Electronic Supplementary Information

Docking of Tetra-methyl Zirconium to the Surface of Silica: A Well-Defined Pre-catalyst for Conversion of CO₂ to Cyclic Carbonates

Walid AL Maksoud,^{ab} Aya Saidi,^{ab} Manoja K. Samantaray,^{*a} Edy Abou-Hamad,^c Albert Poater,^e Samy Ould-Chikh,^a Xianrong Guo,^c Erjia Guan,^d Tao Ma,^d Bruce C. Gates^{*d} and Jean-Marie Basset^{*a}

^d Department of Chemical engineering and materials science, University of California at Davis, California, 95616, USA. E-mail. bcgates@ucdavis.edu

Table of content

- 1- Experimental Section.
- 2- Supporting Section 1: FT-IR spectra of SiO₂₋₇₀₀ and after grafting of Zr(CH₃)₄ complex in THF
- 3- Supporting section 2: ¹H, ¹³C, and HETCOR of Sample 2 after reacting with O₂/air
- 4- Supporting Section 3: A catalytic pathway representing the cycloaddition of CO_2 to propylene oxide catalyzed by $[(\equiv Si O)Zr(CH_3)_3(THF)_2]$
- 5- Supporting Section 4: Chemical shift parameters obtained from the simulation of ¹H NMR and ¹³C NMR spectra by DFT calculations

1- Experimental Section

Materials and Syntheses

All samples were handled with the exclusion of air and moisture by the use of standard Schlenk line and glovebox techniques. The syntheses and sample treatments were carried out using high-vacuum lines (pressure $<10^{-5}$ mbar). *n-Pentane*, tetrahydrofuran (THF) and *d*⁸-THF were distilled from a Na alloy under argon. The solvents were degassed through freeze-pump-thaw cycles. SiO₂₋₇₀₀ was prepared from Aerosil silica supplied by Degussa (specific surface area 200 m²/g), which was partially dehydroxylated at 700 °C under high vacuum (<10⁻⁵ mbar) for 15 h to give a white solid having a specific surface area of 190 m²/g

^{a.} King Abdullah University of Science & Technology, Physical science, and Engineering KAUST, 23955-6900, Thuwal, Saudi Arabia, E-Mail: jeanmarie.basset@kaust.edu.sa, manoja.samantaray@kaust.edu.sa

^{b.} Authors having equal contributions

^c Imaging and Characterization Core Lab, King Abdullah University of Science and Technology, KAUST, Thuwal, 23955-6900, Saudi Arabia

e- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/ Mª Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain.

and containing 0.5-0.6 OH groups/nm². The Starting reagents ZrCl₄, BuLi, ¹³MeI, propylene oxide and TBAB (Tetra-*n*-butylammonium bromide) were purchased from Aldrich. Before using, the propylene oxide was distilled from CaH₂ and TBAB was melted 150°C and stirred under vacuum in a Schlenk tube for 5 hours then stored under argon. Pure carbon dioxide (99.999%) was purchased from Abdullah Hashim Industrial gases & Equipment (AHG) and used as supplied.

Elemental Analyses

Elemental analyses were performed at the KAUST core laboratory. Analysis of gas-phase of release methane after the treatment of the zirconium complex with distilled water was performed with an Agilent 6850 gas chromatography with a split injector coupled with a flame ionization detector. An HP-PLOT Al_2O_3 KCl 30 m × 0.53 mm, 20.00 mm capillary column coated with a stationary phase of aluminum oxide deactivated with KCl was used with helium as the carrier gas at 32.1 kPa. Each analysis was carried out under the same conditions: a flow rate of 1.5 mL/min and isothermal operation at 80 °C.

GC and GC-MS

GC measurements were performed with an Agilent 7890A Series (FID detection). Method for GC analyses: Column HP-5; 30m length x 0.32mm ID x 0.25 μ m film thickness; Flow rate: 1 mL/min (N₂); split ratio: 50/1; Inlet temperature: 250 °C, Detector temperature: 250 °C; Temperature program: 40 °C (3 min), 40-250 °C (12 °C/min), 250 °C (3 min), 250-300 °C (10 °C/min), 300 °C (3 min); propylene oxide retention time: t_R = 3.12 min, cyclic carbonate retention time: t_R = 9.54 min.

GC-MS measurements were performed with an Agilent 7890A Series coupled with Agilent 5975C Series. GC/MS equipped with a capillary column coated with none polar stationary phase HP-5MS was used for molecular weight determination and identification that allowed the separation of organic compounds according to their boiling points differences.

IR Spectroscopy

IR spectra of solid samples were recorded with a Nicolet 6700 FT-IR spectrometer by using a DRIFT cell equipped with CaF_2 windows. The samples were prepared in an argon-filled glovebox. Typically, 64 scans were accumulated for each spectrum (resolution 4 cm⁻¹).

Liquid-State Nuclear Magnetic Resonance Spectroscopy

All liquid-state NMR spectra were recorded on Bruker AVANCE 600 MHz spectrometers. Chemical shifts were measured relative to the residual ¹H or ¹³C resonance in the deuterated solvent: d^{8} -THF.¹

Solid-State Nuclear Magnetic Resonance

One-dimensional ¹**H MAS and** ¹³**C CP-MAS solid-state NMR** spectra were recorded on a Bruker AVANCE III spectrometer operating at 400 and 100 MHz resonance frequencies for ¹H, ¹³C respectively, with a conventional double resonance 4mm CPMAS probe. The samples were introduced under argon into zirconia rotors, which were then tightly closed. The spinning frequency was set to 14 and 10 KHz for 1H, ¹³C spectra, respectively. NMR chemical shifts are reported with respect to TMS as an external reference. For CP/MAS ¹³C and ²⁹Si NMR, the following sequence was used: 90 0 pulses on the proton (pulse length 2.4 s), then a cross-polarization step with a contact time typically 2 ms, and finally the acquisition of the ¹³C signal under high-power proton decoupling. The delay between the scan was set to 5 s, to allow the complete relaxation of the ¹H nuclei and the number of scans was between 3,000-5,000 for carbon, and 32 for proton. An apodization function (exponential) corresponding to a line broadening of 80 Hz was applied prior to Fourier transformation.

The 2D ¹H-¹³C heteronuclear correlation (HETCOR): solid-state NMR spectroscopy experiments were conducted on a Bruker AVANCE III spectrometer using a 3.2 mm MAS probe. The experiments were performed according to the following scheme: 900 proton pulse, t1 evolution period, cross-polarization (CP) to carbon spins, and detection of carbon magnetization under TPPM decoupling1,2. For the cross-polarization step, a ramped radio frequency (RF) field centered at 75 KHz was applied to protons, while the carbon RF field was matched to obtain an optimal signal. A total of 32 t1 increments with 2000 scans were collected. The sample spinning frequency was 8.5 kHz. A 2D Fourier transformation gives through space between pairs of neighboring carbon (in F2) and proton (in F1) nuclei. Using a short contact time (0.5 ms) for the CP step, the polarization transfer in the dipolar correlation experiment is expected to be quite selective, which is to lead to correlation only between pairs of attached ¹H-¹³C spins (C-H directly bonded). Using longer contact times (10 ms), we found that it is possible to observe extra correlation peaks, which arise from longer range dipolar thought-space interaction. These long-range spectra yield further information about the structure.

¹H-¹H multiple-Quantum Spectroscopy: Two-dimensional double-quantum (DQ) and triple-quantum (TQ) experiments were recorded a Bruker AVANCE III spectrometer operating at 600 MHz with a conventional double resonance 3.2 mm CPMAS probe, according to the following general scheme3: excitation of DQ coherences, t1 evolution, Z-filter, and detection. The spectra were recorded in a rotor synchronized

fashion in t1; that is the t1 increment was set equal to one rotor period (4.545 µs). One cycle of the standard back-to-back (BABA) recoupling sequence was used for the excitation and reconversion period. Quadrature detection in w1 was achieved using the States-TPPI method. A spinning frequency of 22 KHz was used. The 900 proton pulse length was 2.5 µs, while a recycle delay of 5 s was used. A total of 128 t1 increments with 32 scans each were recorded. Double (DQ)- and Triple (TQ)-quantum proton spectroscopies under fast MAS have recently shown to be powerful techniques to probe the structural information and dynamics inherent proton-proton dipolar couplings. The DQ frequency in the w1 dimension corresponds to the sum of two single quantum (SQ) frequencies of the two coupled protons and correlates in the w2 dimension with the two corresponding proton resonances. The TQ frequency in the w1 dimension corresponds to the sum of the three SQ frequencies of the three coupled protons and correlates in the w2 dimension with the three individual proton resonances. Conversely, groups of less than three equivalent spins will not give rise to diagonal signals in the spectrum. Two-dimensional DQ and TQ correlations experiments can thus apply to determine in a reliable way the number of the attached equivalent proton.

Preparation of the Silica Partially Dehydroxylated at 700 °C

Typically, 4.000 g of Degussa Aerosil 200 silica was treated in a quartz reactor fitting a tubular furnace under a high vacuum line (10⁻⁵ Torr) at 700 °C for 16 hours. FT-IR: 3747 cm⁻¹ ($v_{(SiO-H)}$).

