Solid phase synthesis of *C*-terminal glycopeptides via oxime resin aminolysis

Thomas Tremblay, Gabrielle Robert-Scott, Christopher Bérubé, Antoine Carpentier, Normand Voyer, Denis Giguère*

Département de Chimie, 1045 av. De la Médecine, Université Laval, Québec City, Qc, Canada G1V 0A6, PROTEO, RQRM

I. Experimental Section	S2
General Methods	
Preparation of starting glycosylamines	
Preparation of linear peptides	S4
Optimisation of the preparation of C-terminal glycopeptides	S6
General procedure for cleavage of oxime resin	S7
II. NMR spectra of compounds	
III. References	S111

I. Experimental Section

General Methods

All reactions were carried out under an argon atmosphere with dry solvents under anhydrous conditions, unless otherwise noted. Methylene chloride (CH₂Cl₂) and tetrahydrofuran (THF) were purified using a Vacuum Atmospheres Inc. Solvent Purification System. Yields refer to chromatographically and spectroscopically (¹H NMR) homogeneous materials, unless otherwise stated. Reagents were purchased at the highest commercial quality available and used without further purification, unless otherwise stated. Reactions were monitored by thin-layer chromatography (TLC) carried out on 0.25 mm E. Merck silica gel plates (60F-254) using UV light as visualizing agent and charring with a solution of 3 g of PhOH and 5 mL of H₂SO₄ in 100 mL of EtOH, followed by heating with a heatgun. SiliaFlash® P60 40-63 µm (230-400 mesh) was used for flash column chromatography. NMR spectra were recorded with an Agilent DD2 500 MHz spectrometer and calibrated using residual undeuterated solvent (Chloroform-d: ¹H δ = 7.26 ppm, ${}^{13}C\delta = 77.16$ ppm) as an internal reference. Coupling constants (J) are reported in Hertz (Hz), and the following abbreviations were used to designate multiplicities: s = singlet, d = doublet, t = triplet, q=quartet, p = quintet, m = multiplet, br = broad. Assignments of NMR signals were made by homonuclear (COSY) and heteronuclear (HSQC, HMBC, HOESY, 19F) two dimensional correlation spectroscopy. Infrared spectra were recorded using an ABB Bomem MB-Series Arid Zone FT-IR MB-155 Spectrometer. The absorptions are given in wavenumbers (cm^{-1}) . High resolution mass spectra (HRMS) were measured with an Agilent 6210 LC Time of Flight mass spectrometer in electrospray mode. Either protonated molecular ions $[M + nH]^{n+}$, sodium adducts $[M + Na]^+$ or ammonium adducts $[M + NH_4]^+$ were used for empirical formula confirmation. Optical rotations were measured with a JASCO DIP-360 digital polarimeter, and are reported in units of 10^{-1} (deg cm² g⁻¹). Oxime resin (1.1 mmol/g), coupling reagents and N-Boc-protected amino acids were purchased from Matrix Innovation, Bachem, Advanced Chemtech and GL Shangai.

Preparation of starting glycosylamines

The following amines were prepared according to previous known protocol (see Table S1).

Amines	References
NH ₂ O O O O O O O O S	1
	2
$H_2N \sim 0 \sim $	3
$BnO H_2N OMe$ S3	4
$A_{CO} = OAc$ $A_{CO} = OAc$ $A_{CO} = OAc$ $A_{CO} = N N N$ $A_{CO} = N N N N N N N N N N N N N N N N N N $	5
OTBS TBSO,,,,,,OH H ₂ N,,,OH S5	6
$\begin{array}{c} AcO \\ AcO \\ AcHN \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	7
FNH _{2F} S7	8

Table S1. References used to prepared amines 3, and S1–S7.

1-amino-1-deoxy-2,3,4,6-tetra-O-allyl-D-galactitol (S9). To a solution of S8⁹ (138.2 mg, 0.393 mmol, 1 equiv) in THF (4.62 mL) at 0 °C, was added LiAlH₄ (1 M in THF, 0.43 mL, 0.433 mmol, 1,1 equiv) and the mixture was stirred at 0 °C for 2 h. The mixture was then guenched with the addition of a saturated solution of potassium sodium tartrate tetrahydrate (5 mL) and the mixture was stirred at room temperature for 1 h. The mixture was then extracted with EtOAc (3×15 mL). The organic solution was dried over MgSO₄, filtered, and concentrated under reduced pressure. The obtained crude was purified by flash column chromatography (silica gel, MeOH/CH₂Cl₂, 1:19 \rightarrow 1:9) to give **S9** as a colorless oil (98.5 mg, 0.287 mmol, 73% yield). $R_f = 0.47$ (silica, MeOH/CH₂Cl₂, 1:9); $[\alpha]_D^{25} = -18.6$ (c 0.6, CHCl₃); IR (ATR, Diamond) v 3334, 3080, 2923, 2870, 1652, 1077, 922 cm⁻¹; ¹H NMR (500 MHz, Chloroform-d) δ 5.99 – 5.85 (m, 4H, OAll), 5.32 – 5.23 (m, 4H, OAll), 5.20 – 5.15 (m, 4H, OAll), 4.24 – 4.02 (m, 6H, OAll), 4.01 (ddt, J = 5.5, 2.7, 1.3 Hz, 2H, OAll), 3.96 (td, J = 6.3, 2.2 Hz, 1H, H5), 3.71 (t, J = 5.1 Hz, 1H, H3), 3.68 -3.64 (m, 2H, H2, H4), 3.59 (s, 2H, NH₂), 3.53 - 3.51 (m, 2H, H6a, H6b), 3.10 (dd, J = 13.3, 5.0 Hz, 1H, H1a), 2.98 (dd, J = 13.3, 5.4 Hz, 1H, H1b) ppm; ¹³C NMR (126 MHz, Chloroform-d) δ 134.69, 134.68, 134.66, 134.63 (4C, 4 × OAll), 117.68, 117.65, 117.62, 117.3 (4C, 4 × OAll), 80.1 (1C, C3), 78.6 (1C, C2), 77.6 (1C, C4), 73.4, 73.2, 72.4, 72.2 (4C, 4 × OAll), 71.1 (1C, C6), 69.9 (1C, C5), 41.1 (1C, C1) ppm; HRMS calcd for C₁₈H₃₂NO₅⁺ 342.2275, found 342.2264.

Preparation of linear peptides

Coupling of the first N-Boc amino acid on oxime resin

1.0 g of oxime resin (1.1 mmol/g) was added to a peptide synthesis vessel. The resin was treated three times with CH₂Cl₂. Amino acid (3.0 equiv, 3.3 mmol) and 6-Cl-HOBt (3.0 equiv, 3.3 mmol) were dissolved in DMF (10 mL) in a 50 mL flask and the mixture was stirred for 10 minutes at 0 °C. DIC (3.0 equiv, 3.3 mmol), DIPEA (6.0 equiv, 6.6 mmol) and DMAP (0.1 equiv, 0.11 mmol) were added and the mixture was introduced into the peptide synthesis vessel and stirred mechanically for 3h. The mixture was filtered under vacuum and the resin was washed [DMF (3 x 10 mL), MeOH (3 x 10 mL), DMF (3 x 10 mL)

mL), MeOH (3 x 10 mL)] and dried under reduced pressure. The first amino acid has been coupled twice to maximize the resin loading.

Acetylation of unreacted sites on oxime resin

The resin was treated three times with DMF (3 x 20 mL). A solution of 50% v/v DMF/acetic anhydride (20 mL) and DIPEA (1.0 mL) were added to the peptide synthesis vessel and shaken for 1 hour. Then, the mixture was filtered under vacuum and the resin was washed [DMF (3 x 10 mL), MeOH (3 x 10 mL), DMF (3 x 10 mL), MeOH (3 x 10 mL)].

Removal of the N-Boc protecting group

The resin was treated three times with CH_2Cl_2 (25 mL). A 50% v/v solution (20 mL) of trifluoroacetic acid (TFA) in CH_2Cl_2 was added to the peptide synthesis vessel and shaken for 30 minutes. Then, the mixture was filtered under vacuum and the resin was washed with [DMF (3 x 10 mL), MeOH (3 x 10 mL)] and with a solution of 10% v/v DIPEA in CH_2Cl_2 (20 mL).

Coupling of the subsequent *N*-Boc protected α-amino acids

The amino acid (3.0 equiv, 3.3 mmol) was dissolved in DMF (10 mL) in a 50 mL flask. The solution was cooled to 0 °C, then HCTU (3.0 equiv, 3.3 mmol) and 6-Cl-HOBt (3.0 equiv, 3.3 mmol) were added. The mixture was poured into the peptide synthesis vessel, in which the resin had been previously treated with CH_2Cl_2 (3 X 20 mL). DIPEA (6.0 equiv, 6.6 mmol) was also added to the vessel and the mixture was shaken for 3 h. After filtration under vacuum, the resin was washed [DMF (3 x 10 mL), MeOH (3 x 10 mL)] and dried under reduce pressure. The Kaiser ninhydrin test was performed to monitor the efficiency of the coupling, and the coupling procedure was repeated if needed.

Optimisation of the preparation of *C***-terminal glycopeptides**

Initially, we used 2.5 equivalents of DIPEA and 5 equivalents of AcOH at a concentration of 0.02 M for 2 hours at room temperature (Table S1). We firstly evaluated various solvents (entries 1–4) and CH₂Cl₂ provided the best results with formation of *C*-terminal glycopeptide **4a** in 84% yield (entry 3). Then, removing the base (entry 5), increasing the concentration (entry 6) or increasing the reaction time (entry 7) gave compound **4a** in lower yields. Finally, using a Bronsted acid, LiBr, instead of acetic acid provided a much lower yield for the desired glycopeptide (entry 8).¹⁰ The optimised conditions (entry 3) generated limited amount of by-products, thus allowing facile flash column chromatography purification after simply concentrating the crude mixture under reduced pressure.

$\frac{Ph}{BocHN} \xrightarrow{Ph} O-N \xrightarrow{Ph} BocHN \xrightarrow{Ph} O-N \xrightarrow{Ph} O-N$							
Entry	Solvent	DIPEA/AcOH	Concentration	Time	Yield		
		(equivalent)	(M)	(h)	(%) ^a		
1	CHCl ₃	2.5/5	0.02	2	76		
2	THF	2.5/5	0.02	2	76		
3	CH ₂ Cl ₂	2.5/5	0.02	2	84		
4	CH ₂ Cl ₂ /DMF	2.5/5	0.02	2	83		
5	CH_2Cl_2	0/5	0.02	2	57		
6	CH_2Cl_2	2.5/5	0.04	2	71		
7	CH_2Cl_2	2.5/5	0.02	18	74		
8 ^b	CH_2Cl_2	2.5/5	0.02	2	16		

Table S1. Optimisation of the preparation of C-terminal glycopeptide 4a from galactosylamine 3.

^aYields refer to isolated pure products after flash column chromatography.

^bLiBr was used instead of AcOH.

General procedure for cleavage of oxime resin

To a peptide synthesis vessel was added the oxime resin (1,1 mmol.g⁻¹, 1 equiv.) and was treated with CH_2Cl_2 (3 × 5 mL). To a solution of the oxime resin in CH_2Cl_2 (0.02 M) were added amino sugar (1 equiv.) and DIPEA (2.5 equiv.). The vessel was mechanically stirred for a few seconds and acetic acid (5 equiv.) was added to the vessel and the mixture was shaken at room temperature for the indicated time. The content of the syringe was then collected in a flask and the resin was washed with CH_2Cl_2 (3 × 5 mL) and MeOH (3 × 5 mL). The organic phase was concentrated under reduced pressure and the resulting crude was purified by flash column chromatography.

1,2:3,4-di-O-isopropylidene-6-deoxy-6-[(N-(N-tert-butoxycarbonyl)-L-phenylalanyl)]-L-

alanylamido-*a*-D-glucopyranoside (4a). The mixture was stirred 2 h and the resulting crude was purified by flash column chromatography (silica gel, EtOAc/Et₂O, 1:1 → 3:1) to give 4a as an amorphous white solid (96.2 mg, 0.166 mmol, 84% yield). $R_f = 0.54$ (silica, EtOAc/Et₂O 3:1); $[\alpha]_D = -26,6$ (*c* 1.0, CHCl₃); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.32 – 7.28 (m, 2H, Ar), 7.26 – 7.22 (m, 1H, Ar), 7.22 – 7.18 (m, 2H, Ar), 6.51 (d, *J* = 7.2 Hz, 1H, NHAla), 6.33 (s, 1H, C6-N*H*), 5.47 (d, *J* = 4.9 Hz, 1H, H1), 4.94 (d, *J* = 5.5 Hz, 1H, NHPhe), 4.59 (dd, *J* = 7.9, 2.4 Hz, 1H, H3), 4.40 (p, *J* = 7.1 Hz, 1H, CHAla), 4.35 (q, *J* = 7.5, 6.8, 6.3 Hz, 1H, CHPhe), 4.29 (dd, *J* = 5.0, 2.4 Hz, 1H, H2), 4.18 (dd, *J* = 7.8, 1.8 Hz, 1H, H4), 3.88 (ddd, *J* = 8.9, 3.7, 1.6 Hz, 1H, H6a), 3.59 (ddd, *J* = 13.7, 7.2, 3.9 Hz, 1H, H5), 3.19 (ddd, *J* = 12.9, 8.7, 3.7 Hz, 1H, H6b), 3.09 (dd, *J* = 13.9, 6.4 Hz, 1H, CH₂aPhe), 3.04 (dd, *J* = 13.9, 7.3 Hz, 1H, CH₂bPhe), 1.46 (s, 3H, CH₃), 1.45 (s, 3H, CH₃), 1.40 (s, 9H, C(CH₃)₃), 1.33 (s, 3H, CH₃), 1.31 (d, *J* = 7.8 Hz, 3H, CH₃Ala), 1.30 (s, 3H, CH₃) ppm; ¹³C NMR (126 MHz, Chloroform-*d*) δ 172.1, 171.2, 155.8 (3C, 3 × CO), 136.5, 129.4, 128.9, 127.2 (6C, Ar), 109.6, 109.0 (2C, 2 × C(CH₃)₂), 96.4 (1C, C1), 80.7 (1C, C(CH₃)₃), 71.7 (1C, C4), 71.0 (1C, C3), 70.7 (1C, C2), 66.0 (1C, C5), 55.9 (1C, CHPhe), 49.1 (1C, CHAla), 40.1 (1C, C6), 38.1 (1C, CH₂Phe), 28.4 (3C, C(CH₃)₃), 26.2, 26.1, 25.1, 24.5 (4C, 4 × CH₃), 18.3 (1C, CH₃Ala) ppm; HRMS calcd for C₂₉H₄₄N₃O₉+ [M + H]⁺ 578.3078, [M+H]⁺; found: 578.3080.

1,2:3,4-di-*O***-isopropylidene-6-deoxy-6-**[(*N*-(*N*-*tert*-**butoxycarbonyl**)-**L**-**phenylalanyl**)]-**Dalanylamido-** α -**D**-**glucopyranoside** (**4b**). The mixture was stirred 2 h and the resulting crude was purified by flash column chromatography (silica gel, EtOAc/Et₂O, 1:1 \rightarrow 3:1) to give **4b** as an amorphous white solid (87.8 mg, 0.152 mmol, 80 % yield). R_f = 0.58 (silica, EtOAc/Et₂O, 3:1); [α]_D²⁵ = -15,3 (*c* 1.0, CHCl₃);

IR (ATR, Diamond) v 3306, 3292, 2980, 1642, 1639, 1367, 1068 cm⁻¹; ¹H NMR (500 MHz, Chloroform*d*) δ 7.31 – 7.27 (m, 2H, Ar), 7.24 – 7.18 (m, 3H, Ar), 6.42 (d, *J* = 7.5 Hz, 1H, NHAla), 6.35 (s, 1H, C6-NH), 5.51 (d, *J* = 5.0 Hz, 1H, H1), 5.33 (s, 1H, NH, NHPhe), 4.59 (dd, *J* = 7.9, 2.5 Hz, 1H, H3), 4.39– 4.31 (m, 2H, CHAla, CHPhe), 4.30 (dd, *J* = 5.0, 2.5 Hz, 1H, H2), 4.17 (dd, *J* = 7.9, 1.8 Hz, 1H, H4), 3.82 (ddd, *J* = 9.4, 3.4, 1.8 Hz, 1H, H5), 3.69 (ddd, *J* = 14.0, 7.9, 3.4 Hz, 1H, H6a), 3.18 (ddd, J = 14.0, 9.3, 3.8 Hz, 1H, H6b), 3.03 (qd, *J* = 13.8, 7.1 Hz, 2H, CH₂Phe), 1.48 (s, 3H, CH₃), 1.44 (s, 3H, CH₃), 1.40 (s, 9H, C(CH₃)₃), 1.33 (s, 3H, CH₃), 1.32 (s, 3H, CH₃), 1.22 (d, *J* = 7.1 Hz, 3H, CH₃Ala) ppm; ¹³C NMR (126 MHz, Chloroform-*d*): δ 172.1, 171.2, 155.8 (3C, 3 × CO), 136.5, 129.4, 128.9, 127.2 (6C, Ar), 109.6, 109.0 (2C, 2 × *C*(CH₃)₂), 96.4 (1C, C1), 80.7 (1C, *C*(CH₃)₃), 71.7 (1C, C4), 70.9 (1C, C3), 70.6 (1C, C2), 66.0 (1C, C5), 55.9 (1C, CHPhe), 49.1 (1C, CHAla), 40.1 (1C, C6), 38.1 (1C, CH₂Phe), 28.4 (3C, C(CH₃)₃), 26.14, 26.11, 25.1, 24.5 (4C, 4 × CH₃), 18.3 (1C, CH₃Ala) ppm. HRMS calcd for C₂₉H₄₄N₃O₉+ [M + H]⁺ 578.3078, found 578.3094.

