Supporting Information

ZnI₂/Zn(OTf)₂–TsOH: A Versatile Combined-Acid System for Catalytic Intramolecular Hydrofunctionalization and Polyene Cyclization

Ting-Hung Chou, Bo-Hung Yu and Rong-Jie Chein*

Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan

Table of Contents

1.	General Information	S2
2.	General Procedures	
3.	¹ H & ¹³ C NMR Spectra	S10
4.	Mass Information	S41
5.	References	S43

1. General Information

The reactions were monitored by TLC (glass plates precoated with silica gel 60 F254, Merck). Column chromatography was performed on silica gel Geduran® Si 60 (Merck). ¹H and ¹³C NMR spectra were recorded with Bruker AV-III 400 MHz, Bruker AV-400, Bruker AV-500, or N600 MHz spectrometers and chemical shifts were measured in δ (ppm) with residual solvent peaks as internal standards (CDCl₃, δ 7.26 ppm in ¹H NMR, δ 77 ppm in ¹³C NMR). IR spectra were recorded with Thermo Nicolet iS-5 FT-IR spectrophotometer, max in cm⁻¹. Commercial grade reagents and solvents were used without further purification except as indicated below.

2. General Procedures

General Procedure A

To a 4-mL vial equipped with a stirring bar was added 1a (100 mg, 0.567 mmol), ZnI_2 (4.5 mg, 0.014 mmol), TsOHH₂O (2.7 mg, 0.014 mmol) and CH₂Cl₂ (1.1 ml). After stirring at room temperature for the reaction time given in Table 2 or Table 3, the reaction mixture was filtered through a short pad of silica gel, washed with DCM, and then concentrated to give the product.

General Procedure B

To a 4-mL vial equipped with a stirring bar was added 1f (100 mg, 0.475 mmol), $Zn(OTf)_2$ (4.3 mg, 0.012 mmol), TsOH·H₂O (2.3 mg, 0.012 mmol) and CH₂Cl₂ (0.95 ml). After stirring at room temperature for the reaction time given in Table 2 or Table 3, the reaction mixture was filtered through a short pad of silica gel, washed with DCM, and then concentrated to give the product.

General Procedure C

To a 10-mL sealed tube equipped with a stirring bar was added 1h (100 mg, 0.999 mmol), $Zn(OTf)_2$ (9.1 mg, 0.025 mmol), TsOHH₂O (4.8 mg, 0.025 mmol) and DCE (2 ml). After heated to reflux for the reaction time given in Table 2 or Table 3, the reaction mixture was filtered through a short pad of silica ge, washed with DCM, and then concentrated to give the product.

General Procedure D

To a 4-mL vial equipped with a stirring bar was added 3a (100 mg, 0.624 mmol), $Zn(OTf)_2$ (11.3 mg, 0.031 mmol), TsOH·H₂O (5.9 mg, 0.031 mmol) and CH₂Cl₂ (2.5 ml). After stirring at room temperature for the reaction time given in Table 2 or Table 3, the reaction mixture was filtered through a short pad of silica gel, washed with DCM, and then concentrated to give the product.

General Procedure E

To a 4-mL vial equipped with a stirring bar was added 3e (50 mg, 0.274 mmol), ZnI_2 (8.7 mg, 0.027 mmol), TsOHH₂O (5.1 mg, 0.027 mmol) and CH₂Cl₂ (1.1 ml). After heated to reflux for the reaction time given in Table 2 or Table 3, the reaction mixture was filtered through a short pad of silica gel, washed with DCM, and then concentrated to give the product.

5-methyl-5-phenyldihydrofuran-2(3*H*)-one (2a)¹

Procedure A, after 16 h to afford 98% yield. Colorless oil; ¹H NMR (600 MHz, CDCl₃) δ 7.41-7.35 (m, 4H), 7.33-7.28 (m, 1H), 2.60-2.69 (m, 1H), 2.54-2.40 (m, 3H), 1.72 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 176.6, 144.3, 128.6, 127.6, 124.1, 87.0, 36.2, 29.4, 29.0.