Preparation of labeled MeLi (¹³CH₃)Li

In a 200 mL Schlenk, 15 mL of 1.6 M BuLi was taken under argon, and to that 3.4 g (24 mmol) of ¹³Mel diluted in 25 mL of pentane was added dropwise at -20 °C with stirring. A white precipitate formed immediately, and the solution was stirred for another 30 min after the addition of ¹³Mel. The precipitate was then filtered and dried under a vacuum to produce a white solid (¹³MeLi). A small amount of ¹³MeLi was taken and titrated with deoxygenated water to quantify the amount of methyl lithium present by quantifying the release of methane (around 55% ¹³MeLi was found).

Preparation of ZrMe₄ on THF (1) and its characterization by liquid-state NMR

Under argon atmosphere, $ZrCl_4$ (120 mg, 0.5 mmol) was added into one compartment of a chilled (-80 °C) double-schlenk tube and dissolved with 25 ml of dry THF, 70 mg of *MeLi dissolved on 5 ml of THF (55% by gas calibration, ca. 5.5 equiv.) was added into the suspension. The reaction mixture was allowed to stir at -10 - 0 °C for 3 h; the suspension became red-brown. The solution was filtrated to the other side of the

double schlenk, which is a pure solution of $ZrMe_4$. A slurry of the solution was taken, then the THF was evaporated at -10 °C, and 0.4 ml of d^8 -THF was added on the tube under an inert atmosphere and analyzed by solution NMR. ¹H NMR (d^8 -THF at 0 °C): δ = 0.257 ppm and 0.07 ppm, ¹³C NMR (d^8 -THF at 0 °C): δ = 41 ppm. ¹H-¹³C COSY, H at 0.186 ppm correlates with C at 41 ppm.

Grafting of prepared (THF)₂Zr(CH₃)₄ on SiO₂₋₇₀₀ :[(=Si-O-Zr)(CH₃)₃(THF)₂] and [(=Si-O-Zr)₂(CH₃)₂(THF)₂] (2)

In a chilled (-10 °C) double-Schlenk tube, silica Aerosil(700) (1 g, Aerosil-200 was dehydroxylated at 700 °C for 18 h under high vacuum (10⁻⁵ mBar) to generate Aerosil (700)) was added into one compartment, following with chilled ZrMe₄ solution produced in the first step from 0.5 mmol ZrCl₄. The reaction mixture was allowed to stir at - 10 °C for 3 h, the silica took on a slight gray tinge. After filtration and washing with THF for three times and one time with pentane, the product was dried under vacuum for 1 h at -10 °C, then, it was dried on the high vacuum line for another 1 h to afford a grey powder product. Elemental analysis gives 3.9% Zr, 5.23% C, and 0.95% H.

Oxygen insertion reaction

50 mg of sample **2** was taken in a reactor tube inside the glovebox. The reactor tube was evacuated in high vacuum and to that, 1 atm of O_2 was passed at room temperature. After 10 minutes, it was open to the air, and solid-state NMR was carried out.

Catalytic test

In a typical reaction, a high-pressure stirred batch reactor (35 mL) was used whereby complex 2 (the catalyst), CO₂ and propylene oxide (the reactants) and TBAB (nucleophile) were introduced.

10 mg (3.3×10^{-3} mmol of Zr) of Complex **2** was mixed with three different amounts of propylene oxide; 1 mL (14.34 mmol), 2mL (28.68 mmol) and 3 mL (43.03 mmol), to these mixtures, 47 mg (0.14 mmol), 94 mg (0.28 mmol) and 141 mg (0.42 mmol) of TBAB were added respectively. Then, 100 psi of CO₂ were introduced for each mixture. Each vessel was heated to 60 °C and held for 16 h. Then the mixture was cooled, mixed with dichloromethane, and filtered. The products' composition was quantified by gas chromatography and qualified by GC-MS.

Computational Details

All the DFT geometry optimizations were performed at the hybrid GGA PBE0 level[(a)² of Perdew, Burke and Ernzerhof with the Gaussian09 package.³ The electronic configuration of the systems as described with the split-valence Def2SVP basis set ^{4, 5} for the main group atoms, while for zirconium we adopted the quasi-relativistic SDD effective core potential, with the associated triple- ζ valence basis set.⁶⁻⁸ The reported NMR values were built through single-point energy calculations on the PBE0/Def2SVP~sdd geometries including corrections due to dispersion through the Grimme's method with Becke–Johnson damping (GD3BJ keyword in Gaussian). ^{9, 10} However, the solvent effects were included with the Solvation Model Based on Density (SMD) model using the THF solvent.¹¹

The silica models in Figure S1 were elaborated from the work of Sautet et al.¹² using structure 001-5 for model1 and structure 001-4 for model2. For models of monopodal species on SiO₂₋₇₀₀, the initial silica surface selected for NMR property computations was taken from the previously optimized structure of Emsley and co-workers.¹³ The surface species were exchanged from that of the prior study with the species of interest here and truncated at the second coordination sphere for the NMR tensor computations. Further, where applicable, oxygen atoms at the silica surface were terminated with hydrogen atoms.

2- Supporting Section 1: FT-IR spectra of SiO_{2-700} after grafting of $Zr(CH_3)_4$ complex in

Figure S1: FT-IR spectra of SiO₂₋₇₀₀ (black), after grafting of $Zr(CH_3)_4$ complex (red) in THF.

3- Supporting section 2: ¹H, ¹³C and HETCOR of Sample 2 after reacting with O₂/air

Figure S2: ¹H, ¹³C and HETCOR of Sample 2 after reacting with O₂/air

4- Supporting Section 3: A catalytic pathway representing the cycloaddition of CO_2 to propylene oxide catalyzed by $[(\equiv Si - O -)Zr(CH_3)_3(THF)_2]$

Scheme S1: A catalytic pathway representing the cycloaddition of CO_2 to propylene oxide catalyzed by [(\equiv Si-O-Zr)(CH₃)₃(THF)₂] and [(\equiv Si-O-Zr)₂(CH₃)₂(THF)₂]

5- Supporting Section 4: Chemical shift parameters obtained from simulation of ¹H NMR and ¹³C NMR spectra by DFT calculations.

Table S1. Chemical shift parameters (in ppm) obtained from simulations of ¹H NMR and ¹³C NMR spectra by DFT calculations.

	Chemical group	¹ H NMR	¹³ C NMR
THF	(O)- CH ₂ -(CH ₂)	3.5	66.2
	(CH ₂)- CH₂ -(CH ₂)	1.5	27.4
ZrMe ₄	Zr- CH ₃	0.3	30.4
Zr(Me) ₄ (THF) ₁	Zr- CH ₃	0.1	32.8
	(O)- CH₂-(CH ₂)	3.7	68.4
	(CH ₂)- CH₂ -(CH ₂)	1.7	27.0
Zr(Me) ₄ (THF) ₂	Zr- CH ₃	0.2	33.0
	(O)- CH ₂ -(CH ₂)	3.6	68.1
	(CH ₂)- CH₂-(CH ₂)	1.6	28.3
Model1-Zr(Me) ₃	Zr- CH ₃	0.4	31.7
Model1-Zr(Me) ₃ (THF) ₁	Zr- CH ₃	0.0	29.9
	(O)- CH ₂ -(CH ₂)	3.9	69.5
	(CH ₂)- CH₂-(CH ₂)	1.7	23.8
Model1-Zr(Me) ₃ (THF) ₂	Zr- CH ₃	-0.1	30.5
	Zr- CH ₃	0.0	35.2
	Zr- CH ₃	-0.2	24.6
	(O)- CH ₂ -(CH ₂)	3.8	68.9
	(CH ₂)- CH₂ -(CH ₂)	1.7	27.0
Model2-Zr ₂ (Me) ₄	Zr- CH ₃	0.7	35.4
	Zr- CH ₃	0.6	33.0

Model2-Zr ₂ (Me) ₄ (THF) ₂	Zr- CH ₃	0.9	35.1
	Zr-CH ₃	-0.1	21.2
	Zr- CH ₃	0.0	31.3
	Zr- CH ₃	0.2	34.1
	Zr- CH ₃	0.1	27.6
	Zr- CH ₃	0.0	27.2
	(O)- CH₂- (CH ₂)	3.8	68.4
	(CH ₂)- CH₂-(CH ₂)	1.6	24.8
	(O)- CH ₂ -(CH ₂)	4.1	68.7
	(CH ₂)- CH₂-(CH ₂)	1.8	26.8
	(O)- CH ₂ -(CH ₂)	3.8	67.4
	(CH ₂)- CH₂-(CH ₂)	1.6	27.4
	(O)- CH₂- (CH ₂)	4.1	70.8
	(CH ₂)- CH₂- (CH ₂)	1.8	24.1
Model3-Zr(Me) ₂	Zr- CH ₃	1.1	41.8
	Zr- CH ₃	0.8	35.8
Model3-Zr(Me) ₂ (THF) ₁	Zr-CH ₃	0.5	37.0
	Zr- CH ₃	0.7	33.7
	(O)- CH₂ -(CH ₂)	4.3	70.7
	(CH ₂)- CH₂- (CH ₂)	1.9	26.9
Model3-Zr(Me) ₂ (THF) ₂	Zr- CH ₃	0.6	30.9
	Zr-CH ₃	-0.1	32.8
	Zr- CH ₃	0.0	
	Zr- CH ₃	0.1	

	Zr- CH ₃	0.1	
	Zr- CH ₃	0.3	
	(O)- CH₂- (CH ₂)	4.2	70.7
	(CH ₂)- CH₂- (CH ₂)	1.9	26.9
Model3-Zr(Me) ₂ (THF) ₂ methylated	Zr- CH ₃	0.2	30.9
	(O)- CH₂- (CH ₂)	4.1	70.7
	(CH ₂)- CH₂- (CH ₂)	1.9	26.9
	-Si- CH ₃	0.4	-1.6

Table S2. The xyz coordinates for all the DFT optimized structures (absolute energies in a.u.).