1,2:3,4-di-O-isopropylidene-6-deoxy-6-[(N-(N-tert-butoxycarbonyl)-L-alanyl)]-L-

phenylalanylamido-*α*-**D**-glucopyranoside (4c). The mixture was stirred 2 h and the resulting crude was purified by flash column chromatography (silica gel, EtOAc/Et₂O, 1:1 \rightarrow 3:1) to give 4c as an amorphous white solid (97.1 mg, 0.168 mmol, 79% yield). $R_f = 0.61$ (silica, EtOAc/Et₂O, 3:1); $[\alpha]_D^{25} = -38.7$ (*c* 0.4, CHCl₃); IR (ATR, Diamond) *v* 3285, 2980, 2935, 1695, 1643, 1165, 1068 cm⁻¹; ¹H NMR (500 MHz, Chloroform-*d*) δ 7.32 – 7.27 (m, 2H, Ar), 7.25 – 7.18 (m, 3H, Ar), 6.60 (d, *J* = 7.9 Hz, 1H, N*H*Phe), 6.18 (s, 1H, C6-N*H*), 5.43 (d, *J* = 5.0 Hz, 1H, H1), 4.87 (s, 1H, NHAla), 4.57 (q, *J* = 7.2 Hz, 1H, C*H*Phe), 4.51 (dd, *J* = 7.9, 2.4 Hz, 1H, H3), 4.26 (dd, *J* = 4.9, 2.4 Hz, 1H, H2), 4.09 (p, *J* = 7.3, 6.8, 5.9 Hz, 1H, C<u>*H*</u>Ala), 3.86 – 3.74 (m, 2H, H4, H5), 3.46 – 3.38 (m, 1H, H6a), 3.32 – 3.23 (m, 1H, H6b), 3.07 (d, *J* = 7.1 Hz, 2H, C*H*₂Phe), 1.50 (s, 3H, C*H*₃), 1.43 (s, 9H, C(C*H*₃)₃), 1.39 (s, 3H, C*H*₃), 1.31 (s, 3H, C*H*₃), 1.28 (d, *J* = 6.0 Hz, 6H, C*H*₃, C*H*₃Ala) ppm; ¹³C NMR (126 MHz, Chloroform-*d*) δ 172.4, 170.8, 154.2 (3C, 3 × CO), 136.8, 129.4, 128.9, 127.0, (6C, Ar), 109.4, 108.9 (2C, 2 × C(CH₃)₂), 96.3 (1C, C1), 80.5 (1C, C(CH₃)₃), 71.2 (1C, C4), 70.8 (1C, C3), 70.6 (1C, C2), 65.5 (1C, C5), 54.7 (1C, CHPhe), 50.7 (1C, CHAla), 39.9

 $(1C, C6), 38.4 (1C, CH_2Phe), 28.4 (3C, C(CH_3)_3), 26.2, 26.0, 25.2, 24.5 (4C, 4 × CH_3), 18.2 (1C, CH_3Ala)$ ppm. HRMS calcd for C₂₉H₄₄N₃O₉⁺: 578.3078, [M+H]⁺; found: 578.3085.

1,2:3,4-di-O-isopropylidene-6-deoxy-6-[(N-(N-tert-butoxycarbonyl)-L-phenylalanyl)]-glycylamido- α -D-glucopyranoside (4d). The mixture was stirred 2 h and the resulting crude was purified by flash column chromatography (silica gel, EtOAc/Et₂O, 1:1 \rightarrow 3:1) to give 4d a white solid (42.6 mg, 0.076 mmol, 46% yield). $R_f = 0.51$ (silica, EtOAc/Et₂O, 3:1); $[\alpha]_D^{25} = 58,0$ (c 1.0, CHCl₃); IR (ATR, Diamond) v 3227, 2982, 2924, 1676, 1647, 1516, 1072 cm⁻¹; ¹H NMR (500 MHz, Chloroform-d) δ 7.31 – 7.27 (m, 2H, Ar), 7.24 – 7.18 (m, 3H, Ar), 6.87 (s, 1H, NHGly), 6.50 (s, 1H, C6-NH), 5.49 (d, J = 5.0 Hz, 1H, H1), 5.26 (d, J = 7.9 Hz, 1H, NHPhe), 4.59 (dd, J = 7.9, 2,4 Hz, 1H, H3), 4.37 (q, J = 7.4 Hz, 1H, CHPhe), 4.29 (dd, J = 5.0, 2.4 Hz, 1H, H2), 4.18 (dd, J = 8.0, 1.8 Hz, 1H, H4), 3.91 (dd, J = 16.8, 5.7 Hz 1H, CHaGly), 3.86 (ddd, J = 9.0, 3.7, 1.8 Hz, 1H, H5), 3.81 (dd, J = 16.8, 5.4 Hz, 1H, CHbGly), 3.62 (ddd, J = 13.6, 7.3, 3.2 Hz, 1H, H6a), 3.22 (ddd, J = 13.5, 9.0, 4.1 Hz, 1H, H6b), 3.12 (dd, J = 13.9, 6.5 Hz, 1H, CH₂aPhe), 2.98 (dd, J = 13.7, 7.4 Hz, 1H, CH₂bPhe), 1.48 (s, 3H, CH₃), 1.43 (s, 3H, CH₃), 1.38 (s, 9H, $C(CH_3)_3$, 1.32 (s, 3H, CH₃), 1.31 (s, 3H, CH₃) ppm; ¹³C NMR (126 MHz, Chloroform-*d*): δ 171.9, 168.8, 155.9 (3C, 3 × CO), 136.7, 129.3, 128.8, 127.1 (6C, Ar), 109.6, 109.0 (2C, 2 × C(CH₃)₂), 96.3 (1C, C1), 80.6 (1C, C(CH₃)₃), 71.6 (1C, C4), 70.8 (1C, C3), 70.6 (1C, C2), 66.4 (1C, C5), 55.9 (1C, CHPhe), 43.1 (1C, CH₂Gly), 40.0 (1C, C6), 38.1 (1C, CH₂Phe), 28.3 (3C, C(CH₃)₃), 26.2, 26.1, 25.1, 24.5 (4C, 4 × CH₃) ppm. HRMS calcd for $C_{28}H_{42}N_3O_9^+$ [M + H]⁺ 564,2921, found 564,2927.

1,2:5,6-di-O-isopropylidene-3-deoxy-3-[(N-(N-tert-butoxycarbonyl)-L-phenylalanyl)]-L-

alanylamido-*a*-D-allofuranoside (5a). The mixture was stirred 2 h and the resulting crude was purified by flash column chromatography (silica gel, EtOAc/Et₂O, 1:1 → 3:1) to give **5a**, a white solid (78.7 mg, 0.136 mmol, 71% yield). $R_f = 0.66$ (silica, EtOAc/Et₂O, 3:1); $[\alpha]_D^{25} = 36.9$ (*c* 1.0, CHCl₃); IR (ATR, Diamond) v 3287, 2982, 2934, 1656, 1647, 1160, 1014 cm⁻¹; ¹H NMR (500 MHz, Chloroform-*d*) δ 7,31 – 7,27 (m, 2H, Ar), 7,25 – 7,17 (m, 3H, Ar), 6.55 (d, *J* = 7.1 Hz, 1H, NHAla), 6.27 (d, *J* = 7.1 Hz, 1H, C3-NH), 5.81 (d, *J* = 3.7 Hz, 1H, H1), 4.92 (s, 1H, NHPhe), 4.60 (dd, J = 4.9, 3.7 Hz, 1H, H2), 4.42 (p, *J* = 7.1 Hz, 1H, CHAla), 4.36 (s, 1H, CHPhe), 4.23 (td, *J* = 9.1, 4.8 Hz, 1H, H3), 4.17 (td, *J* = 6.5, 5.0 Hz, 1H, H5), 4.08 (dd, *J* = 8.4, 6.6 Hz, 1H, H6a), 3.89 (dd, *J* = 8.4, 6.3 Hz, 1H, H6b), 3.85 (dd, *J* = 9.5, 5.0 Hz, 1H, H4), 3.07 (d, *J* = 6.3 Hz, 2H, CH₂Phe), 1.56 (s, 3H, CH₃), 1.42 (s, 3H, CH₃), 1.39 (s, 9H, C(CH₃)₃), 1.33 (s, 3H, CH₃), 1.324 (s, 3H, CH₃) 1.317 (d, 3H, *J* = 7.1 Hz, CH₃Ala) ppm; ¹³C NMR (126 MHz, Chloroform-*d*): δ 171.6, 171.2, 155.5 (3C, 3 × CO), 136.5, 129.5, 128.9, 127.2 (6C, Ar), 112.9, 109.9 (2C, 2 × C(CH₃)₂), 104.3 (1C, C1), 80.5 (1C, C(CH₃)₃), 79.2 (1C, C2), 79.0 (1C, C4), 75.9 (1C, C5), 65.9 (1C, C6), 55.7 (1C, CHPhe), 53.6 (1C, C3), 49.1 (1C, CHAla), 38.3 (1C, CH₂Phe), 28.4 (3C, C(CH₃)₃), 26.8, 26.6, 26.5, 25.4 (4C, 4 × CH₃), 18.5 (1C, CH₃Ala) ppm. HRMS calcd for C₂₉H₄₄N₃O₉⁺ [M + H]⁺ 578.3078, found 578.3083.

1,2:5,6-di-*O*-isopropylidene-3-deoxy-3-[(*N*-(*N*-tert-butoxycarbonyl)-L-phenylalanyl)]-Dalanylamido- α -D-allofuranoside (5b). The mixture was stirred 2 h and the obtained crude was purified by flash column chromatography (silica gel, EtOAc/Et₂O, 1:1 \rightarrow 3:1) to give 5b, a white solid (89.0 mg, 0.154 mmol, 79% yield). $R_f = 0.59$ (silica, EtOAc/Et₂O, 3:1); $[\alpha]_D^{25} = 61.8$ (*c* 0.8, CHCl₃); IR (ATR, Diamond) *v* 3340, 2980, 1691, 1647, 1645, 1518, 1167 cm⁻¹; ¹H NMR (500 MHz, Chloroform-*d*) δ 7.33 - 7.28 (m, 2H, Ar), 7.25 - 7.17 (m, 3H, Ar), 6.39 (d, J = 8.0 Hz, 1H, C3-N*H*), 6.21 (d, J = 7.6 Hz, 1H, N*H*Ala), 5.83 (d, J = 3.7 Hz, 1H, H1), 5.12 (s, 1H, N*H*Phe), 4.60 (dd, J = 4.9, 3.7 Hz, 1H, H2), 4.37 (p, J = 8.5, 7.8 Hz, 1H, C*H*Ala), 4.34 - 4.27 (m, 1H, C*H*Phe), 4.26 - 4.16 (m, 2H, H3, H5), 4.02 (dd, J = 8.4, 6.9 Hz, 1H, H6a), 3.89 (dd, J = 9.6, 3.8 Hz, 1H, H4), 3.87 (dd, J = 8.4, 6.2 Hz, 1H, H6b), 3.09 - 3.00 (m, 2H, C*H*₂Phe), 1.56 (s, 3H, C*H*₃), 1.43 (s, 3H, C*H*₃), 1.40 (s, 9H, C(C*H*₃)₃), 1.33 (s, 3H, C*H*₃), 1.32 (s, 3H, C*H*₃), 1.20 (d, J = 6.9 Hz, 3H, C*H*₃Ala) ppm; ¹³C NMR (126 MHz, Chloroform-d) δ 171.6, 171.3, 155.5 (3C, 3 × CO), 136.8, 129.4, 128.9, 127.2 (6C, Ar), 112.8, 110.0 (2C, 2 × C(CH₃)₂), 104.2 (1C, C1), 80.5 (1C, C(CH₃)₃), 79.1 (1C, C2), 78.9 (1C, C4), 75.3 (1C, C5), 65.1 (1C, C6), 56.2 (1C, CHPhe), 52.8 (1C, C3), 48.9 (1C, CHAla), 38.8 (1C, CH₂Phe), 28.4 (3C, C(CH₃)₃), 26.8, 26.5, 26.4, 25.3 (4C, 4 × CH₃), 17.7 (1C, CH₃Ala) ppm. HRMS calcd for C₂₉H₄₄N₃O₉⁺ [M + H]⁺ 578.3078, found 578.3078.

1,2:5,6-di-O-isopropylidene-3-deoxy-3-[(N-(N-tert-butoxycarbonyl)-L-alanyl)]-L-

phenylalanylamido-α-D-allofuranoside (5c). The mixture was stirred 2 h and the obtained crude was purified by flash column chromatography (silica gel, EtOAc/Et₂O, 1:1 \rightarrow 3:1) to give **5c**, a white solid (76.1 mg, 0.132 mmol, 69% yield). $R_f = 0.60$ (silica, EtOAc/Et₂O, 3:1); $[\alpha]_D^{25} = 35,0$ (*c* 1.0, CHCl₃); IR (ATR, Diamond) *v* 3288, 2982, 2934, 1655, 1647, 1163, 1016 cm⁻¹; ¹H NMR (500 MHz, Chloroform-*d*) δ 7.33 – 7.28 (m, 2H, Ar), 7.27 – 7.21 (m, 3H, Ar), 6.87 (d, *J* = 6.3 Hz, 1H, NHPhe), 6.03 (d, *J* = 6.8 Hz, 1H, C3-NH), 5.77 (d, *J* = 3.7 Hz, 1H, H1), 4.96 (d, *J* = 5.3 Hz, 1H, NHAla), 4.65 (q, *J* = 7.8 Hz, 1H, CHPhe), 4.52 (t, *J* = 3.9 Hz, 1H, H2), 4.16 (s, 1H, CHAla), 4.13 – 4.01 (m, 3H, H3, H5, H6a), 3.86 (t, *J* = 7.8, 7.0 Hz, 1H, H6b), 3.68 (dd, *J* = 9.5, 3.6 Hz, 1H, H4), 3.11 (dd, *J* = 13.8, 6.1 Hz, 1H, CHaPhe), 2.99 (dd, *J* = 13.7, 8.1 Hz, 1H, CHbPhe), 1.42 (s, 15H, 2 × CH₃, C(CH₃)₃), 1.35 (s, 3H, CH₃), 1.30 (d, *J* = 7.1 Hz, 3H, CH₃Ala), 1.27 (s, 3H, CH₃) ppm; ¹³C NMR (126 MHz, Chloroform-*d*) δ 172.5, 170.5, 155.5 (3C, 3 × CO), 136.4, 129.4, 128.9, 127.4 (6C, Ar), 112.7, 109.8 (2C, 2 × C(CH₃)₂), 104.3 (1C, C1), 80.3 (1C, C(CH₃)₃), 78.9 (1C, C2), 78.6 (1C, C4), 75.5 (1C, C5), 65.1 (1C, C6), 54.4 (1C, CHPhe), 53.2 (1C, C3), 50.3 (1C, CHAla), 38.6 (1C, CH₂Phe), 28.4 (3C, C(CH₃)₃), 26.7, 26.4, 25.5 (4C, 4 × CH₃), 18.6 (1C, CH₃Ala) ppm. HRMS calcd for C₂₉H₄₄N₃O₉⁺ [M + H]⁺ 578.3078, found 578.3079.

1,2:5,6-di-*O*-**isopropylidene-3-deoxy-3-**[(*N*-(*N*-*tert*-**butoxycarbonyl**)-**L**-**alanyl**)]-**glycylamido**-*α*-**D**-**allofuranoside** (**5d**). The mixture was stirred 2 h and the obtained crude was purified by flash column chromatography (silica gel, EtOAc/Et₂O, 1:1 → 3:1) to give **5d**, a white solid (51.4 mg, 0.091 mmol, 47% yield). R_f = 0.42 (silica, EtOAc/Et₂O, 3:1); [α]_D = 46.5 (*c* 0.4 CHCl₃); IR (ATR, Diamond) *v* 3423, 3342, 2988, 1701, 1655, 1647, 1016 cm⁻¹; ¹H NMR (500 MHz, Chloroform-*d*) δ 7.32 − 7.27 (m, 2H, Ar), 7.25 − 7.14 (m, 3H, Ar), 6.82 (s, 1H, N*H*Gly), 6.45 (s, 1H, C3-N*H*), 5.81 (d, *J* = 3.7 Hz, 1H, H1), 5.07 (s, 1H, N*H*Phe), 4.61 (dd, *J* = 4.9, 3.8 Hz, 1H, H2), 4.40 (q, *J* = 8.0, 6.1 Hz, 1H, C*H*Phe), 4.26 − 4.17 (m, 2H, H3, H5), 4.04 (ddd, *J* = 7.9, 6.8, 1.0 Hz, 1H, H6a), 3.96 − 3.83 (m, 4H, H4, H6b, CH₂Gly), 3.12 (dd, *J* = 13.9, 6.2 Hz, 1H, C*H*₂aPhe), 3.06 − 2.96 (m, 1H, C*H*₂bPhe), 1.54 (s, 3H, C*H*₃), 1.42 (s, 3H, C*H*₃), 1.37 (s, 9H, C(C*H*₃)₃), 1.32 (s, 6H, 2 × C*H*₃) ppm; ¹³C NMR (126 MHz, Chloroform-*d*) δ 172.1, 168.4, 155.6 (3C, 3 × CO), 136.6, 129.3, 128.8, 127.1 (6C, Ar), 112.8, 109.9 (2C, 2 × C(CH₃)₂), 104.2 (1C, C1), 80.5 (1C, C(CH₃)₃), 79.0 (1C, C2), 78.6 (1C, C4), 75.6 (1C, C5), 65.4 (1C, C6), 55.9 (1C, CHPhe), 53.2 (1C, C3), 43.3 (1C, CH₂Gly), 38.4 (1C, CH₂Phe), 28.4 (3C, C(CH₃)₃), 26.7, 26.4, 25.3 (4C, 4 × CH₃) ppm. HRMS calcd for C₂₈H₄₂N₃O₉+ [M + H]⁺ 564.2921, found 564.2919.