5-methyl-5-(p-tolyl)dihydrofuran-2(3H)-one (2b)¹

Procedure A, after 16 h to afford 99% yield. Colorless solid; mp 48°C; ¹H NMR (600 MHz, CDCl₃) δ 7.27 (d, J = 8.6 Hz , 2H), 7.19 (d, J = 8.1 Hz , 2H), 2.66-2.60 (m, 1H), 2.55-2.46 (m, 2H), 2.45-2.38 (m, 1H), 2.36 (s, 3H), 1.72 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 176.7, 141.4, 137.3, 129.3, 124.1, 87.1, 36.2, 29.4, 29.0, 21.0.

5-methyl-5-(o-tolyl)dihydrofuran-2(3H)-one (2c)¹

Procedure A, after 16 h to afford 94% yield. Colorless oil; ¹H NMR (600 MHz, CDCl₃) δ 7.45 (d, *J* = 7.7 Hz , 1H), 7.22-7.16 (m, 3H), 2.72-2.64 (m, 1H), 2.62-2.48 (m, 3H), 2.44 (s, 3H), 1.74 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 176.2, 142.0, 133.8, 132.5, 127.8, 126.1, 124.7, 87.9, 35.0, 28.8, 27.8, 21.6.

5-methyl-5-(naphthalen-2-yl)dihydrofuran-2(3*H*)-one (2d)²

Procedure A, after 16 h to afford 98% yield. Colorless solid; mp 78°C ¹H NMR (600 MHz, CDCl₃) δ 7.89-7.81 (m, 4H), 7.53-7.47 (m, 2H), 7.43 (dd, J = 8.6 Hz , J = 1.9 Hz, 1H), 2.69-2.62 (m, 1H), 2.60-2.43 (m, 3H), 1.80 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 176.7, 141.5, 133.0, 132.6, 128.7, 128.2, 127.6, 126.6, 126.4, 122.7, 122.5, 87.1, 36.1, 29.3, 29.0.

5-(4-methoxyphenyl)-5-methyldihydrofuran-2(3H)-one (2e)¹

Procedure A, after 16 h to afford 94% yield. Colorless oil; ¹H NMR (600 MHz, CDCl₃) δ 7.30 (d, *J* = 8.9 Hz , 2H), 6.90 (d, *J* = 8.6 Hz , 2H), 3.80 (s, 3H), 2.62-2.59 (m, 1H), 2.55-2.44 (m, 2H), 2.43-2.35 (m, 1H), 1.70 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 176.6, 159.0, 136.3, 125.4, 113.9, 87.0, 55.3, 36.1, 29.5, 29.1.

5-(4-chlorophenyl)-5-methyldihydrofuran-2(3H)-one (2f)¹

Procedure B, after 16 h to afford 99% yield. Colorless solid; mp 50°C; ¹H NMR (600 MHz, CDCl₃) δ 7.33-7.27 (m, 4H), 2.66-2.59 (m, 1H), 2.51-2.36 (m, 3H), 1.67 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 176.2, 142.9, 133.5, 128.8, 125.7, 86.5, 36.0, 29.3, 28.9.

5-cyclohexyl-5-methyldihydrofuran-2(3*H*)-one (2g)

Procedure A, after 16 h to afford 98% yield. Colorless solid; mp 57°C; ¹H NMR (600 MHz, CDCl₃) δ 2.61-2.53 (m, 1H), 2.51-2.43 (m, 2H), 2.11-2.04 (m, 1H), 1.88-1.81 (m, 1H), 1.81-1.71 (m, 3H), 1.65 (t, *J* = 15.0 Hz, 1H), 1.48 (tt, *J* = 12.1 Hz, *J* = 2.9 Hz, 1H), 1.25 (s, 3H), 1.23-1.13 (m, 1H), 1.09 (tt, *J* = 12.6 Hz, *J* = 3.2 Hz, 1H), 1.05-0.97 (m, 1H), 0.97-0.89 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 176.9, 89.3, 47.6, 31.3, 29.1, 27.2, 27.1, 26.3, 26.2, 26.1, 22.6; IR (film) v_{max} 2922, 2850, 1756, 1385, 1207, 1164, 970, 933 cm⁻¹; HRMS-EI (*m/z*): calculated for C₁₁H₁₈O₂ [M⁺] 182.1307, found 182.1309