Model1-Zr(Me) ₃	
	43
Zero-point correction= 0.259761 (Hartree/Particle)	a1-ZrCH34 SCF Done: -3314.40874462 A.U.
Thermal correction to Energy= 0.294545	Si -3.102112 2.466179 -1.635277
Thermal correction to Enthalpy= 0.295489	Si -3.539090 -3.242930 0.500508
Thermal correction to Gibbs Free Energy= 0.182655	Si -0.861917 -2.663594 -1.137836
Sum of electronic and zero-point Energies= -3314.148983	Si -0.876610 3.782502 0.278435
Sum of electronic and thermal Energies= -3314.114200	Si -3.803475 -0.364529 1.854929
Sum of electronic and thermal Enthalpies= -3314.113256	Si -1.067372 0.123134 -2.331789
Sum of electronic and thermal Free Energies= -3314.226089	Si -1.024320 1.146051 2.047993
	O -0.927521 2.696998 1.526708
	O -3.554977 -1.964116 1.544566
	O -2.403919 1.019741 -2.036829
	0 -2.440961 0.504111 1.495850
	O -2.093286 -3.329028 -0.293867
	O -1.431886 -1.479835 -2.150470

O -2.023011 3.438163 -0.856736
O 0.219452 -1.934633 -0.117453
O 0.108692 0.484997 -1.217864
O 0.230415 0.258934 1.454325
H -4.265993 2.182437 -0.758303
H -4.632551 -3.079800 -0.496439
H -0.568291 0.383204 -3.694948
H -3.688401 -4.485793 1.294695
H -4.904445 0.147753 0.998495
H -3.512150 3.159653 -2.883515
H -1.172426 5.122368 0.844134
H -4.106389 -0.223926 3.303551
H 0.465429 3.738972 -0.358712
H -0.197682 -3.729998 -1.906823
H -0.964114 1.123086 3.520820
Si 0.757097 -0.381472 0.037279
O 2.380212 -0.331920 -0.002298
Zr 4.333674 -0.193180 0.139112
C 4.894775 1.598129 1.329314
H 4.032882 2.046433 1.855770
H 5.653162 1.342572 2.093944
H 5.331411 2.381968 0.681465
C 5.165989 -2.001205 1.126932
H 5.575503 -1.751478 2.124336
H 4.412010 -2.796297 1.268794
Н 5.992953 -2.430946 0.529703
C 5.229072 -0.011533 -1.887772
H 5.732702 -0.951425 -2.183780
H 4.482206 0.223480 -2.667332
H 5.991744 0.790529 -1.908016

Model1-Zr(Me) ₃ (THF) ₁	
Zero-point correction= 0.380251 (Hartree/Particle)	56
Thermal correction to Energy= 0.420809	a1-ZrCH34THF SCF Done: -3546.44322049 A.U.
Thermal correction to Enthalpy= 0.421754	Si 4.064393 -2.567386 -1.432469
Thermal correction to Gibbs Free Energy= 0.294529	Si 4.567867 3.102239 0.693924
Sum of electronic and zero-point Energies= -3546.062969	Si 2.000327 2.643606 -1.140318
Sum of electronic and thermal Energies= -3546.022411	Si 1.617173 -3.773475 0.266796
Sum of electronic and thermal Enthalpies= -3546.021467	Si 4.581441 0.239360 2.104713
Sum of electronic and thermal Free Energies= -3546.148692	Si 2.194832 -0.152547 -2.301710
	Si 1.732908 -1.148531 2.052024
	O 1.618256 -2.697228 1.522949
	0 4.439245 1.843975 1.755232
	O 3.473698 -1.093410 -1.897027
	0 3.223370 -0.575638 1.629031
	O 3.189175 3.260474 -0.199524
	O 2.606216 1.437745 -2.106032
	O 2.876258 -3.492388 -0.762376
	O 0.813095 1.965397 -0.212749
	O 0.925225 -0.464335 -1.284491
	O 0.576859 -0.208159 1.358762
	H 5.152636 -2.335258 -0.449076
	H 5.718412 2.859703 -0.219843
	H 1.802884 -0.407891 -3.700857
	H 4.737417 4.347921 1.480517
	H 5.736188 -0.333228 1.364540
	H 4.561909 -3.282889 -2.636332
	H 1.792388 -5.129041 0.847110
	H 4.742095 0.109447 3.577382
	H 0.340186 -3.661953 -0.484904

H 1.452494 3.737632 -1.961192
Н 1.552451 -1.124784 3.515528
Si 0.184705 0.438885 -0.102871
O -1.419659 0.452690 -0.287153
Zr -3.397080 0.356440 -0.245700
C -6.620366 -0.868460 -0.551223
H -7.213882 -0.543586 -1.424294
H -5.980965 -1.703846 -0.858021
C -6.599756 1.087367 0.627591
H -5.945499 1.744042 1.213578
H -7.194546 1.713535 -0.060901
C -7.505581 -1.154713 0.660781
H -8.518810 -1.446974 0.351141
H -7.092699 -1.980521 1.256909
C -7.481336 0.161992 1.462756
H -7.039863 0.002586 2.456427
H -8.481994 0.591806 1.610306
O -5.778697 0.214174 -0.150190
C -3.687584 -0.978153 -2.038542
H -3.875254 -2.034660 -1.764115
H -4.502669 -0.657100 -2.713466
H -2.752140 -0.972890 -2.627477
C -3.613598 -0.561687 1.795956
H -4.116839 -1.547026 1.749560
H -2.624174 -0.717168 2.260678
H -4.203093 0.074486 2.484300
C -3.834533 2.556746 -0.441193
H -4.695429 2.787670 -1.095394
H -4.019229 3.040542 0.537835
H -2.947611 3.056772 -0.871401

Model1-Zr(Me) ₃ (THF) ₂	
Zero-point correction= 0.500005 (Hartree/Particle)	69
Thermal correction to Energy= 0.546318	a1-ZrCH34THF2 SCF Done: -3778.46931057 A.U.
Thermal correction to Enthalpy= 0.547262	Si -4.844424 -1.778394 -2.605424
Thermal correction to Gibbs Free Energy= 0.408946	Si -4.490205 -0.680328 2.673880
Sum of electronic and zero-point Energies= -3777.969306	Si -1.989266 -2.062996 1.230906
Sum of electronic and thermal Energies= -3777.922993	Si -5.183096 1.116192 -1.298870
Sum of electronic and thermal Enthalpies= -3777.922048	Si -2.632822 1.908527 3.166099
Sum of electronic and thermal Free Energies= -3778.060365	Si -1.834682 -2.246879 -1.790906
	Si -2.531417 2.352999 0.026621
	O -3.843303 1.451154 -0.395031
	O -3.720808 0.670636 3.220344
	O -3.209562 -2.014119 -2.657886
	0 -2.554432 2.572110 1.651662
	O -3.438915 -1.686320 1.892130
	0 -2.217439 -2.751355 -0.257870
	O -5.225802 -0.493979 -1.640221
	O -1.108055 -0.679246 1.005154
	O -1.005221 -0.826624 -1.646676
	0 -1.162336 1.571775 -0.441566
	H -5.512163 -2.976599 -2.037298
	H -5.572979 -0.295261 1.732407
	H -1.018426 -3.259638 -2.482957
	H -5.031024 -1.403164 3.853679
	H -3.109632 2.971260 4.086968
	H -5.288636 -1.502611 -3.997366
	H -6.393954 1.447221 -0.506668
	H -1.289515 1.407945 3.557071
	H -5.127951 1.901386 -2.565725

H -1.277178 -3.002614 2.115340
H -2.560753 3.672520 -0.633261
Si -0.491878 0.066363 -0.347578
O 1.110586 0.193646 -0.304708
Zr 3.049326 -0.203372 0.001985
C 5.794004 -2.125832 -0.448925
H 4.954864 -2.721848 -0.832617
H 6.307155 -1.653734 -1.301425
C 5.964827 -1.068907 1.652456
H 6.134824 -0.025552 1.944723
H 5.326899 -1.544818 2.416740
C 6.746488 -2.920977 0.427731
H 6.203925 -3.717531 0.961415
H 7.551596 -3.391821 -0.153853
C 7.233019 -1.863590 1.410173
H 8.005052 -1.227862 0.946917
H 7.648712 -2.279837 2.338747
O 5.271208 -1.079967 0.394236
C 3.891730 -0.256179 -2.114710
Н 3.171758 0.257838 -2.777804
H 4.875848 0.225380 -2.262786
Н 3.971080 -1.293070 -2.492119
C 3.599998 0.945919 1.882732
H 4.516265 1.562447 1.887130
H 2.750632 1.629541 2.071108
H 3.653402 0.260910 2.750649
C 2.513763 -2.325895 0.625100
H 2.319058 -2.953186 -0.267949
Н 3.275333 -2.852833 1.229382
H 1.578124 -2.328791 1.213748

C 4.270368 3.021920 -0.724588
O 3.087546 2.225231 -0.727873
C 2.066886 2.831026 -1.528905
C 2.542493 4.255140 -1.757767
C 4.055953 4.073644 -1.802305
H 4.391298 3.478975 0.273108
H 5.140075 2.373300 -0.915221
H 1.980972 2.275232 -2.479679
H 1.109415 2.747371 -0.998591
H 2.124236 4.696733 -2.673510
H 2.256178 4.898727 -0.910026
H 4.365386 3.684218 -2.785658
H 4.621206 4.996740 -1.609717
1