2,3:5,6-di-*O*-isopropylidene-1-deoxy-1-[(*N*-(*N*-tert-butoxycarbonyl)-L-phenylalanyl)]-L-

alanylamido- α/β -D-mannofuranoside (6a). The mixture was stirred 18 h and the obtained crude was purified by flash column chromatography (silica gel, acetone/toluene, 0:1 \rightarrow 1:1) to give an anomeric mixture (α/β , 1.67:1) of 6a as an amorphous white solid (52.8 mg, 0.091 mmol, 54% yield). Pure fractions of each anomers could be isolated for characterizations. *Analytical data for* 6aa : $R_f = 0.69$ (silica, acetone/toluene 3:7); [α]_D²⁵ = -21.8 (*c* 0.5, CHCl₃); IR (ATR, Diamond) v 3296, 2982, 2937, 1651, 1506, 1067 cm⁻¹; ¹H NMR (500 MHz, Chloroform-*d*) δ 7.30 – 7.25 (m, 2H, Ar), 7.24 – 7.15 (m, 3H, Ar), 6.86 (d, J = 9.3 Hz, 1H, C1-NH), 6.66 (d, J = 5.2 Hz, 1H, NHAla), 5.35 (dd, J = 9.3, 3.8 Hz, 1H, 1H), 4.98 (d, J = 9.3 Hz, 1H, 1H)J = 7.2 Hz, 1H, NHPhe), 4.77 (dd, J = 6.1, 3.4 Hz, 1H, H3), 4.57 (dd, J = 6.0, 3.8 Hz, 1H, H2), 4.46 (p, J = 7.1 Hz, 1H, CHAla), 4.41 - 4.34 (m, 1H, CHPhe), 4.36 (ddd, J = 8.4, 5.8, 4.2 Hz, 1H, H5), 4.07 (dd, J= 8.9, 5.9 Hz, 1H, H6a) 4.04 (dd, J = 8.9, 4.2 Hz, 1H, H6b), 3.47 (dd, J = 8.4, 3.4 Hz, 1H, H4), 3.10 -2.97 (m, 2H, CH₂Phe), 1.53 (s, 3H, CH₃), 1.42 (s, 3H, CH₃), 1.38 (s, 9H, C(CH₃)₃), 1.362 (s, 3H, CH₃), 1.358 (s, 3H, CH₃), 1.33 (d, J = 7.1 Hz, 3H, CH₃Ala) ppm; ¹³C NMR (126 MHz, Chloroform-d) δ 171.7, 171.3, 155.5 (3C, 3 × CO), 136.6, 129.5, 128.8, 127.1 (6C, Ar), 113.3, 109.5 (2C, 2 × C(CH₃)₂), 80.4 (1C, *C*(CH₃)₃), 80.1 (1C, C1), 79.8 (1C, C3), 79.1 (1C, C2), 78.5 (1C, C4), 72.9 (1C, C5), 67.3 (1C, C6), 55.6 (1C, CHPhe), 49.0 (1C, CHAla), 38.4 (1C, CH₂Phe), 28.4 (3C, C(CH₃)₃), 27.2, 25.9, 25.3, 24.8 (4C, 4 × *C*H₃), 18.2 (1C, *C*H₃Ala) ppm. HRMS calcd for $C_{29}H_{47}N_4O_9^+$ [M + NH4]⁺ 595.3338, found 595.3325. Analytical data for **6aB** : $R_f = 0.64$ (silica, acetone/toluene 3:7); $[\alpha]_D^{25} = -12.9$ (c 0.3, CHCl₃); IR (ATR, Diamond) v 3285, 2984, 2934, 1647, 1541, 1067 cm⁻¹; ¹H NMR (500 MHz, Chloroform-*d*) δ 7.37 – 7.27 (m, 4H, Ar, C1-NH), 7.21 – 7.16 (m, 2H, Ar), 6.33 (d, J = 7.2 Hz, 1H, NHAla), 5.34 (d, J = 6.8 Hz, 1H, H1), 4.95 (d, J = 5.1 Hz, 1H, NHPhe), 4.88 (dd, J = 5.9, 3.8 Hz, 1H, H3), 4.81 (d, J = 6.0 Hz, 1H, H2), 4.41 - 4.34 (m, 2H, H5, CHAla), 4.26 (q, J = 6.2 Hz, 1H, CHPhe), 4.10 - 3.98 (m, 3H, H4, H6a, H6b,), 3.11 (dd, J = 14.0, 6.1 Hz, 1H, CH₂aPhe), 3.03 (dd, J = 13.9, 7.5 Hz, 1H, CH₂bPhe), 1.49 (s, 3H, CH₃), 1.42 (s, 3H, CH₃), 1.41 (s, 9H, C(CH₃)₃), 1.35 (s, 3H, CH₃), 1.33 (s, 3H, CH₃), 1.30 (d, J = 7.2 Hz, 3H, CH₃Ala) ppm; ¹³C NMR (126 MHz, Chloroform-d) δ 172.1, 171.6, 156.1 (3C, 3 × CO), 136.0, 129.3, 129.1, 127.5 (6C, Ar), 113.0, 109.2 (2C, $2 \times C(CH_3)_2$), 86.9 (1C, C1), 85.5 (1C, C2), 82.3 (1C, C4), 81.2 (1C, C(CH₃)₃), 80.6 (1C, C3), 73.4 (1C, C5), 67.0 (1C, C6), 56.5 (1C, CHPhe), 49.3 (1C, CHAla), 37.8 (1C, CH₂Phe), 28.4 (3C, C(CH₃)₃), 27.0, 26.1, 25.3, 24.7 (4C, 4 × CH₃), 17.3 (1C, CH₃Ala) ppm. HRMS calcd for $C_{29}H_{47}N_4O_9^+$ [M + NH₄]⁺ 595.3338, found 595.3327.

2,3:5,6-di-*O*-isopropylidene-1-deoxy-1-[(*N*-(*N*-tert-butoxycarbonyl)-L-phenylalanyl)]-Dalanylamido- α/β -D-mannofuranoside (6b). The mixture was stirred 18 h and the obtained crude was purified by flash column chromatography (silica gel, acetone/toluene, 0:1 \rightarrow 1:1) to give an anomeric

mixture (α/β , 1:1.58) of **6b** as an amorphous white solid (41.3 mg, 0.071 mmol, 59% yield). Pure fractions of each anomers could be isolated for characterizations. Analytical data for $6b\alpha$: $R_f = 0.52$ (silica, acetone/toluene 3:7); $[\alpha]_{D}^{25} = -4.7$ (c 0.6, CHCl₃); IR (ATR, Diamond) v 3306, 2980, 1701, 1653, 1369, 1165, 1067 cm⁻¹; ¹H NMR (500 MHz, Chloroform-*d*) δ 7.32 – 7.27 (m, 2H, Ar), 7.26 – 7.16 (m, 3H, Ar), 7.00 (d, J = 9.3 Hz, 1H, C1-NH), 6.29 (d, J = 7.6 Hz, 1H, NHAla), 5.32 (dd, J = 9.3, 3.8 Hz, 1H, H1), 5.03 (s, 1H, NHPhe), 4.77 (dd, J = 6.1, 3.4 Hz, 1H, H3), 4.58 (dd, J = 6.0, 3.8 Hz, 1H, H2), 4.43 (p, J = 6.0, 3.8 Hz, 1H, 1H, 1H), 4.43 (p, J = 6.0, 3.8 Hz, 1H, 1H, 1H), 4.43 (p, J = 6.0, 3.8 Hz, 1H, 1H, 1H), 4.43 (p, J = 6.0, 3.8 Hz, 1H, 1H, 1H), 4.43 (p, J = 6.0, 3.8 Hz, 1H, 1H, 1H), H = 6.0, 3.8 Hz, 1H, 1H, 1H, 6.8 Hz, 1H, CHAla), 4.38 - 4.31 (m, 1H, CHPhe) 4.34 (dt, J = 8.4, 5.0 Hz, 1H, H5), 4.05 - 4.01 (m, 2H, H6a, H6b), 3.48 (dd, J = 8.4, 3.4 Hz, 1H, H4), 3.11 - 2.97 (m, 2H, CH₂Phe), 1.52 (s, 3H, CH₃), 1.42 (s, 3H, CH₃), 1.40 (s, 9H, C(CH₃)₃), 1.36 (s, 3H, CH₃), 1.35 (s, 3H, CH₃), 1.20 (d, J = 6.9 Hz, 3H, CH₃Ala) ppm; ¹³C NMR (126 MHz, Chloroform-*d*): δ 171.8, 171.3, 155.3 (3C, 3 × CO), 136.6, 129.4, 128.9, 127.2 (6C, Ar), 113.4, 109.5 (2C, 2 × C(CH₃)₂), 80.4 (1C, C(CH₃)₃), 80.3 (1C, C1), 79.8 (1C, C3), 79.2 (1C, C2), 78.5 (1C, C4), 72.9 (1C, C5), 67.3 (1C, C6), 56.1 (1C, CHPhe), 48.9 (1C, CHAla), 39.0 (1C, CH₂Phe), 28.4 (3C, C(CH₃)₃), 27.2, 26.0, 25.3, 24.8 (4C, 4 × CH₃), 17.8 (1C, CH₃Ala) ppm. HRMS calcd for C₂₉H₄₇N₄O₉⁺ [M + NH4]⁺ 595.3338, found 595.3319. Analytical data for **6b** β : $R_f = 0.54$ (silica, acetone/toluene. 3:7): $[\alpha]_{D}^{25} = 16.8 (c \ 0.9, CHCl_3); IR (ATR, Diamond crystal); v 3356, 3190, 2924, 1645,$ 1367, 1167, 1067 cm⁻¹; ¹H NMR (500 MHz, Chloroform-*d*) δ 7.65 (d, *J* = 5.9 Hz, 1H, C1-N*H*), 7.32 – 7.28 (m, 2H, Ar), 7.25 - 7.22 (m, 1H, Ar), 7.19 - 7.15 (m, 2H, Ar), 6.44 (d, J = 7.3 Hz, 1H, NHAla), 5.27(d, J = 6.7 Hz, 1H, H1), 5.19 (d, J = 6.8 Hz, 1H, NHPhe), 4.90 (dd, J = 5.9, 3.7 Hz, 1H, H3), 4.84 (d, J = 5.9, 1H, H2), 5.19 (d, J = 6.8 Hz, 1H, NHPhe), 4.90 (dd, J = 5.9, 1H, H2), 5.19 (d, J = 6.8 Hz, 1H, NHPhe), 5.19 (d, J = 5.9, 1H, H2), 5.19 (d, J = 6.8 Hz, 1H, NHPhe), 5.19 (d, J = 5.9, 1H, H2), 5.19 (d, J = 6.8 Hz, 1H, NHPhe), 5.19 (d, J = 5.9, 1H, H2), 5.19 (d, J = 6.8 Hz, 1H, NHPhe), 5.19 (d, J = 5.9, 1H, H2), 5.19 (d, J = 5.9, 1H, H25.7 Hz, 1H, H2), 4.42 – 4.32 (m, 2H, H5, CHAla), 4.18 (q, J = 7.2 Hz, 1H, CHPhe), 4.09 – 4.03 (m, 2H, H4, H6a), 4.00 (dd, J = 8.6, 4.8 Hz, 1H, H6b), 3.07 (dd, J = 13.6, 7.2 Hz, 1H, CH_2aPhe), 3.02 (dd, J = 13.7, 7.7 Hz, 1H, CH₂bPhe), 1.47 (s, 3H, CH₃), 1.42 (s, 3H, CH₃), 1.41 (s, 9H, C(CH₃)₃), 1.35 (s, 3H, CH₃), 1.31 (s, 3H, CH₃), 1.18 (d, J = 7.1 Hz, 3H, CH₃Ala) ppm; ¹³C NMR (126 MHz, Chloroform-d) δ 172.4, 171.6, 155.9 (3C, 3 × CO), 136.5, 129.8, 128.9, 127.3 (6C, Ar), 112.9, 109.1 (2C, 2 × C(CH₃)₂), 86.8 (1C, C1), 85.3 (1C, C2), 82.3 (1C, C4), 80.82 (1C, C3), 80.76 (1C, C(CH₃)₃), 73.5 (1C, C5), 66.9 (1C, C6), 56.8 (1C, CHPhe), 48.9 (1C, CHAla), 37.9 (1C, CH₂Phe), 28.4 (3C, C(CH₃)₃), 27.0, 26.1, 25.2, 24.7 (4C, $4 \times CH_3$), 17.2 (1C, CH_3Ala) ppm. HRMS calcd for $C_{29}H_{47}N_4O_9^+$ [M + NH4]⁺ 595.3338, found 595.3316.

2,3:5,6-di-O-isopropylidene-1-deoxy-1-[(N-(N-tert-butoxycarbonyl)-L-alanyl)]-D-

phenylalanylamido-\alpha-D-mannofuranoside (6c). The mixture was stirred 18 h and the obtained crude was purified by flash column chromatography (silica gel, acetone/toluene, $0:1 \rightarrow 1:1$) to give an inseparable anomeric mixture (α/β , 1.52:1) as an amorphous white solid (57.1 mg, 0.099 mmol, 57%) yield). $R_f = 0.58$ (silica, acetone/toluene 3:7); $[\alpha]_D^{25} = -5.6$ (c 0.3, CHCl₃); ¹H NMR (500 MHz, Chloroform-d) δ 7.39 – 7.15 (m, 10H, Ar), 7.14 (s, 1H, C1-NHβ), 6.74 (s, 1H, NHPheβ), 6.54 – 6.42 (m, 2H, C1-NH α , NHPhe α), 5.42 (d, J = 6.3 Hz, 1H, H1 β), 5.33 (dd, J = 9.4, 3.8 Hz, 1H, H1 α), 4.90 (s, 1H, NHAlaa), 4.75 (dd, J = 5.9, 3.6 Hz, 1H, H3 β), 4.72 (dd, J = 6.0, 3.4 Hz, 1H, H3 α), 4.70 (d, J = 5.4 Hz, 1H, H2 β), 4.67 – 4.61 (m, 2H, CHPhe α , CHPhe β), 4.51 (dd, J = 6.0, 3.8 Hz, 1H, H2 α), 4.37 (td, J = 7.9, 6.4, 4.6 Hz, 1H, H5 β), 4.33 (dt, J = 7.9, 5.9, 4.7 Hz, 1H, H5 α), 4.15 (s, 1H, CHAla α), 4.13 - 4.03 (m, 4H, $H6^{I}\alpha$, $H6^{II}\alpha$, $H6^{II}\beta$, $H6^{II}\beta$), 3.95 (qd, J = 7.1, 3.9 Hz, 1H, CHAla β), 3.71 (dd, J = 8.1, 3.6 Hz, 1H, H4 β), 3.48 (dd, J = 7.9, 3.4 Hz, 1H, H4 α), 3.38 (dd, J = 13.8, 3.2 Hz, 1H, CH₂aPhe β), 3.11 – 3.02 (m, 2H, CH_2 Phe α), 2.95 (dd, J = 13.9, 6.3 Hz, 1H, CH_2 bPhe β), 1.47 (s, 3H, $CH_3\beta$), 1.45 – 1.42 (m, 15H, $C(CH_3)_3\alpha$, $CH_{3\alpha}$, $CH_{3\beta}$), 1.39 – 1.33 (m, 12H, CH_{3} Ala β , 2 × $CH_{3\alpha}$, $CH_{3\beta}$), 1.32 – 1.28 (m, 18H, $C(CH_{3})_{3\beta}$, CH_{3} Ala α , CH₃α, CH₃β) ppm; ¹³C NMR (126 MHz, Chloroform-d) δ 172.5, 172.1, 171.4, 170.6, 157.6, 156.4 (6C, 6 × CO), 138.0, 136.1, 135.9, 129.6, 129.5, 129.2, 128.7, 128.4, 127.6, 127.2 (12C, Ar), 113.3, 113.0, 109.4, 109.3 (4C, $4 \times C(CH_3)_2$), 86.7 (1C, C1 β), 85.2 (1C, C2 β), 81.6 (1C, C4 β), 81.1 (2C, $2 \times C(CH_3)_3$), 80.4 (1C, C3β), 79.9 (1C, C1α), 79.8 (1C, C3α), 79.1 (1C, C2α), 78.4 (1C, C4α), 73.3 (1C, C5β), 73.0 (1C, C5α), 67.09 (1C, C6α), 67.08 (1C, C6β), 54.6 (1C, CHPheα), 53.6 (1C, CHPheβ), 51.7 (1C, CHAlaβ), 50.3 (1C, CHAlaα) 38.7 (1C, CH₂Pheα), 37.1 (1C, CH₂Pheβ), 28.4 (3C, C(CH₃)₃α), 28.3 (3C, C(CH₃)₃β), 27.13 (1C, CH₃α), 27.05 (1C, CH₃β), 26.2 (1C, CH₃β), 25.8 (1C, CH₃α), 25.4 (1C, CH₃α), 25.2 (1C, CH₃β), 24.8 (1C, CH₃β), 24.7 (1C, CH₃α), 18.5 (1C, CH₃Alaα), 17.9 (1C, CH₃Alaβ) ppm. HRMS calcd for $C_{29}H_{47}N_4O_9^+$ [M + NH₄]⁺ 595.3338, found 595.3318.

2,3:5,6-di-O-isopropylidene-1-deoxy-1-[(N-(N-tert-butoxycarbonyl)-L-phenylalanyl)]-glycylamidoβ-D-mannofuranoside (6d). The mixture was stirred 18 h and the obtained crude was purified by flash column chromatography (silica gel, acetone/toluene, $0:1 \rightarrow 1:1$) to give an anomeric mixture (α/β , 1.4:1) as an amorphous white solid (62.6 mg, 0.111 mmol, 64% yield). A pure fraction of the β anomer was used for characterization. $R_{f\alpha} = 0.39$ (silica, acetone/toluene 3:7); $R_{f\beta} = 0.43$ (silica, acetone/toluene 3:7); Analytical data for $6d\beta$: $[\alpha]_D^{25} = 6.2$ (c 0.7, CHCl₃); IR (ATR, Diamond) v 3273, 2926, 1684, 1653, 1207, 1163, 1067 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.50 (d, J = 5.4 Hz, 1H, C1-NH), 7.35 – 7.24 (m, 3H, Ar), 7.20 - 7.15 (m, 2H, Ar), 6.71 (t, J = 5.8 Hz, 1H, NHGly), 5.32 (d, J = 6.7 Hz, 1H, H1), 5.06 (d, J = 6.7 Hz, H1), 5.06 (d, J = 6.7 Hz, 1H, H1), 5.06 (d, J = 6.7 Hz, H1), 5.06 (d, J = 6.6.1 Hz, 1H, NHPhe), 4.89 (dd, J = 5.9, 3.6 Hz, 1H, H3), 4.85 (d, J = 5.9 Hz, 1H, H2), 4.35 (ddd, J = 7.4, 6.3, 4.8 Hz, 1H, H5), 4.22 (dt, J = 8.0, 6.0 Hz, 1H, CHPhe), 4.08 – 4.04 (m, 2H, H4, H6a), 4.00 (dd, J =8.7, 4.8 Hz, 1H, H6b), 3.93 (dd, J = 16.9, 6.2 Hz, 1H, CH_2aGly), 3.81 (dd, J = 16.9, 5.5 Hz, 1H, CH_2bGly), $3.15 (dd, J = 13.9, 5.9 Hz, 1H, CH_2aPhe), 3.00 (d, J = 14.0, 8.1 Hz, 1H, CH_2bPhe), 1.48 (s, 3H, CH_3),$ 1.41 (s, 3H, CH₃), 1.40 (s, 9H, C(CH₃)₃), 1.35 (s, 3H, CH₃), 1.32 ppm (s, 3H, CH₃); ¹³C NMR (126 MHz, CDCl₃) δ 172.0, 169.4, 156.1 (3C, 3 × CO), 136.3, 129.2, 129.0, 127.4 (6C, Ar), 113.0, 109.2 (2C, 2 × C(CH₃)₂), 86.8 (1C, C1), 85.3 (1C, C2), 82.3 (1C, C4), 81.1 (1C, C(CH₃)₃), 80.7 (1C, C3), 73.5 (1C, C5), 66.9 (1C, C6), 56.7 (1C, CHPhe), 43.5 (1C, CH₂Gly), 37.6 (1C, CH₂Phe), 28.4 (3C, C(CH₃)₃), 27.0, 26.1, 25.3, 24.7 (4C, $4 \times CH_3$) ppm; HRMS calcd for C₂₈H₄₅N₄O₉⁺ [M + NH₄]⁺ 581.3181, found 581.3155.

