Electronic Supplementary Information

Selective and Reversible Interconversion of Nanosliders

Commanded by Remote Control via Metal Ion Signaling

Suchismita Saha, Pronay Kumar Biswas, Indrajit Paul, Michael Schmittel*

Center of Micro and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany E-mail: <u>schmittel@chemie.uni-siegen.de</u>

Table of contents

1. Synthesis	S2-S16
1.1 General Information	S2
1.2 Synthesis and Characterization of Ligands	S3-S7
1.3 Synthesis and Characterization of Complexes	S7-S14
1.4 Preparation of NetStates	S15-S17
2. NMR Spectra: ¹ H, ¹³ C, ¹ H- ¹ H COSY	S18-S36
3. Variable Temperature ¹ H NMR Spectra	S37
4. DOSY NMR Spectra	S38
5. ESI-MS Spectra	S39-S42
6. UV-Vis Spectra	S43
7. Kinetic Studies	S44-S47
8. References	S48

1. Synthesis

1.1 General Information

All solvents were dried by distillation prior to use while commercial reagents were used without any further purification. Bruker Avance (400 MHz) and Varian (600 MHz) spectrometers were used to measure ¹H and ¹³C NMR spectra using a deuterated solvent as the lock and residual protiated solvent as internal reference (CDCl₃: δ_H 7.26 ppm, δ_C 77.0 ppm; CD₂Cl₂: δ_H 5.32 ppm, δ_C 53.8 ppm). The following abbreviations were used to define NMR peak pattern: s = singlet, d = doublet, t = triplet, dd = doublet of doublets, ddd = doublet of doublets of doublets, dt =doublet of triplets, td = triplet of doublets, brs = broad signal, m = multiplet. The coupling constant values are given in Hertz (Hz). Wherever possible, assignments of protons are done. The numbering of different carbons in different molecular skeletons was not necessarily done following the IUPAC nomenclature rules; it is exclusively done for assigning NMR signals. All electrospray ionization (ESI-MS) spectra were recorded on a Thermo-Quest LCQ deca and the theoretical isotopic distributions of the signals calculated mass were (https://omics.pnl.gov/software/molecular-weight-calculator). Melting points were measured on a BÜCHI 510 instrument and are not corrected. Infrared spectra were recorded on a Perkin Elmer Spectrum-Two FT-IR spectrometer. Elemental analysis was performed using the EA-3000 CHNS analyzer. UV-vis spectra were recorded on a Varian Cary 100 BioUV/Vis spectrometer. Column chromatography was performed either on silica gel (60-400 mesh) or neutral alumina (Fluka, 0.05-0.15 mm, Brockmann Activity 1). Merck silica gel (60 F254) or neutral alumina (150 F254) sheets were used for thin layer chromatography (TLC). Preparations of metal complexes were performed directly in the NMR tube using CD₂Cl₂ as solvent.

1.2 Synthesis and Characterization of Ligands

Scheme S1. Reaction scheme to prepare the deck D2.

Synthesis of 5^1 and 6^2 was accomplished by literature known procedures.

1.2.1 Synthesis of Deck **D1**³

Synthesis of deck **D1** was performed along a literature-known procedure.³

¹**H NMR** (**CD**₂**Cl**₂, **400 MHz**): δ = 1.83 (s, 18H, r-H), 2.67 (s, 9H, s-H), 7.36 (s, 6H, q-H), 8.14 (s, 3H, n-H), 8.15 (d, ³*J* = 8.4 Hz, 6H, o-H), 8.39 (d, ³*J* = 8.4 Hz, 6H, p-H), 8.98 (d, ³*J* = 4.4 Hz, 6H, β-H), 9.23 (d, ³*J* = 4.4 Hz, 6H, β-H), 9.46 (d, ³*J* = 4.4 Hz, 6H, β-H), 9.54 (d, ³*J* = 4.4 Hz, 6H, β-H), 10.36 (s, 6H, t-H) ppm.

1.2.2 Synthesis of Deck D2

Compounds **5** (60.0 mg, 87.7 µmol) and **6** (187 mg, 351 µmol) were dissolved in dry DMF (15 mL) and dry Et₃N (15 mL) in a sealed tube under N₂ atmosphere. The mixture was degassed by using two freeze-pump-thaw cycles. Then Pd(PPh₃)₄ (15.0 mg, 13.0 µmol) was added under N₂ atmosphere. After further degassing by freeze-pump-thaw cycles, the reaction mixture was stirred at 85 °C for 16 h. The solvent was evaporated under reduced pressure. The residue was poured on ice cold water to dissolve DMF in the aqueous layer. The organic part was extracted with CH₂Cl₂, dried over anhydrous Na₂SO₄ and concentrated. The compound was purified by gel column chromatography (SiO₂) using 40% EtOAc in hexane as eluent to afford a colorless solid (142 mg, 85%). $\mathbf{R}_{\mathbf{f}} = 0.3$ (SiO₂, 40% EtOAc in hexane). **mp:** > 200 °C. **IR (KBr):** v = 596.4, 639.0, 695.1, 720.6, 759.0, 770.7, 811.9, 829.2, 847.7, 896.3, 911.1, 985.6, 1017.0, 1060.8, 1100.1, 1127.1, 1140.7, 1160.2, 1262.6, 1295.1, 1384.1, 1417.0, 1438.9, 1457.5, 1481.4, 1504.0, 1533.9, 1584.0, 1599.9, 1613.9, 2205.4, 2856.8, 2918.6, 2952.5 cm⁻¹. ¹H NMR (CDCl₃, 400 **MHz):** $\delta = 2.04$ (s, 18H, d2-H), 2.11 (s, 18H, x-H), 2.31 (s, 9H, z-H), 2.47 (s, 18H, d1-H), 6.93 (s, 6H, y-H), 7.21 (d, ³J = 8.0 Hz, 6H, v-H), 7.58-7.62 (m, 9H, w-H + 8'-H), 7.73 (s, 3H, u-H), 7.86 (d, ³J = 8.0 Hz, 3H, 6'-H), 7.90 (d, ³J = 8.0 Hz, 3H, 5'-H), 8.30 (d, ³J = 8.0 Hz, 3H, 7'-H),

