Supporting Information

Asymmetric Aerobic Decarboxylative Povarov Reactions of N-Aryl α-Amino Acids with Methylenephthalimidines via Cooperative Photoredox and Chiral Brønsted Acid Catalysis

Jiangtao Li,[†]Ziwei Gu,[†]Xiaowei Zhao,[†]Baokun Qiao,[†]Zhiyong Jiang^{*,‡}

[†]*Henan University, Kaifeng, Henan, P. R. China* 475004

^{*}Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, P. R. China 453007

E-mail: jiangzhiyong@htu.edu.cn

Table of Contents

1.	General information	
2.	Optimization of reaction conditions	S3-S4
2	Concept opportunity and a solution	S5-S6
э.	General experimental procedures	S7-S8
4.	Mechanism studies	
5.	Comparison with the traditional Povarov reaction protocol	S9-S14
		S15
6.	Determination of the absolute configurations	S16-S17
7.	Characterization of adducts	
8	Conjes of NMP spectra	S18-S37
0.	copies of minic spectra	S38-S60

1. General information

General procedures and methods

Experiments involving moisture and/or air sensitive components were performed under a positive pressure of argon in oven-dried glassware equipped with a rubber septum inlet. Dried solvents and liquid reagents were transferred by oven-dried syringes or hypodermic syringe cooled to ambient temperature in a desiccator. Reactions mixtures were stirred in 10 mL sample vial with Teflon-coated magnetic stirring bars unless otherwise stated. Moisture in non-volatile reagents/compounds was removed in high *vacuo* by means of an oil pump and subsequent purging with nitrogen. Solvents were removed *in vacuo* under ~30 mmHg and heated with a water bath at 30-35 °C using rotary evaporator with aspirator. The condenser was cooled with running water at 0 °C.

All experiments were monitored by analytical thin layer chromatography (TLC). TLC was performed on pre-coated plates, 60 F_{254} . After elution, plate was visualized under UV illumination at 254 nm for UV active material. Further visualization was achieved by staining Ce(SO₄)₂ solution.

Columns for flash chromatography (FC) contained *silica gel* 200–300 mesh. Columns were packed as slurry of *silica gel* in petroleum ether and equilibrated solution using the appropriate solvent system. The elution was assisted by applying pressure of about 2 atm with an air pump.

Instrumentations

Proton nuclear magnetic resonance (¹H NMR) and carbon NMR (¹³C NMR) were recorded in CDCl₃ otherwise stated. Chemical shifts are reported in parts per million (ppm), using the residual solvent signal as an internal standard: CDCl₃ (¹H NMR: δ 7.26, singlet; ¹³C NMR: δ 77.0, triplet). Multiplicities were given as: *s* (singlet), *d* (doublet), *t* (triplet), *q* (quartet), *quintet*, *m* (multiplets), *dd* (doublet of doublets), *dt* (doublet of triplets). Coupling constants (*J*) were recorded in Hertz (Hz). The number of proton atoms (*n*) for a given resonance was indicated by *n*H. The number of carbon atoms (*n*) for a given resonance was indicated by *n*C. HRMS (Analyzer: TOF) was reported in units of mass of charge ratio (m/z). Mass samples were dissolved in CH₃CN (HPLC Grade) unless otherwise stated. Optical rotations were recorded on a polarimeter with a sodium lamp of wavelength 589 nm and reported as follows;

 $[\alpha]_{\lambda}^{T^{\circ}C}$ (*c* = g/100 mL, solvent). Melting points were determined on a melting point apparatus.

Enantiomeric excesses were determined by chiral High Performance Liquid Chromatography (HPLC) analysis. UV detection was monitored at 254 nm and 210 nm at the same time. HPLC samples were dissolved in HPLC grade isopropanol (IPA) unless otherwise stated.

Materials

All commercial reagents were purchased with the highest purity grade. They were used without further purification unless specified. All solvents used, mainly petroleum ether (PE) and ethyl acetate (EtOAc) were distilled. Anhydrous dichloromethane (DCM), CH₃CN, and DCE were freshly distilled from CaH₂ and stored under N₂ atmosphere. THF, Et₂O, and toluene were freshly distilled from sodium/benzophenone before use. All compounds synthesized were stored in a -20 °C freezer and light-sensitive compounds were protected with aluminium foil.

2. Optimization of reaction conditions

Table S1. Optimization of Reaction Conditions.

entry PC (mol%)		COC	Base	aolyphint (1.0 mI)	Т	ee
entry	PC (mol%)	COC	(1.5 equiv)	solvent (1.0 mL)	(°C)	$(\%)^{a}$
1	DPZ (0.5)	C2		CH_2Cl_2	25	74
2	DPZ (0.5)	C3		CH_2Cl_2	25	60
3	DPZ (0.5)	C4		CH_2Cl_2	25	22
4	DPZ (0.5)	C5		CH_2Cl_2	25	36
5	DPZ (0.5)	C6		CH_2Cl_2	25	N.P.
6	DPZ (0.5)	C7		CH_2Cl_2	25	32
7	DPZ (0.5)	C8		CH_2Cl_2	25	51
8	DPZ (0.5)	С9		CH_2Cl_2	25	55
9	DPZ (0.5)	C10		CH_2Cl_2	25	50
10	DPZ (0.5)	C11		CH_2Cl_2	25	35
11	DPZ (0.5)	C12		CH_2Cl_2	25	54
12	DPZ (0.5)	C13		CH_2Cl_2	25	57
13	DPZ (0.5)	C14		CH_2Cl_2	25	30
14	DPZ (0.5)	C15		CH_2Cl_2	25	46
15	DPZ (0.5)	C16		CH_2Cl_2	25	38
16	DPZ (0.5)	C17		CH_2Cl_2	25	59
17	DPZ (0.5)	C18		CH_2Cl_2	25	27
18	DPZ (0.5)	C19		CH_2Cl_2	25	34
19	DPZ (0.5)	C20		CH_2Cl_2	25	39
20	DPZ (0.5)	C21		CH_2Cl_2	25	28
21	DPZ (0.5)	C22		CH_2Cl_2	25	25
22	DPZ (0.5)	C23		CH_2Cl_2	25	40
23	DPZ (0.5)	C24		CH_2Cl_2	25	35

24	DPZ (0.5)	C2		toluene	25	59
25	DPZ (0.5)	C2		Et ₂ O	25	48
26	DPZ (0.5)	C2		THF	25	66
27	DPZ (0.5)	C2		CH ₃ CN	25	68
28	DPZ (0.5)	C2		CHCl ₃	25	70
29	DPZ (0.5)	C2		DCE	25	85
30	DPZ (0.5)	C2		DCE	10	87
31	DPZ (0.5)	C2		DCE	0	89
32	DPZ (0.5)	C1		DCE	0	93
33	DPZ (0.5)	C1		DCE	-10	92
34	DPZ (0.5)	C1		DCE	-20	90
35	DPZ (0.5)	C1	NaHCO ₃	DCE	0	95
36	DPZ (0.5)	C25	NaHCO ₃	DCE	0	40
37	DPZ (0.5)	C1	NaHCO ₃	THF	0	86
38	DPZ (0.5)	C1	NaHCO ₃	toluene	0	86
39	DPZ (0.5)	C2	NaHCO ₃	DCE	0	92
40	DPZ (0.5)	C1	KHCO ₃	DCE	0	92
41	DPZ (0.5)	C1	Na ₂ CO ₃	DCE	0	90
42	DPZ (0.5)	C1	K_2CO_3	DCE	0	87

Reaction conditions: **1a** (0.10 mmol), **2a** (0.05 mmol). N.P. = no product **3a** obtained.

