# Supporting Information for

# Highly Li<sup>+</sup>-conductive HfNb<sub>24</sub>O<sub>62</sub> anode material for superior Li<sup>+</sup> storage

# **Experimental section**

# **Material preparation**

HfNb<sub>24</sub>O<sub>62</sub> was prepared through a one-step solid-state reaction procedure. Briefly, HfO<sub>2</sub> (Aladdin, 99.99%) and Nb<sub>2</sub>O<sub>5</sub> (Aladdin, 99.5%) powders with a molar ratio of 1 : 12 were ballmilled for 1 h using a SPEX-8000M ball apparatus, and then heated to 1250 °C for 4 h in a box furnace with a ramp of 10 °C min<sup>-1</sup> to obtain the pale yellowish HfNb<sub>24</sub>O<sub>62</sub> powders.

## Material characterization

The powder X-ray diffraction (XRD) test was performed on a Brucker D8 advance diffractometer. The Rietveld refinement was performed using the GSAS software with the EXPGUI interface [S1,S2]. The X-ray photoelectron spectroscopy (XPS) test was performed using a Thermo Escalab 250Xi photoelectron spectrometer. The particle size, morphology and

microstructure were characterized by field-emission scanning electron microscopy (FESEM, Hitachi S-4800, Japan) and high-resolution transmission electron microscopy (HRTEM, FEI Tecnai G2 F20 STWIN, USA). The specific surface area was analyzed using the Branauer– Emmett–Teller (BET) theory with a porosity and surface area analyzer (ASAP 2020, USA).

#### **Electrochemical test**

The working electrode was fabricated by blending the  $HfNb_{24}O_{62}$  powder, conductive carbon (Super P<sup>®</sup>), and polyvinylidene fluoride (PVDF) at a weight ratio of 65:25:10 in an N-methylpyrrolidinone (NMP) solvent. The formed slurry was uniformly spread on Cu current collectors followed by vacuum drying at 120 °C for 4 h. CR2016-type coin cells were assembled in an Ar-filled glove box.  $HfNb_{24}O_{62}$  on Cu current collectors, lithium metal foils, and Celgard 2325<sup>®</sup> microporous polypropylene films were used as the working electrodes, counter electrodes, and separators, respectively. The electrolyte was 1 M LiPF<sub>6</sub> in a mixture of ethylene carbonate (EC), dimethyl carbonate (DMC), and diethylene carbonate (DEC) at a volume ratio of 1:1:1.

Galvanostatic discharging/charging tests and galvanostatic intermittent titration technique (GITT) experiments were performed on an automatic battery testing system (CT-3008, Neware) in a potential range of 0.8–3.0 V. Here, 378 mA  $g^{-1}$  is equivalent to 1C, as calculated from the theoretical capacity of HfNb<sub>24</sub>O<sub>62</sub> (378 mAh  $g^{-1}$ ). Cyclic voltammetry (CV) curves were collected *via* an electrochemical workstation (CHI660E, China).

#### **Detailed process of Rietveld refinement**

Since this is the first fabrication of HfNb<sub>24</sub>O<sub>62</sub>, no existing crystal data for HfNb<sub>24</sub>O<sub>62</sub> can be found in previous reports. However, on the basis of the known crystal data of TiNb<sub>24</sub>O<sub>62</sub>, the detailed crystal structure of HfNb<sub>24</sub>O<sub>62</sub> was successfully clarified through a Rietveld refinement. First, the "cif" (Crystallographic Information File) file of TiNb<sub>24</sub>O<sub>62</sub> was imported into the GSAS program. Second, in the program, "Ti" was changed to "Hf", and the site occupancies of Hf and Nb were set to be 0.04 and 0.96, respectively. Third, two files respectively containing the instrumental parameters and experimental diffraction data were imported into the program. Finally, the following instrumental and structural parameters were successively refined: background parameters, zero-shift, unit-cell parameters, profile parameters, atomic fractional coordinates, and atomic isotropic displacement parameters. All isotropic temperature factors were fixed to be the same. The site occupancies were assumed to fulfill the stoichiometric composition of HfNb<sub>24</sub>O<sub>62</sub>. The site occupancy of oxygen atoms was fixed to be unity.

