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General Methods

All reactions were carried out were performed under N, atmosphere. With exception of the
compounds given below, all reagents were purchased from commercial suppliers and used without
further purification. THF, pentane, hexane, and diethyl ether were distilled from sodium
benzophenone ketyl, CH,Cl, and methanol from CaH,, and toluene from sodium under N,. NMR
spectra (3P, 'H and 3C{*H}) were measured on a Bruker DRX 500, Bruker AMX 400, Bruker DRX 300
or on a Varian Mercury 300 NMR spectrometer at r.t. unless noted otherwise. Integration was done
against residual proteated solvent (*H, external SiMe, (*3C) or external H3;PO, (3!P). 2D *H-DOSY
measurements were performed on Bruker DRX 300 or DRX 500 NMR spectrometer with the
temperature controlled at 298 K during the measurements. 2D *H-DOSY spectra were analysed using
the Topspin software on the Bruker NMR machines. Hydrodynamic radii were calculated using the
Stokes-Einstein equation.> EPR spectra were recorded on a Bruker EMP Plus EPR spectrometer.
Cyclic voltammetry measurements were performed in CH,Cl, (1 x 10 M) containing N(n-Bu),PFs at
room temperature under an N, atmosphere using a glassy carbon working, Ag/AgCl reference and
platinum counter electrode and using a Metrohm Modular Line potentiostat. All redox potentials are
referenced to Fc/Fc*. Spectroelectrochemistry was performed in an optically transparent thin-layer
(200 um) electrochemical (OTTLE) cells? equipped with CaF, optical windows and a platinum mesh
working electrode, which was connected to an Autolab PGSTAT302N electrochemical workstation.
UV/vis spectra were recorded wusing a HP 8453 UV/visible spectrophotometer. All
spectroelectrochemical experiments were conducted in dichloromethane containing N(n-Bu,)PFg (0.1

M).

Trispyridyltriazine (tpt),’® N,N?-bis(2,6-diisopropylphenyl)acenaphthylene-1,2-diimine (‘BIAN’),%*
[Pd(BIAN)CI,]°> and [Pd(BIAN)(OTf),]%® were synthesized according to literature reported procedures.
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Synthesis of New Compounds

[Pd(BIAN)(pyr),](OTf), (4a)

_|20Tf'
iPr!!iPr
7\
N N
e
iPr / "\ iPr

In a 10 mL round-bottom flask, [Pd(BIAN)(OTf),] (100 mg, 0.11
mmol, 1 equiv.) was dissolved in 5 mL CH,Cl, to obtain a bright
orange solution. To this solution was added pyridine (17.9 uL, 0.22
mmol, 2 equiv.), which resulted in an instant colour change to light
orange. The reaction was stirred for 1h at room temperature.

Subsequently, all volatiles were removed and the target compound

was obtained as a bright orange solid (95.5 mg, 81%). For analytically pure product and for

electrochemical measurements, the solid was redissolved in a small amount of CH,Cl, and

precipitated using Et,0. The resulting orange micro-crystalline solid was isolated by filtration in 58%

yield (68.4 mg).

'H NMR (500 MHz, CD,Cl,) 6 9.16 (d, J = 4.9 Hz, 4H), 8.25 (d, J = 8.3 Hz, 2H), 7.70 (t, J = 7.6, 1.6 Hz,
2H), 7.58 (t,J=7.9 Hz, 2H), 7.45 (t, J = 7.8 Hz, 2H), 7.38 = 7.31 (m, 4H), 7.27 (d, J = 7.9 Hz, 4H), 6.47 (d,
J=7.4Hz, 2H), 3.75 (p, J = 6.7 Hz, 4H), 1.47 (d, J = 6.6 Hz, 12H), 0.93 (d, / = 6.6 Hz, 12H).