Methyl-3,4,6-Tri-*O*-benzyl-2-deoxy-2-[(*N*-(*N*-tert-butoxycarbonyl)-L-phenylalanyl)]-L-

alanylamido- α -D-glucopyranoside (7a). The mixture was stirred 48 h and the obtained crude was purified by flash column chromatography (silica gel, EtOAc/Hexane, 1:1 \rightarrow 3:1) to give 7a, a white solid (49.3 mg, 0.063 mmol, 90% yield). R_f = 0.54 (silica, EtOAc/Hexane 3:1); [α]_D²⁵ = 32.0 (*c* 0.5, CHCl₃); IR

(ATR, Diamond) v 3290, 1637, 1497, 1124, 1047, 727, 694 cm⁻¹; ¹H NMR (500 MHz, Chloroform-*d*) δ 7.36 – 7.22 (m, 16H, Ar), 7.19 – 7.11 (m, 4H, Ar), 6.56 (s, 1H, NHAla), 6.05 (s, 1H, C2-NH), 4.87 (s, 1H, NHPhe), 4.78 (d, *J* = 13.8 Hz, 1H, CH₂aOBn), 4.76 (d, *J* = 13.4 Hz, 1H, CH₂bOBn), 4.67 (d, *J* = 2.9 Hz, 1H, H1), 4.66 (d, *J* = 10.4 Hz, 1H, CH₂aOBn) 1H, 4.64 (d, *J* = 12.1 Hz, 1H, CH₂aOBn), 4.52 (d, *J* = 12.1 Hz, 1H, CH₂bOBn), 4.49 (d, *J* = 10.8 Hz, 1H, CH₂bOBn), 4.35 (s, 1H, CHPhe), 4.32 – 4.22 (m, 2H, H2, CHAla), 3.80 – 3.66 (m, 5H, H3, H4, H5, H6a, H6b), 3.36 (s, 3H, OCH₃) 3.06 (d, *J* = 5.9 Hz, 2H, CH₂Phe), 1.39 (s, 9H, C(CH₃)₃), 1.21 (d, *J* = 6.6 Hz, 3H, CH₃Ala) ppm; ¹³C NMR (126 MHz, Chloroform-*d*) δ 171.5, 171.1, 155.5 (3C, 3 × CO), 138.5, 138.2, 138.1, 136.4, 129.4, 128.9, 128.54, 128.53, 128.52, 128.02, 127.96, 127.9, 127.82, 127.80, 127.2 (24C, Ar), 98.7 (1C, C1), 80.9 (1C, C3), 80.6 (1C, *C*(CH₃)₃), 78.3 (1C, C4), 75.2, 75.1, 73.6 (3C, 3 × CH₂OBn), 70.9 (1C, C5), 68.6 (1C, C6), 55.7 (1C, CHPhe), 55.3 (1C, OCH₃), 53.0 (1C, C2), 49.1 (1C, CHAla), 38.2 (1C, CH₂Phe), 28.4 (3C, C(CH₃)₃), 18.5 (1C, CH₃Ala) ppm. HRMS calcd for C₄₅H₅₆N₃O₉⁺ [M + H]⁺ 782.4011, found 782.3980.

Methyl-3,4,6-Tri-O-benzyl-2-deoxy-2-[(N-(N-tert-butoxycarbonyl)-L-phenylalanyl)]-D-

alanylamido-*a*-D-glucopyranoside (7b). The mixture was stirred 48 h and the obtained crude was purified by flash column chromatography (silica gel, EtOAc/Hexane, 1:1 \rightarrow 3:1) to give 7b, a white solid (46.1 mg, 0.059 mmol, 63% yield). R_f = 0.56 (silica, EtOAc/Hexane 1:1); $[\alpha]_D^{25}$ = 70.9 (*c* 0.6, CHCl₃); IR (ATR, Diamond) v 3300, 2916, 2868, 1691, 1636, 1047, 695 cm⁻¹; ¹H NMR (500 MHz, Chloroform-*d*) δ 7.36 – 7.26 (m, 13H, Ar), 7.25 – 7.07 (m, 7H, Ar), 6.00 (d, *J* = 7.9 Hz, 1H, C2-N*H*), 5.80 (d, *J* = 5.5 Hz, 1H, N*H*Ala), 4.80 (d, *J* = 12.0 Hz, 1H, CH₂aOBn), 4.78 (s, 1H, N*H*Phe), 4.77 (d, *J* = 10.9 Hz, 1H, CH₂aOBn), 4.65 (d, *J* = 3.7 Hz, 1H, H1), 4.63 (d, *J* = 12.2 Hz, 1H, CH₂aOBn), 4.61 (d, *J* = 13.4 Hz, 1H, CH₂bOBn), 4.52 (d, *J* = 12.1 Hz, 1H, CH₂bOBn), 4.51 (d, *J* = 10.9 Hz, 1H, CH₂bOBn), 4.26 – 4.18 (m, 2H, H2, CHAla), 4.07 (q, *J* = 7.5 Hz, 1H, CH₂aPhe), 2.78 (dd, *J* = 12.5, 7.1 Hz, 1H, CH₂bPhe), 1.40 (s, 9H, C(CH₃)₃), 1.08 (d, *J* = 6.7 Hz, 3H, CH₃Ala) ppm; ¹³C NMR (126 MHz, Chloroform-*d*) δ 171.5, 171.0, 155.4 (3C, 3 × CO), 138.3, 138.1, 136.6, 129.3, 128.8, 128.6, 128.53, 128.51, 128.5, 128.0, 128.0, 127.9,

127.8, 127.7, 127.2 (24C, Ar), 98.7 (1C, C1), 80.9 (1C, C3), 80.4 (1C, $C(CH_3)_3$), 78.4 (1C, C4), 75.0, 74.8, 73.6 (3C, $3 \times CH_2OBn$), 70.9 (1C, C5), 68.7 (1C, C6), 56.4 (1C, CHPhe), 55.3 (1C, OCH₃), 52.9 (1C, C2), 48.8 (1C, CHAla), 38.6 (1C, CH₂Phe), 28.4 (3C, $C(CH_3)_3$), 17.8 (1C, CH₃Ala) ppm. HRMS calcd for C₄₅H₅₆N₃O₉⁺ [M + H]⁺ 782.4011, found 782.3992.

Methyl-3,4,6-Tri-*O*-benzyl-2-deoxy-2-[(*N*-(*N*-tert-butoxycarbonyl)-L-alanyl)]-L-

phenylalanylamido-α-D-glucopyranoside (7c). The mixture was stirred 48 h and the obtained crude was purified by flash column chromatography (silica gel, EtOAc/Hexane, 1:1 \rightarrow 3:1) to give a white solid **7c**, (36.0 mg, 0.046 mmol, 88% yield). $R_f = 0.56$ (silica, EtOAc/Hexane 3:1); $[\alpha]_D^{25} = 29.2$ (*c* 0.3, CHCl₃); IR (ATR, Diamond) v 3281, 2924, 2831, 1691, 1639, 1051, 692 cm⁻¹; ¹H NMR (500 MHz, Chloroform-*d*) δ 7.37 – 7.26 (m, 10H, Ar), 7.26 – 7.09 (m, 10H, Ar), 6.57 (d, *J* = 8.0 Hz, 1H, NHPhe), 6.28 (d, *J* = 7.4 Hz, 1H, C2-NH), 4.77 (s, 1H, NHAla), 4.75 (d, *J* = 10.9 Hz, 1H, CH₂aOBn), 4.73 (d, *J* = 11.2 Hz, 1H, CH₂bOBn), 4.69 – 4.59 (m, 4H, H1, CHPhe, CH₂aOBn, CH₂aOBn), 4.52 (d, *J* = 12.1 Hz, 1H, CH₂bOBn), 4.48 (d, *J* = 10.8 Hz, 1H, CH₂bOBn), 4.24 (td, *J* = 9.5, 3.6 Hz, 1H, H2), 4.03 (p, *J* = 7.2, 6.3 Hz, 1H, CH₂Phe), 1.42 (s, 9H, C(CH₃)₃), 1.24 (d, *J* = 7.1 Hz, 3H, CH₃Ala) ppm; ¹³C NMR (126 MHz, Chloroform-*d*) δ 172.5, 170.7, 155.5 (3C, 3 × CO), 138.6, 138.2, 138.1, 136.5, 129.4, 128.7, 128.5, 128.483, 128.477, 128.0, 127.94, 127.90, 127.81, 127.76, 127.7, 127.1 (24C, Ar), 98.5 (1C, C1), 80.6 (1C, C(CH₃)₃), 80.5 (1C, C3), 78.4 (1C, C4), 75.02, 74.95, 73.6 (3C, 3 × CH₂OBn), 70.7 (1C, C5), 68.7 (1C, C6), 55.1 (1C, OCH₃), 53.8 (1C, CHPhe), 53.4 (1C, C2), 50.7 (1C, CHAla), 37.5 (1C, CH₂Phe), 28.4 (3C, C(CH₃)₃), 18.3 (1C, CH₃Ala) ppm. HRMS calcd for C₄₅H₅₄N₃O₉+ [M + H]⁺ 780.3866, found 780.3858.

Methyl 3,4,6-Tri-O-benzyl-2-deoxy-2-[(N-(N-tert-butoxycarbonyl)-L-phenylalanyl)]-glycylamido- α -**D-glucopyranoside (7d).** The mixture was stirred 48 h and the obtained crude was purified by flash column chromatography (silica gel, EtOAc/Hexane, $1:1 \rightarrow 3:1$) to give a white solid (31.7 mg, 0.041) mmol, 51% yield). $R_f = 0.42$ (silica, EtOAc/Hexane 3:1); $[\alpha]_D^{25} = 70.3$ (c 0.1, CHCl₃); IR (ATR. Diamond) v 3304, 2914, 2866, 1691, 1637, 1047, 691 cm⁻¹; ¹H NMR (500 MHz, Chloroform-*d*) δ 7.38 – 7.21 (m, 16H, Ar), 7.19 – 7.13 (m, 4H, Ar), 6.21 (s, 1H, NHGly), 5.84 (d, J = 7.8 Hz, 1H, C2-NH), 4.84 (s, 1H, NHPhe), 4.83 (d, J = 12.0 Hz, 1H, CH₂aOBn), 4.80 (d, J = 11.0 Hz, 1H, CH₂aOBn), 4.67 – 4.58 (m, 3H, H1, CH_2aOBn , CH_2bOBn), 4.52 (d, J = 11.7 Hz, 2H, 2 × CH_2bOBn), 4.28 – 4.19 (m, 2H, H2, CHPhe), 3.78 – 3.65 (m, 6H, H3, H4, H5, H6a, H6b, CH₂aGly), 3.55 (dd, J = 16.7, 4.7 Hz, 1H, CH₂bGly), 3.32 (s, 3H, OCH₃), 3.08 (dd, J = 13.8, 6.4 Hz, 1H, CH₂aPhe), 2.92 (dd, J = 13.1, 7.2 Hz, 1H, CH₂bPhe), 1.40 (s, 9H, C(CH₃)₃) ppm; ¹³C NMR (126 MHz, Chloroform-*d*) δ 171.7, 168.2, 155.6 (3C, 3 × CO), 139.0, 138.2, 138.1, 136.5, 129.3, 128.9, 128.6, 128.5, 128.5, 128.1, 128.0, 127.9, 127.9, 127.8, 127.2 (24C, Ar), 98.6 (1C, C1), 80.8 (1C, C3), 80.5 (1C, C(CH₃)₃), 78.5 (1C, C4), 75.1, 75.0, 73.6 (3C, 3 × CH₂OBn), 70.9 (1C, C5), 68.6 (1C, C6), 56.0 (1C, CHPhe), 55.2 (1C, OCH₃), 52.9 (1C, C2), 43.2 (1C, CH₂Gly), 38.3 (1C, CH₂Phe), 28.4 (3C, C(CH₃)₃) ppm. HRMS calcd for $C_{44}H_{54}N_{3}O_{9}^{+}$ [M + H]⁺ 768.3855, found 768.3805.

1-[4-*O*-(**2**,**3**,**4**,**6**-Tetra-*O*-acetyl-β-D-galactopyranosyl)-2,**3**,**6**-tri-*O*-acetyl-β-D-glucopyranosyl]-4-[(*N*-(*N*-tert-butoxycarbonyl)-L-phenylalanyl)]-L-alanylamidomethyl-[**1**,**2**,**3**]-triazole (8a). The mixture was stirred 18h and the obtained crude was purified by flash column chromatography (silica gel, EtOAc/Et₂O, 3:1 → 9:1) to give **8a**, a white solid (39.1 mg, 0.038 mmol, 73% yield). R_f = 0.48 (silica, MeOH/CH₂Cl₂, 1:20); [α]_D²⁵ = -24.8 (*c* 0.5, CHCl₃); IR (ATR, Diamond); v 3310, 2926, 1751, 1653, 1217, 1167, 1043 cm⁻¹; ¹H NMR (500 MHz, Chloroform-*d*) δ 7.69 (s, 1H, Ar), 7.32 – 7.27 (m, 2H, Ar), 7.26 –

7.22 (m, 1H, Ar), 7.20 – 7.16 (m, 2H, Ar), 6.74 (s, 1H, CH₂N*H*), 6.35 (d, *J* = 7.6 Hz, 1H, N*H*Ala), 5.80 – 5.73 (m, 1H, H1¹), 5.46 – 5.31 (m, 3H, H2^I, H4¹, H4^{II}), 5.13 (dd, *J* = 10.4, 7.9 Hz, 1H, H2^{II}), 4.97 (dd, *J* = 10.5, 3.5 Hz, 1H, H3^{II}), 4.95 (s, 1H, N*H*Phe), 4.52 (d, *J* = 7.9 Hz, 1H, H1^{II}), 4.50 – 4.46 (m, 2H, C*H*₂aN*H*, H6a^I), 4.45 – 4.38 (m, 2H, C*H*Ala, C*H*₂bN*H*), 4.34 (s, 1H, C*H*Phe), 4.17 – 4.06 (m, 3H, H6b^I, H6a^{II}, H6b^{II}), 3.99 – 3.93 (m, 1H, H3^{II}), 3.90 (td, *J* = 6.8, 1.0 Hz, 1H, H5^{II}), 3.82 (ddd, *J* = 9.9, 4.8, 1.8 Hz, 1H, H5^{II}), 3.01 (dd, *J* = 14.1, 6.6 Hz, 1H, C*H*₂aPhe), 2.97 (dd, *J* = 14.4, 7.9 Hz, 1H, C*H*₂bPhe), 2.16 (s, 3H, COC*H*₃), 2.11 (s, 3H, COC*H*₃), 2.08 (s, 3H, COC*H*₃), 2.05 (s, 6H, 2 × COC*H*₃), 1.97 (s, 3H, COC*H*₃), 1.86 (s, 3H, COC*H*₃), 1.39 (s, 9H, C(C*H*₃)₃), 1.31 (d, *J* = 7.1 Hz, 3H, C*H*₃Ala) ppm; ¹³C NMR (126 MHz, Chloroform-*d*) δ 171.9, 171.5, 170.5, 170.5, 170.3, 170.2, 169.7, 169.2, 169.2 (10C, 10 × CO), 136.4, 129.3, 129.0, 127.4, 121.0 (8C, Ar), 101.3 (1C, C1^{II}), 85.7 (1C, C1^I), 80.9 (1C, *C*(CH₃)₃), 76.0 (1C, C5^I), 75.7 (1C, C3^I), 72.7 (1C, C2^I), 71.1 (1C, C3^{II}), 71.0 (1C, C5^{II}), 70.7 (1C, C4^{II}), 69.2 (1C, C2^{II}), 66.7 (1C, C4^{II}), 61.7 (1C, C6^{II}), 61.0 (1C, C6^{II}), 56.0 (1C, CHPhe), 49.0 (1C, CHAla), 38.0 (1C, *C*H₂Phe), 35.2 (1C, CH₂NH), 28.4 (3C, C(CH₃)₃), 21.0, 20.85, 20.82, 20.79, 20.77, 20.7, 20.4 (7C, 7 × COCH₃), 17.6 (1C, CH₃Ala) ppm. HRMS calcd for C4₆H₆₃N₆O₂₁⁺ [M + H]⁺ 1035.4041, found 1035.4046.

1-[4-*O***-(2,3,4,6-Tetra-***O***-acetyl-β-D-galactopyranosyl)-2,3,6-tri-***O***-acetyl-β-D-glucopyranosyl]-4-[(***N***-(***N***-tert-butoxycarbonyl)-L-phenylalanyl)]-D-alanylamidomethyl-[1,2,3]-triazole (8b). The mixture was stirred 18 h and the obtained crude was purified by flash column chromatography (silica gel, EtOAc/Et₂O, 3:1 → 9:1) to give 8b, a white solid (32.6 mg, 0.031 mmol, 60% yield). R_f = 0.36 (silica, MeOH/CH₂Cl₂ 1:20); IR (ATR, Diamond)** *v* **3321, 2980, 1744, 1647, 1217, 1167, 1043 cm⁻¹; ¹H NMR (500 MHz, Chloroform-***d***) δ 7.70 (s, 1H, Ar), 7.32 – 7.23 (m, 3H, Ar), 7.20 – 7.16 (m, 2H, Ar), 7.11 (s, 1H, CH₂N***H***), 6.11 (d,** *J* **= 7.1 Hz, 1H, N***H***Ala), 5.76 (d,** *J* **= 8.9 Hz, 1H, H1^I), 5.42 – 5.31 (m, 3H, H2^I, H4^I, H4^{II}), 5.13 (dd,** *J* **= 10.5, 7.9 Hz, 1H, H2^{II}), 5.10 (d,** *J* **= 6.1 Hz, 1H, N***H***Phe), 4.97 (dd,** *J* **= 10.4, 3.4 Hz, 1H, H3^{II}), 4.51 (d,** *J* **= 7.8 Hz, 1H, H1^{II}), 4.50 – 4.43 (m, 3H, CH₂N***H***, Hb6^{II}), 4.41 (p,** *J* **= 7.5 Hz, 1H, CHAla), 4.21 – 4.07 (m, 4H, Ha6^{II}, Hb6^{II}, CHPhe), 3.98 – 3.92 (m, 1H, H3^{II}), 3.92 – 3.86 (m, 2H, H5^I, H5^{II}), 3.03 (d,** *J* **= 7.3 Hz, 2H, CH₂Phe), 2.16 (s, 3H, COCH₃), 2.10 (s, 3H, COCH₃), 2.08 (s, 3H, COCH₃), 2.059 (s, 3H, COCH₃), 2.056 (s, 3H, COCH₃), 1.97 (s, 3H, COCH₃), 1.85 (s, 3H, COCH₃), 1.38**

(s, 9H, C(CH₃)₃), 1.20 (d, J = 7.1 Hz, 3H, CH₃Ala) ppm; ¹³C NMR (126 MHz, Chloroform-d) δ 172.0, 171.5, 170.5, 170.4, 170.3, 170.2, 169.6, 169.3, 169.2, 155.9 (10C, 10 × CO), 136.5, 129.3, 128.9, 127.3, 121.0 (8C, Ar), 101.3 (1C, C1^{II}), 85.7 (1C, C1^I), 80.8 (1C, C(CH₃)₃), 76.1 (1C, C5^I), 75.8 (1C, C3^I), 72.7 (1C, C2^I), 71.1 (1C, C3^{II}), 71.0 (1C, C5^{II}), 70.8 (1C, C4^{II}), 69.2 (1C, C2^{II}), 66.7 (1C, C4^{II}), 61.9 (1C, C6^I), 61.0 (1C, C6^{II}), 56.8 (1C, CHPhe), 48.9 (1C, CHAla), 38.2 (1C, CH₂Phe), 35.3 (1C, CH₂NH), 28.4 (3C, C(CH₃)₃), 21.0, 20.9, 20.8, 20.8, 20.7, 20.4 (7C, 2 × COCH₃), 17.5 (1C, CH₃Ala) ppm. HRMS calcd for C₄₆H₆₃N₆O₂₁⁺ [M + H]⁺ 1035.4041, found 1035.3986.