# Calculation of Li<sup>+</sup> diffusion coefficient through GITT

GITT with a current pulse at 0.1 C for 10 min between rest intervals of 20 min was applied to elucidate the Li<sup>+</sup> diffusion coefficient ( $D_{Li}$ ) of HfNb<sub>24</sub>O<sub>62</sub> during the initial two cycles. The  $D_{Li}$ value can be estimated according to Fick's second law following **Eq. (S1)** [S3]:

$$D_{Li} = \frac{4}{\pi} \left(\frac{m_B V_m}{M_B S}\right)^2 \left(\frac{\Delta E_s}{\tau \left(dE_{\tau}/d\sqrt{\tau}\right)}\right)^2 \qquad \left(\tau \ll \frac{L^2}{D_{Li}}\right)$$
(S1)

where  $m_{\rm B}$  (g) and  $M_{\rm B}$  (g mol<sup>-1</sup>) are the mass and molar weight of HfNb<sub>24</sub>O<sub>62</sub>, *S* (cm<sup>2</sup>) is the real surface area of HfNb<sub>24</sub>O<sub>62</sub> based on its BET specific surface area,  $\tau$  (s) is the rest time, and  $\Delta E_{\rm s}$ (V) and  $\Delta E_{\tau}$  (V) represent the equilibrium potential change and current pulse potential change, respectively (**Fig. S6a**). Since  $\Delta E_{\tau}$  is linearly proportional to  $\tau^{0.5}$  (**Fig. S6b**), **Eq. (S1)** can be further simplified to **Eq. (S2)**:

$$D_{Li} = \frac{4}{\pi\tau} \left( \frac{m_B V_m}{M_B S} \right)^2 \left( \frac{\Delta E_s}{\Delta E_\tau} \right)^2 \qquad \left( \tau \ll \frac{L^2}{D_{Li}} \right)$$
(S2)

Based on the calculation, the evolving  $D_{\text{Li}}$  of HfNb<sub>24</sub>O<sub>62</sub> at each potential in the discharging (lithiation) and charging (delithiation) processes is plotted in **Fig. 2j**.



Fig. S1. XPS characterizations: (a) survey spectrum, and detailed spectra of (b) Hf and (c) Nb

#### elements.

XPS was employed to investigate the valence states of the hafnium and niobium elements in  $HfNb_{24}O_{62}$ . The survey XPS spectrum reveals the presence of Hf, Nb, O and C (reference) elements (**Fig. S1a**). The Hf-4*f* spectrum (**Fig. S1b**) with two characteristic peaks at 16.6 eV (Hf- $4f_{7/2}$ ) and 18.3 eV (Hf- $4f_{5/2}$ ) indicates hafnium in the tetravalent state (Hf<sup>4+</sup>) [S4]. The peaks at 206.9 and 209.7 eV (**Fig. S1c**) can be ascribed to Nb- $3d_{5/2}$  and Nb- $3d_{3/2}$ , indicating the pentavalent niobium ions (Nb<sup>5+</sup>) in HfNb<sub>24</sub>O<sub>62</sub> [S5].



Fig. S2. N<sub>2</sub> adsorption/desorption isotherm of HfNb<sub>24</sub>O<sub>62</sub>.



Fig. S3. EDX elemental mapping images of  $HfNb_{24}O_{62}$ .



Fig. S4. Discharging/charging curves of HfNb<sub>24</sub>O<sub>62</sub>/Li cell in different cycles at 1 C.



Fig. S5. Discharging/charging curves of HfNb<sub>24</sub>O<sub>62</sub>/Li cell in different cycles at 10 C.