8.51 (s, 3H, 4'-H) ppm. ¹³C NMR (CDCl₃, 100 MHz): $\delta = 18.6, 20.5, 21.0, 21.1, 87.8, 95.3, 120.1, 122.0, 125.2, 125.6, 126.9 (2C), 127.1, 127.3, 127.6, 128.5, 129.2, 132.0 (2C), 133.6, 135.9, 136.0, 137.6, 137.8, 138.3, 139.1, 140.9, 141.6, 144.7, 145.8, 160.6, 162.5 ppm. Elemental analysis: Anal. Calcd for <math>C_{123}H_{99}Br_3N_6 \bullet 0.8$ CH_2Cl_2 : C, 75.52; H, 5.15; N, 4.27. Found: C, 75.92; H, 4.72; N, 4.19. ESI-MS: m/z (%) 951.6 (100) $[M + 2H]^{2+}$, 1901.5 (40) $[M + H]^+$, 634.8 (15) $[M + 3H]^{3+}$.

1.2.3 Characterization of Biped A1⁴

Synthesis of biped A1 was accomplished using the literature-known procedure.4

¹**H NMR (400 MHz, CD₂Cl₂):** $\delta = 1.03$ (t, ³J = 7.4 Hz, 6H, m-H), 1.57-1.64 (m, 4H, 1-H), 1.82-1.88 (m, 4H, k-H), 2.54 (s, 6H, h-H), 4.06 (t, ³J = 6.4 Hz, 4H, j-H), 7.05 (s, 2H, i-H), 7.21 (dd, ³J = 5.2 Hz, ⁴J = 1.2 Hz, 2H, b-H), 7.28 (brs, 2H, c-H), 7.40 (t, ³J = 7.8 Hz, 2H, f-H), 7.53-7.56 (m, 4H, e-H+g-H), 7.71-7.72 (m, 2H, d-H), 8.48 (dd, ³J = 5.2 Hz, ⁴J = 0.6 Hz, 2H, a-H) ppm.

1.2.4 Characterization of Biped $A2^3$

Synthesis of biped A2 was accomplished using the literature-known procedure.³

¹**H NMR (400 MHz, CD₂Cl₂):** $\delta = 2.53$ (s, 12H, c'-H), 7.41 (d, ${}^{3}J = 6.0$ Hz, 4H, b'-H), 7.43 (td, ${}^{3}J = 8.0$ Hz, ${}^{5}J = 0.4$ Hz, 2H, f'-H), 7.55 (dt, ${}^{3}J = 8.0$ Hz, ${}^{4}J = 1.6$ Hz, 2H, e'-H), 7.60 (dt, ${}^{3}J = 8.0$ Hz, ${}^{4}J = 1.6$ Hz, 2H, e'-H), 7.60 (dt, ${}^{3}J = 8.0$ Hz, ${}^{4}J = 1.6$ Hz, 2H, g'-H), 7.77 (td, ${}^{4}J = 1.6$ Hz, ${}^{5}J = 0.4$ Hz, 2H, d'-H), 8.60 (d, ${}^{3}J = 6.0$ Hz, 4H, a'-H) ppm.

1.2.5 Characterization of Switch S:

The synthesis of switch S will be given in a separate publication. Here we provide relevant ¹H NMR data for comparison with those of the complexes.

mp: > 200 °C. **IR (KBr):** v = 758.7, 787.4, 848.7, 887.2, 991.7, 1019.1, 1102.9, 1147.8, 1261.1, 1429.5, 1452.4, 1475.2, 1511.6, 1582.7, 1614.7, 2856.0, 2945.9, 3058.0 cm⁻¹. ¹H NMR (**CD₂Cl₂, 400 MHz):** $<math>\delta = 2.01$ (s, 6H, 10-H), 2.05 (s, 6H, 2-H), 2.32 (s, 3H, 11-H), 2.35 (

3-H), 6.93 (s, 2H, 9-H), 6.95 (s, 2H, 1-H), 7.00 (dd, ${}^{3}J = 7.8$ Hz, ${}^{4}J = 1.0$ Hz, 1H, 12-H), 7.23-7.34 (m, 3H, 13-H+14-H+30-H), 7.39-7.46 (m, 2H, 19-H+21-H), 7.49 (d, ${}^{3}J = 8.0$ Hz, 1H, 8-H), 7.54 (dd, ${}^{3}J = 7.8$ Hz, ${}^{4}J = 1.0$ Hz, 1H, 15-H), 7.63-7.70 (m, 6H, 16-H+17-H+18-H+20-H), 7.74-7.79 (m, 3H, 29-H+5-H+6-H), 7.89 (dd, ${}^{3}J = 7.8$ Hz, ${}^{3}J = 7.8$ Hz, 1H, 26-H), 8.06 (dd, ${}^{3}J = 8.2$ Hz, ${}^{4}J = 2.0$ Hz, 1H, 23-H), 8.19 (d, ${}^{3}J = 8.0$ Hz, 1H, 7-H), 8.41-8.45 (m, 2H, 25-H+27-H), 8.51 (s, 1H, 4-H), 8.53-8.55 (m, 1H, 28-H), 8.64 (ddd, ${}^{3}J = 4.8$ Hz, ${}^{4}J = 1.8$ Hz, ${}^{5}J = 0.8$ Hz, 1H, 31-H), 8.68 (dd, ${}^{3}J = 8.2$ Hz, ${}^{5}J = 0.8$ Hz, 1H, 24-H), 8.91 (dd, ${}^{4}J = 2.0$ Hz, ${}^{5}J = 0.8$ Hz, 1H, 22-H) ppm. **ESI-MS:** m/z (%) 972.8 (100) [**S** + H]⁺.