1-[4-O-(2,3,4,6-Tetra-O-acetyl-β-D-galactopyranosyl)-2,3,6-tri-O-acetyl-β-D-glucopyranosyl]-4-[(N-(N-tert-butoxycarbonyl)-L-alanyl)]-L-phenylalanylamidomethyl-[1,2,3]-triazole (8c). The mixture was stirred 18 h and the obtained crude was purified by flash column chromatography (silica gel, EtOAc/Et₂O, $3:1 \rightarrow 9:1$) to give **8c**, a white solid (38.3 mg, 0.037 mmol, 71% yield) $R_f = 0.40$ (silica, MeOH/CH₂Cl₂, 1:20); $[\alpha]_D^{25} = -32.9$ (c 1.0, CHCl₃); IR (ATR, Diamond) v 3318, 2937, 1747, 1643, 1225, 1167, 1047 cm⁻¹; ¹H NMR (500 MHz, Chloroform-*d*) δ 7.69 (s, 1H, Ar), 7.26 – 7.17 (m, 3H, Ar), 7.10 – 7.06 (m, 2H, Ar), 6.95 (s, 1H, CH₂NH), 6.55 (d, J = 7.4 Hz, 1H, NHPhe), 5.79 (d, J = 9.0 Hz, 1H, H1^I), 5.45 - 5.38 (m, 2H, H2^I, H4^I), 5.37 (dd, J = 3.5, 1.0 Hz, 1H, H4^{II}), 5.13 (dd, J = 10.5, 7.9 Hz, 1H, H2^{II}), 4.97 (dd, J = 10.5, 3.5 Hz, 1H, H3^{II}), 4.82 (d, J = 4.2 Hz, 1H, NHAla), 4.66 (q, J = 7.8, 6.4 Hz, 1H, CHPhe), 4.53 (d, J = 7.9 Hz, 1H, H1^{II}), 4.49 (dd, J = 12.2, 1.9 Hz, 1H, H6a^I), 4.44 (t, J = 5.6 Hz, 2H, CH_2NH , 4.18 – 4.08 (m, 3H, H6b^I, H6a^{II}, H6b^{II}), 4.05 – 3.95 (m, 2H, H3^I, CHAla), 3.93 – 3.87 (m, 2H, $H5^{I}$, $H5^{II}$), 3.22 (dd, J = 13.6, 5.4 Hz, 1H, $CH_{2}aPhe$), 3.02 (dd, J = 13.9, 6.5 Hz, 1H, $CH_{2}bPhe$), 2.16 (s, 3H, COCH₃), 2.08 (s, 3H, COCH₃), 2.06 (s, 3H, COCH₃), 2.06 (s, 3H, COCH₃), 2.05 (s, 3H, COCH₃), 1.97 (s, 3H, COCH₃), 1.84 (s, 3H, COCH₃), 1.33 (s, 9H, C(CH₃)₃), 1.27 (d, J = 7.2 Hz, 3H, CH₃Ala) ppm; ¹³C NMR (126 MHz, Chloroform-*d*) δ 172.5, 171.0, 170.5, 170.4, 170.3, 170.2, 169.7, 169.2, 169.1, 145.5 $(10C, 10 \times CO), 136.3, 129.4, 128.9, 127.2, 121.3$ (8C, Ar), 101.3 (1C, C1^{II}), 85.6 (1C, C1^I), 81.1 (1C, C1^{II}), 81.1 (1 *C*(CH₃)₃), 76.0 (1C, C5^I), 75.7 (1C, C3^I), 72.8 (1C, C2^I), 71.1 (1C, C3^{II}), 71.0 (1C, C5^{II}), 70.6 (1C, C4^I), 69.2 (1C, C2^{II}), 66.7 (1C, C4^{II}), 61.9 (1C, C6^I), 61.0 (1C, C6^{II}), 53.8 (1C, CHPhe), 51.2 (1C, CHAla), 37.5 (1C, CH₂Phe), 35.2 (1C, CH₂NH), 28.3 (3C, C(CH₃)₃), 20.91, 20.86, 20.82, 20.79, 20.77, 20.6, 20.4 (7C,

 $2 \times COCH_3$), 17.9 (1C, *C*H₃Ala) ppm. HRMS calcd for C₄₆H₆₃N₆O₂₁⁺ [M + H]⁺ 1035.4041, found 1035.4035.

1-[4-O-(2,3,4,6-Tetra-O-acetyl-β-D-galactopyranosyl)-2,3,6-tri-O-acetyl-β-D-glucopyranosyl]-4-[(N-(N-tert-butoxycarbonyl)-L-phenylalanyl)]-glycylamidomethyl-[1,2,3]-triazole (8d). The mixture was stirred 18 h and the obtained crude was purified by flash column chromatography (silica gel, EtOAc/Et₂O, $3:1 \rightarrow 9:1$) to give **8d**, a white solid (33.2 mg, 0.031 mmol, 50% yield). $R_f = 0.46$ (silica, MeOH/CH₂Cl₂, 1:20); $[\alpha]_D^{25} = -8.9$ (c 0.7, CHCl₃); IR (ATR, Diamond) v 3337, 2928, 1747, 1670, 1213, 1167, 1043 cm⁻ ¹; ¹H NMR (500 MHz, Chloroform-d) δ 7.73 (s, 1H, Ar), 7.31 – 7.22 (m, 3H, Ar), 7.20 – 7.15 (m, 2H, Ar), 7.11 (s, 1H, CH₂NH), 6.77 (s, 1H, NHGly), 5.79 (dt, J = 8.9, 6.5 Hz, 1H, H1^I), 5.40 (dt, J = 8.9, 7.0 Hz, 2H, H2^I, H4^I), 5.37 (dd, J = 3.4, 0.7 Hz, 1H, H4^{II}), 5.15 - 5.11 (m, 1H, NHPhe), 5.13 (dd, J = 10.3, 7.9 Hz, 1H, H2^{II}), 4.98 (dd, J = 10.4, 3.5 Hz, 1H, H3^{II}), 4.53 (d, J = 7.9 Hz, 1H, H1^{II}), 4.51 - 4.46 (m, 2H, H6a^I, CH₂aNH), 4.43 (dd, J = 15.4, 5.5 Hz, 1H, CH₂bNH), 4.30 (q, J = 7.0 Hz, 1H, CHPhe), 4.17 - 4.08 $(m, 3H, H6a^{II}, H6b^{II}, H6b^{I}), 4.01 - 3.88 (m, 4H, H3^{I}, H5^{I}, H5^{II}, CH_2aGly), 3.84 (dd, J = 16.9, 5.6 Hz, 1H, 10.000)$ CH₂bGly), 3.10 (dd, J = 13.7, 6.6 Hz, 1H, CH₂aPhe), 2.99 (dd, J = 13.6, 7.5 Hz, 1H, CH₂bPhe), 2.16 (s, 3H, COCH₃), 2.10 (s, 3H, COCH₃), 2.08 (s, 3H, COCH₃), 2.062 (s, 3H, COCH₃), 2.058 (s, 3H, COCH₃), 1.97 (s, 3H, COCH₃), 1.85 (s, 3H, COCH₃), 1.36 (s, 9H, C(CH₃)₃) ppm; ¹³C NMR (126 MHz, Chloroform*d*) δ 172.2, 170.52, 170.46, 170.3, 170.2, 169.9, 169.3, 169.2, 169.2, 156.0 (10C, 10 × CO), 136.4, 129.3, 128.9, 127.3, 121.3 (8C, Ar), 101.2 (1C, C1^{II}), 85.6 (1C, C1^I), 80.9 (1C, C(CH₃)₃), 76.0 (1C, C5^I), 75.7(1C, C3^I), 72.7 (1C, C2^I), 71.0 (1C, C3^{II}), 70.9 (1C, C5^{II}), 70.7 (1C, C4^I), 69.1 (1C, C2^{II}), 66.7 (1C, C4^{II}), 61.8 (1C, C6^I), 60.9 (1C, C6^{II}), 56.5 (1C, CHPhe), 43.1 (1C, CH₂Gly), 38.0 (1C, CH₂Phe), 35.0 (1C, CH₂NH), 28.3 (3C, C(CH₃)₃), 21.0, 20.84, 20.81, 20.79, 20.76, 20.6, 20.4 (7C, 2 × COCH₃) ppm. HRMS calcd for $C_{45}H_{61}N_6O_{21}^+$ [M + H]⁺ 1021.3884, found 1021.3895.

1-[(N-(N-tert-butoxycarbonyl)-L-phenylalanyl)]-L-alanylamido-1-deoxy-2,3,4,6-tetra-O-allyl-Dgalactitol (9). The mixture was stirred 24 h and the obtained crude was purified by flash column chromatography (silica gel, EtOAc/Hexane, $1:1 \rightarrow 1:0$) to give **9** as a colorless oil (62.7 mg, 0.095 mmol, 97% yield). $R_f = 0.62$ (silica, EtOAc/Hexane, 4:1); $[\alpha]_D^{25} = -25.8$ (c 0.6, CHCl₃); IR (ATR, Diamond) v 3285, 2978, 1632, 1562, 1524, 1167, 1044 cm⁻¹; ¹H NMR (500 MHz, Chloroform-d) δ 7.33 – 7.26 (m, 2H, Ar), 7.27 – 7.20 (m, 1H, Ar), 7.21 – 7.16 (m, 2H, Ar), 6.66 (dd, J = 6.7, 3.7 Hz, 1H, C1-NH), 6.54 (d, J = 7.2 Hz, 1H, NHAla), 5.98 – 5.83 (m, 4H, OAll), 5.34 – 5.13 (m, 8H, OAll), 4.91 (d, J = 6.3 Hz, 1H, NHPhe), 4.38 - 4.29 (m, 1H, CHPhe) 4.34 (p, J = 7.0 Hz, 1H, CHAla), 4.25 (ddt, J = 12.5, 5.3, 1.5 Hz, 1H, OAll), 4.17 (ddt, J = 12.3, 5.5, 1.4 Hz, 1H, OAll), 4.15 – 4.07 (m, 2H, OAll), 4.06 (tt, J = 6.6, 5.8, 1.3Hz, 1H, OAll), 4.04 – 3.95 (m, 4H, OAll, H5), 3.83 (td, J = 12.8, 6.7, 6.2 Hz, 1H, CH₂aNH), 3.73 – 3.67 (m, 2H, H2, H4), 3.61 (dd, J = 6.1, 3.9 Hz, 1H, H3), 3.55 (dd, J = 9.4, 6.3 Hz, 1H, H6a), 3.52 (dd, J = 9.5, 1H, H3), 3.55 (dd, J = 9.4, 6.3 Hz, 1H, H6a), 3.52 (dd, J = 9.5, 1H, H3), 3.55 (dd, J = 9.4, 6.3 Hz, 1H, H6a), 3.52 (dd, J = 9.5, 1H, H3), 3.55 (dd, J = 9.4, 6.3 Hz, 1H, H6a), 3.52 (dd, J = 9.5, 1H, H3), 3.55 (dd, J = 9.4, 6.3 Hz, 1H, H6a), 3.52 (dd, J = 9.5, 1H, H3), 3.55 (dd, J = 9.4, 6.3 Hz, 1H, H6a), 3.52 (dd, J = 9.5, 1H, H3), 3.55 (dd, J = 9.4, 6.3 Hz, 1H, H6a), 3.52 (dd, J = 9.5, 1H, H3), 3.51 (dd, J = 9.4, 6.3 Hz, 1H, H6a), 3.52 (dd, J = 9.5, 1H, H3), 3.51 (dd, J = 9.4, 6.3 Hz, 1H, H6a), 3.52 (dd, J = 9.5, 1H, H3), 3.51 (dd, J = 9.4, 6.3 Hz, 1H, H6a), 3.52 (dd, J = 9.5, 1H, H3), 3.51 (dd, J = 9.5, 1H, H36.4 Hz, 1H, H6b), 3.23 (dt, J = 14.1, 4.0 Hz, 1H, CH₂bNH), 3.07 (d, J = 6.1 Hz, 2H, CH₂Phe), 1.39 (s, 9H, C(CH₃)₃), 1.30 (d, J = 7.0 Hz, 3H, CH₃Ala) ppm; ¹³C NMR (126 MHz, Chloroform-d) δ 171.9, 171.0, 155.6 (3C, 3 × CO), 136.6 (1C, Ar), 134.7, 134.6, 134.5 (4C, 4 × OAll), 129.5, 128.8, 127.2 (5C, Ar), 117.8, 117.6, 117.4, 117.4 (4C, 4 × OAll), 81.2 (1C, C(CH₃)₃), 80.6 (1C, C3), 77.7 (1C, C4), 75.9 (1C, C2), 73.5, 73.4, 72.4 (3C, 3 × OAll), 71.3 (1C, C6), 71.2 (1C, OAll), 69.6 (1C, C5), 55.8 (1C, CHPhe), 49.2 (1C, CHAla), 39.2 (1C, C1), 38.2 (1C, CH₂Phe), 28.4 (3C, C(CH₃)₃), 18.7 (1C, CH₃Ala) ppm; HRMS calcd for $C_{35}H_{54}N_3O_9^+$ [M + H]⁺ 660.3855, found 660.3848.

1,6-anhydro-3-[(*N*-(*N*-tert-butoxycarbonyl)-L-phenylalanyl)]-L-alanylamido-2,3,4-trideoxy-2,4difluoro- β -D-glucopyranoside (10). The mixture was stirred 18 h and the obtained crude was purified by flash column chromatography (silica gel, EtOAc/Hexane, 1:9 \rightarrow 1:3) to give 10, a white solid (16.0 mg, 0.033 mmol, 65% yield).R_f = 0.53 (silica, EtOAc/Hexane, 15:85); [α]_D²⁵= -43.0 (*c* 0.7, CHCl₃; IR (ATR,

Diamond) v 3337, 2934, 1649, 1520, 1167, 984, 669 cm⁻¹; ¹H NMR (500 MHz, Chloroform-*d*) δ 7.31 – 7.26 (m, 2H, Ar), 7.25 – 7.17 (m, 3H, Ar), 6.89 (s, 1H, C3-N*H*), 6.57 (s, 1H, N*H*Ala), 5.62 (t, *J* = 1.7 Hz, 1H, H1), 5.06 (s, 1H, N*H*Phe), 4.84 – 4.78 (m, 1H, H5), 4.58 – 4.51 (m, 1H, C*H*Ala), 4.55 (dt, *J* = 47.9, 3.1 Hz, 1H, H4), 4.41 – 4.34 (m, 1H, C*H*Phe), 4.40 (m, 1H, 49.5 Hz is observed, H2), 4.39 (tdt, *J* = 30.1, 8.3, 4.1 Hz, 1H, H3), 3.87 – 3.79 (m, 2H, H6a, H6b), 3.05 (d, *J* = 6.6 Hz, 2H, C*H*₂Phe), 1.39 (s, 9H, C(C*H*₃)₃), 1.34 (d, *J* = 7.1 Hz, 1H, C*H*₃Ala) ppm; ¹³C NMR (126 MHz, Chloroform-*d*) δ 172.0, 171.5, 155.6 (3C, 3 × CO), 136.6, 129.4, 128.8, 127.1 (6C, Ar), 98.5 (d, *J* = 24.4 Hz, 1C, C1), 86.7 (d, *J* = 185.9 Hz, 1C, C4), 85.4 (d, *J* = 186.8 Hz, 1C, C2), 73.8 (d, *J* = 18.9 Hz, 1C, C5), 63.9 (d, *J* = 6.6 Hz, 1C, C6), 55.7 (1C, CHPhe), 49.1 (1C, CHAla), 43.4 (t, *J* = 17.5 Hz, 1C, C3), 38.3 (1C, *C*H₂Phe), 28.4 (3C, C(*C*H₃)₃), 18.5 (1C, *C*H₃Ala) ppm; ¹⁹F NMR (470 MHz, Chloroform-*d*) δ -199.10 (ddt, *J* = 47.5, 31.5, 11.6, 6.5 Hz, 1F, F4), -201.75 (ddd, *J* = 49.5, 28.9, 7.6 Hz, 1F, F2) ppm. HRMS calcd for [M – H]⁻ 482.21082, found 482.21077.