Fig. S6. (a) Polarization curve of single GITT discharge process, and (b) relationship between E

and  $\tau^{0.5}$  for HfNb<sub>24</sub>O<sub>62</sub>/Li cell.

| atom* | symmetry | site       | x      | у    | Z      |
|-------|----------|------------|--------|------|--------|
| M1    | 2        | 2a         | 0      | 0.25 | 0      |
| M2    | 1        | 4c         | 0.1159 | 0    | 0.0093 |
| M3    | 1        | 4 <i>c</i> | 0.2407 | 0    | 0.0593 |
| M4    | 1        | 4 <i>c</i> | 0.3671 | 0    | 0.1121 |
| M5    | 1        | 4 <i>c</i> | 0.5007 | 0    | 0.1644 |
| M6    | 1        | 4 <i>c</i> | 0.0904 | 0    | 0.1837 |
| M7    | 1        | 4 <i>c</i> | 0.2249 | 0    | 0.2363 |
| M8    | 1        | 4 <i>c</i> | 0.3507 | 0    | 0.2884 |
| M9    | 1        | 4 <i>c</i> | 0.4727 | 0    | 0.3368 |
| M10   | 1        | 4 <i>c</i> | 0.0715 | 0    | 0.3638 |
| M11   | 1        | 4 <i>c</i> | 0.1957 | 0    | 0.4117 |
| M12   | 1        | 4 <i>c</i> | 0.3207 | 0    | 0.4628 |
| M13   | 1        | 4 <i>c</i> | 0.4484 | 0    | 0.5102 |
| O1    | 1        | 4 <i>c</i> | 0.3779 | 0    | 0.0110 |
| O2    | 1        | 4 <i>c</i> | 0.1746 | 0    | 0.0341 |
| O3    | 1        | 4 <i>c</i> | 0.3196 | 0    | 0.0838 |
| O4    | 1        | 4c         | 0.0996 | 0    | 0.1030 |
| O5    | 1        | 4 <i>c</i> | 0.4340 | 0    | 0.1377 |
| O6    | 1        | 4 <i>c</i> | 0.2214 | 0    | 0.1492 |
| O7    | 1        | 4 <i>c</i> | 0.0157 | 0    | 0.1428 |
| O8    | 1        | 4 <i>c</i> | 0.3787 | 0    | 0.1919 |
| O9    | 1        | 4 <i>c</i> | 0.1432 | 0    | 0.2123 |
| O10   | 1        | 4 <i>c</i> | 0.4830 | 0    | 0.2531 |
| O11   | 1        | 4 <i>c</i> | 0.2794 | 0    | 0.2658 |
| O12   | 1        | 4 <i>c</i> | 0.0700 | 0    | 0.2828 |
| O13   | 1        | 4 <i>c</i> | 0.4152 | 0    | 0.3066 |
| O14   | 1        | 4 <i>c</i> | 0.2116 | 0    | 0.3433 |
| O15   | 1        | 4 <i>c</i> | 0.3247 | 0    | 0.3872 |
| O16   | 1        | 4 <i>c</i> | 0.1278 | 0    | 0.3908 |
| O17   | 1        | 4 <i>c</i> | 0.4770 | 0    | 0.4479 |
| O18   | 1        | 4 <i>c</i> | 0.2634 | 0    | 0.4385 |
| O19   | 1        | 4c         | 0.0455 | 0    | 0.4866 |
| O20   | 1        | 4 <i>c</i> | 0.3927 | 0    | 0.5009 |
| O21   | 1        | 4c         | 0.1780 | 0    | 0.4995 |
| O22   | 1        | 4 <i>c</i> | 0.3160 | 0    | 0.5577 |
| O23   | 1        | 4 <i>c</i> | 0.4363 | 0    | 0.6311 |
| O24   | 1        | 4 <i>c</i> | 0.0109 | 0    | 0.6607 |
| O25   | 1        | 4 <i>c</i> | 0.1294 | 0    | 0.7161 |

**Table S1.** Fractional atomic parameters of  $HfNb_{24}O_{62}$  (space group of *C2*).

| O26 | 1 | 4c         | 0.2768 | 0 | 0.7829 |
|-----|---|------------|--------|---|--------|
| O27 | 1 | 4c         | 0.4211 | 0 | 0.8355 |
| O28 | 1 | 4c         | 0.1342 | 0 | 0.9036 |
| O29 | 1 | 4c         | 0.4847 | 0 | 0.9298 |
| O30 | 1 | 4c         | 0.2514 | 0 | 0.9554 |
| O31 | 1 | 4 <i>c</i> | 0.0405 | 0 | 0.9852 |