1.3 Synthesis and Characterization of Complexes

In an NMR tube, compounds **1** (0.917 mg, 1.50 µmol), **2** (0.626 mg, 1.50 µmol), **3** (0.259 mg, 1.50 µmol) and $[Cu(CH_3CN)_4]PF_6$ (0.560 mg, 1.50 µmol) were dissolved in CD₂Cl₂ to furnish complex $[Cu(2)(3)]^+$ along with free **1**. ¹H NMR (CD₂Cl₂, **400** MHz): $\delta = 1.81$ (s, 15H, r-H+d-H), 1.99 (s, 12H, 7-H), 2.16 (s, 6H, 8-H), 2.66 (s, 6H, s-H), 6.76 (s, 4H, 6-H), 7.10 (dd, ³*J* = 5.8 Hz, ⁴*J* = 1.4 Hz, 1H, b-H), 7.18 (d, ³*J* = 1.4 Hz, 1H, c-H), 7.21 (d, ³*J* = 5.8 Hz, 1H, a-H), 7.34 (s, 4H, q-H), 7.93 (d, ³*J* = 8.2 Hz, 2H, 3-H), 8.18 (s, 2H, 5-H), 8.71 (d, ³*J* = 8.2 Hz, 2H, 4-H), 8.93 (d, ³*J* = 4.6 Hz, 4H, β-H), 9.41 (d, ³*J* = 4.6 Hz, 4H, β-H), 10.26 (s, t-H) ppm.

1.3.1 Model Complex

1.3.2 Preparation of Complex $[Cu(S)]^+$

In an NMR tube, switch **S** (1.50 mg, 1.54 µmol) and $[Cu(CH_3CN)_4]PF_6$ (0.575 mg, 1.54 µmol) were dissolved in 600 µL of CD₂Cl₂ to furnished complex $[Cu(S)]^+$ in quantitative yield. **IR** (**KBr**): v = 557.2, 587.4, 610.0, 633.1, 666.1, 695.7, 722.2, 755.2, 781.6, 843.3, 868.7, 897.5, 923.4, 953.1, 986.1, 1015.8, 1039.0, 1042.2, 1073.0, 1105.0, 1121.4, 1164.1, 1200.0, 1240.2, 1263.3, 1299.6, 1329.3, 1384.4, 1451.3, 1510.7, 1603.0, 1636.3, 1703.2, 1725.2, 2223.4, 2856.6, 2922.8, 2952.5 cm⁻¹. ¹**H NMR (CD₂Cl₂, 400 MHz)**: $\delta = 1.32$ (s, 3H, 2-H), 1.49 (s, 3H, 10-H), 1.79 (s, 6H, 10'-H+2'-H), 1.92 (s, 3H, 3-H), 1.99 (s, 3H, 11-H), 6.12 (s, 1H, 9-H), 6.23 (s, 1H, 9'-H), 6.34 (s, 1H, 1-H), 6.38 (s, 1H, 1'-H), 7.21-7.26 (m, 2H, 15-H+18-H), 7.27-7.31 (m, 3H, 14-H+19-H+29-H), 7.32-7.38 (m, 3H, 24-H+26-H+30-H), 7.39-7.43 (m, 4H, 16-H+17-H), 7.44-7.49 (m, 2H, 13-H+20-H), 7.56-7.61 (m, 2H, 12-H+21-H), 7.69 (d, $^3J = 8.2$ Hz, 1H, 8-H), 7.78 (d, $^3J = 8.2$ Hz, 1H, 6-H), 7.88-7.94 (m, 3H, 22-H+25-H+27-H), 8.02-8.08 (m, 2H, 31-H+23-H), 8.12 (d, $^3J = 8.2$ Hz, 1H, 5-H), 8.51 (s, 1H, 4-H), 8.56 (d, $^3J = 8.2$ Hz, 1H, 7-H) ppm. **Elemental analysis:** Anal. Calcd for C₇₁H₄₉CuF₆N₅P•2CH₂Cl₂: C, 64.92; H, 3.96; N, 5.19. Found: C, 65.22; H, 3.78; N, 4.80. **ESI-MS:** *m/z* (%) 1034.9 (100) [Cu(**S**)]⁺.

