## Electronic Supporting Information

# One-pot solution synthesis of carbon-coated silicon nanoparticles as anode material for lithium-ion batteries

Fei Wang<sup>[a]</sup>, Changsheng Song<sup>[a]</sup>, Baoxun Zhao<sup>[a]</sup>, Lin Sun<sup>[b]</sup>, Hongbin Du<sup>\*[a]</sup>

 <sup>[a]</sup>State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China.
<sup>[b]</sup>Jiangsu Collaborative Innovation Center for Ecological Building Materials and Environmental Protection Equipments, and School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, PR China.
\*Corresponding author: hbdu@nju.edu.cn.

### **1. Experimental Procedures**

#### 1.1 Materials and methods

In a typical process, 2.2 mL of HSiCl<sub>3</sub> (TCI) were mixed with 2.0 mL of Pr<sub>3</sub>N (Alfa Aesar), and 30 mL of anhydrous hexane. The formed colorless solution was stirred at room temperature overnight. Afterwards, 0.56 g of magnesium powder (Sigma-Aldrich) were added to the above solution. The mixture was further stirred for three days at 80°C. The precipitates were collected by centrifugation, washed with anhydrous CH<sub>2</sub>Cl<sub>2</sub> several times, and dried under vacuum at 60°C for 8 h. Then, the dried products were heated at 800°C for 4 h under Ar flowing with a heating rate of 15°C min<sup>-1</sup>. After cooling down, the heat-treated products were successively washed with 1.0 M HCl solution and distilled water in sequence for several times to remove redundant magnesium powders and inorganic salts. The final products were dried in a vacuum oven for further use. The yield of the porous silicon (470 mg) was approximately 77% based on the HSiCl<sub>3</sub> content.

The synthesis could be carried out in a larger scale: 11.0 mL of HSiCl<sub>3</sub> were mixed with 10.0 mL of  $Pr_3N$  and 150 mL of anhydrous hexane. The forming colorless solution was stirred at room temperature overnight. Afterwards, 2.80 g of magnesium powder were added to the above solution and reacted for 3 d at 80°C under stirring. The precipitates were collected by centrifugation, washed with anhydrous  $CH_2Cl_2$  several times, dried and then heated at 800°C for 4 h under Ar. The yield of the porous silicon (2.10 g) was approximately 67% based on the HSiCl<sub>3</sub> content.

#### 1.2 Materials Characterization

The structures and crystallinity of the obtained samples were investigated by power X-ray diffraction (XRD, Bruker D8 X-ray diffractometer, Cu K $\alpha$  radiation,  $\lambda$ = 1.5406 Å, 40 kV, 40 mA). The morphologies and element composition were characterized by a field-emission scanning electron microscopy (SEM, Hitachi, S-4800) equipped with energy-dispersive spectrometer (EDS) and transmission electron microscopy (TEM, JEM-2100). The surface area and porous property was determined by nitrogen adsorption-desorption isotherms (Micromeritics ASAP 2020 analyzer) at 77 K after degassing of the sample at 150°C for 10 h. The specific surface area and pore size distribution of the obtained samples were calculated based on the Brunauer-Emmett-Teller (BET) and Density-Functional-Theory (DFT) methods, respectively. The surficial chemical compositions of the obtained samples were investigated by Xray photoelectron spectroscopy (XPS, PHI 5000 VersaProbe). The samples were also characterized by Raman spectroscopy (LabRAM Aramis, Horiba, 633 nm laser). Fourier-transform infrared spectroscopy (FT-IR) were measured on a FT-IR spectrometer (Vector22) with the KBr pellet method. Thermogravimetric analysis (TGA) were carried out on a simultaneous Netzche STA449F3 thermal analyzer at a heating rate of 10°C/min from room temperature to 700°C under flowing air.

