# Supporting Information

# Enhanced Ammonia Synthesis Performances of Ceria-supported Ru Catalysts via Introduction of Titanium

Yuyuan Wu, Chunyan Li, Biyun Fang, Xiuyun Wang, Jun Ni, Bingyu Lin\*, Jianxin

Lin, and Lilong Jiang\*

National Engineering Research Center of Chemical Fertilizer Catalyst, College of Chemical

Engineering, Fuzhou University, Fuzhou, 350002 Fujian, China. E-mail: bylin@fzu.edu.cn (bingyu

Lin), jll@fzu.edu.cn (Lilong Jiang).

1. Eepermental section

1.1. Preparation of Samples

Ti-load CeO<sub>2</sub> (Ti-Ce-S): 3.472 g of Ce(NO)<sub>3</sub>·6H<sub>2</sub>O was dispersed into 20 mL deionized water , followed by adding 140 mL of NaOH aqueous solution (38.4 g NaOH) at room tempreature with stirring for 30 min. After hydrothermally treated at 100 °C for 24 h, The precipitate was separated by centrifugation and washed with deionized water and ethanol until pH=7. Titanium butoxide and ethanol mixed solution consisted of 2 mL titanium butoxide and 10 mL ethanol was added into above gel, and the pH of the mixture solution was adjusted to about 10 with ammonia solution (25%-28%). It was continually stirred for an additional 30 min, and then heated at 80 °C for 2 h. The as-obtained precipitate was separated by centrifugation, and then washed with deionized water and ethanol until pH=7. Finally, the sample was dried at 60 °C overnight, then calcined in air at 550 °C for 4 h, and the as-prepared oxide was labelled as Ti-Ce-S.

Ti-embedded CeO2 (Ti-Ce-E): 3.472 g of Ce(NO)3·6H2O and 2 mL of titanium(IV) butoxide

(97%, Sigma-Aldrich) were dispersed into 20 mL anhydrous ethanol, then 140 mL NaOH aqueous solution containing 38.4 g NaOH was added drop by drop with stirring at room tempreature. After continuously stirring for 30 min, the mixed solution was transferred into a Teflon-lined stainless steel autoclave, heated at 100 °C for 24 h, while the subsequent procedure steps are the same as the ones discussed above. The as-obtained sample was named as Ti-Ce-E.

CeO<sub>2</sub>: 3.472 g of Ce(NO)<sub>3</sub>·6H<sub>2</sub>O was dispersed into 20 mL anhydrous ethanol, then 140 mL NaOH aqueous solution containing 38.4 g NaOH was added with stirring at room tempreature. After continuously stirring for 30 min, the mixed solution was transferred into a Teflon-lined stainless steel autoclave, heated at 100 °C for 24 h. while the subsequent procedure steps are the same as the ones described above. The as-obtained sample was named as CeO<sub>2</sub>.

TiO<sub>2</sub>: 4 mL of titanium(IV) butoxide was dissolved in 20 mL anhydrous ethanol, then 140 mL NaOH aqueous solution containing 38.4 g NaOH was added with stirring at room tempreature. After continuously stirring for 30 min, the mixed solution was transferred into a Teflon-lined stainless steel autoclave, heated at 100 °C for 24 h. while the subsequent procedure steps are the same as the ones described above. The as-obtained sample was named as  $TiO_2$ .

Ru catalysts were prepared by incipient wetness impregnation of support with ruthenium(III) nitrosyl nitrate solution (Aldrich) to achieve a Ru-to-support ratio of approximately 3 wt %. Then the as-prepared catalysts were reduced in hydrogen at 550 °C for 6 h, and the samples using Ti-Ce-E, Ti-Ce-S, CeO<sub>2</sub> and TiO<sub>2</sub> were named hereinafter as Ru/Ti-Ce-E, Ru/Ti-Ce-S, Ru/CeO<sub>2</sub> and Ru/TiO<sub>2</sub>, respectively.

#### 1.2. Characterization

Nitrogen adsorption-desorption isotherms measurements at -196 °C were performed over a

Micromeritics ASAP 2020 apparatus. XRD patterns of samples were obtained using a PANalytical X'Pert3 powder diffractometer with Cu Kα radiation. Scanning electron microscopy (SEM) was performed on a Hitachi S-4800 field emission scanning electron microscope. Transmission electron microscopy (TEM) was carried out on a FEI Tecnai G2 F20 microscope. X-ray phototoelectron spectroscopy (XPS) was conducted using an ESCALAB 250Xi photoelectron spectrometer (Thermo Fisher Scientific). To acquire spectra of reduced Ru catalysts, samples were reduced at 450 °C for 4 h under 5% H<sub>2</sub>/Ar mixture (30 mL/min) in a pretreatment chamber (Highlight Tech Corp.) attached to the spectrometer. The XPS binding energies were calibrated against the C 1s peak at 284.6 eV of adventitious carbon.