1.3.3 Preparation of Complex $[Zn(S)]^{2+}$

In an NMR tube, switch **S** (1.50 mg, 1.54 µmol) was dissolved in proper amount of CD₂Cl₂. Zn(OTf)₂ (0.560 mg, 1.54 µmol) was added subsequently as a standard solution in CD₃CN. After sonication for 2-3 min [Zn(**S**)]²⁺ was afforded in quantitative manner. **IR (KBr):** v = 501.1, 523.9, 560.5, 573.7, 610.0, 639.3, 668.4, 702.3, 761.8, 785.3, 804.7, 824.5, 847.6, 867.4, 1033.0, 1065.3, 1108.2, 1161.0, 1230.3, 1259.9, 1385.3, 1451.3, 1484.3, 1510.7, 1563.5, 1632.8, 2853.5, 2922.8, 2959.0 cm⁻¹. ¹**H NMR (CD₂Cl₂, 400 MHz):** $\delta = 0.84$ (s, 3H, 10-H), 1.08 (s, 3H, 2-H), 1.22 (s, 3H, 10'-H), 1.35 (s, 3H, 2'-H), 1.74 (s, 3H, 11-H), 1.82 (s, 3H, 3-H), 6.06 (s, 1H, 9-H), 6.17 (s, 1H, 1-H), 6.19 (s, 1H, 9'-H), 6.26 (s, 1H, 1'-H), 7.15 (d, ³*J* = 8.0 Hz, 2H, 16/17-H), 7.27 (d, ³*J* = 8.0 Hz, 2H, 17/16-H), 7.30-7.45 (m, 6H, 13-H+14-H+15-H+18-H+19-H+20-H), 7.49-7.52 (m, 1H, 21/12-H), 7.58-7.60 (m, 2H, 30-H+12/21-H), 7.75 (d, ³*J* = 4.6 Hz, 1H, 31-H), 7.83 (dd, ⁴*J* = 2.0 Hz, ⁵*J* = 0.6 Hz, 1H, 22-H), 8.09 (d, ³*J* = 8.4 Hz, 1H, 8-H), 8.26 (td, ³*J* = 7.8 Hz, ⁴*J* = 1.6 Hz, 1H, 29-H), 8.41 (dd, ³*J* = 8.4 Hz, ⁴*J* = 2.0 Hz, ¹*H*, 24-H), 8.60 (dd, ³*J* = 8.0 Hz, ⁴*J* = 1.0 Hz, 1H, 25-H), 8.65 (dd, ³*J* = 8.4 Hz, ⁵*J* = 0.6 Hz, 1H, 5-H), 8.60 (dd, ³*J* = 8.4 Hz, ⁴*J* = 1.0 Hz, 1H, 25-H), 8.65 (dd, ³*J* = 8.4 Hz, ⁵*J* = 0.6 Hz, 1H, 24-H), 9.09 (d, ³*J* = 8.4 Hz, ¹H, 4-H) ppm. **Elemental analysis:** Anal. Calcd for C₇₃H₄₉F₆N₅O₆S₂Zn•5 CH₂Cl₂: C, 53.22; H, 3.38; N, 3.98; S, 3.64. Found: C, 53.31; H, 3.13; N, 3.73; S, 3.41. **ESI-MS:** *m/z* (%) 518.6 (100) [Zn(S)]²⁺.

1.3.4 Characterization of Nanoslider D1•A1 (=M1)⁵

Nanoslider D1•A1 (M1) was synthesized by the literature known procedure.⁵

¹**H NMR** (**CD**₂**Cl**₂, **400 MHz**): $\delta = -0.24$ (brs, 6H, h-H), 0.90 (t, ³*J* = 7.4 Hz, 6H, m-H), 1.43-1.52 (m, 4H, 1-H), 1.69-1.76 (m, 4H, k-H), 1.83 (s, 18H, r-H), 2.67 (s, 9H, s-H), 3.93 (t, ³*J* = 6.4 Hz, 4H, j-H), 4.11 (brs, 2H, a-H), 6.00 (brs, 2H, b-H), 6.08 (brs, 2H, c-H), 6.91 (s, 2H, i-H), 7.21-7.22 (m, 4H, e-H+f-H), 7.35 (s, 6H, q-H), 7.38-7.40 (m, 4H, d-H+g-H), 8.13-8.15 (m, 9H, o-H+n-H), 8.38 (d, ³*J* = 8.0 Hz, 6H, p-H), 8.94 (d, ³*J* = 4.6 Hz, 6H, β-H), 9.19 (d, ³*J* = 4.6 Hz, 6H, β-H), 9.41 (d, ³*J* = 4.6 Hz, 6H, β-H), 9.49 (d, ³*J* = 4.6 Hz, 6H, β-H), 10.29 (s, 6H, t-H) ppm.

1.3.5 Preparation of Complex $[Cu_3(D2)]^{3+}$

In an NMR tube, deck **D2** (1.40 mg, 0.736 µmol), and 3.0 equiv of $[Cu(CH_3CN)_4]PF_6$ (0.824 mg, 2.21 µmol) were dissolved in 550 µL of CD₂Cl₂ to afford $[Cu_3(D2)]^{3+}$ in quantitative yield. ¹H **NMR (CD₂Cl₂, 400 MHz):** $\delta = 2.04$ (s, 18H, d2-H), 2.05 (s, 18H, x-H), 2.36 (s, 9H, z-H), 2.53 (s, 18H, d1-H), 7.02 (s, 6H, y-H), 7.30 (d, ³J = 8.2 Hz, 6H, v-H), 7.69 (d, ³J = 8.2 Hz, 6H, w-H), 7.80 (s, 3H, u-H), 7.91 (d, ³J = 8.2 Hz, 3H, 8'-H), 8.15 (d, ³J = 9.0 Hz, 3H, 6'-H), 8.18 (d, ³J = 9.0 Hz, 3H, 5'-H), 8.68 (d, ³J = 8.2 Hz, 3H, 7'-H), 8.84 (s, 2H, 4'-H) ppm. **ESI-MS:** m/z (%) 702.7 (100) $[Cu_3(D2)(H_2O)]^{3+}$.