5-methyldihydrofuran-2(3*H*)-one (2h)³

Procedure C, after 16 h to afford 98% yield (GC yield). Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 4.67-4.60 (m, 1H), 2.60-2.49 (m, 2H), 2.39-2.32 (m, 1H), 1.87-1.79 (m, 1H), 1.41 (d, *J* = 6.6 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 177.3, 77.2, 29.6, 29.0, 21.0

5,5-dimethyldihydrofuran-2(3*H*)-one (2i)³

Procedure A, after 16 h to afford 94% yield. Colorless oil; ¹H NMR (600 MHz, CDCl₃) δ 2.61 (t, *J* = 8.3 Hz, 4H), 2.04 (t, *J* = 8.2 Hz, 1H), 1.42 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 176.7, 84.6, 34.6, 29.3, 27.7.

6-methyl-6-phenyltetrahydro-2*H*-pyran-2-one (2k)⁴

Procedure B, after 24 h to afford 92% yield. White solid; mp 72°C; ¹H NMR (400 MHz, CDCl₃): δ 7.33 (m, 5H); 2.44 (m, 2H); 2.30 (m, 1H); 1.99 (m, 1H); 1.77 (m, 1H); 1.66 (s, 3H); 1.57 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 171.27, 144.40, 128.47, 127.14, 124. 21, 34.13, 31.06, 28.85, 16.35

6,6-dimethyl-3-phenyltetrahydro-2*H*-pyran-2-one (2l)

Procedure B, after 16 h to afford 94% yield. Colorless solid; mp 116°C; ¹H NMR (600 MHz, CDCl₃) δ 7.35 (t, *J* = 7.6 Hz, 2H), 7.28 (t, *J* = 7.5 Hz, 1H), 7.23 (d, *J* = 7.2 Hz, 2H), 3.67 (dd, *J* = 9.7 Hz, *J* = 7.0 Hz, 1H), 2.24-2.18 (m, 1H), 2.16-2.08 (m, 1H), 1.95-1.84 (m, 2H), 1.51 (d, *J* = 9.7 Hz, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 172.2, 140.0, 128.8, 128.1, 127.1, 83.0, 47.2, 33.4, 29.9, 28.4, 26.7; IR (film) ν_{max} 2974, 1708, 1206, 1110, 702 cm⁻¹; HRMS-EI (*m/z*): calculated for C₁₃H₁₆O₂ [M⁺] 204.1150, found 204.1146

3-allyl-6,6-dimethyl-3-phenyltetrahydro-2*H*-pyran-2-one (2m)

Procedure A, after 16 h, the reaction mixture was filter through short pad of Al₂O₃ with CH₂Cl₂ and concentrated to afford 94% yield. Yellow gummy oil; ¹H NMR (600 MHz, CDCl₃) δ 7.34-7.28 (m, 4H), 7.25-7.21 (m, 1H), 5.80-5.71 (m, 1H), 5.13 (d, *J* = 6.2 Hz, 1H), 5.10 (s, 1H), 2.89 (dd, *J* = 13.8 Hz, *J* = 5.6 Hz, 1H), 2.49 (dd, *J* = 13.4 Hz, *J* = 8.6 Hz, 1H), 2.28 (td, *J* = 13.6 Hz, *J* = 3.9 Hz, 1H), 2.06 (dt, *J* = 14.8 Hz, *J* = 3.5 Hz, 1H), 1.66 (td, *J* = 14.0 Hz, *J* = 3.3 Hz, 1H), 1.59 (dt, *J* = 14.3 Hz, *J* = 4.3 Hz, 1H), 1.37 (s, 3H), 1.28 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 173.6, 142.2, 134.1, 128.7, 127.0, 126.3, 119.1, 83.3, 50.9, 45.4, 31.2, 30.5, 28.2, 28.0; IR (film) v_{max} 2978, 1718, 1276, 1114, 933, 761, 700 cm⁻¹; HRMS (EI) (*m/z*): calculated for C₁₆H₂₀O₂ [M⁺] 244.1463, found 244.1470.