#### 1.3 Electrochemical Characterizations

The electrochemical performance measurements were performed by using the 2032 coin cells. The 2032-type half cells consist of the active materials as the working

electrode, the Li foil as the reference electrode and counter electrode, a Celgard 2400 membrane as the separator, and 1 M LiPF<sub>6</sub> in a mixed solvent of 1:1 (v/v) ethylene carbonate (EC)/diethyl carbonate (DEC) with 2 wt % vinylene carbonate (VC, DoDoChem) as the electrolyte additive. The cells were assembled in an Ar-filled glove box (H<sub>2</sub>O,  $O_2 < 0.1$  ppm). The working electrodes were prepared by mixing 70 wt % active materials, 15 wt % carbon black (Shenzhen Kejingstar Technology Ltd., China) and 15 wt % sodium alginate (Sinopharm) in water. The homogeneous slurries were then pasted uniformly on a copper foil and dried at 80°C in vacuum for 10 h. The loading density of active materials on the electrodes was appropriately 0.5 mg cm<sup>-2</sup>. The galvanostatic charge/discharge cycles were performed on a Neware battery testing device (Shenzhen, China) at a voltage window of 0.01-1.5 V vs. Li<sup>+</sup>/Li. Cyclic voltammetry (CV) curves were collected on an electrochemical station (CHI650d, Shanghai Chenhua Instruments Inc., China) at a potential range of 0.01-1.5 V with a scan rate of 0.1 mV s<sup>-1</sup>. Electrochemical impedance spectra (EIS) were recorded over the frequency range from 0.01 Hz to 100 kHz on a CHI650d electrochemical workstation.



**Figure S1.** Digital images of (a) pSi@C obtained after pre-heat treatment (a1: after heat-treated; a2: after washing; a3: after exposed in air for 3d, respectively), and (b) pSi obtained by directly acid pickling (b1: after directly acid pickling; b2: after exposed in air for 3d, respectively).



**Figure S2.** (a) SEM image; (b) EDS spectra; (c) elemental mapping of the raw product obtained by drying directly.



**Figure S3.** (a) SEM image; (b) TEM image; (c) HRTEM image; (d) EDS spectra; (e) elemental mapping; (f) Si 2p XPS spectra of the sample obtained after acid pickling directly and without pre-heated treatment.



**Figure S4.** (a)  $N_2$  adsorption isotherms and (b) corresponding DFT pore size distribution curves of the heat-treated raw product and pSi@C. (c)  $N_2$  adsorption isotherms and (d) corresponding DFT pore size distribution curves of the sample obtained after acid pickling and without pre-heated treatment.



Figure S5. (a) SEM image, (b) TEM image; (c) HRTEM image, (d) EDS spectra, (e) elemental mapping of the pre-heated raw product.



**Figure S6.** (a) Fourier Transform Infrared Spectroscopy (FT-IR): green-outlined area were peaks of absorbed water and purple-outlined area were peaks of contaminated  $CO_2$ . (b) TGA curve of the pSi@C.



Figure S7. Raman spectra of the pSi@C anodes: the uncycled and after 200 cycles at a current density of 2.0 A  $g^{-1}$ .



**Figure S8.** (a) Voltage profiles of the pSi electrode. (b) Cycling performance of pSi at a current density of  $0.5 \text{ A g}^{-1}$ .



Figure S9. The discharge-charge curves of the pSi@C anodes at different current densities



Figure S10. EIS spectra of the pSi@C anodes after 0th, 5th and 200th cycles at a current density of 2.0 A  $g^{-1}$ .