1.3.6 Preparation of Nanoslider $[Cu_3(D2)(A1)]^{3+}$ (=M2)

In an NMR tube, deck **D2** (1.40 mg, 0.736 µmol), biped **A1** (0.481 mg, 0.736 µmol), and 3.0 equiv of $[Cu(CH_3CN)_4]PF_6$ (0.824 mg, 2.21 µmol) were dissolved in 550 µL of CD₂Cl₂ to obtain $[Cu_3(D2)(A1)]^{3+}$ in quantitative yield. **IR (KBr):** v = 562.8, 634.2, 685.5, 732.9, 848.4, 990.2, 1021.9, 1065.4, 1089.2, 1113.0, 1164.4, 1223.7, 1279.1, 1384.3, 1425.6, 1441.4, 1465.1, 1469.0, 1504.7, 1552.2, 1615.5, 1742.2, 2217.0, 2854.3, 2293.2, 2942.2 cm⁻¹. ¹H NMR (CD₂Cl₂, 400 MHz): $\delta = 1.05$ (t, ${}^{3}J = 7.4$ Hz, 6H, m-H), 1.59-1.67 (m, 4H, 1-H), 1.85-1.91 (m, 10H, k-H +h-H), 2.02 (s, 18H, d2-H), 2.04 (s, 18H, x-H), 2.23 (s, 9H, z-H), 2.37 (s, 18H, d1-H), 4.08 (t, ${}^{3}J = 6.4$ Hz, 4H, j-H), 6.87 (s, 6H, y-H), 7.09-7.11 (m, 4H, i-H+b-H), 7.17 (s, 2H, c-H), 7.31 (d, ${}^{3}J = 8.2$ Hz, 6H, v-H), 7.43-7.48 (m, 2H, f-H), 7.54 (brs, 2H, a-H), 7.56-7.60 (m, 4H, e-H+g-H), 7.65 (d, ${}^{3}J = 8.2$ Hz, 6H, w-H), 7.75 (s, 3H, u-H), 7.79 (s, 2H, d-H), 7.95 (d, ${}^{3}J = 8.2$ Hz, 3H, 8'-H), 8.18 (d, ${}^{3}J = 9.0$ Hz, 3H, 6'-H), 8.21 (d, ${}^{3}J = 9.0$ Hz, 3H, 5'-H), 8.72 (d, ${}^{3}J = 8.2$ Hz, 3H, 7'-H), 8.87 (s, 2H, 4'-H) ppm. **Elemental analysis:** Anal. Calcd for C₁₆₉H₁₃₉N₈Br₃Cu₃F₁₈O₂P₃•0.10 CH₂Cl₂: C, 63.71; H, 4.40; N, 3.52. Found: C, 63.33; H, 4.20; N, 3.23. **ESI-MS:** m/z (%) 915.2 (100) [Cu₃(**D2)(A1**)]³⁺.

1.3.7 Characterization of Nanoslider D1•A2 (=M3)⁵

Nanoslider D1•A2 (M3) was synthesized along the literature known procedure.⁵

¹**H NMR (CD₂Cl₂, 400 MHz):** δ = 1.84 (s, 18H, r-H), 2.23 (brs, 4H, a'-H), 2.30 (s, 12H, c'-H), 2.67 (s, 9H, s-H), 5.45 (brs, 4H, b'-H), 6.99 (d, ³*J* = 7.8 Hz, 2H, e'-H), 7.12 (t, ³*J* = 7.8 Hz, 2H, f'-H), 7.23 (s, 2H, d'-H), 7.33 (d, ³*J* = 7.8 Hz, 2H, g'-H), 7.36 (s, 6H, q-H), 8.14 (d, ³*J* = 8.0 Hz, 6H, o-H), 8.16 (s, 3H, n-H), 8.39 (d, ³*J* = 8.0 Hz, 6H, p-H), 8.93 (d, ³*J* = 4.4 Hz, 6H, β-H), 9.19 (d, ³*J* = 4.4 Hz, 6H, β-H), 9.39 (d, ³*J* = 4.4 Hz, 6H, β-H), 9.47 (d, ³*J* = 4.4 Hz, 6H, β-H), 10.25 (s, 6H, t-H) ppm.

1.3.8 Preparation of Nanoslider $[Cu_3(D2)(A2)]^{3+}$ (=M4):

In an NMR tube, deck **D2** (1.40 mg, 0.736 µmol), biped **A2** (0.395 mg, 0.736 µmol), and 3.0 equiv. of $[Cu(CH_3CN)_4]PF_6$ (0.824 mg, 2.21 µmol) were dissolved in 550 µL of CD₂Cl₂ to obtain $[Cu_3(D2)(A2)]^{3+}$ in quantitative yield. **IR (KBr):** v = 559.7, 639.3, 693.8, 734.8, 849.2, 990.5, 1017.8, 1034.8, 1072.4, 1108.9, 1130.3, 1161.0, 1266.7, 1384.4, 1423.6, 1437.2, 1461.1, 1502.5, 1560.0, 1607.1, 1638.3, 2210.9, 2323.9, 2852.5, 2924.9 cm^{-1.} ¹H NMR (CD₂Cl₂, 400 **MHz):** $\delta = 2.10$ (s, 36H, d2-H+x-H), 2.39 (s, 9H, z-H), 2.49 (s, 12H, c'-H), 2.57 (s, 18H, d1-H), 6.58 (brs, 4H, a'-H), 7.02 (s, 6H, y-H), 7.14 (d, ${}^{3}J = 6.2$ Hz, 4H, b'-H), 7.33 (d, ${}^{3}J = 8.2$ Hz, 6H, v-H), 7.47 (t, ${}^{3}J = 8.0$ Hz, 2H, f⁻H), 7.58 (d, ${}^{3}J = 8.0$ Hz, 2H, e'-H), 7.64 (d, ${}^{3}J = 8.0$ Hz, 2H, g'-H), 7.69 (d, ${}^{3}J = 8.2$ Hz, 6H, w-H), 7.80 (s, 3H, u-H), 7.87 (s, 2H, d'-H), 7.94 (d, ${}^{3}J = 8.2$ Hz, 3H, 8'-H), 8.18 (d, ${}^{3}J = 9.0$ Hz, 3H, 6'-H), 8.22 (d, ${}^{3}J = 9.0$ Hz, 3H, 5'-H), 8.72 (d, ${}^{3}J = 8.2$ Hz, 3H, 7'-H), 8.89 (s, 3H, 4'-H) ppm. **Elemental analysis:** Anal. Calcd for C₁₆₃H₁₂₇N₈Br₃Cu₃F₁₈P₃• CH₂Cl₂: C, 62.57; H, 4.13; N, 3.56. Found: C, 62.88; H, 3.82; N, 3.74. **ESI-MS:** m/z (%) 877.2 (100) [Cu₃(**D2**)(**A2**)]³⁺.