13C NMR (126 MHz, CD,Cl,) 6 179.96, 152.17, 149.28, 140.91, 139.52, 135.06, 131.84, 131.13, 129.87,

128.42,127.42, 125.96, 124.34,

30.01, 25.35, 23.93.

MS (m/z) calcd for C47HsoF3N4O5PdS: 913,2607, found 913,2613 [M-OTf]*.
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Figure S1 'H NMR spectrum of [Pd(BIAN)(pyr),](OTf), in CD,Cl,.
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Figure S3 'H DOSY NMR spectrum of Pd(BIAN)(pyr), in CD,Cl,.
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Pt(BIAN)CI,

The compound was synthesized according to a literature procedure,* but

OO using 2,5-diisopropylphenyl side groups instead of phenyls in the report.
iPr ' iPr. To a clear yellow solution of K[PtCl;(C,H4)] (200 mg, 0.54 mmol, 1 equiv.)

N< >N in 6.5 mL MeOH was added a clear orange solution of the organic ligand
iPE:|/Pt\Ci|Pr ‘BIAN’ (277 mg, 0.55 mmol, 1.02 equiv.) under stirring. The reaction

mixture immediately turned deep purple. The solution was stirred for 20
min at room temperature before Norit was added. The suspension was filtered and the residue
washed with CH,Cl, (approx. 10 mL). All volatiles were removed in vacuo and the resulting purplish-
black solid was suspended in a minimum amount of Et,0 and isolated by filtration. After drying the

solid in vacuo, the target compound was obtained as a micro-crystalline deep purple solid in 93%

yield (386 mg).

1H NMR (300 MHz, CDCl;) & 8.28 (d, J = 8.3 Hz, 2H), 7.63 — 7.50 (m, 2H), 7.41 (d, J = 8.0 Hz, 6H), 6.68
(d,J = 7.3 Hz, 2H), 3.96 — 3.20 (m, 4H), 1.48 (d, J = 6.8 Hz, 12H), 0.96 (d, 12H).

13C NMR (75 MHz, CDCl;) 6 175.81, 146.46, 140.95, 140.68, 132.25, 131.09, 129.83, 129.51, 126.52,
124.32,124.11, 28.85, 23.97, 23.68.

MS (m/z) calcd for C3gH4oCl,N,Pt: 766,22087, found: 766,27885 [M*]
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Figure S4 H NMR spectrum of [Pt(BIAN)CI,] in CDCls.
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Figure S5 13C NMR spectrum of [Pt(BIAN)CI,] in CDCls.
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[Pt(BIAN)(OH,),](OTf), (1b)

i iPr
7\
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e
iPr / \ iPr
H,O OH,

O —l 20Tf

To a flame-dried 50 mL Schlenk was added Pt(BIAN)CI, (120 mg,

0.15 mmol, 1 equiv.) and AgOTf (114 mg, 0.44 mmol, 2.84 equiv.)

as solids. The Schlenk was evacuated and refilled with N, three

times before 10 mL dry DCM was added. After stirring overnight

whilst the solution was shielded from light by wrapping the flask

in aluminium foil, the light brown suspension was syringe filtered

and the filtrate was stirred in air overnight. All volatiles were removed in vacuo, the resulting solid

was dissolved in a small amount of CH,Cl, and the compound precipitated using Et,0. The target

product was isolated by filtration to obtain a light brown solid in 76% yield (118 mg).

1H NMR (300 MHz, CD,Cl,) & 8.38 (d, J = 8.3 Hz, 2H), 7.70 (t, J = 7.8 Hz, 2H), 7.89 (br s, 4H) 7.65 — 7.58

(m, 2H), 7.50 (d, J = 7.8 Hz, 4H), 3.48 —3.39 (m, 6H), 1.52 (d, J = 6.8 Hz, 12H), 1.04 (d, J = 6.8 Hz, 12H).

13C NMR (126 MHz, CD,Cl,) 6 180.59, 149.89, 141.13, 137.82, 134.14, 132.09, 131.26, 130.21, 126.33,

125.43,123.18, 29.56, 23.67, 23.25.

