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Materials and Methods

Catalyst preparation

Synthesis of the MoNi4-MoOx/Ni-foam catalyst

Firstly, the NiMoO4·xH2O/Ni-foam substrates were prepared by a facile hydrothermal method. 

Before hydrothermal treatment, the circular Ni-foam chips (1.5 mm thick, 8.0 mm diameter, 100 

pores per inch (PPI); purchased from Suzhou Taili Material Co., Ltd) were carefully cleaned with 

0.1 mol L-1 HCl solution in an ultrasound bath for 20 min at room temperature to remove the 

surface nickel oxide and then washed thoroughly with deionized water. As-cleaned Ni-foam chips 

were transferred into a 120 mL Teflon-lined stainless steel autoclave filled with 80 mL mixture 

aqueous solution of 20 mmol L-1 Ni(NO3)2·6H2O (99 wt% purity, Aldrich) and 10 mmol L-1 

(NH4)6Mo7O24 (99 wt% purity, Aldrich). The reactant system was heated to 140 oC and kept for 9 

hours. After cooling down to room temperature naturally, the Ni-foams coated with golden 

NiMoO4·xH2O crystals were rinsed thoroughly by using deionized water and dried in air at 100 °C 

for 12 h. Finally, the as-obtained NiMoO4·xH2O/Ni-foam substrates were calcined in air at 350 oC 

for 2 h followed by reduced in H2 at target temperature (350-500 oC) for 2 h to form the catalyst 

products that are denoted as MoNi4-MoOx/Ni-foam-m, where m stand for reduction temperature 

(°C).

Synthesis of the model catalyst of MoNi4/SiO2

The MoNi4/SiO2 catalyst was prepared by an incipient wetness impregnation method. Typically, 

the SiO2 (1.0 g, Aldrich) was firstly impregnated with 5 ml aqueous solution containing 1.49 g 

Ni(NO3)2·6H2O, and dried at 100 oC for 12 h. Then, the obtained samples were impregnated with 1 
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ml aqueous solution containing 0.23 g (NH4)6Mo7O24 followed by dried at 100 oC for 12 h and 

calcined in air at 450 oC for 2 h. Finally, the as-obtained precursors were reduced in H2 at 700 oC for 2 

h to form the MoNi4/SiO2 catalyst. Notably, the initial mole ratios of Ni/Mo was 4.

Synthesis of the model catalyst of MoNi4-MoOx/SiO2

The MoNi4-MoOx/SiO2 catalyst was prepared by an incipient wetness impregnation method. 

Typically, the SiO2 (1.0 g) was firstly impregnated with 5 ml aqueous solution containing 1.49 g 

Ni(NO3)2·6H2O, and dried at 100 oC for 12 h. Then, the obtained samples were impregnated with 1 

ml aqueous solution containing 0.46 g (NH4)6Mo7O24 followed by dried at 100 oC for 12 h and 

calcined in air at 450 oC for 2 h. Finally, the as-obtained precursors were reduced in H2 at 500 oC for 2 

h to form the MoNi4-MoOx/SiO2 catalyst. Notably, the initial mole ratios of Ni/Mo was 2.

Synthesis of the model catalyst of MoOx/SiO2

The MoOx/SiO2 catalyst was prepared by an incipient wetness impregnation method. Typically, 

the SiO2 (1.0 g) was firstly impregnated with 5 ml aqueous solution containing 0.46 g 

(NH4)6Mo7O24 followed by dried at 100 oC for 12 h and calcined in air at 450 oC for 2 h. Finally, the 

as-obtained samples were reduced in H2 at 500 oC for 2 h to form the MoOx/SiO2 catalyst.

Synthesis of the model catalyst of Ni/SiO2

The Ni/SiO2 catalyst was prepared by an incipient wetness impregnation method. Typically, the 

SiO2 (1.0 g, Aldrich) was firstly impregnated with 5 ml aqueous solution containing 1.49 g 

Ni(NO3)2·6H2O followed by dried at 100 oC for 12 h and calcined in air at 450 oC for 2 h. Finally, 

the as-obtained samples were reduced in H2 at 400 oC for 2 h to form the Ni/SiO2 catalyst.