2,3,6-Tri-*O***-tertbutyldimethylsilyl-1-deoxy-1-[(***N***-(***N***-tert-butoxycarbonyl)-L-phenylalanyl)]-Dalanylamido-\alpha/\beta-D-galactopyranoside (11). The mixture was stirred 18 h and the obtained crude was purified by flash column chromatography (silica gel, EtOAc/Hexane, 1:4 \rightarrow 1:1) to give an anomeric mixture (1.7:1; \alpha/\beta) of 11** as an amorphous white solid (28.6 mg, 0.034 mmol, 58% yield). R_f = 0.60 (silica, EtOAc/Hexane, 1:1); $[\alpha]_D^{25} = 6,2$ (*c* 0.2, MeOH); IR (ATR, Diamond) *v* 3312, 2930, 2856, 1647, 1256, 835 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.34 – 7.27 (m, 4H, Ar), 7.28 – 7.17 (m, 6H, Ar), 6.87 (d, *J* = 9.2 Hz, 1H, C1-NH β), 6.53 (d, *J* = 8.9 Hz, 1H, C1-NH α), 6.44 (d, *J* = 7.3 Hz, 1H, NH β Ala), 6.29 (d, *J* = 6.0 Hz, 1H, NH α Ala), 5.75 (dd, *J* = 9.4, 3.9 Hz, 1H, H1 α), 5.66 (d, *J* = 9.4 Hz, 1H, H1 β), 5.10 (d, *J* = 6.8 Hz, 1H, NH α Phe), 5.03 (d, *J* = 7.5 Hz, 1H, NH β Phe), 4.39 – 4.27 (m, 4H, CHAla α , CHAla β , C<u>H</u>Phe α , CHPhe β), 4.26 (dd, *J* = 2.3, 1.3 Hz, 1H, H4 β), 4.14 (t, *J* = 3.0 Hz, 1H, H3 α), 4.12 (q, J = 2.2, 1.1 Hz, 1H, H2 β), 3.95 (dd, J = 4.0, 2.9 Hz, 1H, H2 α), 3.92 (s, 1H, H3 β), 3.90 (t, J = 2.7 Hz, 1H, H4 α), 3.73 – 3.65 (m, 2H, H5 α , H5 β), 3.65 – 3.56 (m, 4H, H6^I α , H6^{II} α , H6^{II} β , H6^{II} β), 3.13 – 2.99 (m, 4H, CH₂Phe α , CH₂Phe β), 1.410 (s, 9H, C(CH₃)₃ α), 1.406 (s, 9H, C(CH₃)₃ β), 1.24 – 1.18 (m, 6H, CH₃Ala α , CH₃Ala β), 0.94 (s, 9H, (CH_{3})₃CSi β), 0.92 (s, 9H, (CH_{3})₃CSi α), 0.90 (s, 9H, (CH_{3})₃CSi β), 0.88 (s, 18H, 2 × (CH_{3})₃CSi α), 0.88 (s, 9H, (CH_{3})₃CSi β), 0.150 (s, 3H, $CH_{3}\beta$), 0.148 (s, 3H, $CH_{3}\beta$), 0.14 (s, 6H, 2 × $CH_{3}\beta$), 0.13 (s, 3H, $CH_{3}\alpha$), 0.12 (s, 3H, $CH_{3}\alpha$), 0.10 (s, 3H, $CH_{3}\alpha$), 0.08 (s, 3H, $CH_{3}\alpha$), 0.054 (s, 3H, $CH_{3}\alpha$), 0.052 (s, 3H, $CH_{3}\alpha$), 0.044 (s, 3H, $CH_{3}\beta$), 0.039 ppm (s, 3H, $CH_{3}\beta$); ¹³C NMR (100 MHz, CDCl₃): δ = 171.6, 171.1, 170.7, 170.6, 155.7, 155.4 (6C, 3 × $CO\alpha$, 3 × $CO\beta$), 136.7, 136.6, 129.44, 129.40, 128.9, 127.19, 127.15 (10C, Ar), 87.1 (1C, C4 β), 86.4 (1C, C1 β), 83.7 (1C, C4 β), 81.0 (1C, C3 β), 80.5 (1C, C1 α), 80.3 (2C, 2 × $C(CH_{3})_{3}$), 80.1 (1C, C2 β), 78.4 (1C, C3 α), 78.0 (1C, C2 α), 71.7 (1C, C5 β), 71.2 (1C, C5 α), 63.9 (1C, C6 α), 63.8 (1C, C6 β), 56.0 (2C, $CHPhe\alpha$, $CHPhe\beta$), 49.1 (1C, $CHAla\alpha$), 48.8 (1C, $CHAla\beta$), 39.2 (1C, $CH_{2}Phe\alpha$), 38.9 (1C, $CH_{2}Phe\beta$), 28.4 (6C, (CH_{3})₃ α , $C(CH_{3})_{3}$ CSi β), 25.7 (3C, (CH_{3})₃CSi α), 25.86 (3C, (CH_{3})₃CSi β), 18.61, 18.0 (2C, 2 × $(CH_{3})_{3}CSi\alpha$), 25.7 (3C, (CH_{3})₃CSi α), 18.66 (2C, $CH_{3}Ala\beta$, $CH_{3}Ala\alpha$), 18.44 (1C, (CH_{3})₃CSi β), 18.41, 18.12 (2C, 2 × (CH_{3})₃CSi α), 18.06, 18.0 (2C, 2 × $(CH_{3})_{3}CSi\beta$), 17.9 (1C, (CH_{3})₃CSi α), -4.26, -4.31 (2C, 2 × $CH_{3}\alpha$), -4.55 (1C, $CH_{3}\beta$), -4.57 (1C, $CH_{3}\alpha$), -4.7 (1C, $CH_{3}\beta$), -4.8 (2C, $CH_{3}\alpha$, $CH_{3}\beta$), -4.9, -5.17, -5.22 (3C, 3 × $CH_{3}\beta$), -5.2, -5.3 (2C, 2 × $CH_{3}\alpha$) ppm. HRMS calcd for C₄₁H₇₈N₃O₉Si₃⁺ [M + H]⁺ 840.5040, found 840.5038.

N-[((N-tert-butoxycarbonyl)-L-phenylalanyl)-L-alanyl]-*O*-[2-(acetylamino)-3,4,6-tri-*O*-acetyl-2deoxy-D-galactopyranosyl]-L-threonine methyl ester (12). The mixture was stirred 18 h and the obtained crude was purified by flash column chromatography (silica gel, MeOH/CH₂Cl₂, 1:19 → 1:9) to give 12, a white solid (17.2 mg, 0.022 mmol, 58% yield). R_f = 0.41 (silica, MeOH/CH₂Cl₂, 1:19); [α]_D²⁵ = 47.2 (c 0.4, CHCl₃); IR (ATR, Diamond) *v* 3294, 2924, 1745, 1649, 1367, 1221, 1045 cm⁻¹; ¹H NMR (500 MHz, Chloroform-*d*) δ 7.66 (d, *J* = 8.3 Hz, 1H, N*H*Thr), 7.35 – 7.27 (m, 3H, Ar), 7.23 – 7.20 (m, 2H, Ar), 6.65 (d, *J* = 9.5 Hz, 1H, NHAc), 6.42 (s, 1H, NHAla), 5.38 (d, *J* = 2.2 Hz, 1H, H4), 5.30 (dd, *J* = 9.9, 2.1 Hz, 1H, H3), 5.15 (d, *J* = 5.0 Hz, 1H, N*H*Phe), 4.82 (d, *J* = 3.9 Hz, 1H, H1), 4.59 – 4.48 (m, 4H, H2, C*H*Phe, C*H*αThr, C*H*Ala), 4.39 – 4.33 (m, 2H, H5, C*H*βThr), 4.08 (d, *J* = 6.4 Hz, 2H, H6a, H6b), 3.73 (s, 3H, CO₂C*H*₃), 3.13 (dd, *J* = 13.9, 7.7 Hz, 1H, C*H*₂aPhe), 3.05 (dd, *J* = 14.1, 5.4 Hz, 1H, C*H*₂bPhe), 2.15 (s, 3H, COC*H*₃), 2.10 (s, 3H, COC*H*₃), 2.02 (s, 3H, COC*H*₃), 1.99 (s, 3H, COC*H*₃), 1.37 (s, 9H, C(C*H*₃)₃), 1.32 (d, J = 7.1 Hz, 3H, C*H*₃Ala), 1.23 (d, J = 6.5 Hz, 3H, C*H*₃Thr); ¹³C NMR (126 MHz, Chloroform-*d*) δ 173.8, 171.8, 171.2, 171.0, 170.9, 170.6, 170.5, 151.4 (8C, 8 × CO), 136.1, 129.4, 129.0, 127.5 (6C, Ar), 98.8 (1C, C1), 80.6 (1C, C(CH₃)₃), 75.3 (1C, C*H* β Thr), 68.3 (1C, C3), 67.6 (1C, C4), 67.1 (1C, C5), 62.5 (1C, C6), 56.3 (1C, CH α Thr), 56.1 (1C, C*H*Phe), 52.9 (1C, CO₂CH₃), 49.1 (1C, CHAla), 47.7 (1C, C2), 38.1 (1C, CH₂Phe), 28.3 (3C, C(CH₃)₃), 23.3, 21.0, 20.9, 20.8 (4C, 3 × COCH₃), 19.3 (1C, CH₃Thr), 15.6 (1C, CH₃Ala) ppm. HRMS calcd for C₃₆H₅₃N₄O₁₅⁺ [M + H]⁺ 781.3502 found 781.3489.

1,2:3,4-di-O-isopropylidene-6-deoxy-6-[(N-(N-tert-butoxycarbonyl)-glycyl-L-phenylalanyl)]-Lalanylamido- α -D-glucopyranoside (4e). The mixture was stirred 2 h and the obtained crude was purified by flash column chromatography (silica gel, EtOAc/Et₂O, 1:1 \rightarrow 3:1) to give 4e, a white solid (96.7 mg, 0.152 mmol, 79% yield). $R_f = 0.38$ (silica, MeOH/DCM, 1:19); $[\alpha]_D^{25} = -13.4$ (c 0.5, CHCl₃); IR (ATR, Diamond) v 3267, 2930, 1718, 1628, 1067, 1007, 700 cm⁻¹; ¹H NMR (500 MHz, Chloroform-d) δ 7.33 – $7.28 \text{ (m, 2H, Ar)}, 7.25 - 7.22 \text{ (m, 1H, Ar)}, 7.21 - 7.17 \text{ (m, 2H, Ar)}, 6.68 \text{ (d, } J = 7.3 \text{ Hz}, 1\text{H}, \text{NHPhe}), 6.60 \text{ (d, } J = 7.3 \text{ Hz}, 1\text{H}, 1\text{H$ (d, J = 6.6 Hz, 1H, NHAla), 6.46 (s, 1H, C6-NH), 5.48 (d, J = 5.0 Hz, 1H, H1), 5.24 (s, 1H, NHGly), 4.65 (q, J = 6.8 Hz, 1H, CHPhe), 4.58 (dd, J = 7.9, 2.4 Hz, 1H, H3), 4.43 (p, J = 7.3 Hz, 1H, CHAla), 4.28 (dd, *J* = 5.0, 2.4 Hz, 1H, H2), 4.20 (dd, *J* = 7.9, 1.8 Hz, 1H, H4), 3.87 (ddd, *J* = 8.8, 4.0, 1.7 Hz, 1H, H5), 3.75 $(d, J = 5.1 \text{ Hz}, 2H, CH_2Gly), 3.62 (ddd, J = 13.8, 7.3, 3.9 \text{ Hz}, 1H, H6a), 3.22 - 3.10 (m, 2H, H6b), 3.22 - 3.10$ CH₂aPhe), 3.07 (dd, J = 13.9, 6.4 Hz, 1H, CH₂bPhe), 1.463 (s, 3H, CH₃), 1.458 (s, 3H, CH₃), 1.41 (s, 9H, C(CH₃)₃), 1.33 (s, 3H, CH₃), 1.31 – 1.28 (m, 6H, CH₃, CH₃Ala) ppm; ¹³C NMR (126 MHz, Chloroform*d*) δ 172.0, 170.4, 170.1 (4C, 4 × CO), 136.1, 129.3, 129.0, 127.5 (6C, Ar), 109.6, 108.9 (2C, 2 × C(CH₃)₂), 96.4 (1C, C1), 80.9 (1C, C(CH₃)₃), 71.6 (1C, C4), 70.9 (1C, C3), 70.7 (1C, C2), 66.4 (1C, C5), 54.6 (1C, CHPhe), 49.1 (1C, CHAla), 44.8 (1C, CH₂Gly), 40.1 (1C, C6), 37.7 (1C, CH₂Phe), 28.4 (3C, C(CH₃)₃), 26.2, 26.1, 25.2, 24.5 (4C, $4 \times CH_3$), 18.1 (1C, CH₃Ala) ppm. HRMS calcd for C₃₁H₄₇N₄O_{10⁺} [M + H]⁺ 635.3287, found 635.3300.

1,2:3,4-di-*O*-isopropylidene-6-deoxy-6-[(*N*-(*N*-tert-butoxycarbonyl)-glycyl-glycyl-L-phenylalanyl)]-L-alanylamido-a-D-glucopyranoside (4f). The mixture was stirred 2 h and the obtained crude was purified by flash column chromatography (silica gel, MeOH/CH₂Cl₂, $0:1 \rightarrow 1:9$) to give 4f as an amorphous white solid (0.091 mg, 0.131 mmol, 68% yield). $R_f = 0.27$ (silica, MeOH/CH₂Cl₂, 1:19); $[\alpha]_D^{25}$ = -10.7 (c 1.0, MeOH); IR (ATR, Diamond) v 3290, 2988, 1634, 1501, 1070, 1009, 700 cm⁻¹; ¹H NMR $(500 \text{ MHz}, \text{Methanol}-d_4) \delta 7.31 - 7.25 \text{ (m, 4H, Ar)}, 7.24 - 7.19 \text{ (m, 1H, Ar)}, 5.46 \text{ (d, } J = 4.9 \text{ Hz}, 1\text{H}, \text{H1}),$ 4.62 (dd, J = 7.9, 2.4 Hz, 1H, H3), 4.58 (dd, J = 9.5, 5.1 Hz, 1H, CHPhe), 4.33 (dd, J = 5.0, 2.4 Hz, 1H, H2), 4.29 (q, J = 7.3 Hz, 1H, CHAla), 4.22 (dd, J = 7.9, 1.8 Hz, 1H, H4), 3.95 (ddd, J = 8.4, 4.2, 1.5 Hz, 1H, H5), 3.86 - 3.67 (m, 4H, $2 \times CH_2$ Gly), 3.40 (dd, J = 13.8, 4.3 Hz, 1H, H6a), 3.24 - 3.16 (m, 2H, H6b, $CH_{2}aPhe$), 2.95 (dd, J = 13.9, 9.5 Hz, 1H, $CH_{2}bPhe$), 1.46 (s, 12H, $C(CH_{3})_{3}, CH_{3}$), 1.43 (s, 3H, CH_{3}), 1.36 (d, J = 7.2 Hz, 3H, CH₃Ala), 1.34 (s, 3H, CH₃), 1.30 (s, 3H, CH₃) ppm; ¹³C NMR (126 MHz, Methanold₄) δ 175.3, 173.3, 172.0, 158.6 (5C, 5 × CO), 138.5, 130.2, 129.6, 127.9 (6C, Ar), 110.5, 110.0 (2C, 2 × C(CH₃)₂), 97.8 (1C, C1), 80.9 (1C, C(CH₃)₃), 72.7 (1C, C4), 72.2 (1C, C3), 71.9 (1C, C2), 67.3 (1C, C5), 56.5 (1C, CHPhe), 50.9 (1C, CHAla), 44.7 (1C, CH₂Gly), 43.7 (1C, CH₂Gly), 41.1 (1C, C6), 38.3 (1C, CH₂Phe), 28.7 (3C, C(CH₃)₃), 26.4, 26.3, 25.2, 24.6 (4C, 4 × CH₃), 18.1 (1C, CH₃Ala) ppm. HRMS calcd for $C_{33}H_{50}N_5O_{11}^+$ [M + H]⁺ 692.3501, found 692.3508.

1,2:3,4-di-*O*-isopropylidene-6-deoxy-6-[(*N*-(*N*-tert-butoxycarbonyl)-((*O*-benzyl)-L-seryl)-glycylglycyl-L-phenylalanyl)]-L-alanylamido- α -D-glucopyranoside (4g). The mixture was stirred 3 h and the obtained crude was purified by flash column chromatography (silica gel, MeOH/CH₂Cl₂, 1:9 \rightarrow 15:85) to give 4g as an amorphous white solid (74.7 mg, 0.086 mmol, 71% yield). R_f = 0.31 (silica, MeOH/DCM, 1:19); [α]_D²⁵ = -10.0 (*c* 0.4, MeOH); IR (ATR, Diamond) v 3285, 2986, 1634, 1526, 1070, 1005, 700

cm⁻¹; ¹H NMR (500 MHz, Methanol- d_4) δ 7.37 – 7.16 (m, 10H, Ar), 5.45 (d, J = 4.9 Hz, 1H, H1), 4.62 (dd, J = 7.9, 2.5 Hz, 1H, H3), 4.58 (dd, J = 9.4, 5.3 Hz, 1H, CHPhe), 4.53 (d, J = 2.8 Hz, 2H, CH₂OBn), 4.32 (dd, J = 5.0, 2.5 Hz, 1H, H2), 4.31 – 4.26 (m, 2H, CHAla, CHSer), 4.22 (dd, J = 7.9, 1.9 Hz, 1H, H4), 3.94 (ddd, J = 8.4, 4.5, 1.8 Hz, 1H, H5), 3.88 – 3.86 (m, 2H, CH₂Gly), 3.82 (dd, J = 9.7, 5.5 Hz, 1H, CH₂aSer), 3.71 (dd, J = 9.7, 4.8 Hz, 1H, CH₂bSer), 3.65 (d, J = 16.7 Hz, 1H, CHaGly), 3.56 (d, J = 16.7 Hz, 1H, CHbGly), 3.39 (dd, J = 13.7, 4.5 Hz, 1H, H6a), 3.23 – 3.15 (m, 2H, H6b, CH₂aPhe), 2.96 (dd, J = 14.0, 9.5 Hz, 1H, CH₂bPhe), 1.44 (s, 12H, C(CH₃)₃, CH₃), 1.42 (s, 3H, CH₃), 1.36 – 1.31 (m, 6H, CH₃, CH₃Ala), 1.29 (s, 3H, CH₃) ppm; ¹³C NMR (126 MHz, Methanol- d_4) δ 175.2, 173.9, 173.3, 171.7, 158.1 (6C, 6 × CO), 139.2, 138.5, 130.3, 129.6, 129.5, 128.9, 127.9 (12C, Ar), 110.5, 109.9 (2C, 2 × C(CH₃)₂), 97.7 (1C, C1), 81.2 (1C, C(CH₃)₃), 74.2 (1C, CH₂OBn), 72.6 (1C, C4), 72.1 (1C, C3), 71.9 (1C, C2), 71.0 (1C, CH₂Ser), 67.3 (1C, C5), 56.5 (1C, CHSer), 56.4 (1C, CHPhe), 50.8 (1C, CHAla), 44.0, 43.4 (2C, 2 × CH₂Gly), 41.1 (1C, C6), 38.4 (1C, CH₂Phe), 28.7 (3C, C(CH₃)₃), 26.4, 26.4, 25.2, 24.6 (4C, 4 × CH₃), 18.1 (1C, CH₃Ala) ppm. HRMS calcd for C₄₃H₆₁N₆O₁₃⁺ [M + H]⁺ 869.4291, found 869.4298.