MS (m/z) calcd for C3;H4oF3N,05PtS: 843,2360, found: 843.25888 [M-H -2H,0 -OTf]*.
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Figure S6 'H NMR spectrum of [Pt(BIAN)(OH,),](OTf), in CD,Cl,. Label added to signal at 1.5 ppm and integral removed.
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Figure S7 13C NMR spectrum of [Pt(BIAN)(OH,),](OTf), in CD,Cl,.
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[Pd(BIAN)(pyr)](OTf), (4b)

_| 2 OTf . . . .
O In a screw-cap vial, 1b (50 mg, 50.3 umol, 1 equiv.) was dissolved in 4

iPr ' iPr mL CH,Cl, to obtain a light brown suspension. To this mixture was

N/ \N added a 2 mL CH,Cl, solution of pyridine (8.1 uL, 100.6 umol, 2
iPr >Pé\+ iPr equiv.), which resulted in an instant colour change to black. The vial
\—'j /N A\ was tightly closed, placed in a 40 °C oil bath and stirred for 6 hours. All

volatiles were removed in vacuo from the clear brown reaction
mixture, obtaining a brown solid as the product (55.9 mg 96%). For analytically pure product and for
electrochemical measurements, the solid was redissolved in 1.5 mL CH,Cl,, placed in a jar containing
pentane (vapour diffusion set-up) and stored in a freezer at -20 °C for three days. The resulting

brown micro-crystalline solid was isolated in 73% yield (42.5 mg) after filtration.

1H NMR (300 MHz, CD,Cl,) § 9.11 (d, J = 5.9 Hz, 4H), 8.36 (d, J = 8.4 Hz, 2H), 7.71 (t, J = 7.8 Hz, 2H),
7.60 (t, J = 7.9 Hz, 2H), 7.48 (t, J = 7.8 Hz, 2H), 7.39 — 7.25 (m, 8H), 6.64 (d, J = 7.4 Hz, 2H), 3.68 (p, J =
6.8 Hz, 4H), 1.47 (d, J = 6.7 Hz, 12H), 0.93 (d, J = 6.8 Hz, 12H).

13C NMR (75 MHz, CD,Cl,) 6 180.44, 153.00, 149.78, 141.28, 141.13, 138.73, 134.84, 132.31, 131.40,
130.38, 127.75, 127.68, 126.06, 29.71, 25.26, 23.83.

MS (m/z) calcd for Cy6HsoN,4Pt: 853,3683199, found: 853,37617 [M-20Tf]*.

MS (m/z) calcd for C47HsoF3N4O5PtS: 1002,320363, found: 1002,32657 [M-OTf]*.
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Figure S8 'H NMR spectrum of [Pt(BIAN)(pyr),](OTf), in CD,Cl,.
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Figure S9 13C NMR spectrum of [Pt(BIAN)(pyr),](OTf), in CD,Cl,.
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BIAN-Pd Cage (3a)

To a screw-cap vial was added 1a (250 mg, 0.28 mmol, 6 equiv.),
para-trispyridyltriazine tpt (57.5 mg, 0.18 mmol, 4 equiv.) and 5
mL non-dried CH,Cl,. A bright orange suspension was obtained,
which was stirred at room temperature for 16 hours. The
resulting clear orange solution was diluted with approximately 4

mL non-dried CH,Cl,. This solution was then stored inside a

container with pentane (vapour diffusion set-up) in a freezer at -
20 °C. After approximately three days, orange needles of the target compound were obtained, which
were isolated by decanting off the clear faint yellow solution and washing several times with fresh
pentane until the solution was colourless. The needles were dried in vacuo to obtain the target

compound as bright orange needles (87%, 269 mg).