2-methyl-2-phenyltetrahydrofuran (2n)¹

Procedure B, after 14 h to afford 94% yield. Colorless oil; ¹H NMR (600 MHz, CDCl₃) δ 7.43 (d, J = 8.6 Hz, 2H), 7.34 (t, J = 7.6 Hz, 2H), 7.23 (d, J = 7.2 Hz, 1H), 4.07-4.02 (m, 1H), 3.97-3.91 (m, 1H), 2.26-2.21 (m, 1H), 2.07-1.96 (m, 2H), 1.87-1.78 (m, 1H), 1.55 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 148.2, 128.1, 126.4, 124.7, 84.3, 67.6, 39.5, 29.8, 25.8.

2,2-dimethylchromane (20)⁵

Procedure B, after 16 h to afford 94% yield. Yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 7.06 (m, 2H); 6.79 (m, 2H); 2.77 (t, *J* = 6.8 Hz, 2H); 2.83 (t, *J* = 6.8 Hz, 2H); 1.33 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 154.05, 129.50, 127.30, 120.96, 119.66, 117.30, 74.13, 32.88, 26.95, 22.52

2,2-dimethyl-5,5-diphenyltetrahydro-2*H*-pyran (2p)⁶

Procedure B, after 24 h to afford 93% yield. Colorless solid; mp 88°C; ¹H NMR (400 MHz, CDCl₃) δ 7.30 (m, 8H); 7.18 (m, 2H); 4.07 (s, 2H); 2.44 (m, 2H); 1.41 (m, 2H); 1.24 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 146.52, 128.16, 128.00, 126.00, 71.27, 69.04, 45.94, 32.63, 30.90, 26.42

2-methyl-1-tosylpyrrolidine (2q)⁷

Procedure C, after 16 h to afford 92% yield. Colorless oil; ¹H NMR (600 MHz, CDCl₃): δ 7.68 (d, *J* = 12.6 Hz, 2H), 7.27 (d, *J* = 12 Hz, 2H); 3.66 (m, 1H); 3.39 (m, 1H); 3.22 (m, 1H); 1.79 (m, 1H); 1.64 (m, 1H); 1.48 (m, 2H); 1.27 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 142.97, 134.76, 129.38, 127.22, 55.989, 48.85, 33.28, 23.69, 22.62, 21.26

2-methyl-2-phenyl-1-tosylpyrrolidine (2r)⁷

Procedure B, after 1 h to afford 92% yield. Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, J = 8.46 Hz, 2H); 7.40 (d, J = 8.46 Hz, 2H); 7.29 (m, 2H); 7.22 (m, 3H) ¹³C NMR (100 MHz, CDCl₃): δ 129.21, 128.00, 127.06, 126.56, 125.79, 49.75, 45.77, 26.39, 22.41, 21.41

2-phenyl-1-tosylpiperidine (2s)⁸

Procedure C, after 3 h to afford 93% yield. Colorless solid; mp 132°C; ¹H NMR (600 MHz, CDCl₃) δ 7.76 (d, J = 8.3 Hz, 2H), 7.36-7.28 (m, 6H), 7.25-7.21 (m, 1H), 5.27 (d, J = 4.3 Hz, 1H), 3.84 (d, J = 15.0 Hz, 1H), 3.01 (t, J = 14.6 Hz, 1H), 2.42 (s, 3H), 2.21 (d, J = 13.3 Hz, 1H), 1.70-1.62 (m, 1H), 1.53-1.47 (m, 1H), 1.45-1.36 (m, 2H), 1.34-1.25 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 143.0, 138.9, 138.7, 129.7, 128.6, 127.02, 127.00, 126.8, 55.3, 41.9, 27.3, 24.3, 21.5, 19.0.