^aDetermined by HPLC analysis on a chiral stationary phase.

Í	0.5 mol% Photored 0 COOH 10 mol% 0 1.5 equiv. Na 1.5 equiv. Na 0.5 mol% Photored 10 mol% 0 1.5 equiv. Na 0.5 mol% Photored 10 mol% 0 0.5 mol% 0 1.5 equiv. Na 0.5 mol% 0 1.5 equiv. Na 0.5 mol% 0 1.5 equiv. Na 0.5 mol% 0 0.5 mol% 0	ox Catalysts C1 HCO3 ir 0 °C, 16 h	
entry	photoredox catalyst	yield $(\%)^a$	$ee (\%)^b$
1	Rose Bengal	75	93
2	Eosin Y	65	94
3	Rhodamine B	NP	
4	Ru(bpy) ₃ Cl ₂ •6H ₂ O	72	90

Table S2 Evaluation of Photoredox Catalysts under the Standard Conditions.

Reaction conditions: 1a (0.10 mmol), 2a (0.05 mmol). N.P. = no product 3a obtained.

^{*a*}Yields were determined by isolation after chromatographic purification.

^{*b*}Determined by HPLC analysis on a chiral stationary phase.

3. General experimental procedures

35.4 μ L (0.0002 mmol, 0.002 equiv) of DPZ solution (1.0 mg of DPZ in 200 μ L of toluene) was added into a 10 mL reaction flask, and then solvent was removed in *vacuo*. Subsequently, **1** (0.2 mmol, 2.0 equiv), **2** (0.1 mmol, 1.0 equiv), **C1** (0.01 mmol, 0.1 equiv) for **3a** – **3g**, **3i** – **3u**, or **C2** (0.01 mmol, 0.1 equiv) for **3h**, NaHCO₃ (0.15 mmol, 1.5 equiv) for **3a** – **3j**, **3m** – **3u**, and DCE (2.0 mL) were sequentially added. The reaction mixture of **3a** – **3g**, **3i** – **3u** was stirred at 0 °C, or **3h** was stirred at –10 °C for 30 min without light, then irradiated by a 3 W blue LED ($\lambda = 450 - 455$ nm) from 3.0 cm distance for another 16 h. The reaction mixture was directly loaded onto a short *silica gel* column, followed by gradient elution with DCM/MeOH (200/1–30/1 ratio). Removing the solvent in *vacuo*, afforded products **3a** – **3u**.

354 μ L (0.002 mmol, 0.002 equiv) of DPZ solution (2.0 mg of DPZ in 400 μ L of toluene) was added into a 50 mL reaction flask, and then solvent was removed in *vacuo*. Subsequently, **1a** (2.0 mmol, 2.0 equiv), **2a** (1.0 mmol, 1.0 equiv), **C1** (0.1 mmol, 0.1 equiv), NaHCO₃ (1.5 mmol, 1.5 equiv), and DCE (20.0 mL) were sequentially added. The reaction mixture of was stirred at 0 °C without light, then irradiated by a 2*3 W blue LED ($\lambda = 450 - 455$ nm) from 3.0 cm distance for another 48 h. The reaction mixture was directly loaded onto a short *silica gel* column, followed by gradient elution with DCM/MeOH (200/1–30/1 ratio). Removing the solvent in *vacuo*, afforded products **3a**.

35.4 μ L (0.0002 mmol, 0.002 equiv) of DPZ solution (1.0 mg of DPZ in 200 μ L of toluene)

was added into a 10 mL reaction flask, and then solvent was removed in *vacuo*. Subsequently, **1a** (0.2 mmol, 2.0 equiv), **2a** (0.1 mmol, 1.0 equiv), **C1** (0.01 mmol, 0.1 equiv), NaHCO₃ (0.15 mmol, 1.5 equiv), and DCE (2.0 mL) were sequentially added. The reaction mixture of was stirred at 0 °C, without light, then irradiated by sunlight for another 16 h (two days, 8 h/day). The reaction mixture was directly loaded onto a short *silica gel* column, followed by gradient elution with DCM/MeOH (200/1–30/1 ratio). Removing the solvent in *vacuo*, afforded product **3a** in 73% yield with 91% ee.

4. Mechanism studies

35.4 μ L (0.0002 mmol, 0.002 equiv) of DPZ solution (2.0 mg of DPZ in 400 μ L of toluene) was added into a 50 mL reaction flask, and then solvent was removed in *vacuo*. Subsequently, **6** (0.2 mmol, 2.0 equiv), **2a** (0.1 mmol, 1.0 equiv), **C1** (0.01 mmol, 0.1 equiv), NaHCO₃ (0.15 mmol, 1.5 equiv), and DCE (2.0 mL) were sequentially added. The reaction mixture of was stirred at 0 °C without light, then irradiated by a 3 W blue LED ($\lambda = 450 - 455$ nm) from 3.0 cm distance for another 16 h. The reaction mixture was directly loaded onto a short *silica gel* column, followed by gradient elution with DCM/MeOH (200/1–30/1 ratio). Removing the solvent in *vacuo*, afforded product **7** in 53% yield with 35% ee.

Emission quenching experiments

Emission intensities were recorded on a spectrofluorometer. DPZ solution was excited at 448 nm and the emission intensity at 544 nm was observed. A solution of DPZ $(5.0 \times 10^{-5} \text{ M})$ in DCE was added to the appropriate amount of quencher in 5.0 mL volumetric flask under N₂. The solution was transferred to a 1.5 mL quartz cell and the emission spectrum of the sample was collected.

Fig. S1. Stern–Volmer quenching experiment of DPZ and 1a.

Fig. S2. Stern–Volmer quenching experiment of DPZ and 2a.