Vapour diffusion of 2-methyl tetrahydrofuran into a 1,2-dichloroethane solution of 3a (at -20 °C)
yielded single crystals suitable for single crystal X-ray diffraction (Figure S31). Although full
refinement could not be obtained due to severe disorder in the triflate anions, the data
unequivocally corroborate the anticipated connectivity and overall octahedral geometry of 3a, with
the coordination environment around each square planar Pd-ion satisfied by two pyridine N-donors

and one bidentate BIAN-ligand.

IH NMR (300 MHz, CD,Cl,) & 9.16 (d, J = 6.0 Hz, 24H), 8.40 (d, J = 6.4 Hz, 24H), 8.32 (d, J = 8.3 Hz,
12H), 7.65 (t, J = 7.9 Hz, 12H), 7.49 (t, J = 7.8 Hz, 12H), 7.31 (d, J = 7.8 Hz, 24H), 6.62 (d, J = 7.4 Hz,
12H), 3.75 (septet, J = 6.6 Hz, 24H), 1.53 (d, J = 6.7 Hz, 96H), 1.01 (d, J = 6.6 Hz, 96H).

13C NMR (75 MHz, CD,Cl,) 6 181.07, 169.67, 152.63, 149.85, 145.75, 140.79, 139.65, 135.59, 131.98,
131.62, 130.06, 128.62, 126.54, 126.24, 124.02, 30.20, 25.35, 24.17.
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Figure S10 'H NMR spectrum of 3a in CD,Cl,. Attributed signals in figure.
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Figure S14 Connectivity plot of 3a, obtained from X-ray diffraction. Solvent, counterions and hydrogens are omitted for
clarity. Pd = red, carbon = grey, nitrogen = blue.

BIAN-Pt Cage (3b)

To a screw-cap vial was added 1b (75 mg, 75.5 umol, 6 equiv.),
para-trispyridyltriazine (15.7 mg, 50.3 umol, 4 equiv.), 4 mL
CH,Cl, and 0.67 mL MeCN. The screw-cap vial containing the red-
brown suspension was tightly closed, placed in a 40 °C oil bath

and stirred for at least 72 hours. The resulting red-brown solution

was allowed to cool to room temperature, syringe filtered,
solvents removed in vacuo and the resulting residu redissolved in 1-2 mL CH,Cl,. This solution was
then stored inside a container with Et,0 (vapour diffusion set-up) in a freezer at -20 °C. After
approximately three days the container was allowed to warm to room temperature to yield a brown
solid after decanting off the clear faintly yellow solution and washing several times with fresh Et,0
until the solution was colourless. The product was dried in vacuo and isolated as a brown solid (83%,

75.3 mg).

IH NMR (300 MHz, CD,Cl,) 6 9.16 (d, J = 6.1 Hz, 24H), 8.53 (d, J = 6.7 Hz, 24H), 8.41 (d, J = 8.3 Hz, 12H), 7.66
(t,J=7.9 Hz, 12), 7.48 (d, J = 7.7 Hz, 12H), 7.35 (d, J = 7.8 Hz, 24H), 6.75 (d, J = 7.4 Hz, 12H), 3.68 (m, J = 6.6 Hz,
24H), 1.54 (d, J = 6.6 Hz, 72H), 1.00 (d, J = 6.6 Hz, 72H).
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Figure S19 High resolution CSI MS spectrum of BIAN-Pt cage 3b [Pts(BIAN)g(tpt)4](OTf)1,. Inset: zoom-in of the 6+ species
together with relevant simulated spectrum.