 $^{*}M = 0.04 H f^{4+} + 0.96 N b^{5+}$ 

| material                                                 | $D_{\rm Li}~({\rm cm}^2~{\rm s}^{-1})$ | test technique | reference |
|----------------------------------------------------------|----------------------------------------|----------------|-----------|
| HfNb <sub>24</sub> O <sub>62</sub>                       | 1.6~1.7×10 <sup>-12</sup>              | GITT           | this work |
| Ti-Nb oxide composite<br>microspheres                    | 3.47×10 <sup>-15</sup>                 | CV             | [S6]      |
| GeNb <sub>18</sub> O <sub>47</sub> nanowires             | 1.552×10 <sup>-14</sup>                | CV             | [S7]      |
| TiNb <sub>6</sub> O <sub>17</sub>                        | 4.28×10 <sup>-14</sup>                 | CV             | [S8]      |
| $Ti_2Nb_{10}O_{27.1}$                                    | 1.84×10 <sup>-14</sup>                 | CV             | [89]      |
| $Cu_{0.02}Ti_{0.94}Nb_{2.04}O_7$                         | 1.66×10 <sup>-14</sup>                 | EIS            | [S10]     |
| $Ru_{0.01}Ti_{0.99}Nb_2O_7$                              | 1.66×10 <sup>-15</sup>                 | EIS            | [S11]     |
| TiNb <sub>2</sub> O <sub>7</sub> nanorods                | 3.39×10 <sup>-14</sup>                 | CV             | [S12]     |
| TiNb <sub>2</sub> O <sub>7</sub> /CNTs nanocomposite     | 9.27×10 <sup>-16</sup>                 | CV             | [S13]     |
| TiNb <sub>2</sub> O <sub>7</sub> mesoporous microspheres | 3.34×10 <sup>-15</sup>                 | EIS            | [S14]     |
| TiCr <sub>0.5</sub> Nb <sub>10.5</sub> O <sub>29</sub>   | 2.09×10 <sup>-14</sup>                 | CV             | [S15]     |
| Cr <sub>0.5</sub> Nb <sub>24.5</sub> O <sub>62</sub>     | 4.57×10 <sup>-14</sup>                 | EIS            | [S16]     |
| VNb <sub>9</sub> O <sub>25</sub> nanoribbons             | 5.17×10 <sup>-15</sup>                 | EIS            | [S17]     |

**Table S2.** Comparisons of  $Li^+$  diffusion coefficient ( $D_{Li}$ ) of HfNb<sub>24</sub>O<sub>62</sub> with other niobium-based oxide anode materials.