1.4 Preparation of NetStates

1.4.1 Fabrication of NetState-I ($[Cu(S)]^+$, M1 and free deck D2)

In an NMR tube, decks **D1** (1.10 mg, 0.595 μ mol), **D2** (1.13 mg, 0.595 μ mol), biped **A1** (0.388 mg, 0.595 μ mol), switch **S** (1.74 mg, 1.78 μ mol) and [Cu(CH₃CN)₄]PF₆ (0.663 mg, 1.78 μ mol) were dissolved in 550 μ L of CD₂Cl₂ to obtain NetState-I. It was characterized by comparison ¹H NMR with [Cu(**S**)]⁺, **M1** and **D2**.

1.4.2 Fabrication of NetState-II ($[Zn(S)]^{2+}$, M2 and free deck D1)

In an NMR tube, decks **D1** (1.10 mg, 0.595 μ mol), **D2** (1.13 mg, 0.595 μ mol), biped **A1** (0.388 mg, 0.595 μ mol), switch **S** (1.74 mg, 1.78 μ mol), [Cu(CH₃CN)₄]PF₆ (0.663 mg, 1.78 μ mol) and Zn(OTf)₂ (0.651 mg, 1.78 μ mol) as a standard solution in CD₃CN were dissolved in 550 μ L of CD₂Cl₂. It was sonicated for 1 h. Then the solvent was evaporated to get rid of CD₃CN. Redissolving it again in CD₂Cl₂ fabricate NetState-II quantitatively. It was characterized by comparison ¹H NMR with [Zn(**S**)]²⁺, **M2** and **D1**.

1.4.3 Switching between NetState-I and NetState-II

At first switch S (1.74 mg, 1.78 μ mol), decks D1 (1.10 mg, 0.595 μ mol), D2 (1.13 mg, 0.595 μ mol), biped A1 (0.388 mg, 0.595 μ mol), and [Cu(CH₃CN)₄]PF₆ (0.663 mg, 1.78 μ mol) were dissolved in 550 μ L of CD₂Cl₂ in an NMR tube to furnish NetState-I.

Now to the same NMR tube 3.0 equiv of $Zn(OTf)_2$ (0.651 mg, 1.78 µmol) as a standard solution in CD₃CN were added and sonicated for 1 h. The solvent was evaporated to get rid of CD₃CN. Dissolving it again in CD₂Cl₂ showed formation of NetState-II.

Now to refurnish NetState-I, 3.0 equiv of hexacyclen (0.462 mg, 1.78 μ mol) was added to the same NMR tube and sonicated for 15 min.

Three more equiv of $Zn(OTf)_2$ (0.651 mg, 1.78 µmol) as a standard solution in CD₃CN were added and sonicated for 1 h. Evaporation of solvent and dissolution in CD₂Cl₂ showed formation of NetState-II.

Finally addition of 3.0 equiv of hexacyclen (0.462 mg, 1.78 μ mol) to the system followed by sonication for 15 min completed the two cycles by regenerating NetState-I.

After each step ¹H NMR was measured.

1.4.4 Fabrication of NetState-III ($[Cu(S)]^+$, M1, M3 and free deck D2)

In an NMR tube, switch **S** (1.43 mg, 1.48 μ mol), decks **D1** (1.82 mg, 0.984 μ mol), **D2** (0.936 mg, 0.492 μ mol), bipeds **A1** (0.321 mg, 0.492 μ mol), **A2** (0.264 mg, 0.492 μ mol) and [Cu(CH₃CN)₄]PF₆ (0.550 mg, 1.48 μ mol) were dissolved in 550 μ L of CD₂Cl₂ to obtain NetState-III.

1.4.5 Fabrication of NetState-IV $(3 \times [Zn(S)]^{2+}, M2, D1 \text{ and } D1 \bullet A2)$

In an NMR tube, switch **S** (1.43 mg, 1.48 μ mol), decks **D1** (1.82 mg, 0.984 μ mol), **D2** (0.936 mg, 0.492 μ mol), bipeds **A1** (0.321 mg, 0.492 μ mol), **A2** (0.264 mg, 0.492 μ mol), [Cu(CH₃CN)₄]PF₆ (0.550 mg, 1.48 μ mol) and Zn(OTf)₂ (0.536 mg, 1.48 μ mol; as a standard solution in CD₃CN) were dissolved in 550 μ L of CD₂Cl₂. It was sonicated for 1 h. Then the solvent was evaporated to get rid of CD₃CN. Redissolving it again in CD₂Cl₂ demonstrated quantitative formation of NetState-IV.

1.4.6 Switching between NetState-III and NetState-IV

At first, switch **S** (1.43 mg, 1.48 μ mol), decks **D1** (1.82 mg, 0.984 μ mol), **D2** (0.936 mg, 0.492 μ mol), bipeds **A1** (0.321 mg, 0.492 μ mol), **A2** (0.264 mg, 0.492 μ mol) and [Cu(CH₃CN)₄]PF₆ (0.550 mg, 1.48 μ mol) were dissolved in 550 μ L of CD₂Cl₂ in an NMR tube to furnish NetState-III.

To this mixture, 3.0 equiv of $Zn(OTf)_2$ (0.536 mg, 1.48 µmol; as a standard solution in CD₃CN) were added and sonicated for 1 h. The solvent was evaporated to get rid of CD₃CN. Dissolving it again in CD₂Cl₂ showed formation of NetState-IV.

To refurnish NetState-III, 3.0 equiv of hexacyclen (0.382 mg, 1.48 μ mol) were added to the above mixture and sonicated for 15 min.

Three more equiv of $Zn(OTf)_2$ (0.536 mg, 1.48 µmol; as a standard solution in CD₃CN) were added and sonicated for 1 h. Evaporation of solvent and dissolving it again in CD₂Cl₂ showed formation of NetState-IV.

Finally addition of 3.0 equiv of hexacyclen (0.382 mg, 1.48 μ mol) to the system followed by sonication for 15 min completed the second cycle by regenerating NetState-III.

After each step ¹H NMR was measured.

2. NMR Spectra: ¹H, ¹³C, ¹H-¹H COSY

Figure S1. ¹H NMR of deck D1 in CD_2Cl_2 (400 MHz, 298 K).