5,5-dimethyl-3,3-diphenyl-1-tosylpyrrolidin-2-one (2t)

Procedure B, after 1 h to afford 99% yield. Colorless solid; mp 186°C; ¹H NMR (600 MHz, CDCl₃) δ 7.81 (d, J = 8.6 Hz, 2H), 7.31-7.22 (m, 12H), 2.92 (s, 2H), 2.40 (m, 3H), 1.30 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 175.3, 143.0, 142.4, 138.8, 128.9, 128.5, 127.8, 127.5, 127.4, 90.4, 61.9, 50.1, 28.4, 21.5; IR (film) v_{max} 2978, 1620, 1322, 1160, 1140, 1086, 780, 543 cm⁻¹; HRMS-ESI (*m/z*): calculated for C₂₅H₂₅NO₃NaS [M + Na]⁺ 442.1447, found 442.1443

6-methyl-1,6-diphenylpiperidin-2-one (2u)

Procedure C, after 24 h to afford 91% yield. Colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.43 ~6.97 (m, 10H), 2.68 (m, 2H), 2.08 (m, 2H), 1.71 (m, 2H), 1.52 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 172.0, 145.4, 140.1, 129.2, 128.6, 128.4, 127.3,

127.2, 126.6, 64.6, 40.8, 32.0, 28.7, 16.7; IR (film) v_{max} 2950, 1647, 1494, 1443, 1381, 762, 697 cm⁻¹; HRMS-ESI (*m/z*): calculated for C₁₈H₁₉NONa [M+Na]⁺ 288.1359, found 288.1357

(9*H*-fluoren-9-yl)methyl 2-phenylpyrrolidine-1-carboxylate (2v)⁷

Fmoc To a 10-mL sealed tube equipped with a stirring bar was added 1v (50 mg, 0.135 mmol), Zn(OTf)₂ (5 mg, 0.014 mmol), TsOHH₂O (2.5 mg, 0.014 mmol) and in DCE (0.27 ml). After heated to reflux for 36 h, the reaction mixture was filtered through a short pad of silica gel, washed with DCM, and then concentrated to give crude mixture. The crude mixture was further purified by flash chromatography (SiO₂) and concentrated to give 2v (46 mg, 92%). Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.81~7.62 (m, 3H), 7.50~6.96 (m, 10H), 5.02 (m, 1H), 4.51~3.94 (m, 3H), 3.86~3.52 (m, 2H), 2.42~2.29 (m, 1H), 2.09~1.81 (m, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 155.3, 154.8, 144.1, 144.0, 143.9, 141.3, 141.1, 141.0, 128.6, 128.4, 127.6, 127.4, 127.3, 127.0, 126.9, 125.4, 125.1, 125.0, 119.9, 119.7, 119.6, 67.4, 66.9, 61.2, 61.0, 47.7, 47.5, 47.1, 35.8, 34.7, 23.5, 22.5

2-(4-nitrophenyl)-1-tosylpyrrolidine (2w)

To a 10-mL sealed tube equipped with a stirring bar was added **1w** (50 mg, 0.144 mmol), Zn(OTf)₂ (10.5 mg, 0.029 mmol), TsOHH₂O (32.9 mg, 0.173 mmol) and in DCE (0.29 ml). After heated to reflux for 36 h, the reaction mixture was filtered through a short pad of silica gel, washed with EA, and then concentrated to give crude mixture. The crude mixture was further purified by flash chromatography (SiO₂) and concentrated to give **2w** (49mg, 91%). White solid; mp 179 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, *J* = 8.51 Hz, 2H), 7.69 (d, *J* = 7.66 Hz, 2H), 7.50 (d, *J* = 8.08 Hz, 2H), 7.32 (d, *J* = 7.66 Hz, 2H), 4.84~4.78 (m, 1H), 3.70~3.62 (m, 1H), 3.48~3.39 (m, 1H), 2.44 (s, 3H), 2.15~2.04 (m, 1H), 1.91~1.75 (m, 2H), 1.75~1.63 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 150.8, 147.1, 143.9, 134.3, 129.8, 127.5, 127.1, 123.7, 62.8, 49.6, 35.8, 24.1, 21.6 IR (film) v_{max} 3650, 3447, 1654, 1637, 1341, 1156, 1085 cm⁻¹; HRMS-ESI (*m/z*): calculated for C₁₇H₁₈N₂O₄NaS [M+Na]⁺ 369.0879, found 369.0870.