Hydrogen temperature-programmed reduction (H<sub>2</sub>-TPR) of samples was performed on a Micromeritics AutoChem II 2920 equipped with a mass spectrometer (Hiden Analytical HPR-20). Prior to a H<sub>2</sub>-TPR run, 100 mg of catalyst (sieve fraction 0.30–0.56 mm) was pretreated at 150 °C for 60 min in Ar and then cooled to room temperature. Afterward, reduction was carried out by heating the sample from room temperature to 900 °C at a rate of 10 °C min<sup>-1</sup> under a flow of 10% H<sub>2</sub>/Ar mixture (30 mL min<sup>-1</sup>). Temperature-programmed oxidation (TPO) experiments were carried out on the same instrument. The samples were heated in 9% O<sub>2</sub>/Ar mixture (30 mL/min) from room temperature to 900 °C at a rate of 10 °C (m/z =28) and CO<sub>2</sub> (m/z =44) were recorded. Temperature-programmed desorption (TPD) experiments were performed using the same apparatus as well. Prior to a TPD run, 100 mg of a sample was reduced in hydrogen at 450 °C for 4 h and then purged with Ar and cooled to 400 °C. Subsequently, hydrogen (H<sub>2</sub>-TPD), nitrogen (N<sub>2</sub>-TPD), or 3.3% N<sub>2</sub>-10% H<sub>2</sub>-Ar gas mixture (H<sub>2</sub>+N<sub>2</sub>-TPD) was introduced to the catalyst at 400 °C for 1 h. Then the catalyst was cooled down to 50 °C and purged with Ar for 1 h before being heated from 50 to 900 °C at

a rate of 10 °C/min. The evolution of  $H_2$ ,  $N_2$ , and  $H_2O$  was monitored by mass spectrometry. Prior to  $H_2$ -TPR, CO-TPR, and TPSR studies for reduced samples, a catalyst was treated in hydrogen at 450 °C and then purged with Ar. After cooling down to 50 °C, the sample was heated to 900 °C (10 °C/min) in 10%  $H_2$ /Ar mixture ( $H_2$ -TPR), CO (CO-TPR), or 3.3%  $N_2$ -10%  $H_2$ -Ar gas mixture (TPSR).

Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) was performed on a Nicolet 6700 spectrometer. The sample was in situ reduced in hydrogen at 450 °C for 4 h and purged with He for 30 min. Then the catalyst was cooled down to room temperature, and background spectrum was taken. The DRIFTS experiments were carried out by feeding 5% CO/He (50 mL min<sup>-1</sup>) to the as-treated sample for a designated period. Finally, the sample was purged with He for 10 min before spectrum acquisition. All spectra were recorded by 32 scans accumulation at 4 cm<sup>-1</sup> resolution in succession.

#### 1.3. Ammonia synthesis measurement

Ammonia synthesis was carried out in a fixed-bed flow reactor. Prior to measurement, the samples (0.2 g, 32–60 mesh) were treated in a stoichiometric  $H_2$ – $N_2$  gas mixture at 550 °C for 4 h, and then cooled down to a designated reaction temperature. After the designated pressure was adjusted, the ammonia in the outlet gas was trapped by a dilute sulfuric acid solution (0.02 mol L<sup>-1</sup>), and then analyzed using an ion chromatography (Thermo Scientific, ICS-600) equipped with the Dionex IonPac<sup>TM</sup> CS16 column and DS5 conductivity detector. Subsequently, the NH<sub>3</sub> concentration and the ammonia synthesis rates can be calculated.

## Mass and Heat Transfer Calculations for Ammonia Synthesis on Ru/Ti-Ce-S

## Mears Criterion for External Diffusion (Fogler, p841; Mears, 1971)

If 
$$\frac{-r_A' \rho_b Rn}{k_c C_{Ab}} < 0.15$$
, then external mass transfer effects can be neglected.

 $-r_A'$  = reaction rate of nitrogen, kmol/kg-cat·s

n = reaction order with respect to N<sub>2</sub> (e.g. K. Aika et al, Appl. Catal., 28(1986) 57–68).