Cyclic voltammetry measurement

Electrochemical potentials were obtained with a standard set of conditions to main internal consistency. Cyclic voltammograms were collected with a potentiostat. Samples were prepared with 0.01 mmol of **1a**, *N*-methyl aniline, or PhNHCH₂CO₂Na in 10 mL of 0.1 M tetrabutylammonium hexafluorophosphate in anhydrous acetonitrile. Measurements employed a radium glassy carbon working electrode, platinum wire counter electrode, saturated KCl silver-silver chloride reference electrode. The obtained value was referenced to Ag/AgCl.

Fig. S3. Cyclic voltammogram of 1a in MeCN.

Comments: We tried to isolate imine **8** and attempted it directly in the reaction system with **1a** as the partner. As results shown, product **3a** was obtained in 78% yield with 95% ee after 16 hours which are same as the results achieved from the aerobic decarboxylative Povarov reaction between **1a** and **2a** (See Scheme 2 in the manuscript). The results indicate two conclusions: (1) The [4+2] cycloaddition experiences an ionic process including addition of enamines to imines then a Mannich type reaction. Meanwhile, a radical process beginning from addition of α -aminoalkyl radicals to enamines could be excluded. (2) In this strategy, two processes between the formation of imines through aerobic decarboxylation via photoredox catalysis and asymmetric Povarov reaction under chiral Brønsted acid catalysis are well compatible. Meanwhile, H₂O₂ generated in the reaction system did not affect the H-bonding induction of chiral Brønsted acid catalyst to the asymmetric Povarov reaction.

Procedure: 35.4 μ L (0.0002 mmol, 0.002 equiv) of DPZ solution (1.0 mg of DPZ in 200 μ L of toluene) was added into a 10 mL reaction flask, and then solvent was removed in *vacuo*. Subsequently, **1a** (0.2 mmol, 2.0 equiv), **C1** (0.01 mmol, 0.1 equiv), NaHCO₃ (0.15 mmol, 1.5 equiv), and DCE (2.0 mL) were sequentially added. The reaction mixture was stirred at 0 °C for 30 min, the imine **8** (0.1 mmol, 1.0 equiv) was added, then irradiated by a 3 W blue LED ($\lambda = 450 - 455$ nm) from 3.0 cm distance for another 16 h. The reaction mixture was directly loaded onto a short *silica gel* column, followed by gradient elution with DCM/MeOH (200/1–30/1 ratio). Removing the solvent in *vacuo*, afforded products **3a**.

Fig. S4. Cyclic voltammogram of *N*-methyl aniline in MeCN.

Fig. S5. Cyclic voltammogram of PhNHCH₂CO₂Na in MeCN.

NMR analysis for NaHCO3 with catalyst

NaHCO₃ (1.5 mmol, 15 equiv) and catalyst **C1** (0.1 mmol, 1 equiv) were dissolved in DCE (5.0 mL) were sequentially added, The reaction mixture was stirred at rt for 4 h. Catalyst **C1** is stable in the presence of NaHCO₃ which was determined by the analyses of ¹H NMR.

The On-Off-Light Experiment

Following the standard procedure, the reaction between **1a** (0.2 mmol, 2.0 eq.) and **2a** (0.1 mmol, 1.0 eq.) was conducted for on-off-light experiment. Aliquots of samples were taken out at various time points during the reaction.

Fig. S6. The on-off-light experiment between 1a and 2a.Comments: The results could roughly exclude the radical chain mechanism.

5. Comparison with the traditional povarov reaction protocol

In a 10 mL reaction flask, **1a** (0.2 mmol, 2.0 equiv), aniline (0.1 mmol, 1.0 equiv), **C1** (0.01 mmol, 0.1 equiv), NaHCO₃ (0.15 mmol, 1.5 equiv), and DCE (2.0 mL) were sequentially added. The reaction mixture was stirred at 0 $^{\circ}$ C for 30 min. Then paraformaldehyde **5a** (0.1 mmol, 1.0 equiv) was added. The reaction mixture was stirred at 0 $^{\circ}$ C for 16 h, but no reaction was observed.

In a 10 mL reaction flask, **1a** (0.2 mmol, 2.0 equiv), aniline (0.1 mmol, 1.0 equiv), **C1** (0.01 mmol, 0.1 equiv), NaHCO₃ (0.15 mmol, 1.5 equiv), and DCE (2.0 mL) were sequentially added. The reaction mixture was stirred at 0 °C for 30 min. Then paraformaldehyde **5b** (0.1 mmol, 1.0 equiv) was added. The reaction mixture was stirred at 0 °C for 16 h without light, but no reaction was observed.

In a 10 mL reaction flask, **1a** (0.2 mmol, 2.0 equiv), aniline (0.1 mmol, 1.0 equiv), **C1** (0.01 mmol, 0.1 equiv), NaHCO₃ (0.15 mmol, 1.5 equiv), and DCE (2.0 mL) were sequentially added. The reaction mixture was stirred at 0 °C for 30 min. Then formaldehyde **5c** (37% solution in H₂O, 0.1 mmol, 1.0 equiv) was added. The reaction mixture was stirred at 0 °C for 16 h, The reaction mixture was directly loaded onto a short *silica gel* column, followed by gradient elution with DCM/MeOH (200/1–30/1 ratio). Removing the solvent in *vacuo*, afforded products **3a** in 68% yield with 68% ee.

6. Determination of the absolute configurations

Absolute configurations of 3a–3u are determined by X-ray structure analysis of the product 3j

Fig. S7. Absolute configuration of 3j (CCDC 1945582).

Displacement ellipsoids are drawn at the 30% probability level. (Solvent: ethyl acetate)

Table 55 Crystal uata allu	structure rennen
Identification code	201903ljt1
Empirical formula	$C_{17}H_{15}BrN_2O$
Formula weight	343.21
Temperature/K	293(2)
Crystal system	orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
a/Å	9.51375(16)
b/Å	16.8250(3)
c/Å	22.3825(6)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	3582.73(13)
Ζ	4
$\rho_{calc}g/cm^3$	1.436
μ/mm^{-1}	3.232
F(000)	1584.0
Crystal size/mm ³	$0.12 \times 0.11 \times 0.1$

Table S3 Crystal data and structure refinement.

Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	² 6.572 to 134.136
Index ranges	$11 \leq h \leq 7, 20 \leq k \leq 20, 26 \leq l \leq 26$
Reflections collected	30235
Independent reflections	$6408 \ [R_{int} = 0.0470, R_{sigma} = 0.0304]$
Data/restraints/parameters	6408/0/453
Goodness-of-fit on F ²	1.061
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0450, wR_2 = 0.1195$
Final R indexes [all data]	$R_1 = 0.0505, wR_2 = 0.1262$
Largest diff. peak/hole / e Å $^{-3}$	0.82/-0.34
Flack parameter	-0.035(9)

Experimental

The crystal was kept at 293(2) K during data collection. Using Olex2, the structure was solved with the ShelXS structure solution program using Direct Methods and refined with the ShelXL refinement package using Least Squares minimisation.