1,1-dimethyl-1,2,3,4-tetrahydronaphthalene (4a)⁹

Procedure D, after 1 h to afford 99% yield. Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.40 (m, 1H); 7.21 (m, 1H); 7.13 (m, 2H) 2.84 (m, 2H); 1.88 (m, 2H); 1.75 (m, 2H) ; ¹³C NMR (100 MHz, CDCl₃): δ 128.94, 126.51, 125.70, 125.14, 39.26, 31,78, 30,66, 19.65

7-methoxy-1,1-dimethyl-1,2,3,4-tetrahydronaphthalene (4b)⁹

Procedure D, after 1 h to afford 99% yield. Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.02 (d, *J* = 8.28 Hz, 1H); 6.94 (m, 1H); 6.72 (dd, *J* = 8.31 Hz, 1H) 3.84 (s, 3H); 2.76 (t, *J* = 12.2 Hz, 2H); 1.85 (m, 2H); 1.71 (m, 2H); 1.35 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 157.70, 147.00, 129.77, 128.33, 112.13, 110.91, 55.15, 39.23, 34.05, 31.83, 29.87, 19.85

1,1,7-trimethyl-1,2,3,4-tetrahydronaphthalene (4c)

Procedure D, after 1 h to afford 95% yield. Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 6.99 (m, 3H); 2.72 (t, *J* = 12.9 Hz, 2H); 2.31 (s, 3H) 1.79 (m, 2H); 1.65 (m, 2H); 1.28 (s, 6H) ; ¹³C NMR (100 MHz, CDCl₃): δ 145.58, 135.01, 133.00, 128.93, 127.12, 126.17, 39.45, 33.75, 31.86, 30.35, 21.21, 19.8; IR (film) ν_{max} 3446, 2957, 2927, 1505, 1456 cm⁻¹ ;HRMS-EI (*m/z*): calculated for C₁₃H₁₈ [M⁺] 174.1409, found 174.1413

N-((4,4-dimethyl-1,2,3,4-tetrahydronaphthalen-1-yl)methyl)-4-

methylbenzenesulfonamide (4d)

Procedure D, after 16 h to afford 95% yield. White solid; mp 132°C;¹H NMR (600 MHz, CDCl₃): δ 7.78 (d, *J* = 7.49 Hz, 2H); 7.31 (m, 3H); 7.17 (t, *J* = 7.3 Hz, 1H); 7.05 (m, 2H); 5.03 (t, *J* = 6.6 Hz; 1H); 3.16 (m, 2H); 2.93 (m, 1H), 2.43 (s, 3H); 1.87 (m, 2H); 1.67 (m, 1H); 1.53 (m, 1H); 1.27 (s, 3H); 1.25 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 146.45, 143.27, 138.93, 129.64, 128.46, 127.00, 126.85, 126.69, 125.55, 47.85, 38.39, 34.52, 33.71, 31.86, 31.41, 21.43; IR (film) v_{max} 3285, 2957, 2930, 1756, 1323, 1158, 1093, 662, 550 cm⁻¹; HRMS-ESI (*m*/*z*): Calcd. for C₂₀H₂₅NO₂S [M⁺] 343.16, found [M + Na]⁺ 366.1496

(3aR,7aS)-4,4,7a-trimethylhexahydrobenzofuran-2(3H)-one (4e)¹⁰

Procedure E, after 70 h, the crude mixture was further purified by flash chromatography (SiO₂) to afford 94% yield. Colorless oil; ¹H NMR (600 MHz, CDCl₃) δ 2.49 (dd, J = 17.2 Hz, J = 12.6 Hz, 1H), 2.41 (dd, J = 17.5 Hz, J = 8.4 Hz, 1H), 2.05 (dd, J = 12.7 Hz, J = 8.1 Hz, 1H), 1.85 (d, J = 13.4 Hz, 1H), 1.63-1.57 (m, 1H), 1.51 (s, 3H), 1.50-1.23 (m, 4H), 1.04 (s, 3H), 0.90 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 175.8, 86.1, 51.9, 34.7, 33.6, 33.3, 32.2, 30.1, 28.4, 26.9, 18.9.