R = catalyst particle radius, m

 $\rho_b$  = bulk density of catalyst bed, kg/m<sup>3</sup>

 $C_{Ab}$  = bulk gas concentration of nitrogen, kmol/m<sup>3</sup>

 $k_c$  = mass transfer coefficient, m/s

$$\frac{-r_{A}' \rho_{b} Rn}{k_{c} C_{Ab}} = [8 \times 10^{-8} \text{ kmol-N}_{2}/\text{kg-cat} \cdot \text{s}] [910 \text{ kg/m}^{3}][3 \times 10^{-4} \text{ m}][1]/([1.7 \text{ m/s}]*[0.045])]$$

 $kmol/m^{3}$ ])= 2.9x10<sup>-7</sup> <0.15 {Mears for External Diffusion}

#### Weisz-Prater Criterion for Internal Diffusion (Fogler, p839)

If 
$$C_{WP} = \frac{-r'_{A} \rho_{c} R^{2}}{D_{e} C_{Ab}} < 1$$
, then internal mass transfer effects can be neglected.

 $-r_A'$  = reaction rate of nitrogen, kmol /(kg-cat·s)

 $\rho_c$  = solid catalyst density (kg m<sup>-3</sup>)

R = catalyst particle radius, m

 $\rho_b$  = bulk density of catalyst bed, kg/m<sup>3</sup>

 $C_{Ab}$  = bulk gas concentration of nitrogen, kmol/m<sup>3</sup>

 $k_c$  = mass transfer coefficient, m/s

 $D_e$  = effective gas-phase diffusivity, m<sup>2</sup>/s

$$C_{WP} = \frac{-r'_{A} \rho_{c} R^{2}}{D_{e} C_{Ab}} = [8 \times 10^{-8} \text{ kmol-N}_{2}/\text{kg-cat} \cdot \text{s}] \times [4 \times 10^{3} \text{ kg-cat/m}^{3}] \times [3 \times 10^{-4} \text{ m}]^{2} / ([3.34 \times 10^{-6} \text{ m}]^{2})$$

 $10^{-6} \text{ m}^2/\text{s} \ge (0.045 \text{ kmol/m}^3) = 1.9 \times 10^{-4} < 1$  {Weisz-Prater Criterion for Internal Diffusion}

Mears Criterion for External (Interphase) Heat Transfer (Fogler, p842)

$$\left|\frac{-\Delta H_r(-r_A')\rho_b RE}{h_t T_b^2 R_g}\right| < 0.15$$

 $[136.9 \text{ kJ/mol} \times 8 \text{ x } 10^{-8} \text{ kmol} \text{-N}_2/(\text{kg-cat} \cdot \text{s}) \times 910 \text{ kg-cat/m}^3 \times 3 \text{ x } 10^{-4} \text{ m} \times 150 \text{ kJ/mol}] / [185.3 \text{ kJ/m}^2.\text{K.s} \times 673^2 \text{ K}^2 \times 8.314 \times 10^{-3} \text{ kJ/mol}.\text{K}] = 6.4 \text{x} 10^{-7} < 0.15 \text{ {Mears Criterion for External for the external f$ 

## (Interphase) Heat Transfer}

## Mears Criterion for Combined Interphase and Intraparticle Heat and Mass Transport

(Mears, 1971)

$$\frac{-r'_{A}R^{2}}{C_{Ab}D_{e}} < \frac{1+0.33\gamma\chi}{|n-\gamma_{b}\beta_{b}|(1+0.33n\omega)}$$

$$\gamma = \frac{E}{R_{g}T_{s}}, \quad \gamma_{b} = \frac{E}{R_{g}T_{b}}, \quad \beta_{b} = \frac{(-\Delta H_{r})D_{e}C_{Ab}}{\lambda T_{b}}, \quad \chi = \frac{(-\Delta H_{r})-r'_{A}R}{h_{t}T_{b}}, \quad \omega = \frac{-r'_{A}R}{k_{c}C_{Ab}}$$

 $\gamma$  = Arrhenius number;  $\beta_b$  = heat generation function;

 $\lambda$  = catalyst thermal conductivity, W/m.K;

 $\chi$  = Damköhler number for interphase heat transport

 $\omega$  = Damköhler number for interphase mass transport

$$\frac{-r'_{A} \rho_{b} R^{2}}{C_{Ab} D_{e}} = [8 \text{ x } 10^{-8} \text{ kmol-N}_{2}/\text{kg-cat} \cdot \text{s} \times 910 \text{ kg-cat/m}^{3} \times (3 \text{ x } 10^{-4})^{2} \text{ m}^{2}]/([3.34 \text{ x } 10^{-6} \text{ m}^{2}/\text{s}] \times 10^{-6} \text{ m}^{2}/\text{s})$$