Model2-Zr ₂ (Me) ₄	
	102
	a2-ZrCH34 SCF Done: -8026.42830540 A.U.
	Si -2.404147 2.953151 0.258607
	Si -1.032838 -2.912215 0.877118
	Si 5.650312 -1.381466 -0.678335
	Si -6.308259 0.697684 0.837866
	Si 0.262043 1.550553 -0.147565
	Si 1.721388 -4.197142 1.292734
	Si -7.217256 -2.380499 0.504062
	Si -1.483742 5.975017 0.516305
	Si -0.477806 -1.112075 -1.605941
	Si -4.709774 1.932610 -1.615775
	Si -3.381440 -4.865267 0.232108
	Si 5.825200 0.318844 -3.329913
	Si 2.414707 3.363263 -1.564054

Si 3.701956 -3.835208 -1.219721
Si -5.249593 -3.262309 -1.878383
Si -2.551100 0.418750 -3.457647
Si 0.154555 5.562128 -2.228224
Si 1.249023 -3.350276 -3.174955
Si 2.910034 1.316262 -4.032590
0 -2.622372 1.962488 1.590806
O -0.692625 -2.179047 2.321142
O 5.488305 -0.779370 0.831678
O -5.091835 1.030215 1.947972
O 0.153539 1.185965 1.430817
0 2.037644 -3.004066 2.383276
0 -1.109335 2.400561 -0.574779
O 0.251016 -3.876504 0.572789
H 6.902135 -2.168712 -0.786404
H -6.863952 -3.329362 1.591409
O -2.164599 4.479490 0.762096
O -1.229341 -1.811692 -0.321808
O 5.687041 -0.125383 -1.746583
O -3.760321 2.879122 -0.652577
O -2.424608 -3.761715 1.019796
O -5.730148 1.076410 -0.644310
H -4.384198 -5.341089 1.219388
H 3.586687 3.944044 -0.889914
0 4.373689 -2.346465 -1.076103
O -6.647959 -0.892712 0.972056
0 1.569338 2.471813 -0.464158
O 2.896006 -4.221538 0.156202
H -0.785738 6.361947 1.765673
0 0.320458 0.227221 -1.112992

H 1.661288 -5.538813 1.905486
H 6.550254 1.615962 -3.369531
O -6.525416 -2.849850 -0.907796
0 -0.385670 5.914880 -0.705879
0 0.582062 -2.137102 -2.275230
0 -3.799494 0.884560 -2.473550
H -2.536901 -5.965328 -0.298216
H 6.541553 -0.736097 -4.095951
0 2.902706 2.422083 -2.807108
Н 4.736950 -4.857346 -1.465798
H -8.684146 -2.285837 0.295060
H -2.577652 6.919240 0.166977
0 -1.625993 -0.713249 -2.701194
H -5.500186 2.802457 -2.503556
0 -4.146741 -4.149055 -1.036222
0 4.337195 0.492609 -4.027692
O 1.447716 4.550979 -2.158776
O 2.667427 -3.833063 -2.495903
H -5.783206 -4.097061 -2.983581
H -0.941609 4.911167 -2.998052
H 0.307010 -4.500630 -3.206530
H -1.727732 1.610972 -3.794871
H 2.789077 2.044569 -5.323594
H -4.602127 -2.022246 -2.372124
H -3.137197 -0.216026 -4.663299
H 0.592356 6.828569 -2.867071
H 1.528232 -2.836472 -4.540065
H 1.796203 0.349825 -3.852424
H -3.559780 1.664401 1.733672
H -1.400267 -1.731844 2.810993

H -4.996570 0.397713 2.673544
H -7.501356 1.512175 1.136365
Zr -0.899280 1.130406 3.121683
Zr 5.260725 0.089356 2.581587
H 1.248645 -2.524517 2.685062
C 0.458884 0.229542 4.656299
H 1.405640 0.802678 4.682913
H 0.030664 0.269119 5.675325
H 0.727776 -0.823024 4.456518
C -2.665823 -0.259020 3.625637
H -3.239875 -0.725837 2.804186
H -2.443822 -1.041993 4.374882
H -3.349937 0.439865 4.153005
C -1.111949 3.121673 4.086713
H -0.333007 3.268576 4.856165
H -1.054369 3.959925 3.371063
H -2.096734 3.187451 4.589022
C 3.901275 1.845284 2.483115
H 3.262430 1.884260 1.583562
H 3.228124 1.856527 3.362154
H 4.492986 2.781024 2.513791
C 4.575844 -1.324626 4.145717
H 3.969609 -0.798529 4.908950
H 3.935566 -2.113368 3.708038
H 5.419096 -1.812795 4.669323
C 7.246636 0.855299 3.240530
H 7.918254 0.033386 3.551164
H 7.767054 1.426420 2.450046
H 7.128615 1.529310 4.110858

$Model2-Zr_2(Me)_4(THF)_1$	
	128
	a2-ZrCH34THF SCF Done: -8490.48442411 A.U.
	Si -3.740882 2.365382 2.194727
	Si -1.104380 -2.407550 -1.510631
	Si 5.352856 0.574537 -2.015103
	Si -6.220821 -1.440227 1.962269
	Si -1.014510 1.952067 0.594633
	Si 1.578771 -3.617352 -2.443960
	Si -6.246632 -4.166941 0.304222
	Si -3.733557 5.450145 2.935672
	Si -1.429717 0.695409 -2.228489
	Si -5.865380 1.166575 0.150945
	Si -3.484890 -3.499659 -3.157713
	Si 4.814962 3.680261 -2.164600
	Si 0.608274 4.590958 0.352101
	Si 3.267405 -1.182139 -3.607029
	Si -6.466269 -2.644742 -2.504674
	Si -4.424894 1.473614 -2.689288
	Si -2.267965 6.005389 0.118979
	Si 0.560263 0.295416 -4.678182
	Si 1.802930 4.458854 -2.630511
	O -3.525706 1.198071 3.318837
	O -0.614518 -2.789284 0.030390
	O 5.995950 -0.134451 -0.699059
	O -5.048664 -1.122628 3.097589
	O -0.557709 0.544064 1.260005
	O 1.772506 -4.208434 -0.916093
	O -2.442767 2.472794 1.202882
	O 0.124351 -2.804786 -2.509858

H 6.321850 0.601009 -3.138772
H -5.014273 -4.988960 0.179474
O -3.939339 3.813674 2.920695
0 -1.443445 -0.818147 -1.596136
O 4.922451 2.123700 -1.623260
0 -5.075429 2.047570 1.283443
O -2.455140 -3.260824 -1.875520
O -6.195847 -0.334193 0.748321
H -3.803956 -4.951034 -3.202649
H 1.435788 5.193874 1.412724
O 3.986198 -0.216012 -2.496830
O -5.891746 -2.921965 1.334451
O 0.115542 3.108939 0.874186
0 2.758252 -2.561538 -2.871085
H -3.056911 5.827809 4.201715
0 -1.196612 1.783656 -1.034363
H 1.575782 -4.739498 -3.400850
H 4.979132 4.569925 -0.983488
O -6.694027 -3.600429 -1.175766
0 -2.780922 5.946711 1.684524
O -0.243378 0.828164 -3.334279
O -4.943031 0.987047 -1.194220
Н -2.832637 -3.023772 -4.404478
Н 5.866336 3.923162 -3.188535
O 1.511779 4.433343 -1.004299
H 4.219073 -1.536194 -4.679853
H -7.383566 -4.949485 0.853053
H -5.071550 6.090112 2.817397
0 -2.878137 0.957347 -2.945690
H -7.135499 1.842025 -0.178498

0 -4.869208 -2.630435 -2.935018
O 3.356417 3.957428 -2.886475
O -0.688149 5.543914 0.016763
O 1.991268 -0.396377 -4.268726
H -7.269236 -3.232846 -3.608447
H -3.100816 5.101682 -0.721543
H -0.281773 -0.712222 -5.378819
H -4.469481 2.959467 -2.758866
H 1.660548 5.853799 -3.129746
H -6.870857 -1.250174 -2.207162
H -5.279541 0.851970 -3.731664
H -2.350616 7.412496 -0.349130
H 0.835606 1.475480 -5.534630
H 0.883399 3.533760 -3.336709
H -4.191616 0.485523 3.363087
H -1.305514 -2.748863 0.749181
H -4.211131 -1.600950 2.959101
H -7.534494 -1.397718 2.632426
Zr 0.017929 -1.115143 2.139087
C 0.009019 -4.490969 2.890548
H -0.058097 -4.745937 1.821627
H -1.010124 -4.380731 3.285272
C 0.865798 -5.489693 3.675000
H 1.467440 -6.102200 2.986941
H 0.252981 -6.174283 4.277906
C 1.965160 -3.411126 3.603848
H 2.693480 -3.618402 2.801241
H 2.248817 -2.478774 4.110882
C 1.773611 -4.599738 4.520257
H 2.723471 -5.083496 4.788021