Encapsulation of (B;,F;,)* as Guest
The By,F1,% guest was used as its tetrabutylammonium salt (TBA*) and prepared using the following
procedure:

Solid CsB,,F1, (30 mg, 48 umol, 1 equiv.) was suspended in 3 mL H,0, and the suspension was heated
for a couple of minutes until the mixture was fully dissolved. To this solution, solid TBABr (155 mg, 48
umol, 10 equiv.) was added, which resulted in immediate formation of a white suspension. The
mixture was sonicated for 10 minutes, followed by filtration over Celite and thorough washing with
H,O to remove the excess TBABr. The remaining white solid was extracted using DCM and the
organic solvent was removed in vacuo. The final product was obtained as a white solid that was dried
over P,0s overnight. The obtained product (74%, 29.9 mg) was used without further purification. *°F
and ''B NMR measurements matched that of literature.>’

For encapsulation studies, 0.75 umol of either palladium or platinum cage was dissolved in
approximately 0.6 mL CD,Cl,. To this clear solution, one equivalent (0.75 umol) of (TBA),B;,F;, was
added as a solid at room temperature. NMR spectra were measured directly after addition.
Desymmetrization and broadening of the pyridyl-signals was observed (8.5 — 9.5 ppm). In addition,
the 1°F DOSY shows a diffusion coefficient of Log(D) = -9.35, corresponding to that of the cage.
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Figure $23 Top: 'H NMR spectrum of empty BIAN-Pt cage (3b) in CD,Cl,. Bottom: *H NMR spectrum of 3b with one
equivalent of (TBA),B,F1, in CD,Cl,. This figure is added, attributed signals to empty cage (3b) and stacked with cage+guest
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Figure S24 1°F DOSY on 3a with one equivalent of (TBA),B1,F1, in CD,Cl,.
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Figure S25 1°F DOSY on free (TBA),B1,F1; in CD,Cl,.
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Figure $26 °F NMR spectra of model compound 4b (maroon trace) with (TBA),B1,F;,, free (TBA),B1,F1, (blue trace) and 3a
(red trace) with one equivalent of (TBA),B;,F;, in CD,Cl, at room temperature. All spectra have been internally referenced
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Figure S27 'H NMR spectra of model compound 4b (top) and model compound 4b in presence of (TBA),B1,F3, (bottom) in

CD,Cl, at room temperature.
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Figure $28 UHR CSI-TOF mass spectrum of 3a + By,F1, {[Pds(BIAN)(tpt)s(B12F12)]1(OTf)10}. Asterisks indicate BIAN-Pd cage
with 2 equivalents B1,F;,2. These species are proposedly formed during the MS mearuement, with B;,F;,2 also being able
to function as a counterion. Additionally, a fragment with composition ([Pd(BIAN)(tpt)CI]*) can be discerned, indicating of
cage decomposition, which results in release of the accompanying B1,F;,% guest.
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Figure S29 UHR CSI-TOF mass spectrum of Pd(BIAN) cage + B1,F1; {[Pdg(BIAN)g(tpt)s(B12F12)](OTf)3}.
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Figure S30 UHR CSI-TOF mass spectrum of 3a + By,F1, {[Pdg(BIAN)g(tpt)s(B12F12)](OTf)4}.
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Figure S$31 UHR CSI-TOF mass Spectrum of 3a+ BlZFIZ {[Pde(BlAN)G(tpt)4(Blelz)](OTf)s}.

S22



Intens,
x104]

w
1

n
i

0Lt A o o g g} o \J \J"JL\

RP736_CSI-Pos_11.d: +MS, 0.0-1.0min #2-61)

1535 9025

M
Al

||
f" hfkkhﬁ vy

1531 1532 1533 1534 1535 T 536 T 537 1538 1539
] CroaHzoaBraF s0N55OrePdleSe, M, 15348969
3000 a4
1535.9025

2000-
= ﬂﬁﬂhﬂ ﬂﬂﬂﬂﬂ

0. AfLJI\.J\ﬂ 3 s : Aﬂ‘k/‘\flj\‘

1531 1532 1533 1534 1535 1536 1837 1538 1539 miz

Figure S$32 UHR CSI-TOF mass spectrum of 3a+ Bi1,F12 {[Pds(BIAN)G(tpt)4(Blelz)](on)G}.
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Figure S33 UHR CSI-TOF mass spectrum of 3a + By,F1, {[Pds(BIAN)g(tpt)s(B12F12)](OTf),}.