Crystal structure determination

Crystal Data for C₁₇H₁₅BrN₂O (M =343.21 g/mol): orthorhombic, space group P2₁2₁2₁ (no. 19), a = 9.51375(16) Å, b = 16.8250(3) Å, c = 22.3825(6) Å, V = 3582.73(13) Å³, Z = 4, T = 293(2) K, μ (CuK α) = 3.232 mm⁻¹, *Dcalc* = 1.436 g/cm³, 30235 reflections measured ($6.572^{\circ} \le 2\Theta \le 134.136^{\circ}$), 6408 unique ($R_{int} = 0.0470$, $R_{sigma} = 0.0304$) which were used in all calculations. The final R_1 was 0.0450 (I > 2 σ (I)) and wR_2 was 0.1262 (all data).

7. Characterization of adducts

(*R*)-2',3'-Dihydro-1'H-spiro[isoindoline-1,4'-quinolin]-3-one (3a): white solid, Mp 79.7 – 78.5 °C; 20.0 mg (0.1 mmol), 80% yield; 95% ee; $[\alpha]_{D}^{22}$ +716.1 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.86 (d, *J* = 7.1 Hz, 1H),

7.61 – 7.39 (m, 2H), 7.27 (d, J = 7.5 Hz, 1H), 7.15 (s, 1H), 7.01 (t, J = 7.3 Hz, 1H), 6.65 – 6.36 (m, 3H), 3.63 – 3.51 (m, 1H), 3.50 – 3.34 (m, 1H), 2.39 – 2.22 (m, 1H), 2.15 – 1.94 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 152.7, 144.7, 132.4, 131.3, 129.1, 128.3, 128.0, 123.8, 122.8, 120.2, 117.7, 115.0, 60.8, 39.1, 35.6; HRMS (ESI) m/z 251.1176 (M+H⁺), calc. for C₁₆H₁₅N₂O 251.1179.

The ee was determined by HPLC analysis: CHIRALPAK IC (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 70/30; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 7.7 min (minor) and 8.9 min (major).

MU 900 800 700 600 600 800 800 800 800 800 800 800 8			S12/2	
	2 4	6	8	10 min
Entry	Retention Time	Area	Height	%Area
1	7.475	870.1	43.5	3.729
2	8.69	22460.5	904.5	96.271

HPLC spectra for compound **3a** (The synthesis of **3a** in a 1.0 mmol scale)

(*R*)-6'-Bromo-2',3'-dihydro-1'H-spiro[isoindoline-1,4'-quinolin]-3-one (*R*)-6'-Bromo-2',3'-dihydro-1'H-spiro[isoindoline-1,4'-quinolin]-3-one (3b): white solid, Mp 79.7 – 78.5 °C; 25.7 mg (0.1 mmol), 78% yield; 92% ee; $[\alpha]_D^{22}$ +716.1 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.86 (d, *J* = 7.0 Hz, 1H), 7.65 – 7.37 (m, 3H), 7.27 (d, *J* = 5.6 Hz, 1H), 7.05 (d, *J* = 7.7 Hz, 1H), 6.66 (s, 1H), 6.43 (d, *J* = 8.4 Hz, 1H), 3.76 – 3.31 (m, 2H), 2.38 – 2.21 (m, 1H), 2.15 – 1.94 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 169.6, 152.0, 143.8, 132.6, 131.9, 131.1, 130.2, 128.6, 123.9, 122.8, 122.0, 116.6, 108.9, 60.5, 38.9, 35.1; HRMS (ESI) m/z 329.0289 (M+H⁺), calc. for C₁₆H₁₄BrN₂O 329.0284.

The ee was determined by HPLC analysis: CHIRALPAK IC (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 9.1 min (minor) and 10.3 min (major).

Entry	Retention Time	Area	Height	%Area
1	9.138	1740.1	77.9	49.953
2	10.363	1743.3	71.9	50.047

- 0	$(\mathbf{D}) \in \mathbf{M} \cdot \mathbf{A} = 1 \cdot 2$	21 421	···· [!].]. !!	
2	10.288	9381.8	349	96.235
1	9.092	367.1	16	3.765
Entry	Retention Time	Area	Height	%Area

(*R*)-6'-Methyl-2',3'-dihydro-1'H-spiro[isoindoline-1,4'-quinolin]-3-one Me (3c): white solid, Mp 79.7 – 78.5 °C; 21.9 mg (0.1 mmol), 83% yield; 93% ee; $[\alpha]_D^{22}$ +716.1 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.87 (d, *J* =

7.1 Hz, 1H), 7.59 – 7.40 (m, 2H), 7.34 – 7.26 (m, 1H), 7.19 (s, 1H), 6.83 (d, J = 7.9 Hz, 1H), 6.50 (d, J = 8.2 Hz, 1H), 6.36 (s, 1H), 3.65 – 3.50 (m, 1H), 3.50 – 3.34 (m, 1H), 2.41 – 2.22 (m, 1H), 2.18 – 1.92 (m, 4H); ¹³C NMR (75 MHz, CDCl₃) δ 169.6, 152.9, 142.5, 132.4, 131.2, 129.9, 128.3, 128.1, 127.1, 123.7, 122.8, 120.2, 115.2, 60.8, 39.3, 35.9, 20.2; HRMS (ESI) m/z 265.1337 (M+H⁺), calc. for C₁₇H₁₇N₂O 265.1335.

The ee was determined by HPLC analysis: CHIRALPAK IC (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 10.8 min (minor) and 11.9 min (major).

Entry	Retention Time	Area	Height	%Area
1	10.814	253.4	11.2	3.699
2	11.895	6597.6	261.5	96.301

(R)-6 (R)-6 -one

(*R*)-6'-(tert-Butyl)-2',3'-dihydro-1'H-spiro[isoindoline-1,4'-quinolin]-3 -one (3d): white solid, Mp 204.4 – 205.6 °C; 20.0 mg (0.1 mmol), 69% yield; 92% ee; $[\alpha]_{D}^{22}$ –49.3 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ

7.87 (d, J = 7.1 Hz, 1H), 7.59 – 7.41 (m, 2H), 7.31 – 7.21 (m, 1H), 7.07 (d, J = 8.3 Hz, 1H), 6.97 (s, 1H), 6.60 – 6.42 (m, 2H), 3.61 – 3.47 (m, 1H), 3.39 (t, J = 9.9 Hz, 1H), 2.29 (t, J =10.0 Hz, 1H), 2.12 – 1.95 (m, 1H), 1.05 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 169.6, 152.8, 142.3, 140.8, 132.3, 131.2, 128.3, 126.4, 124.3, 123.8, 122.8, 119.6, 114.8, 61.1, 39.2, 36.0, 33.8, 31.2; HRMS (ESI) m/z 307.1807 (M+H⁺), calc. for C₂₀H₂₃N₂O 307.1805.