Figure S2. ¹H NMR of deck D2 in CDCl₃ (400 MHz, 298 K).

Figure S3. ¹³C NMR of deck **D2** in CDCl₃ (100 MHz, 298 K).

Figure S4. ¹H NMR of biped A1 in CD_2Cl_2 (400 MHz, 298 K).

Figure S5. ¹H NMR of biped A2 in CD₂Cl₂ (400 MHz, 298 K).

Figure S6. ¹H NMR of switch S in CD₂Cl₂ (400 MHz, 298 K).

Figure S7. ¹H-¹H COSY NMR of switch S in CD₂Cl₂ (400 MHz, 298 K).

Figure S8. ¹³C NMR of switch S in CDCl₃ (100 MHz, 298 K).

Figure S9. ¹H NMR of the 1:1:1:1 mixture of **1**, **2**, **3** and [Cu(CH₃CN)₄]PF₆ in CD₂Cl₂ (400 MHz, 298 K).

Figure S10. ¹H NMR of complex $[Cu(S)]^+$ in CD₂Cl₂ (400 MHz, 298 K).

Figure S11. $^{1}\text{H}-^{1}\text{H}$ COSY NMR of complex $[Cu(S)]^{+}$ in CD₂Cl₂ (400 MHz, 298 K).

Figure S12. ¹H NMR of complex $[Zn(S)]^{2+}$ in CD₂Cl₂ (400 MHz, 298 K).

Figure S13. 1 H- 1 H COSY NMR of complex $[Zn(S)]^{2+}$ in CD₂Cl₂ (400 MHz, 298 K).

Figure S14. Comparison ¹H NMR of switch **S**, complex $[Cu(S)]^+$, $[Zn(S)]^{2+}$ in CD₂Cl₂ (400 MHz, 298 K).

Figure S15. ¹H NMR of nanoslider D1•A1 (M1) in CD₂Cl₂ (400 MHz, 298 K).

Figure S16. ¹H NMR of complex $[Cu_3(D2)]^{3+}$ in CD_2Cl_2 (400 MHz, 298 K).

Figure S17. ¹H NMR of nanoslider $[Cu_3(D2)(A1)]^{3+}$ (= M2) in CD₂Cl₂ (400 MHz, 298 K).

Figure S18. ¹H-¹H COSY NMR of nanoslider $[Cu_3(D2)(A1)]^{3+}$ (= M2) in CD₂Cl₂ (400 MHz, 298 K).

Figure S19. Comparison ¹H NMR of deck **D2**, biped **A1**, complex $[Cu_3(D2)]^{3+}$, nanoslider $[Cu_3(D2)(A1)]^{3+}$ (= **M2**) in CD₂Cl₂ (400 MHz, 298 K).

Figure S20. ¹H NMR of nanoslider **D1**•A2 (= M3) in CD₂Cl₂ (400 MHz, 298 K).

Figure S21. ¹H NMR of nanoslider $[Cu_3(D2)(A2)]^{3+}$ (= M4) in CD₂Cl₂ (400 MHz, 298 K).

Figure S22. ¹H-¹H COSY NMR of nanoslider $[Cu_3(D2)(A2)]^{3+}$ (= M4) in CD₂Cl₂ (400 MHz, 298 K).

Figure S23. Comparison ¹H NMR of deck **D2**, biped **A2**, complex $[Cu_3(D2)]^{3+}$, nanoslider $[Cu_3(D2)(A2)]^{3+}$ (= M4) in CD₂Cl₂ (400 MHz, 298 K).

Figure S24. Comparison ¹H NMR of complex $[Cu(S)]^+$, nanoslider D1•A1 (= M1), deck D2 and NetState-I in CD₂Cl₂ (400 MHz, 298 K).

Figure S25. Comparison ¹H NMR of complex $[Zn(S)]^{2+}$, deck **D1**, nanoslider $[Cu_3(D2)(A1)]^{3+}$ (= **M2**) and NetState-II in CD₂Cl₂ (400 MHz, 298 K).

Figure S26. Partial ¹H NMR (400 MHz, 298 K) shows the reversible interconversion of NetState-I and NetState-II over two complete cycles in CD_2Cl_2 . (i) NetState-I was obtained by mixing of **S**, **D1**, **D2**, **A1** and Cu^+ (3:1:1:1:3) in CD_2Cl_2 . (ii) Addition of 3.0 equiv. of Zn^{2+} to NetState-I furnished NetState-II. (iii) Addition of 3.0 equiv. of hexacyclen to NetState-II. (iv) Addition of 3.0 equiv. of Zn^{2+} to (iii) regenerated NetState-II. (v) NetState-I was regenerated from (iv) by addition of 3.0 equiv. of hexacyclen.

Figure S27. Comparison of ¹H NMR spectra (400 MHz, 298 K, CD_2Cl_2) of complex $[Cu(S)]^+$, nanoslider D1•A1 (= M1), D1•A2 (= M3), deck D2 and NetState-III.

Figure S28. Comparison ¹H NMR of complex $[Zn(S)]^{2+}$, nanoslider $[Cu_3(D2)(A1)]^{3+}$ (= M2), D1•A2 (= M3) + D1 and NetState-IV in CD₂Cl₂ (400 MHz, 298 K).

Figure S29. Partial ¹H NMR (400 MHz, 298 K) shows the reversible interconversion of NetState-III and NetState-IV over two complete cycles in CD_2Cl_2 . (i) NetState-III was obtained by mixing of **S**, **D1**, **D2**, **A1**, **A2** and Cu⁺ (3:2:1:1:1:3) in CD_2Cl_2 . (ii) Addition of 3.0 equiv. of Zn²⁺ to NetState-III furnished NetState-IV. (iii) Addition of 3.0 equiv. of hexacyclen to NetState-IV. (iv) Addition of 3.0 equiv. of Zn²⁺ to (iii) regenerated NetState-IV. (v) NetState-III was regenerated from (iv) by addition of 3.0 equiv. of hexacyclen.