Figure S34 MMFF Models of encapsulated By,F1,% inside BIAN-Pd cage 3a, showing that only a single guest fits inside the

cavity.
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Single Crystal X-Ray Diffraction (SC-XRD)

X-ray intensities were measured on a Bruker D8 Quest Eco diffractometer equipped with a Triumph
monochromator (A = 0.71073 A) and a CMOS Photon 100 detector at a temperature of 150(2) K.
Intensity data were integrated with the Bruker APEX2 software.S” Absorption correction and scaling
was performed with SADABS.® The structures were solved using intrinsic phasing with the program
SHELXT.® Least-squares refinement was performed with SHELXL-20135%° against F2 of all reflections.
Non-hydrogen atoms were refined with anisotropic displacement parameters. The H atoms were
placed at calculated positions using the instructions AFIX 13, AFIX 43 or AFIX 137 with isotropic
displacement parameters having values 1.2 or 1.5 times Ueq of the attached C atoms. Both
complexes 4a and 4b were crystallized by vapour diffusion of pentane into a CH,Cl, solution. CCDC
1923049 and 1923050 contain the supplementary crystallographic data for this paper. These data
can be obtained free of charge from The Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/data_ request/cif.

Figure S35 Connectivity plot of 3a, obtained from X-ray diffraction. Solvent, counterions and hydrogens are omitted for
clarity. Pd = red, carbon = grey, nitrogen = blue.

complex 4a: C4oHs,Cl,FgN,O6PdS,, Fw = 1148.36, red-brown block, 0.514x0.281x0.232 mm, triclinic,
PError!(No: 2)), a = 11.3214(4), b = 12.0761(5), c = 23.4333(9) A, o= 90.3230(3), = 103.5790(10), y =
116.2730(10)°, V = 2770.35(19) A3, Z = 2, D, = 1.377 g/cm3, p = 0.575 mm=. 86029 Reflections were
measured up to a resolution of (sin 6/A)max = 0.84 A1, 9767 Reflections were unique (R, = 0.0257), of
which 9045 were observed [I>2c(1)]. 862 Parameters were refined with 861 restraints. R1/wR2 [l >
20(1)]: 0.0292/0.0708. R1/wR2 [all refl.]: 0.0325/ 0.0729. S = 1.050. Residual electron density
between -0.620 and 0.666 e/A3. CCDC 1923049.
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Figure S36 Displacement ellipsoid plot (50% probability level) of [Pd(BIAN)(pyr),](OTf),. Hydrogen atoms omitted for clarity.

complex 4b: Cyq5Hs3ClsFgN,O6PtS,, Fw = 1279.52, brown block, 0.255x0.128x0.096 mm, monoclinic,
C2/c (No: 15)), a = 40.579(2), b = 12.5401(7), c = 24.3030(13) A, B=121.629(2)°, V = 10530.0(10) A3, Z
=8, D, =1.614 g/cm?3, u = 2.969 mm. 197535 Reflections were measured up to a resolution of (sin
0/M)max = 0.77 Al. 12102 Reflections were unique (R = 0.0512), of which 10264 were observed
[1>20(1)]. 669 Parameters were refined with 16 restraints. R1/wR2 [I > 2o(l)]: 0.0280/0.0517. R1/wR2

[all refl.]: 0.0390/ 0.0551. S = 1.057. Residual electron density between -1.062 and 1.126 e/A3. CCDC
1923050.