The ee was determined by HPLC analysis: CHIRALPAK INB (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 85/15; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 8.9 min (major) and 10.5 min (minor).

Entry	Retention Time	Area	Height	%Area
1	8.856	7335.3	342.2	95.802
2	10.502	321.5	11.9	4.198

(*R*)-6'-Methoxy-2',3'-dihydro-1'H-spiro[isoindoline-1,4'-quinolin]-3-

one (3e): white solid, Mp 79.7 – 78.5 °C; 21.0 mg (0.1 mmol), 75% yield; 96% ee; $[\alpha]_{D}^{22}$ +716.1 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.85 (d, J = 7.1 Hz, 1H), 7.58 – 7.38 (m, 3H), 7.32 – 7.26 (m, 1H), 6.71 – 6.60 (m, 1H), 6.58 – 6.47 (m, 1H), 6.10 (d, J = 2.5 Hz, 1H), 3.62 – 3.31 (m, 5H), 2.39 – 2.22 (m, 1H), 2.15 – 1.99 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 169.6, 152.7, 152.1, 138.8, 132.4, 131.2, 128.4, 123.7, 122.8, 121.4, 116.5, 116.1, 112.5, 61.0, 55.6, 39.5, 35.9; HRMS (ESI) m/z 281.1275 (M+H⁺), calc. for C₁₇H₁₇N₂O₂ 281.1285.

The ee was determined by HPLC analysis: CHIRALPAK IC (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 70/30; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 11.5 min (minor) and 16.6 min (major).

(*R*)-5',7'-Dimethyl-2',3'-dihydro-1'H-spiro[isoindoline-1,4'-quinolin]-**3-one (3f)**: white solid, Mp 79.7 – 78.5 °C; 19.5 mg (0.1 mmol), 70% yield; 98% ee; $[\alpha]_{D}^{22}$ +716.1 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃)

δ 7.87 (d, J = 7.0 Hz, 1H), 7.59 – 7.40 (m, 2H), 7.27 (d, J = 7.5 Hz, 1H), 6.82 (s, 1H), 6.34 (s, 1H), 6.23 (s, 1H), 3.53 – 3.38 (m, 1H), 3.28 (t, J = 10.5 Hz, 1H), 2.37 – 2.10 (m, 4H), 2.03 – 1.87 (m, 1H), 1.45 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 169.5, 153.5, 146.4, 139.3, 138.8, 132.3, 131.5, 128.1, 124.1, 123.2, 122.2, 114.4, 114.0, 60.9, 40.71, 39.2, 20.8, 20.3; HRMS (ESI) m/z 279.1491 (M+H⁺), calc. for C₁₈H₁₉N₂O 279.1492.

NH^{Me}

'n

The ee was determined by HPLC analysis: CHIRALPAK IC (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 10.7 min (minor) and 14.6 min (major).

(*R*)-5'-Chloro-2',3'-dihydro-1'H-spiro[isoindoline-1,4'-quinolin]-3-one (3g): white solid, Mp 152.1 – 153.4 °C; 17.1 mg (0.1 mmol), 60% yield; 85% ee; $[\alpha]_{D}^{22}$ –118.46 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.83 (d, *J* =

7.2 Hz, 1H), 7.60 – 7.41 (m, 3H), 7.25 (d, J = 8.5 Hz, 1H), 6.55 (s, 1H), 6.49 – 6.36 (m, 2H), 3.66 – 3.36 (m, 2H), 2.38 – 2.14 (m, 1H), 2.12 – 1.89 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 169.7, 152.2, 145.7, 134.5, 132.5, 131.2, 129.2, 128.5, 123.9, 122.7, 118.6, 117.6, 114.2, 60.5, 39.0, 35.2; HRMS (ESI) m/z 285.0790 (M+H⁺), calc. for C₁₆H₁₄ClN₂O 285.0789.

The ee was determined by HPLC analysis: CHIRALPAK IC (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 90/10; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 19.5 min (minor) and 21.3 min (major).

mAU =	12 · · · · · · · · · · · · · · · · · · ·			
Entry	Retention Time	Area	Height	%Area
1	19.518	375.9	11.8	49.077
2	21.79	390	8.9	50.923
			Service of the servic	

Entry	Retention Time	Area	Height	%Area
1	19.529	755.5	25.6	7.687
2	21.262	9072.4	215.3	92.313

(*R*)-8'-Methyl-2',3'-dihydro-1'H-spiro[isoindoline-1,4'-quinolin]-3-one (3h): white solid, Mp 140.0 – 141.8 °C; 19.8 mg (0.1 mmol), 75% yield; 75% ee; $[\alpha]_{D}^{22}$ –41.3 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.86 (d, *J* = 6.9 Hz, 1H), 7.67 – 7.37 (m, 2H), 7.367.26 (m, 1H), 7.26 – 7.07 (m, 1H), 7.01 – 6.83 (m, 1H), 6.58 – 6.29 (m, 2H), 4.07 (s, 1H), 3.76 – 3.62 (m, 1H), 3.51 (t, *J* = 10.2 Hz, 1H), 2.43 – 2.26 (m, 1H), 2.21 – 1.97 (m, 4H); ¹³C NMR (75 MHz, CDCl₃) δ 169.6, 152.9, 142.9, 132.4, 131.3, 130.0, 128.3, 125.9, 123.7, 122.8, 121.9, 119.6, 117.0, 61.0, 39.3, 35.6, 17.3; HRMS (ESI) m/z265.1331 (M+H⁺), calc. forC₁₇H₁₇N₂O 265.1335.

The ee was determined by HPLC analysis: CHIRALPAK INB (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 90/10; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 11.8 min (major) and 14.5 min (minor).

(1R,2'R)-6'-Methoxy-2'-methyl-2',3'-dihydro-1'H-spiro[isoindoline-1,

4'-quinolin]-3-one (3i): white solid, Mp 216.9 - 218.8 °C; 19.7 mg (0.1 OMe mmol), 67% yield; 90% ee;>20:1 dr; $[\alpha]_{D}^{22}$ +51.4 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.86 (d, J = 6.9 Hz, 1H), 7.54 – 7.39 (m, 2H), 7.35 (d, J = 7.3 Hz, 1H), 6.67 (d, J = 6.5 Hz, 1H), 6.60 - 6.46 (m, 2H), 6.44 - 6.36 (m, 1H), 4.00 - 3.86 (m, 1H), 3.56(s, 3H), 2.16 - 2.02 (m, 1H), 1.93 - 1.84 (m, 1H), 1.26 (d, J = 5.6 Hz, 4H); ¹³C NMR (75) MHz, CDCl₃) & 170.1, 154.1, 152.3, 138.9, 132.2, 129.6, 128.2, 123.9, 123.4, 120.6, 116.2, 116.1, 111.2, 61.5, 55.7, 45.5, 42.8, 22.4; HRMS (ESI) m/z 295.1434 (M+H⁺), calc. for $C_{18}H_{19}N_2O_2$ 295.1441.