## References

- [S1]B.H. Toby, EXPGUI, a graphical user interface for GSAS, J. Appl. Crystallogr. 34 (2001) 210–213.
- [S2]A.C. Larson, R.B. Von Dreele, General structure analysis system (GSAS), Los Alamos National Laboratory Report LAUR 86–748, 1994.
- [S3]W. Weppner, R.A. Huggins, Determination of the kinetic parameters of mixed-conducting electrodes and application to the system Li<sub>3</sub>Sb, J. Electrochem. Soc. 124 (1977) 1569–1578.
- [S4]A.N. Mansour, Nickel monochromated Al Kα XPS spectra from the physical electronics model 5400 spectrometer, Surf. Sci. Spectra 3 (1994) 221–230.
- [S5]L. Hu, L.J. Luo, C.F. Lin, R.J. Li, Y.J. Chen, Ti<sub>2</sub>Nb<sub>2x</sub>O<sub>4+5x</sub> anode materials for lithium-ion batteries: a comprehensive review, J. Mater. Chem. A 6 (2018) 9799–9815.
- [S6]G.Q. Wang, Z.S. Wen, L.L. Du, Y.E. Yang, S. Li, J.C. Sun, S.J. Ji, Hierarchical Ti-Nb oxide microspheres with synergic multiphase structure as ultra-long-life anode materials for lithium-ion batteries, J. Power Sources 367 (2017) 106–115.
- [S7]F.M. Ran, X. Cheng, H.X. Yu, R.T. Zheng, T.T. Liu, X.F. Li, N. Ren, M. Shui, J. Shu, Nano-structured GeNb<sub>18</sub>O<sub>47</sub> as novel anode host with superior lithium storage performance, Electrochim. Acta 282 (2018) 634–641.
- [S8]C.F. Lin, G.Z. Wang, S.W. Lin, J.B. Li, L. Lu, TiNb<sub>6</sub>O<sub>17</sub>: a new electrode material for lithium-ion batteries, Chem. Commun. 51 (2015) 8970–8973.
- [S9]C.F. Lin, S. Yu, H. Zhao, S.Q. Wu, G.Z. Wang, L. Yu, Y.F. Li, Z.Z. Zhu, J.B. Li, S.W. Lin, Defective Ti<sub>2</sub>Nb<sub>10</sub>O<sub>27.1</sub>: an advanced anode material for lithium-ion batteries, Sci. Rep. 5 (2015) 17836.
- [S10]C. Yang, C.F. Lin, S.W. Lin, Y.J. Chen, J.B. Li, Cu<sub>0.02</sub>Ti<sub>0.94</sub>Nb<sub>2.04</sub>O<sub>7</sub>: an advanced anode material for lithium-ion batteries of electric vehicles, J. Power Sources 328 (2016) 336–344.
- [S11]C.F. Lin, S. Yu, S.Q. Wu, S.W. Lin, Z.Z. Zhu, J.B. Li, L. Lu, Ru<sub>0.01</sub>Ti<sub>0.99</sub>Nb<sub>2</sub>O<sub>7</sub> as an intercalation-type anode material with a large capacity and high rate performance for lithium-ion batteries, J. Mater. Chem. A 3 (2015) 8627–8635.
- [S12]L. Hu, C.F. Lin, C.H. Wang, C. Yang, J.B. Li, Y.J. Chen, S.W. Lin, TiNb<sub>2</sub>O<sub>7</sub> nanorods as a novel anode material for secondary lithium-ion batteries, Funct. Mater. Lett. 9 (2016) 1642004.
- [S13]C.F. Lin, L. Hu, C.B. Cheng, K. Sun, X.K. Guo, Q. Shao, J.B Li, N. Wang, Z.H. Guo, Nano-TiNb<sub>2</sub>O<sub>7</sub>/carbon nanotubes composite anode for enhanced lithium-ion batteries of electric vehicles, Electrochim. Acta 260 (2018) 65–72.
- [S14]G.Y. Liu, L.F. Zhao, R.X. Sun, W.H. Chen, M. Hu, M. Liu, X.Y. Duan, T.M. Zhang, Mesoporous TiNb<sub>2</sub>O<sub>7</sub> microspheres as high performance anode materials for lithium-ion batteries with high-rate capability and long cycle-life, Electrochim. Acta 259 (2018) 20–27.

- [S15]L. Hu, R.H. Lu, L.F. Tang, R. Xia, C.F. Lin, Z.B. Luo, Y.J. Chen, J.B. Li, TiCr<sub>0.5</sub>Nb<sub>10.5</sub>O<sub>29</sub>/CNTs nanocomposite as an advanced anode material for highperformance Li<sup>+</sup>-ion storage, J. Alloys Compd. 732 (2018) 116–123.
- [S16]C. Yang, S. Yu, C.F. Lin, F. Lv, S.Q. Wu, Y. Yang, W. Wang, Z.Z. Zhu, J.B. Li, N. Wang, S.J. Guo, Cr<sub>0.5</sub>Nb<sub>24.5</sub>O<sub>62</sub> nanowires with high electronic conductivity for high-rate and long-life lithium-ion storage, ACS Nano 11 (2017) 4217–4224.
- [S17]S.S. Qian, H.X. Yu, L. Yan, H.J. Zhu, X. Cheng, Y. Xie, N.B. Long, M. Shui, J. Shu, High-rate long-life pored nano-ribbon VNb<sub>9</sub>O<sub>25</sub> built by interconnected ultrafine nanoparticles as anode for lithium-ion batteries, ACS Appl. Mater. Interfaces 9 (2017) 30608–30616.