Figure S37 Displacement ellipsoid plot (50% probability level) of [Pt(BIAN)(pyr),](OTf),. Hydrogen atoms and CH,Cl, lattice
solvent molecules omitted for clarity.
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Electrochemical Measurements

15

10 Partial reduction (1e-)
s | Full reduction (2e-)
0 L

Current (pA)
n

A
o
T

-15 +

25 | | | |
-2 -1,5 -1 -0,5 0
Potential (V) (vs Fc/Fc*)

Figure S38 Cyclic voltammogram of 4a upon scanning to -0.85 V (black line) and to -1.6 V (red line) in CH,Cl, at 100 mV/s.
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Figure $39 Cyclic voltammogram of 4b upon scanning to -0.7 V (black line) and to -1.8 V (red line) in CH,Cl, at 100 mV/s.

526



20

Current (pA)
i
o
T

20 F
Trispyridyltriazine (1e-)
30 + Trispyridyltriazine (2e-)
40 1 1 1 1 1
-2,8 -2,3 -1,8 -1,3 -0,8 -0,3

Potential (V) (vs Fc/Fc*)

Figure S40 Cyclic voltammogram of trispyridyltriazine (tpt) in CH,Cl, at 100 mV/s, reducing the compound by one electron
(black line) and by two electrons (red line).
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Figure S41 Cyclic voltammogram of 3a upon scanning to -1.0 V (black line) and to -2.2 V (red line) in CH,Cl, at 100 mV/s.
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Figure S42 Cyclic voltammogram (black line) of 3a (black line) and its semi-derivative convolution plot (red line) upon
scanning to -2.2 V in CH,Cl, at 100 mV/s.
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Figure S43 Coulometry measurement of the first reduction wave of the BIAN-cornerstones in cage 3a. The data is
integrated until 600 s. Conditions: 5 mg of 3a in the working electrode compartment was used. An excess of ferrocene in
the counter electrode compartment was used. A cyclic voltammogram was performed prior to bulk electrolysis, after which
a fixed potential was set ~200mV over the first redox wave. All bulk electrolysis were performed in DCM using 0.2 M N(n-
Bu)4PFg as supporting electrolyte.
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Pd(BIAN"),(tpt), Fc+ Fc'

Figure S44 Photograph of the bulk electrolysis set-up; compartment A contains the working- and reference-electrode (Pt-
mesh and Ag-wire, respectively) and the compartment B contains the counter electrode (Pt-sheet) and a sacrificial electron
donor (ferrocene).
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Figure S45 Cyclic voltammogram of 3b in CH,Cl, at 100 mV/s.
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Figure S46 Semi-derivative convolution plot of CV of 3b in CH,Cl, at 100 mV/s, showing full reversibility. Individual
reduction processes are numbered above the waves (A-D). Minor impurity (~3%) indicated by (*).
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Ultra-high Resolution Cryospray-ionization Mass Measurements
Cryospray-ionization MS (CSI-MS) measurements were performed on a UHR-TOF Bruker Daltonik
maXis plus, an ESl-quadrupole time-of-flight (qToF) mass spectrometer capable of a resolution of at
least 60.000 (FWHM), which was coupled to a Bruker Daltonik Cryospray unit.

Detection was in positive ion mode, the source voltage was 4.2 kV. The flow rates were 220 pL/hour.
The drying gas (N,), to aid solvent removal, was held at -35 °C and the spray gas was held at -40 °C.