 $[0.045 \text{ kmol/m}^3])=4.4 \text{x} 10^{-5}$ 

$$\frac{1 + 0.33\gamma\chi}{\left|n - \gamma_b \beta_b\right| (1 + 0.33n\omega)} = 1.1$$

Left member < Right member {Mears Criterion for Interphase and Intraparticle Heat and

Mass Transport }

| Samples | Na (wt%) <sup>a</sup> | Na (wt%) <sup>b</sup> | $TiO_2$ (wt%) <sup>b</sup> | CeO <sub>2</sub> (wt%) <sup>b</sup> |
|---------|-----------------------|-----------------------|----------------------------|-------------------------------------|
| Ti-Ce-E | 1.8                   | 1.1                   | 15.8                       | 83.1                                |
| Ti-Ce-S | 1.2                   | 0.9                   | 14.2                       | 84.9                                |

Table S1 The compositions of Ce-Ti-E and Ce-Ti-L

<sup>a</sup>Obtained from ICP analysis.

<sup>b</sup> Obtained by XRF analysis.

| Samples             | $S_{BET}$ (m <sup>2</sup> g <sup>-1</sup> ) | Pore volume ( $cm^3g^{-1}$ ) | Average pore size (nm) |
|---------------------|---------------------------------------------|------------------------------|------------------------|
| Ti-Ce-E             | 28                                          | 0.09                         | 18.4                   |
| Ti-Ce-S             | 61                                          | 0.12                         | 12.6                   |
| CeO <sub>2</sub>    | 44                                          | 0.25                         | 35.9                   |
| TiO <sub>2</sub>    | 12                                          | 0.03                         | 13.7                   |
| Ru/Ti-Ce-E          | 30                                          | 0.08                         | 16.2                   |
| Ru/Ti-Ce-S          | 62                                          | 0.12                         | 11.8                   |
| Ru/CeO <sub>2</sub> | 13                                          | 0.04                         | 18.2                   |
| Ru/TiO <sub>2</sub> | 4                                           | 0.02                         | 38.2                   |

Table S2 Textural properties of oxides and oxides-supported Ru catalysts

 Samples
  $d_{CO}$  (nm)
  $D_{CO}$  (%) <sup>a</sup>
  $d_{TEM}$  (nm) <sup>b</sup>

 Ru/Ti-Ce-E
 3.4
 32.9
 3.6

 Ru/Ti-Ce-S
 1.7
 64.8
 1.5

Table S3 Particle sizes and dispersion of Ru catalysts

<sup>a</sup> obtained by CO chemisorption,

<sup>b</sup> measured by TEM study.