Н	1.274906	-4.283880	5.450244
0	0.660888	-3.211614	3.034968
Zr	6.874115	-1.222476	0.712369
с	5.680493	0.327780	3.606769
Н	6.546201	0.879856	4.018115
н	5.767688	-0.729007	3.892092
С	5.245327	1.720415	1.858185
Н	6.081234	2.432438	1.986817
Н	4.945488	1.721257	0.803736
С	4.357852	0.981518	3.989222
Н	3.561425	0.223548	4.004809
н	4.399283	1.441726	4.986177
С	4.116129	2.000263	2.855350
н	4.152529	3.040484	3.208388
Н	3.130807	1.849952	2.391009
0	5.710056	0.409423	2.187536
н	1.223150	-3.741903	-0.266357
С	1.985897	-1.266348	1.069557
Н	2.706914	-0.752817	1.739668
Н	2.423620	-2.247721	0.827496
Н	1.983478	-0.678171	0.133933
С	-2.127605	-2.069111	2.314567
н	-2.625909	-1.093488	2.163205
н	-2.740990	-2.839519	1.812281
Н	-2.139492	-2.283593	3.401449
С	0.416251	-0.238181	4.163445
Н	0.687427	-0.942851	4.968964
Н	1.175626	0.563781	4.136628
н	-0.532120	0.249623	4.465376
С	5.725884	-2.742185	1.923737

H 4.713802 -2.392785 2.194665
H 5.609573 -3.666372 1.328572
H 6.258868 -3.022952 2.853478
C 7.970742 -2.732762 -0.536842
H 7.280254 -3.326853 -1.164830
H 8.695014 -2.247846 -1.218734
H 8.540580 -3.448600 0.085236
C 8.688925 -0.358428 1.717610
H 9.620945 -0.716389 1.245250
H 8.713875 0.746806 1.712657
H 8.718154 -0.682901 2.777266

Model2-Zr ₂ (Me) ₄ (THF) ₂	
	154
	a2-ZrCH34THF2 SCF Done: -8954.51355720 A.U.
	Si -4.688336 2.298755 2.523137
	Si -1.710303 -2.669873 -2.159200
	Si 4.643715 1.283613 -2.736455
	Si -5.666968 -2.821070 2.105961
	Si -1.921399 1.843562 0.936637
	Si 1.035110 -3.040346 -3.487037
	Si -6.436611 -4.860166 -0.177828
	Si -5.612091 5.294359 1.923782
	Si -2.366706 0.364272 -1.899054
	Si -6.332946 0.124624 0.871909
	Si -4.052183 -3.580613 -4.082737
	Si 3.946535 4.353536 -2.429541
	Si -0.644621 4.670661 0.182201
	Si 2.340856 -0.210906 -4.271392
	Si -6.959426 -3.240282 -2.988391

Si -5.370558 0.983361 -2.112811
Si -3.587351 5.864258 -0.480010
Si -0.653163 0.950724 -4.502620
Si 0.855021 5.098448 -2.578192
O -4.305263 1.805765 4.049460
O -1.068083 -3.606374 -0.954994
0 5.490812 0.441729 -1.634550
O -4.315564 -2.906936 3.033189
O -1.142896 0.748787 1.839159
O 1.499727 -3.788930 -2.095146
O -3.333975 2.316714 1.628342
O -0.543549 -2.527299 -3.300945
H 5.427533 1.475487 -3.983885
H -5.640523 -6.081738 -0.459180
0 -5.315847 3.807507 2.568538
0 -2.145295 -1.222677 -1.532810
O 4.275661 2.773736 -2.109614
O -5.829054 1.286622 1.920215
O -3.031013 -3.387607 -2.798098
O -5.849051 -1.326825 1.446053
H -4.217306 -5.042168 -4.310331
H 0.005226 5.446898 1.255732
O 3.227803 0.521541 -3.107442
O -5.584994 -3.922093 0.880077
O -0.988647 3.173751 0.741046
O 1.979888 -1.746666 -3.820465
H -5.758676 6.254260 3.045620
0 -2.308960 1.248819 -0.541302
H 1.111945 -3.962331 -4.639470
H 4.201796 5.121410 -1.178402

O -6.697947 -4.050374 -1.582675
O -4.357797 5.797283 0.978969
O -1.230856 0.861687 -2.953669
O -5.687660 0.384566 -0.607728
H -3.504499 -2.884409 -5.274771
H 4.807482 4.831281 -3.545577
0 0.363640 4.533851 -1.105061
H 3.100599 -0.252460 -5.539373
H -7.759054 -5.193626 0.425220
H -6.851029 5.218674 1.098779
O -3.853283 0.526387 -2.582507
H -7.807584 0.173783 0.800555
0 -5.524057 -2.907678 -3.739082
0 2.376149 4.555271 -2.895403
0 -2.007068 5.445648 -0.314926
0 0.958934 0.640620 -4.522102
H -7.787721 -4.096766 -3.881151
H -4.249019 4.928422 -1.431666
H -1.369528 -0.040598 -5.351412
H -5.451266 2.469033 -2.057986
H 0.861012 6.589565 -2.548652
H -7.631131 -1.948453 -2.696601
H -6.334257 0.421702 -3.090735
Н -3.635730 7.265139 -0.972935
H -0.856390 2.335214 -4.998202
H -0.044447 4.585602 -3.641761
H -5.030133 1.402599 4.535785
H -1.360977 -3.418707 -0.050666
H -3.451186 -2.819847 2.600770
H -6.811695 -3.111785 2.995566

Zr	0.137324	-0.733764	2.176085
с	2.023412	-3.528176	1.583893
н	2.882679	-3.159949	0.999651
н	1.168473	-3.641709	0.909816
с	2.371243	-4.782660	2.382230
н	3.185385	-5.340275	1.898298
н	1.505545	-5.457172	2.449808
С	2.635662	-2.726540	3.624385
н	3.591898	-2.265839	3.321474
н	2.260298	-2.210725	4.515729
С	2.758834	-4.241323	3.772592
Н	3.775650	-4.528664	4.076305
Н	2.068418	-4.612619	4.544269
0	1.688819	-2.544163	2.570193
Zr	6.799189	-0.514325	-0.487311
С	7.058832	2.398581	1.763773
Н	7.235982	3.186846	1.007349
Н	8.026430	1.952931	2.028863
С	4.896592	1.888741	1.258472
Н	4.706985	2.477015	0.345186
Н	4.217134	1.027711	1.252906
С	6.273147	2.934453	2.955155
Н	6.496608	2.339589	3.853642
н	6.529899	3.979895	3.178841
С	4.806516	2.746004	2.527751
Н	4.308356	3.702653	2.313991
Н	4.221087	2.242935	3.310450
0	6.232628	1.384262	1.220040
н	0.758476	-3.871108	-1.468321
С	1.115348	-0.640150	0.154677

H 2.124318 -0.199819 0.286042
H 1.273644 -1.603823 -0.358418
Н 0.588371 0.019995 -0.555720
C -1.268627 -2.582104 2.040224
H -2.065762 -2.264161 1.337554
H -0.812667 -3.521719 1.682105
H -1.734360 -2.836175 3.005027
C 1.645196 0.280502 3.560661
H 2.635891 0.227215 3.069379
H 1.372629 1.351765 3.607387
H 1.768398 -0.069489 4.599230
C 5.480091 -1.506703 1.096007
H 4.432031 -1.172776 0.993721
H 5.476211 -2.592782 0.870832
H 5.788167 -1.376284 2.149698
C 7.274448 -2.133460 -1.986097
H 6.525248 -2.948869 -1.975567
H 7.248588 -1.700541 -3.003179
H 8.272360 -2.589149 -1.851637
C 8.648253 0.814257 -0.706283
H 8.376925 1.387724 -1.620294
H 8.975095 1.561854 0.037856
H 9.534713 0.205925 -0.977652
C 9.415453 -1.039638 1.723189
O 8.396040 -1.672219 0.932476
C 8.340214 -3.073753 1.216952
C 9.695265 -3.394271 1.815674
C 9.969240 -2.132621 2.626944
H 10.175983 -0.633484 1.039286
H 8.968053 -0.200526 2.277193

H 7.523656 -3.265593 1.934409
H 8.117793 -3.608992 0.282477
H 9.683383 -4.312839 2.419458
H 10.447626 -3.517709 1.020037
H 9.417930 -2.166202 3.580218
H 11.032571 -1.978783 2.859217
C -1.366896 -1.821418 5.315819
0 -1.039421 -0.742202 4.441209
C -1.351090 0.518929 5.062152
C -2.064747 0.166928 6.357549
C -1.472147 -1.196171 6.695108
H -2.330420 -2.267145 5.008970
H -0.586569 -2.594228 5.234478
H -0.405155 1.053842 5.244849
H -1.973215 1.105822 4.374924
H -1.909279 0.923384 7.139824
H -3.148646 0.081681 6.181870
H -0.471669 -1.082682 7.144054
H -2.089179 -1.792869 7.382252

Model3-Zr(Me) ₂	
	85
	a3-ZrCH34 SCF Done: -7820.09208042 A.U.
	Si 1.329116 -2.781910 1.141102
	Si 0.904696 2.309107 0.521929
	Si -4.713569 1.692871 1.613762
	Si 5.075130 -0.039704 1.271954
	Si -1.317118 -1.356614 0.221814
	Si -1.138850 4.251149 1.927578
	Si 7.386217 1.148929 -0.420222