The ee was determined by HPLC analysis: CHIRALPAK INA (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 85/15; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 8.5 min (major) and 17.4 min (minor).

				22 22 22
Entry	Retention Time	Area	Height	%Area
1	8.577	3448.6	91.5	50.331
2	17.525	3403.2	39.1	49.669
		· · · · · · · ·	100 cl	
Entry	Retention Time	Area	Height	%Area

Entry	Retention Time	Area	Height	%Area
1	8.542	13410.4	341.8	95.234
2	17.406	671.2	9.1	4.766

(1R,2'R)-6'-Bromo-2'-methyl-2',3'-dihydro-1'H-spiro[isoindoline-1,4'-quinolin]-3-one (3j): white solid, Mp 134.5 - 136.0 °C; 24.0 mg (0.1 mmol), $70% yield; 98% ee; <math>[\alpha]_D^{22}$ +36.8 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.87 (d, *J* = 6.1 Hz, 1H), 7.61 - 7.39 (m, 2H), 7.31 (d, *J* = 6.6 Hz, 1H), 7.08 (d, *J* = 7.8 Hz, 1H), 6.99 (s, 1H), 6.69 (s, 1H), 6.45 (d, *J* = 8.5 Hz, 1H), 4.39 - 3.72 (m, 2H), 2.11 (t, *J* = 12.3 Hz, 1H), 1.87 (d, *J* = 12.0 Hz, 1H), 1.29 (d, *J* = 5.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 170.1, 153.5, 143.4, 132.4, 131.8, 129.5, 129.2, 128.5, 124.0, 123.4, 121.5, 116.1, 109.1, 61.0, 45.0, 41.9, 22.3; HRMS (ESI) m/z 343.0426 (M+H⁺), calc. for C₁₇H₁₆BrN₂O 343.0441.

The ee was determined by HPLC analysis: CHIRALPAK INA (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 7.6 min (major) and 11.0 min (minor).

Entry	Retention Time	Area	Height	%Area
1	7.716	2755.8	111.2	49.859
2	10.841	2771.4	75.3	50.141
			8000k	· · · · · · · ·
E (TT 1 1	0/ 1

Entry	Retention Time	Area	Height	%Area
1	7.611	16872.2	673.2	99.193
2	10.978	137.2	3.1	0.807

(1R,2'R)-2'-Benzyl-6'-ethoxy-2',3'-dihydro-1'H-spiro[isoindoline-1,4'-

quinolin]-3-one (3k): white solid, Mp 168.2 - 169.0 °C; 24.2 mg (0.1 mmol), 63% yield; 91% ee; >20:1 dr; $[\alpha]_{D}^{22}$ +113.2 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.82 (d, J = 6.4 Hz, 2H), 7.53 – 7.28 (m, 6H), 7.26 – 7.17 (m, 2H), 6.77 (s, 1H), 6.60 (d, J = 7.1 Hz, 1H), 6.52 – 6.28 (m, 2H), 4.05 – 3.87 (m, 1H), 3.84 – 3.62 (m, 2H), 2.89 – 2.78 (m, 1H), 2.75 – 2.61 (m, 1H), 2.25 – 2.06 (m, 1H), 1.99 – 1.84 (m, 1H), 1.23 (t, J = 7.0 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 170.0, 154.0, 151.7, 138.2, 137.4, 132.3, 129.6, 129.2, 128.8, 128.2, 126.9, 123.8, 123.3, 121.0, 116.5, 116.2, 112.1, 63.9, 61.4, 51.0, 42.9, 41.1, 14.8; HRMS (ESI) m/z 385.1905 (M+H⁺), calc. for C₂₅H₂₅N₂O₂ 385.1911. The ee was determined by HPLC analysis: CHIRALPAK INB (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 13.6 min (minor) and 15.1 min (major).

mAU - 25- 20- 115- 10- 5-		
" <u> </u>	13 14	

13	14 13	10	17 18	19
Entry	Retention Time	Area	Height	%Area
1	13.455	1151.5	27.4	49.246
2	15.279	1186.8	29.7	50.754

mAU 40	* *	\			
35					
30-					
20					
15					
10-	98				
0	13.6				
13	14 15	16	17 18	19 20 min	
Entry	Retention Time	Area	Height	%Area	
1	13.606	74.4	2.1	4.580	
2	15.146	1551.1	43	95.420	

(1R,2'S)-2'-Phenyl-2',3'-dihydro-1'H-spiro[isoindoline-1,4'-quinolin]-3-one (3l): white solid, Mp 150.7 – 151.9 °C; 23.2 mg (0.1 mmol),71% yield; 93% ee; >20:1 dr; $[\alpha]_D^{22}$ –57.9 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.88 (m, 1H), 7.59 – 7.40 (m, 8H), 7.09 (t, *J* = 7.4 Hz, 1H), 6.87 (d, *J* = 7.8 Hz, 1H), 6.68 (d, *J* = 7.9 Hz, 1H), 6.60 (t, *J* = 7.5 Hz, 1H), 6.29 (s, 1H), 4.97 (dd, *J* = 10.9, 2.9 Hz, 1H), 2.57 – 2.41 (m, 1H), 2.20 (dd, *J* = 13.0, 3.0 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 169.9, 153.7, 144.5, 142.5, 132.4, 129.9, 129.2, 129.0, 128.4, 128.2, 126.9, 126.5, 123.9, 123.3, 119.7, 118.1, 114.7, 61.3, 54.5, 43.2; HRMS (ESI) m/z 327.1477 (M+H⁺), calc. for C₂₂H₁₉N₂O 327.1492.

The ee was determined by HPLC analysis: CHIRALPAK INB (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 16.7 min (minor) and 21.0 min (major).