| Samples                                                      | Rate                      | TOF <sup>a</sup>                                                   | Reaction        | SV                   | Ref. |
|--------------------------------------------------------------|---------------------------|--------------------------------------------------------------------|-----------------|----------------------|------|
|                                                              | $(\mu mol g^{-1} h^{-1})$ | (Ru atom <sup><math>-1</math></sup> s <sup><math>-1</math></sup> ) | conditions      | $(mL g^{-1} h^{-1})$ |      |
| Ru/Ti-Ce-E                                                   | 10861                     | 10.5×10 <sup>-3</sup>                                              | 1 MPa, 400 °C   | 36000                | This |
| Ru/Ti-Ce-S                                                   | 14580                     | 14.1×10 <sup>-3</sup>                                              | 1 MPa, 400 °C   | 36000                | work |
| Ru/CeO <sub>2</sub>                                          | 4394                      | $4.2 \times 10^{-3}$                                               | 1 MPa, 400 °C   | 36000                | This |
| Ru/TiO <sub>2</sub>                                          | 836                       | $8.0 \times 10^{-4}$                                               | 1 MPa, 400 °C   | 36000                | work |
| Ru/TiO <sub>2</sub> -anatase                                 | 324                       | 3.1×10 <sup>-4</sup>                                               | 1 MPa, 400 °C   | 36000                | This |
| Ru/TiO <sub>2</sub> -rutile                                  | 530                       | $5.1 \times 10^{-4}$                                               | 1 MPa, 400 °C   | 36000                | work |
| Ru(9.1%)-Ba/AC                                               | 8285                      | 2.6×10 <sup>-3</sup>                                               | 1 MPa, 400 °C   | 18000                | 1    |
| Ru(6%)-Cs/MgO                                                | 12117                     | 5.7×10 <sup>-3</sup>                                               | 1 MPa, 400 °C   | 18000                | 1    |
| Ru(4%)/C12A7:e <sup>-</sup>                                  | 6089                      | 4.3×10 <sup>-3</sup>                                               | 1 MPa, 400 °C   | 18000                | 1    |
| Ru(5%)/CeO <sub>2</sub>                                      | 7200                      | 4.0×10 <sup>-3</sup>                                               | 0.9 MPa, 400 °C | 18000                | 2    |
| Ru(5%)/MgO                                                   | 1800                      | $1.0 \times 10^{-3}$                                               | 0.9 MPa, 400 °C | 18000                | 2    |
| Ru(7.8%)/Y5Si3                                               | 4100                      | $1.5 \times 10^{-3}$                                               | 1 MPa, 400 °C   | 18000                | 3    |
| Ru(4%)/r-CeO <sub>2</sub>                                    | 3830                      | $2.7 \times 10^{-3}$                                               | 1 MPa, 400 °C   | 18000                | 4    |
| Ru(4%)/c-CeO <sub>2</sub>                                    | 1289                      | 0.9×10 <sup>-3</sup>                                               | 1 MPa, 400 °C   | 18000                | 4    |
| Ru(4%)/p-CeO <sub>2</sub>                                    | 529                       | 0.4×10 <sup>-3</sup>                                               | 1 MPa, 400 °C   | 18000                | 4    |
| Ru(5%)/La <sub>0.5</sub> Ce <sub>0.5</sub> O <sub>1.75</sub> | 65000                     | 36.5×10 <sup>-3</sup>                                              | 1 MPa, 400 °C   | 72000                | 5    |
| Ru(10%)/Ba-Ca(NH <sub>2</sub> ) <sub>2</sub>                 | 60400                     | 16.9×10 <sup>-3</sup>                                              | 0.9 MPa, 360 °C | 36000                | 6    |
|                                                              | 50000                     | 14.0×10 <sup>-3</sup>                                              | 0.9 MPa, 400 °C | 36000                |      |
| Ru(6%)-Cs/MgO                                                | 23000                     | $6.5 \times 10^{-3}$                                               | 0.9 MPa, 400 °C | 36000                | 6    |

Table S4 Catalytic performance of Ru catalysts on various supports

| Cs-Ru(1%)/MgO                             | 2700 | 1.0×10 <sup>-3</sup> | 5MPa, 400 °C  | 66000 | 7 |
|-------------------------------------------|------|----------------------|---------------|-------|---|
| Ru(1%)/BaTiO <sub>3</sub>                 | 4100 | 1.5×10 <sup>-3</sup> | 5MPa, 400 °C  | 66000 | 7 |
| Ba-Ru/Al <sub>2</sub> O <sub>3</sub> -980 | 7217 | 4.5×10 <sup>-3</sup> | 1 MPa, 400 °C | 60000 | 8 |
| Ba-Ru/Al <sub>2</sub> O <sub>3</sub>      | 2796 | $1.7 \times 10^{-3}$ | 1 MPa, 400 °C | 36000 | 9 |
| Ba-Ru/gC-Al <sub>2</sub> O <sub>3</sub>   | 5611 | 3.5×10 <sup>-3</sup> | 1 MPa, 400 °C | 36000 | 9 |
| Ba-Ru/Al <sub>2</sub> O <sub>3</sub>      | 2083 | 1.3×10 <sup>-3</sup> | 1 MPa, 400 °C | 18000 | 9 |
| Ba-Ru/gC-Al <sub>2</sub> O <sub>3</sub>   | 4219 | 2.6×10 <sup>-3</sup> | 1 MPa, 400 °C | 18000 | 9 |

<sup>a</sup> based on total number of Ru atoms

| Ce-Ti-E | Ce            | TI     | 0      |
|---------|---------------|--------|--------|
| 1       |               |        |        |
| 2 a     |               |        |        |
| _200 nm | 200 nm        | 200 nm | 200 nm |
| Ce-Ti-S | Се            | Ti     | 0      |
|         |               |        |        |
| W.c.v   |               |        |        |
| CHER !! |               |        |        |
| 100 nm  | <u>100 nm</u> | 100 nm | 100 nm |

Fig. S1 SEM-EDS mapping of oxides (Top) Ti-Ce-E and (Bottom) Ti-Ce-S.



