-(4'-methoxy-[1,1'-biphenyl]-4-yl)ethan-1-ol (8i).

(S)-1-(4-(thiophen-3-yl)phenyl)ethan-1-ol (8j).

(S)-1-([1,1'-biphenyl]-3-yl)ethan-1-ol (8k).

(S)-1-(4'-fluoro-[1,1'-biphenyl]-3-yl)ethan-1-ol (81).

$\underbrace{8 . \infty} \underset{\substack{\infty \\ j \\ j}}{ }$

1

(S)-1-(4'-chloro-[1,1'-biphenyl]-3-yl)ethan-1-ol (8m).

4

$\stackrel{\infty}{\infty}$

(S)-1-(3'-chloro-[1,1'-biphenyl]-3-yl)ethan-1-ol (8n).

						$\begin{aligned} & \text { 'O } \\ & \hline- \\ & \hline \end{aligned}$							$\stackrel{\text { T }}{\substack{\text { rim }}}$			
8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	$\begin{gathered} 4.0 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0

(S)-1-(4'-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)ethan-1-ol (80).

$\underbrace{\text { ºg }}$
$\stackrel{\infty}{\infty} \stackrel{n}{\sim}$

(S)-1-(4'-methyl-[1,1'-biphenyl]-3-yl)ethan-1-ol (8p).

管

 ((
(S)-1-(3'-methyl-[1,1'-biphenyl]-3-yl)ethan-1-ol (8q).

(S)-1-(4'-methoxy-[1,1'-biphenyl]-3-yl)ethan-1-ol (8r).

$\stackrel{\bullet}{i}$
$\stackrel{\sim}{1} \stackrel{n}{n} \stackrel{4}{4}$

(S)-1-(3-(thiophen-3-yl)phenyl)ethan-1-ol (8s).

$(S, S)-1,1^{\prime}-\left(\left[1,1^{\prime}-\right.\right.$ biphenyl $]-4,4^{\prime}$-diyl)diethanol (8t).

(S)-1-(4-phenethylphenyl)ethan-1-ol (10a).

(S)-1-(4-(4-fluorophenethyl)phenyl)ethan-1-ol (10b).

(S)-1-(4-(3-fluorophenethyl)phenyl)ethan-1-ol (10c).

(S)-1-(4-(4-chlorophenethyl)phenyl)ethan-1-ol (10d).

(S)-1-(4-(4-methylphenethyl)phenyl)ethan-1-ol (10e).

(S)-1-(4-(3-methylphenethyl)phenyl)ethan-1-ol (10f).

(S)-1-(4-(4-methoxyphenethyl)phenyl)ethan-1-ol (10g).

(S)-1-(3-phenethylphenyl)ethan-1-ol (10h).

(S)-1-(3-(4-fluorophenethyl)phenyl)ethan-1-ol (10i).

(S)-1-(3-(3-fluorophenethyl)phenyl)ethan-1-ol (10j).

(S)-1-(3-(4-chlorophenethyl)phenyl)ethan-1-ol (10k).

(S)-1-(3-(4-methylphenethyl)phenyl)ethan-1-ol (101).

(S)-1-(3-(3-methylphenethyl)phenyl)ethan-1-ol (10m).

(S)-1-(3-(4-methoxyphenethyl)phenyl)ethan-1-ol (10n).