Si 0.699641 -5.874224 1.117812
Si -0.621845 0.831306 -1.845537
Si 3.680501 -1.991287 -0.828971
Si 2.925023 3.411879 -1.538866
Si -5.859978 0.463430 -1.023311
Si -3.355134 -3.457562 -0.775341
Si -3.622702 4.075980 -0.063417
Si 5.377288 1.826960 -2.813177
Si 1.752304 -0.833118 -3.133558
Si -0.996722 -5.506505 -1.587223
Si -2.736639 2.875748 -2.912874
Si -4.321961 -1.392190 -2.999850
O 1.443060 -1.805162 2.452246
O 1.234760 1.006685 1.512244
O -3.260644 1.284287 2.292057
O 3.854197 1.059310 1.570985
O -1.336152 -0.400707 1.562477
0 -1.783043 3.383456 3.151828
O 0.085200 -2.229312 0.196160
O 0.250268 3.533992 1.352020
H -5.748726 1.755148 2.660205
H 8.426442 2.101571 0.031733
0 1.028073 -4.321750 1.586171
O -0.105733 1.856917 -0.670535
O -5.107686 0.599229 0.447646
0 2.702378 -2.751916 0.246513
O 2.374414 2.762252 -0.096790
O 4.699335 -0.973732 -0.029940
H 3.722641 4.619702 -1.204361
H -4.304232 -4.236540 0.037354

O -4.581119 3.199617 0.948481
O 6.446344 0.782482 0.897279
0 -2.597518 -2.370561 0.214391
0 -2.172518 4.382063 0.643710
H 0.140605 -6.588575 2.289654
0 -1.370812 -0.450235 -1.149310
H -0.757523 5.586250 2.414993
H -6.936412 -0.555031 -0.890926
O 6.465724 1.893661 -1.573880
O -0.427559 -5.888960 -0.086634
0 -1.659207 1.620677 -2.814176
0 2.793376 -1.097167 -1.878339
H 1.762721 3.715389 -2.409092
H -6.397623 1.786389 -1.432889
0 -4.171532 -2.666340 -1.956261
H -4.298696 5.346589 -0.383110
H 7.968310 -0.100405 -0.981870
H 1.954419 -6.504444 0.623428
O 0.667978 0.340050 -2.716974
H 4.485426 -2.998794 -1.542749
0 3.884056 2.286791 -2.264724
O -4.776854 -0.031139 -2.170665
0 -2.233882 -4.425024 -1.479888
0 -3.393992 3.189481 -1.432109
H 5.821909 2.779200 -3.863319
H 0.092168 -4.894639 -2.397399
H -2.005218 4.081199 -3.391091
H 1.028732 -2.094424 -3.447427
H -5.390987 -1.754690 -3.967528
H 5.260202 0.439354 -3.328405

H 2.524080 -0.327958 -4.295091
H -1.513530 -6.748763 -2.216104
H -3.811708 2.477204 -3.850605
H -3.037644 -1.105858 -3.683413
H 2.214128 0.894503 1.660885
H -2.676382 0.576943 1.922503
H 3.765746 1.814490 0.962773
H -2.330437 2.596767 2.931490
H 5.237495 -0.836116 2.497430
Zr 0.055195 -0.521810 3.064263
C 0.616314 1.059667 4.528285
H 1.691591 1.314794 4.489323
H 0.045480 1.989457 4.346848
H 0.387381 0.722446 5.556059
C -1.155918 -1.775483 4.453151
H -0.547408 -2.132048 5.305155
H -1.999829 -1.196420 4.873821
H -1.586190 -2.666400 3.960297

98
a3-ZrCH34THF SCF Done: -8052.32047443 A.U.
Si -0.335067 2.852099 1.123170
Si -2.315387 -2.321869 0.454305
Si 4.960493 -1.452827 -0.710283
Si -4.357101 1.379543 1.804319
Si 1.273998 0.724743 -0.227033
Si 0.138714 -3.259353 1.814399
Si -6.189726 -0.882495 0.772619
Si 1.366221 5.487755 1.251541

Si -0.893296 -0.793888 -1.731313
Si -3.019205 3.225742 -0.344760
Si -4.153072 -3.315321 -1.870387
Si 4.186973 -1.773136 -3.678724
Si 3.140774 2.164010 -2.146489
Si 2.467449 -3.499364 -0.257835
Si -5.341934 -0.502519 -2.299647
Si -1.808900 1.897917 -3.049304
Si 1.626725 4.973541 -1.877690
Si 0.297225 -3.490541 -2.703791
Si 1.981178 0.321235 -4.445425
0 -0.564043 1.776843 2.335701
0 -2.762727 -1.886956 1.977726
O 4.948771 -0.074975 0.167953
0 -3.154108 1.298776 2.889614
O 1.446697 0.071534 1.228622
O -0.150349 -1.847082 2.675876
O 0.286305 2.055969 -0.188988
O -1.050760 -3.362182 0.673164
Н 6.176358 -2.208448 -0.351385
H -6.157343 -2.323519 1.119490
O 0.711391 4.009969 1.604012
O -1.797861 -0.993914 -0.367165
0 4.930239 -1.150477 -2.337727
O -1.738084 3.552481 0.641800
0 -3.515232 -3.068274 -0.353703
O -3.917288 2.036744 0.357347
H -5.433776 -4.039479 -1.664533
H 4.601753 2.084691 -2.304039
O 3.619209 -2.358904 -0.383517

0 -4.842551 -0.194563 1.485394
O 2.741173 1.214660 -0.835797
0 1.612868 -3.192652 1.124526
Н 2.685229 5.557309 1.927672
O 0.619564 -0.299250 -1.339812
H 0.074808 -4.418629 2.726365
H 5.060236 -1.482692 -4.845889
O -6.138674 -0.692449 -0.860391
0 1.568990 5.651203 -0.377954
0 -0.767414 -2.236653 -2.487596
0 -2.522443 2.724512 -1.816637
H -3.203714 -4.082191 -2.709914
H 3.949978 -3.230211 -3.506109
0 2.344350 1.606772 -3.470989
H 3.089702 -4.833694 -0.133540
H -7.407173 -0.198067 1.279290
H 0.447818 6.561409 1.709590
0 -1.641277 0.294442 -2.677614
H -3.813408 4.457269 -0.494656
O -4.422236 -1.852713 -2.589010
O 2.714178 -1.056911 -3.900967
O 2.696237 3.711403 -1.879909
0 1.476236 -3.483385 -1.552547
H -6.367367 -0.389033 -3.367104
H 0.272803 4.493899 -2.256223
H -0.484371 -4.746571 -2.579241
H -0.472535 2.480799 -3.319159
H 2.483684 0.638576 -5.809953
H -4.466945 0.688058 -2.237760
H -2.704598 1.973748 -4.229510

H 2.130813 6.006650 -2.816301
H 0.934245 -3.362088 -4.035644
H 0.519087 0.089566 -4.442293
H -3.510441 -1.254049 2.025334
H 4.184937 0.504154 -0.020696
H -2.209686 1.504579 2.697017
H -1.118599 -1.745824 2.829277
H -5.527263 2.099123 2.350189
Zr 0.720032 0.402974 3.142110
O 2.366308 -1.080226 3.760841
C 2.339120 -1.972696 4.886357
C 3.611368 -1.193785 3.036683
H 1.536706 -2.708332 4.716354
H 3.380428 -1.099594 1.971439
C 3.719981 -2.609911 4.920967
H 3.692367 -3.631584 5.324708
C 4.155399 -2.539249 3.460595
H 4.268860 -0.362359 3.339187
H 2.095533 -1.395695 5.790375
H 4.400092 -2.015742 5.551148
H 5.243245 -2.610223 3.324095
H 3.677993 -3.337648 2.871984
C -0.687164 -0.104630 4.845076
H -1.748031 -0.205197 4.554081
H -0.420447 -0.996183 5.440148
H -0.638431 0.771894 5.523028
C 2.138394 1.854764 4.073799
H 1.700149 2.867875 4.088793
H 2.376968 1.569758 5.115029
H 3.091878 1.918023 3.518678

Model3-Zr(Me) ₂ (THF) ₂	
	111
	a3-ZrCH34THF2 SCF Done: -8284.15638103 A.U.
	Si 1.927147 -2.608283 -0.605092
	Si -0.299164 3.756564 -0.170885
	Si -4.860085 -0.942388 2.106904
	Si 5.219400 0.289422 -0.874520
	Si -0.843062 -1.555689 -0.052591
	Si -2.411171 4.362820 1.909313
	Si 4.628123 3.385260 -0.790432
	Si 2.010402 -5.727455 -0.992662
	Si -1.257508 1.182459 -1.570346
	Si 3.297852 -1.047742 -2.973383
	Si 0.545024 4.662012 -3.096948
	Si -6.351580 -1.076997 -0.711251
	Si -2.869585 -3.769755 -0.789642
	Si -4.692919 2.166865 1.451137
	Si 3.472120 3.627412 -3.771531
	Si 0.576655 0.282285 -4.022973
	Si -0.826580 -5.476493 -2.492657
	Si -4.179868 2.542581 -1.705508
	Si -4.252998 -1.814903 -2.931384
	0 2.414134 -1.767517 0.713619
	O 0.785178 3.936825 1.065453
	0 -3.582940 -1.908734 2.442496
	O 4.949900 -0.799070 0.318818
	0 -0.250705 -1.133161 1.390247
	O -1.222820 4.120886 3.025430
	O 0.344192 -2.263568 -0.957729