3. Variable Temperature ¹H NMR Spectra

The rate constants of sliding at various temperatures were determined using the program WinDNMR through simulation of the experimental ¹H NMR spectra. The spectra simulation was performed using the model of a 2-spin system undergoing mutual exchange. Activation parameters were determined from an Eyring plot.

Figure S30. (a) VT ¹H NMR (600 MHz) of nanoslider $[Cu_3(D2)(A1)]^{3+}$ (= M2) in CD₂Cl₂ shows the splitting of protons (5'+6')-, 7'- and 4'-H in 2:1 ratio at different temperatures. (b) Experimental and simulated splitting of 4'-H at different temperatures. The corresponding rate constant was determined from the simulation.

Figure S31. Eyring plot of the exchange motion in nanoslider $[Cu_3(D2)(A1)]^{3+}$ (= M2).

4. DOSY NMR Spectra

Calculation of hydrodynamic radius from:

DOSY: The diffusion coefficient D of nanoslider $[Cu_3(D2)(A1)]^{3+}$ (= M2) was obtained from the DOSY spectrum and the corresponding hydrodynamic radius was calculated by using the Stokes-Einstein equation:

 $r = k_B T / 6\pi \eta D$

Figure S32. (top) DOSY NMR of nanoslider $[Cu_3(D2)(A1)]^{3+}$ (= M2) in CD₂Cl₂ (600 MHz, 298 K). Diffusion coefficient $D = 4.2 \times 10^{-10} \text{ m}^2 \text{ s}^{-1}$, hydrodynamic radius r = 13 Å. (bottom) DOSY NMR of NetState-II in CD₂Cl₂ (600 MHz, 298 K) showing three different assemblies with close hydrodynamic radii.

5. ESI-MS Spectra

Figure S33. ESI-MS of complex $[Cu(S)]^+$.

Figure S34. ESI-MS of complex $[Zn(S)]^{2+}$.

Figure S35. ESI-MS of complex $[Cu_3(D2)(H_2O)]^{3+}$.

Figure S36. ESI-MS of nanoslider $[Cu_3(D2)(A1)]^{3+}$ (= M2).

Figure S37. ESI-MS of nanoslider $[Cu_3(D2)(A2)]^{3+}$ (= M4).

Figure S38. ESI-MS of NetState-II.

Figure S39. ESI-MS of NetState-IV.

6. UV-Vis Spectra

Figure S40. UV-Vis spectra of NetState-I (black line) and NetState-II (red line) in CH₂Cl₂ at 298 K ($c = 10^{-6}$ M).

Figure S41. UV-Vis spectra of NetState-I (black line) and NetState-II (red line) in presence of 3.0 equiv of tetrabutylammonium iodide in CH_2Cl_2 at 298 K ($c = 10^{-6}$ M).

7. Kinetic Studies

Figure S42. UV-Vis spectra for kinetics of conversion of NetState-I to NetState-II by addition of Zn^{2+} in CH₂Cl₂ at 298 K ($c = 10^{-6}$ M). After addition of Zn^{2+} to NetState-I spectra were recorded in 2 min intervals.

Figure S43. Changes in absorbance at 339 nm with time for conversion of NetState-I to NetState-II by addition of Zn^{2+} in CH₂Cl₂ at 298 K ($c = 10^{-6}$ M).

Figure S44. UV-Vis spectra after 30 s for kinetics of conversion of NetState-II to NetState-I by addition of hexacyclen in CH₂Cl₂ at 298 K ($c = 10^{-6}$ M). After addition of hexacyclen to NetState-II spectra were recorded every 30 s for the first 10.5 min and then in 2 min intervals.

Figure S45. Changes in absorbance at 339 nm with time in the conversion of NetState-II to NetState-I upon addition of hexacyclen in CH_2Cl_2 at 298 K ($c = 10^{-6}$ M).

Figure S46. UV-Vis spectra for kinetics of conversion of NetState-I to NetState-II by addition of Zn^{2+} in presence of 3.0 equiv of iodide in CH_2Cl_2 at 298 K ($c = 10^{-6}$ M). After addition of Zn^{2+} spectra were recorded every 30 s for the first 10.5 min and then in 2 min intervals.

Figure S47. Changes in absorbance at 339 nm with time for conversion of NetState-I to NetState-II by addition of Zn^{2+} in presence of 3.0 equiv of iodide in CH_2Cl_2 at 298 K ($c = 10^{-6}$ M).

Figure S48. UV-Vis spectra for kinetics of conversion of NetState-II to NetState-I by addition of hexacyclen in presence of 3.0 equiv of iodide in CH_2Cl_2 at 298 K ($c = 10^{-6}$ M). After addition of hexacyclen spectra were recorded every 30 s for the first 10.5 min and then in 2 min intervals.

Figure S49. Changes in absorbance at 339 nm with time for conversion of NetState-II to NetState-I by addition of hexacyclen in presence of 3.0 equiv of iodide in CH_2Cl_2 at 298 K ($c = 10^{-6}$ M).

8. References

- 1. S. Sirilaksanapong, M. Sukwattanasinitt and P. Rashatasakhon, *Chem. Commun.*, 2012, 48, 293–295.
- 2. M. Schmittel, C. Michel, A. Wiegrefe and V. Kalsani, Synthesis, 2001, 10, 1561-1567.
- 3. I. Paul, A. Goswami, N. Mittal and M. Schmittel, Angew. Chem., Int. Ed., 2018, 57, 354-358.
- 4. N. Mittal, M. S. Özer and M. Schmittel, Inorg. Chem., 2018, 57, 3579-3586.
- 5. A. Ghosh, I. Paul, S. Saha, T. Paululat and M. Schmittel, Org. Lett., 2018, 20, 7973-7976.