| Samples<br>(Pafaranaas)      | Cycling performance  |                           |         | Synthetic method                        |              |  |
|------------------------------|----------------------|---------------------------|---------|-----------------------------------------|--------------|--|
| (References)                 | Current              | Capacity                  | Initial | Raw material                            | Advantage/   |  |
|                              | density              | $(mAh g^{-1})$            | CE (%)  | Synthesis conditions                    | Disadvantage |  |
|                              | (A g <sup>-1</sup> ) |                           |         |                                         |              |  |
| Si-C composite               | 1.0                  | 1459 mA h g-1             | 77%     | SiO powder                              | multi-step   |  |
| [S1]                         |                      | after 200 cycles          |         | The disproportionation of SiO           | synthesis    |  |
|                              |                      |                           |         | followed thermal decomposition          |              |  |
|                              |                      |                           |         | of acetylene                            |              |  |
| Nanosilicon                  | 1.4                  | 1060 mA h g <sup>-1</sup> |         | $SiH_4$                                 | harsh and    |  |
| coated                       |                      | after 150 cycles          |         | uniform Si and C coatings               | difficult to |  |
| grapheme [S2]                |                      |                           |         | deposited on graphene via               | control      |  |
|                              |                      |                           |         | vapor decomposition                     |              |  |
| Si/C Hybrids <sup>[S3]</sup> | 0.5                  | 904 mA h g <sup>-1</sup>  | 85.4%   | pyrolysis-cumelectrolysis (PCE)         | high         |  |
|                              |                      | after 100 cycles          |         | of SiO <sub>2</sub> @polydopamine in    | temperature  |  |
|                              |                      |                           |         | molten NaCl–CaCl <sub>2</sub> at 800 °C |              |  |
| Si@ZIF-8-                    | 0.2                  | 1050 mA h g <sup>-1</sup> |         | in situ MOF layers coated on Si         | multi-step   |  |
| 700N <sup>[S4]</sup>         |                      | after 500 cycles          |         | particles followed pyrolysis            | synthesis    |  |
| Core-Shell Si/C              | 1.0                  | 1018 mA h g <sup>-1</sup> | 72%     | in-situ magnesium reduction             | high         |  |
| [85]                         |                      | after 200 cycles          |         | and glucose carbonization               | temperature  |  |
|                              |                      |                           |         | method with the assistance of           |              |  |
|                              |                      |                           |         | the NaCl template                       |              |  |
| Si/C/G                       | 0.1                  | 938 mA h g <sup>-1</sup>  | 56%     | diatomite mineral                       | tedious and  |  |
| composite [S6]               |                      | after 300 cycles          |         | magnesiothermic reduction and           | time-        |  |
|                              |                      |                           |         | glucose carbonization and               | consuming    |  |
|                              |                      |                           |         | mixed graphite                          |              |  |

| Table <b>S</b> | <b>51.</b> Comparison | of the latest | various ro | utes of syr | nthesizing | nanostructure | d Si |
|----------------|-----------------------|---------------|------------|-------------|------------|---------------|------|
| and por        | ous Si-based as       | anodes for L  | IBs.       |             |            |               |      |

| PPy@PHSi [S7]  | 1.0 | 88% capacity retention after | 68%   | the magnesiothermic reduction followed the polymerization of | multi-step<br>synthesis |
|----------------|-----|------------------------------|-------|--------------------------------------------------------------|-------------------------|
|                |     | 250 cycles                   |       | РРу                                                          |                         |
| Si-SiC/C-2     | 0.5 | 937 mA g <sup>-1</sup>       | 72.9% | hydrothermal treatment and                                   | multi-step              |
| [S8]           |     | after 80 cycles              |       | glucose carbonization                                        | synthesis               |
|                |     |                              |       | magnesiothermic reduction                                    | -                       |
| Silicon-       | 0.5 | 1344 mA h g <sup>-1</sup>    | 70.1% | PEO-assisted electrospinning                                 | high                    |
| graphene       |     | after 200 cycles             |       | method                                                       | voltage                 |
| composite [S9] |     |                              |       |                                                              |                         |
| Nanoscale      | 0.2 | 500 mA h g <sup>-1</sup>     | 75.7% | SiCl <sub>4</sub>                                            | solvothermal            |
| silicon        |     | after 100 cycles             |       | Zn powder reduction                                          | reaction                |
| [S10]          |     |                              |       | -                                                            | (500°C)                 |
| Crystalline    | 2.1 | 1600 mA h g <sup>-1</sup>    | 73.9% | SiCl <sub>4</sub>                                            | active Na               |
| nano-Si [S11]  |     | after 500 cycles             |       | Na metal                                                     | metal                   |
|                |     |                              |       | mechanical milling                                           |                         |
| Nanoporous     | 1.0 | 1180 mA h g <sup>-1</sup>    | 76%   | Mg <sub>2</sub> Si                                           | higher                  |
| silicon [S12]  |     | after 400 cycles             |       | vacuum dealloying                                            | temperature             |
| Mesoporous     | 1.0 | 923.5 mA h g <sup>-1</sup>   | 61.4% | SiO                                                          | higher                  |
| silicon [S13]  |     | after 160 cycles             |       | magnesiothermic reduction                                    | temperature             |
| p-SiNPs@HC-    | 1.0 | 600 mA g <sup>-1</sup>       | 55%   | magnesiothermic reduction                                    | high                    |
| 1 [S14]        |     | after 600 cycles             |       | and glucose carbonization                                    | temperature             |
| Mesoporous     | 0.5 | 1018 mA g <sup>-1</sup>      | 54%   | preparation of precursor                                     | multi-step              |
| C/Si composite |     | after 100 cycles             |       | solution and dispersion of Si                                | synthesis               |
| [S15]          |     |                              |       | nanoparticle, in situ                                        |                         |
|                |     |                              |       | polymerization and                                           |                         |
|                |     |                              |       | carbonization                                                |                         |
| pSi@NC [S16]   | 1.0 | 1310 mA g <sup>-1</sup>      | 71.4% | HSiCl <sub>3</sub>                                           | multi-step              |
|                |     | after 200 cycles             |       | magnesium reduction of HSiCl <sub>3</sub>                    | synthesis               |
|                | 2.0 | 750 mA g <sup>-1</sup>       |       | and subsequent carbon coating                                |                         |
|                |     | after 200 cycles             |       |                                                              |                         |
| in this work   | 2.0 | 1120 mA g <sup>-1</sup>      | 67.5% | HSiCl <sub>3</sub>                                           | high yield              |
|                |     | after 500 cycles             |       | magnesium reduction of HSiCl <sub>3</sub>                    | in situ carbon          |
|                |     | _                            |       | and in situ conformal coating of                             | coating                 |
|                |     |                              |       | carbon layers                                                |                         |