0 -1.722157 4.354345 0.393503
Н -5.793526 -1.020415 3.247762
Н 3.524402 4.007705 -0.014506
0 2.077484 -4.214666 -0.324622
0 -0.442939 2.153948 -0.516022
0 -5.615796 -1.434023 0.721937
0 2.825707 -2.226371 -1.924363
O 0.143660 4.596368 -1.493663
O 4.482343 -0.142145 -2.288304
H 0.871389 6.078601 -3.409756
H -3.910425 -4.375614 0.056599
0 -4.367569 0.626419 1.911124
0 4.629582 1.771922 -0.426604
0 -2.093322 -2.629033 0.141995
O -3.497569 3.133126 2.027961
H 2.026384 -6.701652 0.126960
O -1.464276 -0.286728 -0.888900
H -3.118659 5.644003 2.101315
H -7.277401 -2.197246 -1.029355
0 4.391859 3.633773 -2.403273
0 0.625917 -5.925420 -1.864520
0 -2.703509 1.835783 -1.922803
0 2.030153 -0.061251 -3.319192
H -0.591468 4.157257 -3.907328
H -7.066879 0.221331 -0.618951
O -3.513304 -3.049772 -2.117361
H -5.993346 2.604263 1.998735
H 5.948880 3.972660 -0.441957
H 3.166684 -5.919178 -1.907780
O -0.395478 1.071957 -2.949779

H 3.812231 -1.686435 -4.198999
O 1.862560 3.710504 -3.393197
0 -5.218799 -0.941718 -1.911129
0 -1.813242 -4.918262 -1.283732
O -4.758843 2.247996 -0.187780
H 3.847795 4.825720 -4.570678
H -0.629042 -4.407275 -3.508786
H -4.024697 4.008948 -1.891523
H -0.081971 -0.986203 -4.439588
H -5.087235 -2.432236 -3.996790
H 3.701026 2.369302 -4.521860
H 0.798249 1.190908 -5.174158
H -1.449931 -6.687469 -3.083928
H -5.129144 1.962836 -2.684275
H -3.233373 -0.898143 -3.496126
H 1.396654 3.200019 1.236711
H -3.003824 -2.189315 1.710764
H 4.036862 -1.131978 0.477903
H -0.336940 4.143397 2.618831
H 6.676703 0.377607 -1.097165
Zr 1.494706 -0.979940 2.387397
O 0.023672 -0.015861 3.950454
C 0.428734 0.384227 5.264654
C -1.287322 0.514489 3.635323
H 1.483249 0.700382 5.228047
H -1.165808 1.318881 2.894443
C -0.529773 1.497101 5.649293
H -0.194210 2.460938 5.235108
C -1.810899 1.057912 4.949577
H -1.889078 -0.291766 3.202239

Н	0.346908	-0.485396	5.938914
н	-0.630124	1.603654	6.738805
ц	2 220041	0 266920	E E 22674
п	-2.320041	0.200820	5.523074
н	-2.518683	1.881455	4.786147
-			
C	1.978167	1.239430	2.245861
н	2.765298	1.424365	1.493058
Н	1.002836	1.552884	1.830730
н	2.181434	1.839844	3.147055
С	1.395035	-2.601822	3.964852
н	1.885019	-3.526059	3.605251
Н	1.825502	-2.362183	4.953449
н	0.327129	-2.845022	4.116419
С	4.612105	0.104491	3.451224
0	3.739930	-1.009268	3.172873
С	4.476355	-2.249613	3.246313
С	5.936788	-1.843988	3.289205
С	5.869753	-0.514684	4.031570
н	4.813935	0.628655	2.505934
Н	4.095206	0.786647	4.139466
н	4.163819	-2.780995	4.159156
Н	4.209334	-2.857614	2.370804
н	6.561193	-2.597411	3.789906
Н	6.309586	-1.691113	2.266149
н	5.759510	-0.677820	5.116241
Н	6.751796	0.121852	3.872647

Model3-Zr(Me) ₂ (THF) ₂ methylated	
	116
	a3-ZrCH34THF2+CH3Hf SCF Done: -8324.55270574 A.U.
	Si 1.458053 -3.080481 0.317792

Si 0.367629 3.602688 -1.135957
Si -4.723067 0.754747 2.355929
Si 5.178827 -1.054797 -0.877154
Si -1.019208 -1.307128 0.539165
Si -1.523030 5.243195 0.582701
Si 5.364609 2.063788 -1.437667
Si -0.992838 -5.207951 -2.585654
Si -1.097020 0.928020 -1.741441
Si 2.805000 -2.391895 -2.458293
Si 1.455016 3.519380 -4.123124
Si -6.388430 -0.088939 -0.231077
Si -3.535825 -3.156481 0.689631
Si -4.169295 3.464428 0.793719
Si 4.143799 1.830488 -4.377878
Si 0.484826 -0.716994 -3.994480
Si -2.549699 -6.081920 0.010611
Si -3.750751 2.710069 -2.291983
Si -4.544315 -1.877988 -2.047845
O 2.172972 -1.980322 1.321555
O 1.473071 3.913883 0.055623
O -3.583796 -0.223272 3.009864
O 4.811649 -1.757159 0.557767
O -0.247436 -0.609956 1.773690
O -0.361353 5.166512 1.749120
O -0.076739 -2.519607 -0.092219
O -0.908797 4.584652 -0.818058
H -5.596120 1.223927 3.450528
H 4.391890 3.015923 -0.838671
O -1.124771 -3.569545 -2.440901
O -0.072042 2.021032 -1.050598

O -5.612490 -0.060894 1.227708
0 2.277250 -3.179463 -1.112316
O 0.953006 3.960061 -2.612969
O 4.118421 -1.479656 -2.068826
H 2.023536 4.728376 -4.775644
H -4.601761 -3.093629 1.703861
0 -4.011101 2.055748 1.621905
O 5.123642 0.593274 -0.722817
O -2.444903 -1.959450 1.073072
O -2.827337 4.368274 1.070898
H 0.399031 -5.643046 -2.888597
O -1.391284 -0.264064 -0.664830
H -1.955166 6.627785 0.310341
H -7.507264 -1.062959 -0.119691
0 5.136276 1.979619 -3.068973
0 -1.391192 -5.968764 -1.158388
0 -2.494799 1.653378 -2.135871
0 1.634905 -1.395348 -3.023257
H 0.302824 2.968542 -4.880712
H -6.872619 1.271440 -0.581281
O -4.130538 -2.912652 -0.818192
H -5.364579 4.203201 1.247853
H 6.768260 2.494025 -1.206610
H -1.935571 -5.612789 -3.662139
O -0.413529 0.340005 -3.097034
H 3.174278 -3.393009 -3.476978
0 2.619215 2.353172 -4.004110
0 -5.346478 -0.569071 -1.421423
O -2.790076 -4.615496 0.747050
0 -4.332957 3.144729 -0.808750

H 4.701539 2.679835 -5.465385
H -3.832151 -6.543972 -0.590886
H -3.266890 3.926388 -2.996364
H -0.398438 -1.768038 -4.551992
H -5.454796 -2.631573 -2.949374
H 4.062335 0.404423 -4.778005
H 1.148834 0.062666 -5.069240
H -2.054258 -7.019531 1.047686
H -4.842527 2.040311 -3.037373
H -3.341705 -1.384286 -2.753484
H 1.991863 3.164472 0.397661
H -3.116177 -0.840441 2.419433
H 3.872437 -1.799423 0.847661
H 0.484648 4.837665 1.391698
H 6.546599 -1.468319 -1.251441
Zr 1.574354 -0.505944 2.625840
O 0.438773 1.198043 3.790474
C 1.001532 1.876185 4.920482
C -0.733627 1.898725 3.306239
H 2.094397 1.932832 4.791466
H -0.469047 2.405414 2.365295
C 0.319762 3.233037 4.948537
H 0.830506 3.941325 4.277053
C -1.060422 2.902734 4.392318
H -1.520249 1.160467 3.115872
H 0.786959 1.285386 5.826924
H 0.301689 3.669551 5.957236
H -1.696700 2.444459 5.166562
H -1.579645 3.778328 3.980780
C 2.424554 1.389476 1.696508

H 3.237728 1.182273 0.981171
H 1 511788 1 6/1905 1 1251//
11 1.511766 1.041505 1.125144
H 2.699038 2.242979 2.337561
C 1.325827 -1.464872 4.667841
H 1.612450 -2.533151 4.636199
H 1.873858 -1.005355 5.509460
H 0.248635 -1.431917 4.916170
C 4.907842 0.273746 3.185876
O 3.840822 -0.685856 3.333086
C 4.362739 -1.937492 3.828234
C 5.870067 -1.815108 3.715396
C 6.079808 -0.322719 3.941838
H 5.128176 0.385798 2.114404
H 4.564138 1.237313 3.585487
H 4.030403 -2.060173 4.871186
H 3.938106 -2.748893 3.220881
H 6.393138 -2.449806 4.444632
H 6.190063 -2.095956 2.701501
H 6.018722 -0.077402 5.014849
H 7.043427 0.047339 3.563815
C 1.336140 -4.763841 1.065540
H 2.339609 -5.176590 1.249059
H 0.794756 -4.725709 2.023122
H 0.796397 -5.446021 0.391615
H -0.682909 -3.159458 -1.672934

Zr(Me) ₄		
Zero-point correction=	0.135424 (Hartree/Particle)	17
Thermal correction to Energy=	0.147842	ZrCH34 SCF Done: -206.336105716 A.U.
Thermal correction to Enthalpy=	0.148786	Zr -0.000095 -0.000005 0.000041