1,2:3,4-di-*O***-isopropylidene-6-deoxy-6-**[(*N*-(*N*-tert-butoxycarbonyl)-L-alanyl-((*O*-benzyl)-L-seryl)glycyl-glycyl-L-phenylalanyl)]-L-alanylamido- α -D-glucopyranoside (4h). The mixture was stirred 18 h and the resulting crude was purified by trituration with diethyl ether to give 4h as an amorphous white solid (31.3 mg, 0.033 mmol, 56% yield). [α]_D²⁵ = -28.2 (*c* 0.2, DMSO); IR (ATR, Diamond) v 3288, 2982, 2934, 1701, 1630, 1514, 1167 cm⁻¹; ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.24 (t, *J* = 5.7 Hz, 1H, N*H*Gly), 8.15 (d, *J* = 7.5 Hz, 1H, N*H*Ala), 8.07 (d, *J* = 8.4 Hz, 1H, N*H*Phe), 7.94 (d, *J* = 7.5 Hz, 2H, N*H*Gly, N*H*Ser), 7.86 (t, *J* = 5.8 Hz, 1H, C6-N*H*), 7.34 – 7.14 (m, 10H, Ar), 7.05 (d, *J* = 7.5 Hz, 1H, N*H*Ala), 5.41 (d, *J* = 4.9 Hz, 1H, H1), 4.58 (dd, *J* = 7.9, 2.4 Hz, 1H, H3), 4.57 – 4.49 (m, 2H, C*H*Phe, C*H*Ser), 4.47 (s, 2H, C*H*₂OBn), 4.31 (dd, *J* = 4.9, 2.4 Hz, 1H, H2), 4.23 (p, *J* = 7.2 Hz, 1H, C*H*Ala), 4.16 (dd, *J* = 8.0, 1.8 Hz, 1H, H4), 4.02 (p, *J* = 7.3 Hz, 1H, C*H*Ala), 3.84 (ddd, *J* = 7.3, 5.0, 1.7 Hz, 1H, H5), 3.77 – 3.66 (m, 3H, C*H*₂Gly, C*H*aGly), 3.65 – 3.56 (m, 2H, CH₂Ser), 3.52 (dd, *J* = 16.8, 5.5 Hz, 1H, C*H*bGly), 3.19 (dt, *J* = 13.4, 5.6 Hz, 1H, H6a), 3.09 (ddd, *J* = 13.5, 7.9, 5.8 Hz, 1H, H6b), 3.03 (dd, *J* = 13.9, 4.1 Hz, 1H, CHaPhe), 2.72 (dd, J = 13.9, 10.1 Hz, 1H, CHbPhe), 1.37 (s, 3H, CH₃), 1.36 (s, 9H, C(CH₃)₃), 1.35 (s, 3H, CH₃), 1.28 (s, 3H, CH₃), 1.23 (s, 3H, CH₃), 1.20 (d, J = 7.1 Hz, 3H, CH₃Ala), 1.16 (d, J = 7.1 Hz, 3H, CH₃Ala); 172.8, 172.6, 170.7, 169.8, 168.7, 168.4, 155.2 (7C, $7 \times CO$), 138.1, 137.9, 129.2, 128.2, 128.0, 127.5, 127.4, 126.2 (12C, Ar), 108.4, 108.0 (2C, $2 \times C(CH_3)_2$), 95.7 (1C, C1), 78.2 (1C, $C(CH_3)_3$), 72.1 (1C, CH₂OBn), 70.6 (1C, C4), 70.1 (1C, C3), 69.9 (1C, C2), 69.7 (1C, CH₂Ser), 65.5 (1C, C5), 53.8 (1C, CHPhe), 52.6 (1C, CHSer), 49.7, 48.5 (2C, $2 \times CHAla$), 42.1, 41.7 (2C, $2 \times CH_2Gly$), 39.7 (1C, C6), 37.5 (1C, CH₂Phe), 28.2 (3C, $C(CH_3)_3$), 26.0, 25.8, 25.0, 24.3 (4C, $4 \times CH_3$), 18.5, 18.0 (2C, $2 \times CH_3Ala$) ppm. HRMS calcd for C₂₉H₄₄N₃O₉⁺ [M + H]⁺ 940.4662, found 940.4650.

1,2:3,4-di-O-isopropylidene-6-deoxy-6-[(N-(N-tert-butoxycarbonyl)-L-leucyl-L-alanyl-((O-benzyl)-L-seryl)-glycyl-glycyl-L-phenylalanyl)]-L-alanylamido- α -D-glucopyranoside (4i). The mixture was stirred 24 h and the resulting crude was purified by trituration with diethyl ether to give 4i as an amorphous white solid (42.2 mg, 0.04 mmol, 52% yield). $[\alpha]_D^{25} = -8.7$ (c 0.4, DMSO); IR (ATR, Diamond) v 3285, 2978, 1632, 1502, 1252, 1167, 697 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6) δ 8.21 (t, J = 5.1 Hz, 1H, NHGly), 8.14 (d, J = 7.8 Hz, 1H, NHAla), 8.13 (d, J = 9.0 Hz, 1H, NHSer), 8.06 (d, J = 8.3 Hz, 1H, NHPhe), 7.95 (t, J = 5.7 Hz, 1H, NHGly), 7.88 (d, J = 7.3 Hz, 1H, NHAla), 7.84 (t, J = 5.7 Hz, 1H, C6-NH), 7.35 - 7.21 (m, 10H, Ar), 6.93 (d, J = 8.4 Hz, 1H, NHLeu), 5.41 (dd, J = 4.9 Hz, 1H, H1), 4.58 (dd, J = 7.9, 2.3 Hz, 1H, H3), 4.56 - 4.48 (m, 2H, CHPhe, CHSer), 4.47 (d, J = 2.1 Hz, 2H, CH₂OBn), 4.36(p, J = 6.8 Hz, 1H, CHAla), 4.31 (dd, J = 4.9, 2.3 Hz, 1H, H2), 4.23 (p, J = 7.0 Hz, 1H, CHAla), 4.17 (dd, J = 8.0, 1.6 Hz, 1H, H4), 3.96 (td, J = 14.5, 5.8, 1.8 Hz, 1H, CHaLeu), 3.86 - 3.82 (m, 1H, H5), 3.78 - 3.82 $3.67 \text{ (m, 3H, CH_2Gly, CHaGly)}, 3.63 - 3.55 \text{ (m, 2H, CH_2Ser)}, 3.52 \text{ (dd, } J = 16.8, 5.4 \text{ Hz}, 1\text{H}, CHbGly),$ 3.20 (td, J = 13.4, 7.8, 5.6 Hz, 1H, H6a), 3.12 - 3.06 (m, 1H, H6b), 3.03 (dd, J = 13.9, 4.0 Hz, 1H, 10.00 Hz) CH_2 aPhe), 2.73 (dd, J = 13.8, 10.1 Hz, 1H, CH_2 bPhe), 1.63 – 1.53 (m, 1H, CH_2 Leu), 1.43 – 1.31 (m, 17H, $CH_2Leu, C(CH_3)_3, 2 \times CH_3), 1.28$ (s, 3H, CH_3), 1.23 (s, 3H, CH_3), 1.20 (d, J = 7.1 Hz, 6H, $2 \times CH_3Ala$), 0.83 (t, J = 6.3 Hz, 6H, 2 × CH₃Leu) ppm; ¹³C NMR (126 MHz, DMSO- d_6) δ 172.6, 172.32, 172.28, 170.7, 169.7, 168.8, 168.4, 155.4 (8C, 8 × CO), 138.1, 137.9, 129.2, 128.2, 128.0, 127.5, 127.4, 126.2,

125.5 (12C, Ar), 108.4, 108.0 (2C, 2 × *C*(CH₃)₂), 95.7 (1C, C1), 78.0 (1C, *C*(CH₃)₃), 72.1 (1C, *C*H₂OBn), 70.6 (1C, C4), 70.1 (1C, C3), 69.9 (1C, C2), 69.6 (1C, *C*H₂Ser), 65.5 (1C, C5), 53.8 (1C, *C*HPhe), 52.7 (1C, *C*HSer), 52.6 (1C, *C*HaLeu), 48.5, 47.9 (2C, 2 × *C*HAla), 42.1, 41.7 (2C, 2 × *C*H₂Gly), 40.6 (1C, *C*H₂Leu), 39.7 (1C, C6), 37.5 (1C, *C*H₂Phe), 28.2 (3C, C(*C*H₃)₃), 26.0, 25.8, 25.0, 24.3 (4C, 4 × *C*H₃), 24.2 (1C, *C*HγLeu), 23.1, 21.4 (2C, 2 × *C*H₃Leu), 18.5, 18.3 (2C, 2 × *C*H₃Ala) ppm. HRMS calcd for $C_{52}H_{77}N_8O_{15}^+$ [M + NH₄]⁺ 1053.5503, found 1053.5528.

1,2:3,4-di-O-isopropylidene-6-deoxy-6-[(N-(N-tert-butoxycarbonyl)-((N'-benzyloxycarbonyl)-Llysyl)-L-leucyl-L-alanyl-((O-benzyl)-L-seryl)-glycyl-glycyl-L-phenylalanyl)]-L-alanylamido-α-Dglucopyranoside (4j). The mixture was stirred 32 h and the resulting crude was purified by trituration with diethyl ether to give 4j as an amorphous white solid (32.1 mg, 0.024 mmol, 36% yield). $[\alpha]_D^{25} =$ -20.6 (c 0.3, DMSO); IR (ATR, Diamond) v 3288, 2953, 1626, 1501, 1244, 1067, 696 cm⁻¹; ¹H NMR $(500 \text{ MHz}, \text{DMSO-}d_6) \delta 8.21 \text{ (t, } J = 5.6 \text{ Hz}, 1\text{H}, \text{NHGly}), 8.16 \text{ (d, } J = 7.4 \text{ Hz}, 1\text{H}, \text{NHAla}), 8.09 - 8.06 \text{ Hz}$ 5.8 Hz, 1H, C6-NH), 7.76 (d, J = 8.3 Hz, 1H, NHLeu), 7.38 – 7.13 (m, 16H, Ar, NHCbz), 6.89 (d, J = 8.2 Hz, 1H, NHLys), 5.41 (d, J = 4.9 Hz, 1H, H1), 4.99 (s, 2H, CH₂Cbz), 4.58 (dd, J = 7.9, 2.4 Hz, 1H. H3), 4.57 – 4.48 (m, 2H, CHPhe, CHSer), 4.47 (s, 2H, CH₂OBn), 4.37 – 4.29 (m, 2H, CHAla, CHαLeu), 4.31 (dd, J = 4.9, 2.4 Hz, 1H, H2), 4.23 (p, J = 7.1 Hz, 1H, CHAla), 4.16 (dd, J = 7.9, 1.8 Hz, 1H, H4), 3.89 -3.82 (m, 2H, H5, CHLys), 3.78 - 3.66 (m, 3H, CH2Gly, CH2aGly), 3.64 - 3.55 (m, 2H, CH2Ser), 3.52 (dd, *J* = 16.7, 5.6 Hz, 1H, CH₂bGly), 3.20 (dt, *J* = 13.4, 5.6 Hz, 1H, H6a), 3.09 (ddd, *J* = 13.5, 7.8, 5.8 Hz, 1H, H6b), 3.03 (dd, J = 13.9, 4.0 Hz, 1H, CH₂aPhe), 3.00 – 2.89 (m, 2H, CH₂ ϵ Lys), 2.72 (dd, J = 13.8, 10.1 Hz, 1H, CH₂bPhe), 1.65 – 1.45 (m, 3H, CHγLeu, CH₂βLys), 1.45 – 1.39 (m, 2H, CH₂Leu), 1.39 – 1.31 (m, 17H, $CH_2\delta Lys$, 2 × CH_3 , $C(CH_3)_3$), 1.30 – 1.24 (m, 2H, $CH_2\gamma Lys$), 1.28 (s, 3H, CH_3), 1.23 (s, 3H, CH₃), 1.20 (d, J = 7.1 Hz, 3H, CH₃Ala), 1.19 (d, J = 7.1 Hz, 3H, CH₃Ala), 0.83 (d, J = 6.4 Hz, 3H, CH₃Leu), 0.80 (d, J = 6.5 Hz, 3H, CH₃Leu) ppm; ¹³C NMR (126 MHz, DMSO- d_6) δ 172.5, 172.2, 172.0, 171.8, 170.7, 169.7, 168.7, 168.4, 156.1, 155.4 (10C, 10 × CO), 138.1, 137.9, 137.3, 129.2, 128.4, 128.2,

128.0, 127.8, 127.5, 127.4, 126.2 (18C, Ar), 108.4, 108.0 (2C, 2 × *C*(CH₃)₂), 95.6 (1C, C1), 78.1 (1C, *C*(CH₃)₃), 72.1 (1C, *C*H₂OBn), 70.6 (1C, C4), 70.1 (1C, C3), 69.9 (1C, C2), 69.7 (1C, *C*H₂Ser), 65.5 (1C, C5), 65.1 (1C, *C*H₂Cbz), 54.4 (1C, *C*HLys), 53.8 (1C, *C*HPhe), 52.7 (1C, *C*HSer), 50.6 (1C, *C*HaLeu), 48.5, 48.0 (2C, 2 × *C*HAla), 42.1, 41.7 (2C, 2 × *C*H₂Gly), 41.0 (1C, *C*H₂Leu), 40.1 (1C, *C*H₂ELys), 39.7 (1C, C6), 37.5 (1C, *C*H₂Phe), 31.4 (1C, *C*H₂βLys), 29.1 (1C, *C*H₂δLys), 28.2 (3C, C(*C*H₃)₃), 26.0, 25.8, 25.0, 24.3 (4C, 4 × *C*H₃), 24.0 (1C, *C*HγLeu), 23.2 (1C, *C*H₃Leu), 22.8 (1C, *C*H₂γLys), 21.5 (1C, *C*H₃Leu), 18.5, 18.0 (2C, 2 × *C*H₃Ala) ppm. HRMS calcd for C₆₆H₉₃N₁₀O₁₈ [M – H]⁻ 1313.6675, found 1313.6650.

1,2:3,4-di-O-isopropylidene-6-deoxy-6-[(N-(N-tert-butoxycarbonyl)-L-phenylalanyl-((N'benzyloxycarbonyl)-L-lysyl)-L-leucyl-L-alanyl-((O-benzyl)-L-seryl)-glycyl-glycyl-Lphenylalanyl)]-L-alanylamido-D-glucopyranoside (4k). The mixture was stirred 6 days and the resulting crude was purified by trituration with diethyl ether to give 4k as an amorphous white solid (50.6 mg, 0.035 mmol, 49% yield). $[\alpha]_D^{25} = -5.9 (c \ 0.3, DMSO); IR (ATR, Diamond) v \ 3281, 2934, 1626, 1514, 1244, 1067, 696$ cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6) δ 8.21 (t, J = 5.6 Hz, 1H, NHGly), 8.16 (d, J = 7.5 Hz, 1H, NHAla), 8.08 (d, J = 8.5 Hz, 1H, NHPhe), 8.06 - 8.03 (m, 2H, NHSer, NHAla), 8.00 (d, J = 8.2 Hz, 1H, NHLeu),7.95 (t, J = 5.8 Hz, 1H, NHGly), 7.91 (d, J = 8.0 Hz, 1H, NHLys), 7.86 (t, J = 5.8 Hz, 1H, C6-NH), 7.38 -7.12 (m, 21H, Ar, NHCbz), 6.95 (d, J = 8.5 Hz, 1H, NHPhe), 5.41 (d, J = 4.9 Hz, 1H, H1), 4.99 (s, 2H, CH₂Cbz), 4.58 (dd, J = 7.9, 2.4 Hz, 1H, H3), 4.58 – 4.48 (m, 2H, CHPhe, CHSer), 4.46 (s, 2H, CH₂OBn), 4.39 - 4.26 (m, 4H, H2, CHAla, CH α Leu, CHLys), 4.23 (p, J = 7.3 Hz, 1H, CHAla), 4.16 (dd, J = 8.0, 1.8 Hz, 1H, H4), 4.16 - 4.12 (m, 1H, CHPhe), 3.84 (ddd, J = 7.2, 5.1, 1.8 Hz, 1H, H5), 3.78 - 3.66 (m, 3H, CH_2 Gly, CHaGly), 3.64 – 3.56 (m, 2H, CH_2 Ser), 3.52 (dd, J = 16.8, 5.5 Hz, 1H, CHbGly), 3.20 (dt, J = 13.3, 5.5 Hz, 1H, H6a), 3.09 (ddd, J = 13.6, 7.9, 5.7 Hz, 1H, H6b), 3.03 (dd, J = 13.8, 4.1 Hz, 1H, CH_2 aPhe), 3.00 - 2.92 (m, 3H, CH_2 aPhe, CH_2 ɛLys), 2.71 (ddd, J = 14.2, 10.4, 4.1 Hz, 2H, CH_2 bPhe, CH₂bPhe), 1.69 – 1.47 (m, 3H, CHγLeu, CH₂βLys), 1.46 – 1.39 (m, 4H, CH₂Leu, CH₂δLys), 1.37 (s, 3H, CH_3), 1.35 (s, 3H, CH_3) 1.31 – 1.24 (m, 14H, $C(CH_3)_3$, $CH_2\gamma Lys$, CH_3), 1.23 (s, 3H, CH_3), 1.199 (d, J =7.2 Hz, 3H, CH_3Ala), 1.196 (d, J = 7.0 Hz, 3H, CH_3Ala), 0.84 (d, J = 6.6 Hz, 3H, CH_3Leu), 0.81 (d, J = 6.6 Hz, 3H, CH_3Leu), 0.81 (d, J = 6.6 Hz, 3H, CH_3Leu), 0.81 (d, J = 6.6 Hz, 3H, CH_3Leu), 0.81 (d, J = 6.6 Hz, 3H, CH_3Leu), 0.81 (d, J = 6.6 Hz, 3H, CH_3Leu), 0.81 (d, J = 6.6 Hz, 3H, CH_3Leu), 0.81 (d, J = 6.6 Hz, 3H, CH_3Leu), 0.81 (d, J = 6.6 Hz, 3H, CH_3Leu), 0.81 (d, J = 6.6 Hz, 3H, CH_3Leu), 0.81 (d, J = 6.6 Hz, 3H, CH_3Leu), 0.81 (d, J = 6.6 Hz, SH_3Leu), 0.81 (d, SH 6.4 Hz, 3H, CH₃Leu) ppm; ¹³C NMR (126 MHz, DMSO-*d*₆) δ 172.6, 172.2, 171.7, 171.5, 171.4, 170.7, 169.7, 168.7, 168.4, 156.0, 155.2 (11C, 11 × CO), 138.2, 138.1, 137.9, 137.3, 137.1, 130.7, 129.2, 128.3, 128.2, 128.02, 128.01, 127.8, 127.7, 127.5, 127.4, 126.22, 126.16 (24C, Ar), 108.4, 108.0 (2C, 2 × $C(CH_3)_2$), 95.6 (1C, C1), 78.1 (1C, $C(CH_3)_3$), 72.1 (1C, CH_2OBn), 70.6 (1C, C4), 70.1 (1C, C3), 69.9 (1C, C2), 69.7 (1C, CH_2Ser), 65.5 (1C, C5), 65.1 (1C, CH_2Cbz), 55.8, 53.8 (2C, 2 × CHPhe), 52.6 (1C, CHSer), 52.2 (1C, CHLys), 50.7 (1C, CHaLeu), 48.5, 48.0 (2C, 2 × CHAla), 42.5, 42.1 (2C, 2 × CH_2Gly), 40.7 (1C, CH_2Leu), 40.2 (1C, $CH_2\varepsilon Lys$), 39.8 (1C, C6), 37.5, 37.2 (2C, 2 × CH_2Phe), 32.0 (1C, $CH_2\beta Lys$), 29.2 (1C, $CH_2\delta Lys$), 28.1 (3C, $C(CH_3)_3$), 26.0, 25.8, 25.0, 24.3 (4C, 4 × CH_3), 24.1 (1C, $CH\gamma Leu$), 23.1 (1C, CH_3Leu), 22.5 (1C, $CH_2\gamma Lys$), 21.5 (1C, CH_3Leu), 18.6, 18.0 (2C, 2 × CH_3Ala) ppm. HRMS calcd for $C_{75}H_{102}N_{11}O_{19}$ [M – H]⁻ 1460.7359, found 1460.7307.

