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1. Experimental Procedures

1.1 Materials and methods

In a typical process, 2.2 mL of HSiCl; (TCI) were mixed with 2.0 mL of Pr;N
(Alfa Aesar), and 30 mL of anhydrous hexane. The formed colorless solution was
stirred at room temperature overnight. Afterwards, 0.56 g of magnesium powder
(Sigma-Aldrich) were added to the above solution. The mixture was further stirred for
three days at 80°C. The precipitates were collected by centrifugation, washed with
anhydrous CH,Cl, several times, and dried under vacuum at 60°C for 8 h. Then, the
dried products were heated at 800°C for 4 h under Ar flowing with a heating rate of
15°C min’!. After cooling down, the heat-treated products were successively washed
with 1.0 M HCI solution and distilled water in sequence for several times to remove
redundant magnesium powders and inorganic salts. The final products were dried in a
vacuum oven for further use. The yield of the porous silicon (470 mg) was

approximately 77% based on the HSiCl; content.
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The synthesis could be carried out in a larger scale: 11.0 mL of HSiCl; were
mixed with 10.0 mL of Pr3N and 150 mL of anhydrous hexane. The forming colorless
solution was stirred at room temperature overnight. Afterwards, 2.80 g of magnesium
powder were added to the above solution and reacted for 3 d at 80°C under stirring.
The precipitates were collected by centrifugation, washed with anhydrous CH,Cl,
several times, dried and then heated at 800°C for 4 h under Ar. The yield of the porous

silicon (2.10 g) was approximately 67% based on the HSiCl; content.
1.2 Materials Characterization

The structures and crystallinity of the obtained samples were investigated by
power X-ray diffraction (XRD, Bruker D8 X-ray diffractometer, Cu Ka radiation, A=
1.5406 A, 40 kV, 40 mA). The morphologies and element composition were
characterized by a field-emission scanning electron microscopy (SEM, Hitachi, S-
4800) equipped with energy-dispersive spectrometer (EDS) and transmission electron
microscopy (TEM, JEM-2100). The surface area and porous property was determined
by nitrogen adsorption—desorption isotherms (Micromeritics ASAP 2020 analyzer) at
77 K after degassing of the sample at 150°C for 10 h. The specific surface area and
pore size distribution of the obtained samples were calculated based on the Brunauer-
Emmett-Teller (BET) and Density-Functional-Theory (DFT) methods, respectively.
The surficial chemical compositions of the obtained samples were investigated by X-
ray photoelectron spectroscopy (XPS, PHI 5000 VersaProbe). The samples were also
characterized by Raman spectroscopy (LabRAM Aramis, Horiba, 633 nm laser).
Fourier-transform infrared spectroscopy (FT-IR) were measured on a FT-IR
spectrometer (Vector22) with the KBr pellet method. Thermogravimetric analysis
(TGA) were carried out on a simultaneous Netzche STA449F3 thermal analyzer at a

heating rate of 10°C/min from room temperature to 700°C under flowing air.
1.3 Electrochemical Characterizations

The electrochemical performance measurements were performed by using the

2032 coin cells. The 2032-type half cells consist of the active materials as the working



electrode, the Li foil as the reference electrode and counter electrode, a Celgard 2400
membrane as the separator, and 1 M LiPF¢ in a mixed solvent of 1:1 (v/v) ethylene
carbonate (EC)/diethyl carbonate (DEC) with 2 wt % vinylene carbonate (VC,
DoDoChem) as the electrolyte additive. The cells were assembled in an Ar-filled
glove box (H,O, O, < 0.1 ppm). The working electrodes were prepared by mixing 70
wt % active materials, 15 wt % carbon black (Shenzhen Kejingstar Technology Ltd.,
China) and 15 wt % sodium alginate (Sinopharm) in water. The homogeneous slurries
were then pasted uniformly on a copper foil and dried at 80°C in vacuum for 10 h.
The loading density of active materials on the electrodes was appropriately 0.5 mg
cm2. The galvanostatic charge/discharge cycles were performed on a Neware battery
testing device (Shenzhen, China) at a voltage window of 0.01-1.5 V vs. Li"/Li. Cyclic
voltammetry (CV) curves were collected on an electrochemical station (CHI650d,
Shanghai Chenhua Instruments Inc., China) at a potential range of 0.01-1.5 V with a
scan rate of 0.1 mV s-!. Electrochemical impedance spectra (EIS) were recorded over
the frequency range from 0.01 Hz to 100 kHz on a CHI650d electrochemical

workstation.
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Figure S1. Digital images of (a) pSi@C obtained after pre-heat treatment (al: after
heat-treated; a2: after washing; a3: after exposed in air for 3d, respectively), and (b)
pSi obtained by directly acid pickling (bl: after directly acid pickling; b2: after
exposed in air for 3d, respectively).
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Figure S2. (a) SEM image; (b) EDS spectra; (c) elemental mapping of the raw