(4a*S*,10a*S*)-1,1,4a-trimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthrene (4f)¹¹

Procedure D, after 44 h to afford 92% yield. Colorless oil; ¹H NMR (600 MHz, CDCl₃) δ 7.29 (d, J = 7.7 Hz, 1H), 7.16 (t, J = 7.3 Hz, 1H), 7.10 (t, J = 7.6 Hz, 1H), 7.07 (d, J = 7.5 Hz, 1H), 2.98 (dd, J = 17.0 Hz, J = 6.9 Hz, 1H), 2.94-2.86 (m, 1H), 2.33 (d, J = 12.9 Hz, 1H), 1.95-1.89 (m, 1H), 1.84 -1.71 (m, 2H), 1.68-1.61 (m, 1H), 1.52 (d, J = 13.3 Hz, 1H), 1.44 (td, J = 13.4 Hz, J = 3.4 Hz, 1H), 1.38 (dd, J = 12.3 Hz, J = 2.4 Hz, 1H), 1.31-1.25 (m, 1H), 1.23 (s, 3H), 0.99 (s, 3H), 0.97 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 150.2, 135.3, 129.1, 125.6, 125.2, 124.4, 50.3, 41.7, 38.9, 37.9, 33.5, 33.4, 30.5, 24.9, 21.7, 19.4, 19.1.

(4a*S*,10a*S*)-1,1,4a,6-tetramethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthrene (4g)¹²

Procedure D, after 14 h to afford 98% yield. Colorless oil; ¹H NMR (600 MHz, CDCl₃) δ 7.11 (s, 1H), 6.98 (d, J = 7.8 Hz, 1H), 6.94 (t, J = 7.8 Hz, 1H), 2.95 (dd, J = 16.7 Hz, J = 6.7 Hz, 1H), 2.91-2.83 (m, 1H), 2.39-2.31 (m, 1H), 2.34(s, 3H), 1.94-1.89 (m, 1H), 1.83 -1.70 (m, 2H), 1.68-1.63 (m, 1H), 1.53 (d, J = 13.1 Hz, 1H), 1.44 (td, J = 13.3 Hz, J = 3.3 Hz, 1H), 1.38 (dd, J = 12.7 Hz, J = 2.2 Hz, 1H), 1.31-1.25 (m, 1H), 1.23 (s, 3H), 0.99 (s, 3H), 0.97 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 150.0, 134.8, 132.1, 129.0, 126.1, 125.0, 50.5, 41.8, 38.9, 37.8, 33.5, 33.4, 30.1, 24.9, 21.7, 21.4, 19.4, 19.2.

 $(4aS,10aS)\mbox{-}8\mbox{-}methoxy\mbox{-}1,1,4a\mbox{-}trimethyl\mbox{-}1,2,3,4,4a,9,10,10a\mbox{-}octahydrophenanthrene} (4h)^{13}$

Procedure D, after 23 h to afford 98% yield. Colorless solid; mp 109°C; ¹H NMR (600 MHz, CDCl₃) δ 7.15 (t, *J* = 7.8 Hz, 1H), 6.94 (d, *J* = 8.0 Hz, 1H), 6.67 (d, *J* = 7.8 Hz, 1H), 3.83 (s, 3H), 2.92 (dd, *J* = 17.8 Hz, *J* = 6.7 Hz, 1H), 2.67-2.59 (m, 1H), 2.31 (d, *J* = 12.6 Hz, 1H), 1.98-1.92 (m, 1H), 1.80 -1.73 (m, 1H), 1.70-1.61 (m, 2H), 1.51 (d, *J* = 13.8 Hz, 1H), 1.41 (td, *J* = 13.2 Hz, *J* = 3.5 Hz, 1H), 1.35 (dd, *J* = 12.5 Hz, *J* = 1.8 Hz, 1H), 1.28-1.21 (m, 1H), 1.23 (s, 3H), 0.98 (s, 3H), 0.96 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 157.1, 151.6, 126.0, 124.3, 116.6, 106.3, 55.2, 49.9, 41.7, 39.1, 37.8, 33.5, 33.4, 24.8, 24.6, 21.7, 19.4, 18.5.