Fig. S2 TEM images of (a, b) Ru/Ti-Ce-E and (c, d) Ru/Ti-Ce-S.



Fig. S3 STEM-HAADF image of Ru catalysts and the corresponding EDX elemental mapping images (Top) Ru/Ti-Ce-E and (Bottom) Ru/Ti-Ce-S.



Fig. S4 XRD patterns of samples.



Fig. S5 XPS spectra of Ti-Ce-E and Ti-Ce-S (a) Ce 3d, (b) Ti 2p and (c) O 1s.



Fig. S6 IR spectra of Ru catalysts obtained after exposing the reduced samples to CO at 50  $^{\circ}$ C for 10 min followed by He purging for 10 min.



Fig. S7 TPR profiles of (a) the fresh samples and (b) the reduced catalysts pre-exposed to air



Fig. S8 MS signals of  $H_2$  and  $N_2$  during TPD studies of oxides and oxides-supported Ru catalysts after exposure to a  $H_2$ - $N_2$  mixture.



Fig. S9 MS signals of water during TPD studies of oxides and oxides-supported Ru catalysts after exposure to a  $H_2$ - $N_2$  mixture.

References:

(1) Kitano, M.; Inoue, Y.; Yamazaki, Y.; Hayashi, F.; Kanbara, S.; Matsuishi, S.; Yokoyama, T.; Kim, S.-W.; Hara, M.; Hosono, H., Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. *Nat. Chem.* **2012**, *4*, 934–940.

(2) Sato, K.; Imamura, K.; Kawano, Y.; Miyahara, S.-i.; Yamamoto, T.; Matsumura, S.; Nagaoka, K., A low-crystalline ruthenium nano-layer supported on praseodymium oxide as an active catalyst for ammonia synthesis. *Chem. Sci.* **2017**, *8*, 674–679.

(3) Lu, Y.; Li, J.; Tada, T.; Toda, Y.; Ueda, S.; Yokoyama, T.; Kitano, M.; Hosono, H., Water Durable Electride Y<sub>5</sub>Si<sub>3</sub>: Electronic Structure and Catalytic Activity for Ammonia Synthesis. *J. Am. Chem. Soc.* 2016, 138, 3970–3973.

(4) Ma, Z.; Zhao, S.; Pei, X.; Xiong, X.; Hu, B., New insights into the support morphology-dependent ammonia synthesis activity of Ru/CeO2 catalysts. *Catal. Sci. Technol.* **2017**, *7*, 191-199.

(5) Ogura, Y.; Sato, K.; Miyahara, S.-i.; Kawano, Y.; Toriyama, T.; Yamamoto, T.; Matsumura, S.; Hosokawa, S.; Nagaoka, K., Efficient ammonia synthesis over a Ru/La<sub>0.5</sub>Ce<sub>0.5</sub>O<sub>1.75</sub> catalyst pre-reduced at high temperature. *Chem. Sci.* **2018**, 9, 2230–2237.

(6) Kitano, M.; Inoue, Y.; Sasase, M.; Kishida, K.; Kobayashi, Y.; Nishiyama, K.; Tada, T.; Kawamura, S.; Yokoyama, T.; Hara, M.; Hosono, H., Self-organized Ruthenium–Barium Core–Shell Nanoparticles on a Mesoporous Calcium Amide Matrix for Efficient Low-Temperature Ammonia Synthesis. *Angew. Chem. Int. Ed.* **2018**, 57, 2648–2652.

(7) Kobayashi, Y.; Tang, Y.; Kageyama, T.; Yamashita, H.; Masuda, N.; Hosokawa, S.; Kageyama, H.,
Titanium-Based Hydrides as Heterogeneous Catalysts for Ammonia Synthesis. *J. Am. Chem. Soc.* 2017, 139, 18240–18246.

(8) Lin, B.; Heng, L.; Fang, B.; Yin, H.; Ni, J.; Wang, X.; Lin, J.; Jiang, L., Ammonia Synthesis Activity of Alumina-Supported Ruthenium Catalyst Enhanced by Alumina Phase Transformation. *ACS Catal.* **2019**, 9, 1635–1644.

(9) Lin, B.; Heng, L.; Yin, H.; Fang, B.; Ni, J.; Wang, X.; Lin, J.; Jiang, L., Effects of Using Carbon-Coated Alumina as Support for Ba-Promoted Ru Catalyst in Ammonia Synthesis. *Ind. Eng. Chem. Res.* **2019**, 58, 10285-10295.