Catalyst characterization
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X-ray diffraction (XRD) measurement was conducted to analyze the structure and crystallinity of 

all catalysts. XRD patterns were acquired using a Rigaku Ultra IV diffractometer (Japan), using 

copper Kα radiation (λ = 0.1542 nm) at 30 kV and 25 mA in the 2θ scanning range of 5-80o at a 

scanning rate of 20o min-1. Transmission electron microscopy (TEM) images were recorded on a 

Tecnai G2 F30 high-resolution transmission electron microscope (USA), and before measurement, 

the samples were uniformly dispersed in ethanol, and then placed onto the copper grids. Scanning 

electron microscopy (SEM) measurement was performed on a Hitachi S-4800 (Japan) with an 

accelerating voltage of 3.0 kV. The X-ray photoelectron spectroscopy (XPS) was recorded on an 

Escalab 250xi spectrometer, using a standard Al Kα X-ray source (300 W) and an analyzer pass 

energy of 20 eV. All binding energies were referenced to the adventitious C1s line at 284.6 eV. N2 

adsorption-desorption isotherms were measured at -196 °C on a BELSORP-MAX gas adsorption 

analyzer after the catalysts were degassed under high vacuum at 300 °C for 6 h. Specific surface 

area (SSA) was determined from N2 adsorption isotherm using standard Brunauer-Emmett-Teller 

(BET) theory. The pore size distribution was determined using the Barrett-Jovner-Halenda (BJH) 

method calculated by the adsorption isotherm.

Reactivity tests

The gas-phase chemoselective hydrogenation of DMO to EtOH was performed in a fixed-bed 

stainless-steel reactor with 8 mm inner diameter. Briefly, circular catalyst chips of 0.5 g were 

packed layer by layer into into reactor and activated in a pure H2 flow at target temperature (350-

500 oC) for 2 h. After cooling down to 230 oC and raising the H2 pressure to 2.5 MPa, the DMO 

methanol solution (13 wt%) was fed into the catalyst bed reactor by passing through a evaporator 
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(200 oC). The DMO methanol solution was pumped using high-pressure advection pump and the 

flow velocity of H2 was controlled by the calibrated mass flow controller. The liquid effluent was 

collected using a cold trap (-5 oC) and analyzed on a Shimadzu 2014C gas chromatography-flame 

ionization detector (GC-FID) with a 30 m HP-INNOWax capillary column (DIMKA). The DMO 

conversion and products selectivity were calculated based on the following general equations:

        DMO conversion (%)= �1-
fDMOADMO,  out

fiAi,out + fDMOADMO,  out
�×100% 

    i selectivity (%)= �
fiAi,  out

fiAi,out
�×100% 

where Ai,out and fi are the chromatographic peak area at the outlet and the relative molar calibration 

factor of the individual product i (i = MG, EG, EtOH, MA, 2-methoxyethanol, 2-ethoxyethanol, 

propanediol, butanediol, respectively).

Notably, we carried out the kinetic study and used Arrhenius plots to derive apparent activation 

energies (Ea) for all reactions (including DMO-to-MG, MG-to-EG, EG-to-EtOH, MG-to-MA, and 

MA-to-EtOH). To obtain the intrinsic activities, apparent activation energy was calculated at low 

conversion of below 15% by controlling reactant weight hour space velocities.



S6

Tables and Figures

Table S1. Comparison of the representative MoNi4-MoOx/Ni-foam-400 catalyst with the reported 

catalysts for DMO hydrogenation to EtOH reaction.

Catalyst
Temp.
(oC)

n(H2)/
n(DMO)

WHSV
(h-1)

DMO 
Conv.
(%)

EtOH 
Sel.
(%)

Life 
span
(h)

Ref.

Cu/SiO2 280 200 2.0 100 83 >200 1

Cu@CuPSNTs 280 200 2.0 100 91 >200 2

B-Cu/SiO2 280 200 2.0 100 86 n.a.a 3

Cu/Al2O3 270 150 0.3 100 95 <220 4

Cu/ZrO2 270 150 0.3 100 70 >220 4

20Cu80Al 270 200 0.2 100 95 >200 5

Cu/ZrO2/Al2O3 270 150 0.3 100 97 >200 6

Ni-Cu/SiO2 280 200 1.0 100 74 >100 7

Ce-Cu/SiO2 280 200 0.8 100 92 >200 8

Mo2C 200 200 0.2 100 71 >300 9

Fe5C2 260 180 0.2 100 90 >150 10

Cu-Mo2C 200 200 0.2 100 67 >300 11

This work 230 180 0.22 100 93 >220
aNot available (n.a.)
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Table S2. Performance of vapor-phase chemoselective hydrogenation of DMO to EtOH over model 

catalysts.