(4a*S*,10a*S*)-6-methoxy-1,1,4a-trimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthrene (4i)¹¹

OMe Procedure D, after 14 h to afford 99% yield. Colorless oil; ¹H NMR (600 MHz, CDCl₃) δ 6.98 (d, J = 8.6 Hz, 1H), 6.84 (d, J = 2.4 Hz, 1H), 6.68 (dd, J = 8.6 Hz, J = 2.9 Hz, 1H), 3.79 (s, 3H), 2.91 (dd, J = 16.7 Hz, J = 6.8 Hz,1H), 2.85-2.78 (m, 1H), 2.27 (d, J = 13.0 Hz, 1H), 1.92-1.86 (m, 1H), 1.80 -1.67 (m, 2H), 1.66-1.61 (m, 1H), 1.50 (d, J = 13.3 Hz, 1H), 1.43 (td, J = 13.0 Hz, J = 3.2 Hz, 1H), 1.35 (dd, J = 12.3 Hz, J = 2.0 Hz, 1H), 1.29-1.23 (m, 1H), 1.21 (s, 3H), 0.97 (s, 3H), 0.95 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 157.7, 151.5, 129.8, 127.5, 110.7, 110.2, 55.3, 50.3, 41.7, 38.9, 38.0, 33.5, 33.4, 29.6, 24.8, 21.7, 19.4, 19.2.

3. ¹H &¹³C NMR Spectra

4. Mass Information

5. References

1. Ha, T. M.; Chatalova-Sazepin, C.; Wang, Q.; Zhu, J. Angew. Chem. Int. Ed. 2016, 55, 9249-9252.

2. Kise, N.; Hamada, Y.; Sakurai, T. Tetrahedron 2017, 73, 1143-1156.

3. Adrio, L. A.; Quek, L. S.; Taylor, J. G.; Kuok Hii, K. Tetrahedron 2009, 65, 10334-10338.

4. Nishikawa, Y.; Hamamoto, Y.; Satoh, R.; Akada, N.; Kajita, S.; Nomoto, M.; Miyata,

M.; Nakamura, M.; Matsubara, C.; Hara, O. Chem. Eur. J. 2018, 24, 18880-18885.

5. Notar Francesco, I.; Cacciuttolo, B.; Pucheault, M.; Antoniotti, S. *Green Chem.* 2015, 17, 837-841.

6. Ferrand, L.; Tang, Y.; Aubert, C.; Fensterbank, L.; Mouriès-Mansuy, V.; Petit, M.; Amatore, M. Org. Lett. 2017, 19, 2062-2065.

7. Qi, C.; Hasenmaile, F.; Gandon, V.; Lebœuf, D. ACS Catalysis 2018, 8, 1734-1739.

8. Schlummer, B.; Hartwig, J. F. Org. Lett. 2002, 4, 1471-1474.

9. Nammalwar, B.; Bunce, R. A. Tetrahedron Lett. 2013, 54, 4330-4332.

- 10. Imamura, P. M.; Santiago, G. M. P. Synth. Commun. 1997, 27, 2479-2485.
- 11. Youn, S. W.; Pastine, S. J.; Sames, D. Org. Lett. 2004, 6, 581-584.
- 12. Samanta, R. C.; Yamamoto, H. J. Am. Chem. Soc. 2017, 139, 1460-1463.

13. Lin, S.-C.; Chein, R.-J. J. Org. Chem. 2017, 82, 1575-1583.