product obtained by drying directly.
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Figure S3. (a) SEM image; (b) TEM image; (c) HRTEM image; (d) EDS spectra; (e)
elemental mapping; (f) Si 2p XPS spectra of the sample obtained after acid pickling
directly and without pre-heated treatment.
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Figure S4. (a) N, adsorption isotherms and (b) corresponding DFT pore size
distribution curves of the heat-treated raw product and pSi@C. (c) N, adsorption
isotherms and (d) corresponding DFT pore size distribution curves of the sample

obtained after acid pickling and without pre-heated treatment.
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Figure S5. (a) SEM image, (b) TEM image; (c) HRTEM image, (d) EDS spectra, (e)

elemental mapping of the pre-heated raw product.
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Figure S6. (a) Fourier Transform Infrared Spectroscopy (FT-IR): green-outlined area

were peaks of absorbed water and purple-outlined area were peaks of contaminated
CO:.. (b) TGA curve of the pSi@C.
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Figure S7. Raman spectra of the pSi@C anodes: the uncycled and after 200 cycles at
a current density of 2.0 A g™!.
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Figure S8. (a) Voltage profiles of the pSi electrode. (b) Cycling performance of pSi at
a current density of 0.5 A g'!.
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Figure S9. The discharge-charge curves of the pSi@C anodes at different current
densities
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Figure S10. EIS spectra of the pSi@C anodes after Oth, 5th and 200th cycles at a
current density of 2.0 A g™.

Table S1. Comparison of the latest various routes of synthesizing nanostructured Si
and porous Si-based as anodes for LIBs.

Samples Cycling performance Synthetic method
(References) - — -
Current Capacity Initial Raw material Advantage/
density (mAh g!) CE (%) Synthesis conditions Disadvantage
(Ag")
Si-C composite 1.0 1459 mA h g-1 77% SiO powder multi-step
(1] after 200 cycles The disproportionation of SiO synthesis
followed thermal decomposition
of acetylene
Nanosilicon 1.4 1060 mA h g! SiH,4 harsh and
coated after 150 cycles uniform Si and C coatings | difficult to
grapheme 157 deposited on graphene via control
vapor decomposition
Si/C Hybrids!S3] 0.5 904 mA h g'! 85.4% | pyrolysis-cumelectrolysis (PCE) high
after 100 cycles of SiO,@polydopamine in temperature
molten NaCl—CacCl, at 800 °C
Si@ZIF-8- 0.2 1050 mA h g! in situ MOF layers coated on Si multi-step
700N 54 after 500 cycles particles followed pyrolysis synthesis
Core-Shell Si/C 1.0 1018 mA h g! 72% in-situ  magnesium reduction high
1831 after 200 cycles and  glucose  carbonization | temperature
method with the assistance of
the NaCl template
Si/C/G 0.1 938 mA h g’! 56% diatomite mineral tedious and
composite [59] after 300 cycles magnesiothermic reduction and time-
glucose  carbonization and | consuming
mixed graphite




PPy@PHSi 7] 1.0 88% capacity 68% the magnesiothermic reduction multi-step
retention after followed the polymerization of synthesis
250 cycles PPy
Si-SiC/C-2 0.5 937 mA g'| 72.9% hydrothermal treatment and multi-step
[S8] after 80 cycles glucose carbonization synthesis
magnesiothermic reduction
Silicon- 0.5 1344 mAhg! 70.1% PEO-assisted electrospinning high
graphene after 200 cycles method voltage
composite [
Nanoscale 0.2 500mA hg'! 75.7% SiCly solvothermal
silicon after 100 cycles Zn powder reduction reaction
[s10] (500°C)
Crystalline 2.1 1600 mAhg' | 73.9% SiCly active Na
nano-Si [S11] after 500 cycles Na metal metal
mechanical milling
Nanoporous 1.0 1180 mA hg! 76% Mg,Si higher
silicon [812] after 400 cycles vacuum dealloying temperature
Mesoporous 1.0 9235mAhg! | 61.4% SiO higher
silicon [S13] after 160 cycles magnesiothermic reduction temperature
p-SiNPs@HC- 1.0 600 mA g! 55% magnesiothermic reduction high
1 8141 after 600 cycles and glucose carbonization temperature
Mesoporous 0.5 1018 mA g-! 54% preparation of precursor | multi-step
C/Si composite after 100 cycles solution and dispersion of Si synthesis
[S15] nanoparticle, in situ
polymerization and
carbonization
pSi@NC 5161 1.0 1310 mA g-! 71.4% HSiCl; multi-step
after 200 cycles magnesium reduction of HSiCl; synthesis
2.0 750 mA g! and subsequent carbon coating
after 200 cycles
in this work 2.0 1120 mA ¢! 67.5% HSiCl; high yield
after 500 cycles magnesium reduction of HSiCl; | in situ carbon
and in situ conformal coating of coating

carbon layers
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