Entry	Retention Time	Area	Height	%Area
1	16.425	3665.1	92.7	49.379
2	20.851	3757.3	78	50.621

mAU 80				
70				
50				
30-				
20-		19 99		
0	1			
Entry	Retention Time	Area	Height	%Area
1	16.681	146.9	3.5	3.454
2	20.956	4107.9	82.1	96.546

(*R*)-4-Chloro-2',3'-dihydro-1'H-spiro[isoindoline-1,4'-quinolin]-3-one (3m): white solid, Mp 205.2 – 206.9 °C; 21.4 mg (0.1 mmol), 75% yield; 94% ee; $[\alpha]_D^{22}$ +32.9 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.54 – 7.36 (m, 2H), 7.24 – 7.08 (m, 2H), 7.02 (t, *J* = 7.5 Hz, 1H), 6.68 – 6.44 (m, 3H), 4.21 (s, 1H), 3.69 – 3.54 (m, 1H), 3.52 – 3.38 (m, 1H), 2.40 – 2.24 (m, 1H), 2.19 – 2.02 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 167.1, 155.2, 144.7, 133.2, 131.5, 129.9, 129.3, 128.0, 127.2, 121.5, 119.7, 117.8, 115.1, 59.6, 39.0, 35.8; HRMS (ESI) m/z 285.0792 (M+H⁺), calc. for C₁₆H₁₄CIN₂O 285.0789. The ee was determined by HPLC analysis: CHIRALPAK IC (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 13.6 min (minor) and 18.4 min (major).

2		18.439	11821.6	247.8	96.818
Br (R)-4-Bromo-2',3'-dihydro-1'H-spiro[isoindoline-1,4'-quinolin]-3-one (3n):					
NH NH	whi	te solid, Mp 172.6	- 173.0 °C; 23.7 1	mg (0.1 mmol), 72	% yield; 96% ee;
N N	$\left[\alpha\right]_{D}^{22}$	$c_0^2 = -10.8 \ (c \ 1.0, \ CHC)$	Cl ₃); ¹ H NMR (300	MHz, CDCl ₃) δ 7.	60 (d, $J = 7.8$ Hz,
1H), 7.35 (t,	J = 7	7.7 Hz, 1H), 7.21 (d	l, <i>J</i> = 7.6 Hz, 1H),	7.13 – 6.91 (m, 2H	l), 6.66 – 6.41 (m,
3H), 3.60 – 3	.48 ((m, 1H), 3.46 – 3.33	8 (m, 1H), 2.34 – 2.	18 (m, 1H), 2.10 –	1.96 (m, 1H); ¹³ C
NMR (75 MI	Hz, C	CDCl ₃) δ 167.3, 155.	3, 144.7, 133.3, 13	3.2, 129.3, 128.7, 1	28.0, 122.1, 119.7,
118.9, 117.8	, 11	5.1, 59.3, 39.0, 3	5.8; HRMS (ESI)) m/z 329.0287 ($M+H^+$), calc. for
C ₁₆ H ₁₄ BrN ₂ O	329	.0284.			

The ee was determined by HPLC analysis: CHIRALPAK IC (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 13.5 min (minor) and 18.9 min (major).

(*R*)-4-Methoxy-2',3'-dihydro-1'H-spiro[isoindoline-1,4'-quinolin]-3-one (**3o**): white solid, Mp 242.4 – 243.0 °C; 19.6 mg (0.1 mmol), 70% yield; 90% ee; $[\alpha]_D^{22}$ +25.7 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CD₂Cl₂) δ 7.48 (t, J = 7.6 Hz, 1H), 7.00 (t, J = 7.5 Hz, 1H), 6.93 (d, J = 8.3 Hz, 1H), 6.82 (d, J = 7.6 Hz, 1H), 6.73 (s, 1H), 6.58 (t, J = 6.5 Hz, 2H), 6.48 (t, J = 7.2 Hz, 1H), 3.97 (s, 3H), 3.64 - 3.51 (m, 1H), 3.47 - 3.31 (m, 1H), 2.35 - 2.20 (m, 1H), 2.14 - 1.98 (m, 1H); ¹³C NMR (75 MHz, CD₂Cl₂) δ 168.6, 158.0, 156.4, 145.6, 134.6, 129.5, 128.5, 121.2, 119.0, 117.9, 115.4, 115.4, 110.9, 60.2, 56.4, 39.5, 36.4; HRMS (ESI) m/z 281.1285 (M+H⁺), calc. for C₁₇H₁₇N₂O₂ 281.1285.

The ee was determined by HPLC analysis: CHIRALPAK IC (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 60/40; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 15.1 min (minor) and 17.5 min (major).

2	17.496	7124.9	144.2	95.248	
(<i>R</i>)-5-Fluoro-2',3'-dihydro-1'H-spiro[isoindoline-1,4'-quinolin]-3-one (3p):					
WH WI	hite solid, Mp 163.	6 - 164.8 °C; 19.3	mg (0.1 mmol), 72	2% yield; 90% ee;	
	$]_{\rm D}^{22}$ -85.175 (c 1.0, C	CHCl ₃); ¹ H NMR (3	00 MHz, CDCl ₃) δ	7.62 (s, 1H), 7.47	
(d, J = 7.4 Hz, 1 Hz)	I), 7.21 (d, $J = 6.6$ H	Iz, 2H), 7.05 – 6.19	(m, 1H), 6.62 – 6.4	2 (m, 3H), 4.05 (s,	
1H), 3.60 – 3.29 ((m, 2H), 2.24 (t, <i>J</i> =	= 9.8 Hz, 1H), 2.10	- 1.89 (m, 1H); ¹³	C NMR (75 MHz,	
CDCl ₃) δ 168.3, 1	164.4, 161.1, 148.1	, 148.0, 144.6, 133.	5, 133.4, 129.2, 12	7.8, 124.4, 124.3,	
112.0, 119.7, 119	.6, 117.8, 115.1, 11	0.5, 110.2, 60.7, 39	9.0, 35.5; HRMS (E	ESI) m/z 269.1076	
$(M+H^+)$, calc. for	C ₁₆ H ₁₄ FN ₂ O 269.10	085.			

The ee was determined by HPLC analysis: CHIRALPAK IC (4.6 mm i.d. x 250 mm);

Hexane/2-propanol = 85/15; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 11.0 min (minor) and 12.3 min (major).

MeO	_	C
Į		\prec
		Nł.
		Ì

2

 III.024
 230.2
 3.7 3.223

 12.304
 5193.2
 149.7
 94.777

 (R)-5-Methoxy-2',3'-dihydro-1'H-spiro[isoindoline-1,4'-quinolin]-3-on
 e (3q): white solid, Mp 207.4 - 208.0 °C; 19.1 mg (0.1 mmol), 68% yield;

92% ee; $[\alpha]_{D}^{22}$ -27.323 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.39 – 7.29 (m, 1H), 7.19 – 6.87 (m, 4H), 6.63 – 6.47 (m, 2H), 3.87 (s, 3H), 3.60 – 3.46 (m, 1H), 3.39 (t, J = 10.3 Hz, 1H), 2.28 (t, J = 10.1 Hz, 1H), 2.04 (d, J = 12.4 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 169.5, 160.1, 144.9, 132.59, 129.1, 127.9, 123.7, 120.8, 118.2, 115.3, 106.3, 60.3, 55.1, 39.2, 35.5; HRMS (ESI) m/z 281.1285 (M+H⁺), calc. for C₁₇H₁₇N₂O₂ 281.1285. The ee was determined by HPLC analysis: CHIRALPAK IC (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 10.9 min (minor) and 12.4 min (major).