1,2:3,4-di-*O*-isopropylidene-6-deoxy-6-[(*N*-(*N*-tert-butoxycarbonyl)-L-leucyl-L-phenylalanyl-((*N*'benzyloxycarbonyl)-L-lysyl)-L-leucyl-L-alanyl-((*O*-benzyl)-L-seryl)-glycyl-glycyl-L-phenylalanyl)]-L-alanylamido-D-glucopyranoside (4l). The mixture was stirred 6 days and the resulting crude was purified by trituration with diethyl ether to give 4l as an amorphous white solid (25.6 mg, 0.016 mmol, 23% yield $[\alpha]_D^{25} = -14.6$ (*c* 0.5, DMSO); IR (ATR, Diamond) v 3283, 2934, 1626, 1514, 1250, 1067, 696 cm⁻¹; ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.21 (t, *J* = 5.8 Hz, 1H, N*H*Gly), 8.16 (d, *J* = 7.5 Hz, 1H, N*H*Lys), 8.11 (d, *J* = 7.6 Hz, 1H, N*H*Ala), 8.09 – 8.02 (m, 3H, N*H*Phe, N*H*Ser, N*H*Leu), 7.97 – 7.92 (m, 2H, N*H*Gly, N*H*Ala), 7.85 (t, *J* = 5.8 Hz, 1H, C6-N*H*), 7.73 (d, *J* = 8.2 Hz, 1H, N*H*Leu), 7.37 – 7.13 (m, 21H, Ar, N*H*Cbz), 6.91 (d, *J* = 8.4 Hz, 1H, N*H*Leu), 5.40 (d, *J* = 4.9 Hz, 1H, H1), 4.99 (s, 2H, C*H*₂Cbz), 4.58 (dd, *J* = 7.9, 2.5 Hz, 1H, H3), 4.56 – 4.47 (m, 3H, 2 × C*H*Phe, C*H*Ser), 4.46 (s, 2H, C*H*₂OBn), 4.37 – 4.28 (m, 2H, C*H*Ala, C*H*aLeu), 4.31 (dd, *J* = 4.9, 2.4 Hz, 1H, H2), 4.26 – 4.19 (m, 2H, C*H*Ala, C*H*Lys), 4.16 (dd, *J* = 7.9, 1.7 Hz, 1H, H4), 3.90 – 3.81 (m, 2H, H5, C*H*aLeu), 3.77 – 3.66 (m, 3H, C*H*₂Gly, C*H*₂aGly), 3.64 – 3.49 (m, 3H, C*H*₂Ser, C*H*₂bGly), 3.23 – 3.13 (m, 1H, H6a), 3.09 (ddd, *J* = 13.6, 8.0, 5.8 Hz, 1H, H6b), 3.05 – 2.92 (m, 4H, C*H*₂aPhe, C*H*₂aPhe, C*H*₂cLys), 2.74 (ddd, *J* = 28.6, 13.9, 9.4 Hz, 2H, C*H*₂bPhe, CH₂bPhe), 1.68 – 1.54 (m, 2H, CHγLeu, CH₂βaLys), 1.52 – 1.41 (m, 4H, CHγLeu, CH₂Leu, CH₂βbLys), 1.40 – 1.32 (m, 17H, C(CH₃)₃, CH₂δLys, 2 × CH₃), 1.27 (s, 3H, CH₃), 1.26 – 1.16 (m, 13H, CH₃, 2 × CH₃Ala, CH₂Leu, CH₂γLys), 0.85 (d, J = 6.6 Hz, 3H, CH₃Leu), 0.84 – 0.79 (m, 6H, 2 × CH₃Leu), 0.77 (d, J = 6.6 Hz, 3H, CH₃Leu) ppm; ¹³C NMR (126 MHz, DMSO- d_6) δ 172.6, 172.3, 171.8, 171.4, 170.80, 170.76, 169.7, 168.8, 168.5, 156.1, 155.2 (12C, 12 × CO), 138.1, 137.9, 137.5, 137.3, 129.4, 129.2, 128.4, 128.3, 128.1, 127.9, 127.8, 127.6, 127.5, 126.3, 126.2 (24C, Ar), 108.4, 108.0 (2C, 2 × C(CH₃)₂), 95.7 (1C, C1), 78.2 (1C, C(CH₃)₃), 72.1 (1C, CH₂OBn), 70.7 (1C, C4), 70.1 (1C, C3), 70.0 (1C, C2), 69.7 (1C, CH₂Ser), 65.5 (1C, C5), 65.2 (1C, CH₂Cbz), 53.8, 53.2 (2C, 2 × CHPhe), 53.1 (1C, CHaLeu), 52.7 (1C, CHSer), 52.5 (1C, CHLys), 50.8 (1C, CHaLeu), 48.5, 48.1 (2C, 2 × CHAla), 42.1, 41.7 (2C, 2 × CH₂Gly), 40.9, 40.7 (2C, 2 × CH₂Leu), 40.3 (1C, CH₂εLys), 38.7 (1C, C6), 37.64, 37.56 (2C, 2 × CH₂Phe), 31.9 (1C, CH₂βLys), 29.2 (1C, CH₂δLys), 28.2 (3C, C(CH₃)₃), 26.0, 25.8, 25.0, 24.3 (4C, 4 × CH₃), 24.23, 24.17 (2C, 2 × CH₇Leu), 23.2, 22.9 (2C, 2 × CH₃Leu), 22.7 (1C, CH₂γLys), 21.6 (2C, 2 × CH₃Leu), 18.6, 18.0 (2C, 2 × CH₃Ala) ppm. HRMS calcd for C₈₁H₁₁₃N₁₂O₂₀ [M – H]⁻ 1573.8200, found 1573.8142.

1,2:3,4-di-*O*-isopropylidene-6-deoxy-6-[(*N*-(*N*-tert-butoxycarbonyl)-(*O*-benzyl)-L-tyrosyl-L-leucyl-L-phenylalanyl-((*N*'-benzyloxycarbonyl)-L-lysyl)-L-leucyl-L-alanyl-((*O*-benzyl)-L-seryl)-glycylglycyl-L-phenylalanyl)]-L-alanylamido-D- α -glucopyranoside (4m). The mixture was stirred 7 days and the resulting crude was purified by trituration with diethyl ether to give 4m as an amorphous white solid (15.7 mg, 8.58 µmol, 12% yield). [α]_D²⁵ = -13.8 (*c* 0.2, DMSO); IR (ATR, Diamond) v 3279, 2934, 2361, 1624, 1514, 1067, 696 cm⁻¹; ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.20 (t, *J* = 5.9 Hz, 1H, NHGly), 8.15 (d, *J* = 7.3 Hz, 1H, NHLys), 8.08 – 7.82 (m, 9H, NHGly, 2 × NHPhe, NHSer, 2 × NHAla, 2 × NHLeu, C6-NH), 7.45 – 7.11 (m, 28H, Ar, NHCbz), 6.91 – 6.85 (m, 3H, Ar, NHTyr), 5.40 (dd, *J* = 4.6, 3.7 Hz, 1H, H1), 5.04 (s, 2H, CH₂OBnTyr), 4.99 (s, 2H, CH₂Cbz), 4.58 (dd, *J* = 7.9, 2.5 Hz, 1H, H3), 4.55 – 4.47 (m, 3H, 2 × CHPhe, CHSer), 4.46 (s, 2H, CH₂OBnSer), 4.36 – 4.27 (m, 4H, H2, CHAla, 2 × CH α Leu), 4.27 - 4.20 (m, 2H, CHAla, CHLys), 4.16 (dd, J = 7.9, 1.6 Hz, 2H, H4), 4.07 (ddd, J = 10.8, 8.4, 3.9 Hz, 1H, CHTyr), 3.88 – 3.79 (m, 1H, H5), 3.77 – 3.65 (m, 3H, CH₂Gly, CH₂aGly), 3.64 – 3.55 (m, 2H, CH₂Ser), 3.55 – 3.48 (m, 1H, CH₂bGly), 3.23 – 3.13 (m, 1H, H6a), 3.13 – 3.06 (m, 1H, H6b), 3.05 – 2.98 (m, 2H, $CH_{2}aPhe, CH_{2}aPhe), 2.95 (dd, J = 6.4 Hz, 2H, CH_{2}\epsilon Lys), 2.83 - 2.76 (m, 2H, CH_{2}aTyr, CH_{2}bPhe), 2.72$ $(dd, J = 14.1, 10.2 \text{ Hz}, 1\text{H}, CH_2\text{bPhe}), 2.60 (dd, J = 13.3, 2.1 \text{ Hz}, 1\text{H}, CH_2\text{bTyr}), 1.66 - 1.53 (m, 2\text{H}, 2 \times 10^{-1} \text{ J})$ CHγLeu), 1.51 – 1.32 (m, 14H, 2 × CH₂Leu, CH₂δLys, CH₂βLys, 2 × CH₃), 1.28 (s, 12H, C(CH₃)₃, CH₃), 1.26 - 1.15 (m, 11H, CH₂ γ Lys, CH₃, 2 × CH₃Ala), 0.88 - 0.78 (m, 12H, 4 × CH₃Leu) ppm; ¹³C NMR (126) MHz, DMSO-*d*₆) δ 172.6, 172.2, 171.6, 171.3, 170.7, 170.7, 169.8, 169.7, 168.8, 168.5, 168.4, 156.1, 155.3 (13C, 13 × CO), 137.9, 137.6, 137.3, 130.4, 130.2, 129.2, 129.2, 128.4, 128.4, 128.2, 128.0, 128.0, 127.8, 127.8, 127.6, 127.5, 127.5, 127.4, 114.3 (36C, Ar), 108.4, 108.0 (2C, 2 × C(CH₃)₂), 95.7 (1C, C1), 78.1 (1C, C(CH₃)₃), 72.1 (1C, CH₂OBnSer), 70.7 (1C, C4), 70.12 (1C, C3), 70.08 (1C, C2), 69.9 (1C, CH₂Ser), 69.2 (1C, CH₂OBnTyr), 65.1 (1C, CH₂Cbz), 55.9 (1C, CHTyr), 53.8, 53.4 (2C, 2 × CHPhe), 52.4 (1C, CHLys), 51.1, 50.9 (2C, 2 × CHαLeu), 48.5, 48.1 (2C, 2 × CHAla), 42.1, 41.1 (2C, 2 × CH₂Gly), 40.8, 40.7 (2C, 2 × CH₂Leu), 40.3 (1C, CH₂ELys), 39.1 (1C, C6), 37.5, 37.3 (2C, 2 × CH₂Phe), 36.3 (1C, CH₂Tyr), 31.9 (1C, CH₂βLys), 29.2 (1C, CH₂δLys), 28.1 (3C, C(CH₃)₃), 26.0, 25.8, 25.0, 24.3 (4C, 4 × CH₃), 24.2, 24.1 (2C, 2 × CHyLeu), 23.14, 23.12 (2C, 2 × CH₃Leu), 22.6 (1C, CH₂yLys), 21.62, 21.55 $(2C, 2 \times CH_3Leu), 18.5, 18.0 (2C, 2 \times CH_3Ala)$ ppm; HRMS calcd for $C_{97}H_{128}N_{13}O_{22} [M - H]^{-} 1826.9302$, found 1826.9222.

1,2:3,4-di-*O*-isopropylidene-6-deoxy-6-[(*N*-(*N*-tert-butoxycarbonyl)-alanyl-((*O*-benzyl)-L-tyrosyl)-L-leucyl-L-phenylalanyl-((*N*'-benzyloxycarbonyl)-L-lysyl)-L-leucyl-L-alanyl-((*O*-benzyl)-L-seryl)glycyl-glycyl-L-phenylalanyl)]-L-alanylamido-D-glucopyranoside (4n). The mixture was stirred 7 days and the resulting crude was purified by trituration with diethyl ether to give 4n as an amorphous white solid (9.1 mg, 4.79 µmol, 11% yield). $[\alpha]_D^{25} = -7.5$ (*c* 0.2, DMSO); IR (ATR, Diamond) v 3273, 2930, 1626, 1510, 1257, 1068, 696 cm⁻¹; ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.14 (t, *J* = 5.2 Hz, 1H, NHGly), 8.05 – 7.86 (m, 10H, 2 × NHPhe, NHSer, NHGly, NHLys, 2 × NHAla, 2 × NHLeu, C6-NH), 7.68 (d, J = 8.2 Hz, 1H, NHTyr), 7.44 – 7.10 (m, 26H, NHCbz, Ar), 7.07 (d, J = 8.1 Hz, 2H, Ar), 6.96 (s, 1H, NHAla), 6.82 (d, J = 8.6 Hz, 2H, Ar), 5.40 (d, J = 4.8 Hz, 1H, H1), 5.01 (s, 2H, CH₂OBnTyr), 4.99 (s, 2H, CH₂Cbz), 4.61 – 4.39 (m, 7H, H3, 2 × CHPhe, CHSer, CHTyr, CH₂OBnSer), 4.35 – 4.19 (m, 6H, H2, CHLys, 2 × CHAla, 2 × CHLeu), 4.18 – 4.09 (m, 1H, H4), 3.90 – 3.78 (m, 2H, H5, CHAla), 3.76 – 3.63 (m, 3H, CH₂Gly, CH₂aGly), 3.62 – 3.48 (m, 3H, CH₂bGly, CH₂Ser), 3.23 – 3.13 (m, 1H, H6a), 3.13 – 3.06 (m, 1H, H6b), 3.03 (dd, J = 13.6, 4.0 Hz, 2H, CH₂aPhe, CH₂aPhe), 2.95 (q, J = 6.5 Hz, 2H, CH₂εLys), 2.87 (dd, J = 13.8, 3.6 Hz, 2H, CH₂aTyr, CH₂bPhe), 2.81 (dd, J = 14.0, 9.1 Hz, 1H, CH₂bPhe), 2.69 (dd, J = 13.8, 8.5 Hz, 1H, CH₂bTyr), 1.65 – 1.54 (m, 1H, CHγLeu), 1.53 – 1.39 (m, 5H, CH₂βLys, CHγLeu, CH₂Leu), 1.39 – 1.31 (m, 19H, C(CH₃)₃, CH₂δLys, CH₂Leu, 2 × CH₃), 1.30 – 1.13 (m, 14H, CH₂γLys, 2 × CH₃Ala, 2 × CH₃), 1.07 (d, J = 7.0 Hz, 3H, CH₃Ala), 0.88 – 0.80 (m, 9H, 3 × CH₃Leu), 0.78 (d, J = 6.5 Hz, 3H, CH₃Leu) ppm. HRMS calcd for C₁₀₀H₁₃₄N₁₄O₂₃+ [M + 2H]²⁺950.4946, found 950.4938
II. NMR spectra of compounds

S77

S82

S90

S110

III. References

¹ Jadhav, V. H.; Kim, J.-Y.; Chi, D. Y.; Lee, S.; Kim, D. W. Tetrahedron, 2014, 70, 533–542.

² Gao, Z.-G.; Duong, H. T.; Sonina, T.; Kim, S.-K.; Rompaey, P. V.; Calenbergh, S. V.; Mamedova, L.; Kim, H. O.; Kim, M. J.; Kim, A. Y.; Liang, B. T.; Jeong, L. S.; Jacobson, K. A. *J. Med. Chem.* **2006**, *49*, 2689–2702.

- ³ Kim, C.; Hoang, R.; Theodorakis, E. A. Org. Lett. **1999**, *1*, 1295–1297.
- ⁴ Agarwal, J.; Peddinti, R. K. Eur. J. Org. Chem. 2012, 6390-6406.

⁵ Shiao, T. C.; Giguère, D.; Galanos, N.; Roy, R. *Efficient Synthesis of Hepta-O-acetyl-β-lactosyl Azide via Phase Tranfer Catalysis*. In Carbohydrate Chemistry: Proven Synthetic Methods. Eds.: Vogel, C.; Murphy, P. **2017**, *Vol. 2*, Chap. 31, 251.

- ⁶ Thiering, S.; Sowa, C. E.; Thiem, J. J. Chem. Soc., Perkin Trans. 2001, 1, 801–806.
- ⁷ a) Chen, H.; Xian, T.; Zhang, W.; Si, W.; Luo, X.; Zhang, B.; Zhang, M.; Wang, Z.; Zhang, J. *Carbohydr. Res.* **2016**, *431*, 42–46; b) Plattner, C.; Höfener, M.; Sewald, N. *Org. Lett.* **2011**, *13*, 545–547; c) Miermont, A.; Barnhill, H.; Strable, E.; Lu, X.; Wall, K. A.; Wang, Q.; Finn, M. G.; Huang, X. *Chem.*
- Eur. J. 2008, 14, 4939-4947.
- ⁸ Denavit, V.; St-Gelais, J.; Tremblay, T.; Giguère, D. Chem. Eur. J. 2019, 25, 9272–9279.
- ⁹ Kitov, P. I.; Bundle, D. R. J. Am. Chem. Soc. 2003, 125, 16271–16284.
- ¹⁰ Seebach, D.; Thaler, A.; Beck Albert, K. Helv. Chim. Acta. **1989**, 72, 857–867.