Thermal correction to Gibbs Free Energy= 0.097295	C -1.762463 1.333349 -0.243157
Sum of electronic and zero-point Energies= -206.200682	H -1.788331 1.791546 -1.249933
Sum of electronic and thermal Energies= -206.188264	H -2.711158 0.780424 -0.107321
Sum of electronic and thermal Enthalpies= -206.187320	Н -1.751956 2.157659 0.494829
Sum of electronic and thermal Free Energies= -206.238811	C 1.267636 0.743864 1.668018
	H 0.844551 1.660026 2.121710
	H 1.362248 -0.009839 2.472492
	H 2.289889 0.988150 1.322262
	C 1.184553 -0.013344 -1.881255
	H 1.263368 -1.032837 -2.303893
	Н 0.724403 0.630270 -2.654700
	Н 2.214227 0.355581 -1.714248
	C -0.689385 -2.063900 0.456267
	Н -0.305892 -2.413019 1.433628
	H -1.793586 -2.123145 0.494251
	H -0.345991 -2.784433 -0.309966

Zr(Me) ₄ (THF) ₁	
Zero-point correction= 0.255142 (Hartree/Particle)	30
Thermal correction to Energy= 0.273450	ZrCH34THF SCF Done: -438.365712556 A.U.
Thermal correction to Enthalpy= 0.274394	Zr -1.169776 0.002268 0.001111
Thermal correction to Gibbs Free Energy= 0.208641	C -0.957912 2.112789 -0.744935
Sum of electronic and zero-point Energies= -438.110570	H -0.405083 2.189416 -1.700474
Sum of electronic and thermal Energies= -438.092263	H -1.975498 2.508306 -0.925498
Sum of electronic and thermal Enthalpies= -438.091319	H -0.475148 2.795186 -0.019799
Sum of electronic and thermal Free Energies= -438.157071	C -0.614232 -0.396441 2.142673
	H -0.018899 0.429453 2.578014
	H -1.527154 -0.499355 2.757660
	Н -0.028932 -1.326996 2.272722
	C -0.938488 -1.686288 -1.464763

H -1.945725 -1.967027 -1.826587
H -0.336324 -1.411550 -2.351389
H -0.491704 -2.599114 -1.027084
C -3.408182 -0.050140 0.225375
Н -3.758253 -1.031213 0.599783
H -3.769532 0.714453 0.939395
Н -3.928366 0.132910 -0.734135
C 2.128385 1.187572 0.035575
O 1.298957 0.044598 -0.215408
C 2.083729 -1.157374 -0.214552
C 3.443522 -0.751021 0.327676
C 3.552377 0.693314 -0.147364
H 1.838928 1.986724 -0.659855
H 1.948964 1.539327 1.066832
H 1.574445 -1.912961 0.400966
H 2.144999 -1.536441 -1.248266
H 3.446997 -0.794353 1.428629
H 4.251445 -1.399768 -0.039022
H 4.280071 1.290987 0.419570
H 3.838947 0.730024 -1.210773

Zr(Me) ₄ (THF) ₂	
Zero-point correction= 0.375687 (Hartree/Particle)	43
Thermal correction to Energy= 0.399610	ZrCH34THF2 SCF Done: -670.387547782 A.U.
Thermal correction to Enthalpy= 0.400554	Zr 0.018758 0.881852 -0.060344
Thermal correction to Gibbs Free Energy= 0.321245	C 1.466991 2.632951 -0.047132
Sum of electronic and zero-point Energies= -670.011861	H 2.162194 2.591300 -0.908320
Sum of electronic and thermal Energies= -669.987938	H 0.955680 3.609257 -0.090134
Sum of electronic and thermal Enthalpies= -669.986993	H 2.088422 2.639246 0.869672
Sum of electronic and thermal Free Energies= -670.066302	C 0.249866 -0.131225 1.968389

H 1.225251 0.176700 2.392038
Н -0.517737 0.221844 2.682172
H 0.221970 -1.236678 1.979386
C -0.015316 0.055439 -2.175509
H -0.884371 0.469675 -2.721993
H 0.889305 0.463576 -2.667606
H -0.010946 -1.036779 -2.339580
C -1.637823 2.436956 0.089536
H -2.672163 2.045695 0.071006
H -1.528604 3.036914 1.013529
H -1.548600 3.155093 -0.747773
C 3.480690 0.111625 0.331730
0 2.234316 -0.295133 -0.241148
C 2.230279 -1.703434 -0.490984
C 3.432333 -2.249239 0.260642
C 4.407671 -1.081349 0.166299
H 3.824693 1.019003 -0.182904
H 3.320602 0.357975 1.395860
H 1.271903 -2.122405 -0.148432
H 2.313732 -1.872877 -1.578317
Н 3.169125 -2.445796 1.312436
Н 3.814086 -3.183197 -0.175778
H 5.200700 -1.105250 0.927214
H 4.889919 -1.062139 -0.824469
C -2.835003 -0.936464 -1.099090
O -2.029714 -0.604061 0.036620
C -2.813645 -0.682748 1.237223
C -4.241517 -0.952568 0.786124
C -4.028020 -1.683565 -0.533479
H -3.145960 -0.006902 -1.608535

H -2.225436 -1.524436 -1.796997
H -2.412246 -1.499613 1.858809
H -2.708183 0.259248 1.794061
H -4.812409 -1.529725 1.527359
H -4.775202 -0.004336 0.613115
H -3.771887 -2.740918 -0.356009
H -4.900008 -1.653271 -1.202352

THF	
Zero-point correction= 0.117288 (Hartree/Particle)	13
Thermal correction to Energy= 0.122137	THF SCF Done: -232.009614803 A.U.
Thermal correction to Enthalpy= 0.123081	C 1.153335 -0.430411 0.133729
Thermal correction to Gibbs Free Energy= 0.089248	O -0.000082 -1.235150 -0.000162
Sum of electronic and zero-point Energies= -231.892327	C -1.153449 -0.430238 -0.133528
Sum of electronic and thermal Energies= -231.887478	C -0.726560 0.987113 0.230891
Sum of electronic and thermal Enthalpies= -231.886534	C 0.726765 0.986941 -0.230985
Sum of electronic and thermal Free Energies= -231.920366	H 1.526184 -0.474205 1.176318
	H 1.950703 -0.823385 -0.518934
	H -1.526780 -0.474116 -1.175932
	H -1.950591 -0.823013 0.519544
	Н -1.345375 1.761037 -0.246157
	H -0.780127 1.137018 1.321832
	H 0.780388 1.136598 -1.321957
	H 1.345709 1.760839 0.245936

TMS		
Zero-point correction=	0.147187 (Hartree/Particle)	17
Thermal correction to Energy=	0.156522	TMS SCF Done: -448.656749682 A.U.
Thermal correction to Enthalpy=	0.157466	Si -0.000009 -0.000004 -0.000005

Thermal correction to Gibbs Free Energy= 0.114764	C 0.745057 -0.989634 1.422670
Sum of electronic and zero-point Energies= -448.509563	H 0.135036 -0.895476 2.335402
Sum of electronic and thermal Energies= -448.500228	H 0.809686 -2.060548 1.171601
Sum of electronic and thermal Enthalpies= -448.499284	H 1.762057 -0.639286 1.661510
Sum of electronic and thermal Free Energies= -448.541986	6 C -1.736756 -0.637862 -0.367932
	H -2.392460 -0.536977 0.511810
	H -2.199127 -0.077970 -1.196667
	H -1.718010 -1.702360 -0.651795
	C -0.087927 1.822243 0.479839
	H 0.913752 2.224264 0.701394
	H -0.519810 2.427564 -0.333268
	H -0.713380 1.968330 1.375126
	C 1.079640 -0.194744 -1.534577
	H 1.150641 -1.251093 -1.839789
	H 0.668926 0.373049 -2.384868
	H 2.102735 0.170527 -1.350378

Reference

- 1. G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw and K. I. Goldberg, *Organometallics*, 2010, **29**, 2176-2179.
- 2. C. Adamo and V. Barone, *The Journal of Chemical Physics*, 1999, **110**, 6158-6170.
- R. E. Gaussian 09, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
- 4. A. Schäfer, H. Horn and R. Ahlrichs, *The Journal of Chemical Physics*, 1992, **97**, 2571-2577.
- 5. F. Weigend and R. Ahlrichs, *Physical Chemistry Chemical Physics*, 2005, **7**, 3297-3305.

- 6. U. Häussermann, M. Dolg, H. Stoll, H. Preuss, P. Schwerdtfeger and R. M. Pitzer, *Molecular Physics*, 1993, **78**, 1211-1224.
- 7. W. Küchle, M. Dolg, H. Stoll and H. Preuss, *The Journal of Chemical Physics*, 1994, **100**, 7535-7542.
- 8. T. Leininger, A. Nicklass, H. Stoll, M. Dolg and P. Schwerdtfeger, *The Journal of Chemical Physics*, 1996, **105**, 1052-1059.
- 9. S. Grimme, S. Ehrlich and L. Goerigk, *Journal of Computational Chemistry*, 2011, **32**, 1456-1465.
- 10. A. D. Becke and E. R. Johnson, *The Journal of Chemical Physics*, 2005, **122**, 154104.
- 11. A. V. Marenich, C. J. Cramer and D. G. Truhlar, *The Journal of Physical Chemistry B*, 2009, **113**, 6378-6396.
- 12. X. Rozanska, F. Delbecq and P. Sautet, *Physical Chemistry Chemical Physics*, 2010, **12**, 14930-14940.
- F. Blanc, J.-M. Basset, C. Copéret, A. Sinha, Z. J. Tonzetich, R. R. Schrock, X. Solans-Monfort, E. Clot, O. Eisenstein, A. Lesage and L. Emsley, *Journal of the American Chemical Society*, 2008, **130**, 5886-5900.