The machine was calibrated prior to every experiment via direct infusion of the Agilent ESI-TOF low
concentration tuning mixture, which provided an m/z range of singly charged peaks up to 2700 Da in
both ion modes.
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Figure S47 UHR CSI-MS mass spectrum of 3a with a spray temperature of -40 °C and a dry gas temperature of -35 °C.
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[P(BIAN)(tpt)](OTf)**,  [Pd4(BIAN)4(tpt),](OTf)s3* and
[Pd3(BIAN);(tpt),](OTf)s2*, respectively, and below) simulated isotopic distributions with a spray temperature of -40 °C and a
dry gas temperature of -35 °C.
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Figure S49 UHR CSI-MS mass spectrum of (top) [Pds(BIAN)s(tpt),](OTf)s 2* and [Pdg(BIAN)g(tpt)s](OTf)s** and below)
simulated isotopic distribution with a spray temperature of -40 °C and a dry gas temperature of -35 °C.
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Figure S50 UHR CSI-MS mass spectrum of (top) [Pds(BIAN)s(tpt),](OTf);3*, [Pds(BIAN)s(tpt)s](OTf),>* and
[Pds(BIAN)s(tpt),](OTf),3>* and (below) simulated isotopic distribution with a spray temperature of -40 °C and a dry gas
temperature of -35 °C.
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Figure S51 UHR CSI-MS mass spectrum of (top) [Pdgs(BIAN)s(tpt)s](OTf)s3* and [Pda(BIAN),(tpt)s](OTf)e?*, and (below)
simulated isotopic distribution with a spray temperature of -40 °C and a dry gas temperature of -35 °C.
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Figure S52 UHR CSI-MS mass spectrum of (top) [Pd,(BIAN),(tpt),](OTf);* and [Pdi>(BIAN)q,(tpt)g](OTf)1e >, and (below)
simulated isotopic distribution with a spray temperature of -40 °C and a dry gas temperature of -35 °C.
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Figure S53 UHR CSI-MS mass spectrum of 3b with a spray temperature of -40 °C and a dry gas temperature of -35 °C.
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Figure $54 UHR CSI-MS mass spectrum of (top) [Pts(BIAN)s(tpt)s](OTf)s**, and (below) simulated isotopic distribution with a

spray temperature of -40 °C and a dry gas temperature of -35 °C.

Intens.

x105 1293.3615

N
o

g
o

o

b
13

b
o

5+
1293.3640

o
Lo b b s b e b b

2000

15004

1000

500

AAAA..

o

..,AAAA44

(C35HaoNzP)s(C15H12N)a(CF:S05)7, 1292.5629

el

1291 1292 1293

1294

1295 1296 1297 miz

Figure S55 UHR CSI-MS mass spectrum of (top) [Pts(BIAN)g(tpt),](OTf);>*, and (below) simulated isotopic distribution with a

spray temperature of -40 °C and a dry gas temperature of -35 °C.
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Figure S56 UHR CSI-MS mass spectrum of (top) [Pts(BIAN)g(tpt)s](OTf)e®*, and (below) simulated isotopic distribution with a
spray temperature of -40 °C and a dry gas temperature of -35 °C.
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Electron Paramagnetic Resonance (EPR)
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Figure S57 EPR spectrum of model system 4a upon chemical reduction with 1 equivalent of CoCp, (left)
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Figure S58 EPR spectrum of model system 4b upon chemical reduction with 1 equivalent of CoCp, measured at room

temperature in CH,Cl,.
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Figure S59 EPR spectrum of 3b upon cathodic reduction at -1.0 V (left) and -1.5 V (right), both measured at 10 K in frozen
CH,Cl, containing N(n-Bus)PFg (0.2 M).
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Figure S60 EPR measurements at room temperature of BIAN-Pt cage (3b) after selective reduction over the first wave (A)
(black) and upon full reduction at -2.0 V vs. Fc/Fc*)(red, inset = 38x zoom) using bulk electrolysis.
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Figure S61 UV/vis-SEC of 4b upon cathodic reduction at -1.0 V, corresponding to the adi/aia™ redox-couple of the BIAN
ligand.
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Figure $62 UV/vis-SEC of 4b upon cathodic reduction at -1.8 V, corresponding to the aia-*/ada? redox-couple of the BIAN
ligand.
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Figure S63 UV/vis-SEC of tpt upon cathodic reduction at -2.0 V, corresponding to the tpt/tpt redox-couple.
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Figure $64 UV/vis-SEC of 3b upon cathodic reduction at-1.0 V
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Figure S65 UV/vis-SEC of 3b upon cathodic reduction at -1.5 V.
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