Selectivity (%)

Catalyst
DMO

Conversion (%) EtOH MG EG MA

Ni/SiO2 23.4 0.1 97.8 1.1 1.0

MoNi4/SiO2
a 99.9 74.3 4.5 1.4 19.8 

MoO2/SiO2
a 33.7 0.5 94.2 2.4 2.9

MoNi4-MoO2/SiO2
a 99.9 84.4 4.2 1.3 10.1

MoNi4-MoO2/SiO2-M 99.9 79.1 4.1 1.1 15.7

MoNi4-MoO3/SiO2-M 99.9 82.6 3.9 1.1 12.4

Reaction conditions: 230 oC, 2.5 MPa, WHSVDMO of 0.22 h-1, n(H2)/n(DMO) of 180.

Note: a the catalysts prepared by incipient wetness impregnation followed by reduction in H2. The 

MoNi4-MoO2/SiO2-M catalyst was prepared by mechanical mixing method using MoNi4/SiO2 and 

MoO2/SiO2. bThe MoNi4-MoO3/SiO2-M catalyst was prepared by mechanical mixing method using 

MoNi4/SiO2 and MoO3/SiO2.



S8

Table S3. Physicochemical properties of the MoNi4-MoOx/Ni-foam catalysts reduced at different 

temperature.

Reduction temp.

(oC)

SBET

(m2 g-1)

Vpore

(cm3 g-1)

Mean pore 

diameter (nm)

350 92 0.062 2.8

400 39 0.037 3.8

450 42 0.041 3.6

500 38 0.036 3.9
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Table S4. Surface metal composition of the MoNi4-MoOx/Ni-foam catalysts by XPS.

Surface metal composition (at.%) Surface metal ratio (at./at.)Reduction temp.

(oC) Ni2+ Ni0 Mon+ Mo0 Mo0/Ni0 Mo0/Mon+ Mo0/(Mon++Mo0)

350 14 35 50 1 0.03 0.02 0.02

400 9 43 37 11 0.26 0.30 0.23

450 7 44 34 15 0.34 0.44 0.31

500 6 44 29 21 0.48 0.72 0.42

Note: Mon+ includes Mo4+, Mo5+ and Mo6+ in MoOx.
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Table S5. Reaction rates of MoNi4/SiO2 and MoNi4-MoOx/SiO2 for reaction steps involved in 

DMO-to-EtOH process.

Catalyst MoNi4/SiO2 MoNi4-MoOx/SiO2

WHSVDMO (h-1) 4.4 4.4

DMO conversion (%) 10.2 10.7

Reaction rate of DMO to MG (mmol g-1 h-1) 3.8 4.0

WHSVMG (h-1) 3.52 3.52

MG conversion (%) 13.7 13.7

EG selectivity (%) 52.4 50.3

MA selectivity (%) 48.6 49.7

Reaction rate of MG to EG (mmol g-1 h-1) 2.8 2.7

Reaction rate of MG to MA (mmol g-1 h-1) 2.6 2.7

WHSVEG (h-1) 2.64 2.64

EG conversion (%) 5.8 6.2

Reaction rate of EG to EtOH (mmol g-1 h-1) 2.5 2.6

WHSVMA (h-1) 0.88 0.88

MA conversion (%) 2.5 4.6

Reaction rate of MA to EtOH (mmol g-1 h-1) 0.29 0.55
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Fig. S1 Weight loss of the representative MoNi4-MoOx/Ni-foam-400 catalyst against ultrasonic 

treatment time in methanol.
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Fig. S2 XRD patterns of used model catalysts of (a) Ni/SiO2, (b) MoNi4/SiO2 (Ni/Mo=4), (c) 

MoOx/SiO2, (d) MoNi4-MoOx/SiO2 (Ni/Mo=2), (e) MoNi4-MoO2/SiO2-M and (f) MoNi4-

MoO3/SiO2-M.

Note: the MoNi4-MoO2/SiO2-M catalyst was prepared by mechanical mixing method using 

MoNi4/SiO2 and MoO2/SiO2. bThe MoNi4-MoO3/SiO2-M catalyst was prepared by mechanical 

mixing method using MoNi4/SiO2 and MoO3/SiO2.
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Fig. S3. SEM images of the MoNi4-MoOx/Ni-foam catalysts reduced at 350 oC (A), 400 oC (B), 450 

oC (C) and 500 oC (D).
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Fig. S4 XPS spectra in Mo3d (A) and Ni2p (B) regions and XRD patterns (C) of the MoNi4-

MoOx/Ni-foam catalysts reduced at varied temperature in H2.
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Fig. S5 Activation energies of MoNi4-MoOx/Ni-foam catalysts reduced at (A) 450 oC and (B) 500 

oC for the reaction steps involved in the DMO-to-EtOH process.
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