#### References

- S1 R. Yi, F. Dai, M. L. Gordin, S. Chen, D. Wang, *Adv. Energy Mater.*, 2013, *3*, 295-300.
- S2 K. Evanoff, A. Magasinski, J. Yang, G. Yushin, *Adv. Energy Mater.*, 2011, 1, 495-498.
- S3 C. Z. Wei Weng, and Wei Xiao, ACS Appl. Mater. Interfaces, 2019, 11, 9156-9163.
- S4 Y. Han, P. Qi, X. Feng, S. Li, X. Fu, H. Li, Y. Chen, J. Zhou, X. Li, B. Wang, ACS Appl. Mater. Interfaces, 2015, 7, 2178-2182.
- S5 W. Li, Y. Tang, W. Kang, Z. Zhang, X. Yang, Y. Zhu, W. Zhang, C. S. Lee, *Small*, 2015, 11, 1345-1351.
- S6 J. Wang, D. H. Liu, Y. Y. Wang, B. H. Hou, J. P. Zhang, R.-S. Wang, X. L. Wu, J. Power Sources, 2016, 307, 738-745.
- S7 F. H. Du, B. Li, W. Fu, Y. J. Xiong, K. X. Wang, J. S. Chen, Adv. Mater., 2014,

**26**, 6145-6150.

- S8 Z. Wen, G. Lu, S. Cui, H. Kim, S. Ci, J. Jiang, P. T. Hurley, J. Chen, *Nanoscale*, 2014, 6, 342-351.
- S9 X. Zhou, Y.-G. Guo, J. Mater. Chem. A, 2013, 1, 9019-9023.
- S10 K. Liang, H. Yang, W. Guo, J. Du, L. Tian, X. Wen, J. Alloys Compd., 2018, 735, 441-444.
- S11 Z. Liu, X. Chang, B. Sun, S. Yang, J. Zheng, X. Li, Chem. Comm., 2017, 53, 6223-6226.
- S12 Y. An, H. Fei, G. Zeng, L. Ci, S. Xiong, J. Feng, Y. Qian, ACS Nano, 2018, 12, 4993-5002.
- S13 A. Xing, J. Zhang, Z. Bao, Y. Mei, A. S. Gordin, K. H. Sandhage, Chem. Commun., 2013, 49, 6743-6745.
- S14 S. Guo, X. Hu, Y. Hou, Z. Wen, ACS Appl. Mater. Interfaces, 2017, 9, 42084-42092.
- S15 Y. Xu, Y. Zhu, C. Wang, J Mater. Chem.A, 2014, 2, 9751.
- S16 F. Wang, L. Sun, W. Zi, B. Zhao, H. Du, Chem. Eur. J., 2019, 25, 9071-9077.