The ee was determined by HPLC analysis: CHIRALPAK IC (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 9.4 min (minor) and 11.5 min (major).

Entry	Retention Time	Area	Height	%Area
1	9.47	534.5	24.7	50.893
2	11.438	515.7	20.9	49.107
mAU 120 100 60 60 60 60 60 60 60 60 60	999 d 	105 105		
Entry	Retention Time	Area	Height	%Area

Entry	Retention Time	Area	Height	%Area
1	9.488	132.5	6.4	3.719
2	11.455	3430.9	142.2	96.281

(*R*)-6-Chloro-2',3'-dihydro-1'H-spiro[isoindoline-1,4'-quinolin]-3-one (3s): white solid, Mp 150.3 – 152.1 °C; 18.5 mg (0.1 mmol), 65% yield; 93% ee; $[\alpha]_D^{22}$ =50.1 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.68 (d,

J = 8.1 Hz, 1H), 7.36 (d, J = 7.4 Hz, 1H), 7.08 (s, 1H), 6.96 (t, J = 6.9 Hz, 1H), 6.61 – 6.33 (m, 3H), 3.55 - 3.42 (m, 1H), 3.35 (t, J = 9.5 Hz, 1H), 2.19 (t, J = 9.6 Hz, 1H), 2.00 (d, J = 12.0 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 154.3, 144.7, 138.7, 129.4, 129.0, 127.9, 125.1, 123.3, 119.4, 117.9, 115.1, 60.6, 39.0, 35.5; HRMS (ESI) m/z 285.0790 (M+H⁺), calc. for C₁₆H₁₄ClN₂O 285.0789.

The ee was determined by HPLC analysis: CHIRALPAK IC (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 11.7 min (minor) and 16.9 min (major).

0 2.5	5 7.5	10 12.5	15 17.5	20 min
Entry	Retention Time	Area	Height	%Area
1	11.723	5592.5	179.8	49.370
2	17.091	5735.3	167.2	50.630

mAU			18	
250 -				
200 -				
150				
100-				
50-		-224		
0		[±]		
0 2.5	5 7.5	10 12.5	15 17.5	20 min
Entry	Retention Time	Area	Height	%Area
1	11.724	428.6	13.7	3.186
2	16 922	13022 5	289 7	96 814

(R)-6-Bromo-2',3'-dihydro-1'H-spiro[isoindoline-1,4'-quinolin]-3-one(R)-6-Bromo-2',3'-dihydro-1'H-spiro[isoindoline-1,4'-quinolin]-3-one(3t): white solid, Mp 165.7 – 166.9 °C; 21.7 mg (0.1 mmol), 66% yield; $94% ee; <math>[\alpha]_D^{22}$ –48.9 (c 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.69 (d, J = 7.9 Hz, 1H), 7.60 (d, J = 7.9 Hz, 1H), 7.41 (s, 1H), 7.13 – 6.96 (m, 1H), 6.87 (s, 1H), 6.68 – 6.43 (m, 3H), 3.56 – 3.43 (m, 1H), 3.42 – 3.25 (m, 1H), 2.27 – 2.11 (m, 1H), 2.08 – 1.88 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 169.7, 152.0, 143.3, 132.7, 131.1, 129.2, 128.7, 127.4, 123.9, 122.8, 122.1, 121.6, 116.3, 60.6, 39.0, 35.2; HRMS (ESI) m/z 329.0294 (M+H⁺), calc. for C₁₆H₁₄BrN₂O 329.0284.

The ee was determined by HPLC analysis: CHIRALPAK IC (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 85/15; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 12.5 min (minor) and 20.9 min (major).

Entry	Retention Time	Area	Height	%Area
1	12.544	912	38.5	3.614
2	20.924	24320.4	557.3	96.386

 $\begin{array}{c} \text{(R)-6-Methoxy-2',3'-dihydro-1'H-spiro[isoindoline-1,4'-quinolin]-3-on} \\ \text{(R)-6-Methoxy-2',3'-dihydro-1'H-spiro[isoindoline-1,4'-quinolin]-3-on} \\ \text{(a)} \\ \text{(a)} \\ \text{(a)} \\ \text{(b)} \\ \text{(c)} \\$

The ee was determined by HPLC analysis: CHIRALPAK IC (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 70/30; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 10.1 min (minor) and 12.6 min (major).

Entry	Retention Time	Area	Height	%Area
11	10.121	316.4	8.8	2.961
2	12.593	10369.3	245.8	97.039

(*R*)-2-benzyl-6-methoxy-2',3'-dihydro-1'H-spiro[isoindoline-1,4'-quino lin]-3-one (7): white solid, Mp 142.1 – 143.6 °C; 19.6 mg (0.1 mmol), 53% yield; 35% ee; $[\alpha]_{D}^{22}$ +38.2 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz,

CDCl₃) δ 7.97 (d, J = 8.4 Hz, 1H), 7.43 – 7.25 (m, 5H), 7.20 – 6.99 (m, 2H), 6.89 (d, J = 1.8 Hz, 1H), 6.75 (d, J = 8.1 Hz, 1H), 6.67 – 6.53 (m, 2H), 5.21 (d, J = 16.2 Hz, 1H), 4.07 (d, J = 16.2 Hz, 1H), 3.88 (s, 3H), 3.73 – 3.54 (m, 1H), 3.42 – 2.62 (m, 1H), 2.40 – 2.21 (m, 1H), 2.07 – 1.85 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 169.0, 163.1, 155.2, 145.4, 138.7, 128.9, 128.3, 127.4, 127.3, 126.8, 125.0, 122.7, 118.6, 118.2, 115.4, 114.1, 108.4, 65.3, 55.6, 44.0, 38.8, 33.2.

The ee was determined by HPLC analysis: CHIRALPAK IC (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 70/30; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 20.3 min (minor) and 27.3 min (major).

C1: Ar = 4-pyrenyl

Ar
$$^{\text{H}}$$
 NMR (600 MHz, CDCl3) δ 8.29 - 7.63 (m, 15H), 7.62 - 7.26
 $^{\text{O}}$ (m, 5H), 3.40 - 3.20 (m, 2H), 3.16 - 2.88 (m, 2H), 2.84 - 2.39 (m 4H).

C1: Ar = 4-pyrenyl

8. Copies of NMR spectra

