ZIF-Derived Hierarchically Porous Fe-Zn-N-C Catalyst Synthesized via a Two-Stage Pyrolysis for Highly Efficient Oxygen Reduction Reaction in Both Acidic and Alkaline Media

Experimental Section

Reagents

Tris(acetylacetonato)iron(III) (Fe(acac)₃, 98%), 2-methylimidazole (98%), KOH (95%) and HClO₄ (70%) were purchased from Shanghai Aladdin Bio-Chem Technology Co., Ltd. Zinc nitrate hexahydrate (Zn(NO₃)₂·6H₂O, 98%), H₂SO₄ (98%), methanol (99.7%) and N, N-dimethylformamide (DMF, 99.5%) were purchased from Sinopharm Chemical Reagent Co., Ltd. Nafion D-520 dispersion (5% w/w in water and 1-propanol, DuPont) and commercial Pt/C catalyst (20 wt%, Johnson Matthey, JM) were purchased from Shanghai Hesen Electronic Device Co., Ltd. All the chemicals and reagents were used without any further purification. The ultrapure water (18.2 M Ω cm) was used for solution preparation in all experiments.

Synthesis of Fe-Zn-ZIF

Typically, Fe(acac)₃ (0.4 mmol) and Zn(NO₃)₂·6H₂O (4 mmol) were dissolved in 45 mL of methanol to form a clear solution in flask A. 2-methylimidazole (15.8 mmol) was dissolved in 10 mL of methanol in flask B, which was subsequently added into flask A and ultrasonicated for 10 min and then vigorously stirred for 1 h at room temperature. The resultant solution was transferred into a Teflon-lined stainless-steel autoclave (100 mL) and heated at 120 °C for 4 h. The resultant product was separated by centrifugation and washed alternately with DMF and methanol each for three times, and finally dried at 70 °C under vacuum for overnight.

Two-stage pyrolysis of Fe-Zn-ZIF

The powder of Fe-Zn-ZIF was transferred into a corundum boat and placed in a tube furnace, which was heated to 400 °C with a heating rate of 5 °C min⁻¹ and held at this temperature for 1 h, and then it was heated to the desirable temperature (800 900 or 1000 °C) with a heating rate of 1 °C min⁻¹ and held at that temperature for 2 h under flowing N₂, followed by cooling to room temperature. The obtained sample was stirred in 0.5 M H₂SO₄ solution at 80 °C for 7 h, and then washed and dried, and the resultant sample was heated to 900 °C with a heating rate of 5 °C min⁻¹ and kept at that temperature for 2 h under flowing N₂, followed by cooling N₂, followed to 900 °C with a heating rate of 5 °C min⁻¹ and kept at that temperature for 2 h under flowing N₂, followed by cooling to room temperature. The finally obtained sample was denoted as Fe-Zn-N-C-900-2 (Fe-Zn-N-C-800-2 or Fe-Zn-N-C-1000-2).

One-stage pyrolysis of Fe-Zn-ZIF

The Fe-Zn-ZIF sample was heated to 900 °C with a heating rate of 5 °C min⁻¹ and kept at 900 °C for 3 h under flowing N_2 and then naturally cooled to room temperature. The other procedures used were the same as those used in the two-stage pyrolysis process. The finally obtained sample was denoted as Fe-Zn-N-C-900-1.

Physical characterization

The morphology, structure and composition of the synthesized materials were characterized by HRTEM (JEM-2100F, JEOL), XRD (D8 Advance, Bruker), XPS (VG Multilab 2000, Bruker), surface area and porosity analyzer (ASAP2460,

Micromeritics) and laser confocal micro-Raman spectroscopy (DXR, American Thermo Electron).

Electrochemical characterization

Electrochemical measurements were carried out by using an electrochemical workstation (PGSTAT 302 N, Metrohm Autolab) in a three-electrode system consisting of a graphite rod counter electrode, a calibrated reference electrode (Ag/AgCl for acidic electrolyte and Hg/HgO for alkaline electrolyte), and a catalyst-modified glassy-carbon (GC) working electrode. All the electrode potentials reported in this work were reported with respect to RHE. The loading of Fe-Zn-N-C sample on the GC electrode was 642 μ g·cm⁻² and the loading of the commercial Pt/C (20 wt. %, Johnson Matthey) catalyst on GC electrode was 86 μ g·cm⁻². The temperature of electrolyte (0.1 M HClO₄ or 0.1 M KOH) was maintained at 25 °C with circulating ethylene glycol/water. The ORR performance of the catalyst was measured in O₂-saturated electrolyte by LSV with a sweep rate of 10 mV s⁻¹ at 1600 rpm. The H₂O₂/HO₂⁻ yield (η) and the electron transfer number (n) during ORR were determined by using RRDE (Pine) technique with the Pt ring potential set to 1.2 V vs. RHE (Equations 1 and 2).

$$\eta = 200 \frac{I_{\rm r} / \rm N}{I_{\rm d} + I_{\rm r} / \rm N}$$

$$n = 4 \frac{I_{\rm d}}{I_{\rm d} + I_{\rm r} / \rm N}$$

$$(1)$$

where I_r is the ring current, I_d is the disk current, and N is the collecting efficiency of Pt ring (0.37).

Supplemental Figures and Tables.

Fig. S1. (a) J_k of catalysts at 0.8 and 0.9 V in 0.1M KOH; (b) J_k of catalysts at 0.7 and 0.8 V in 0.1 M HClO₄.

Tab	le	S1 .	J_k	values	of	catal	vsts	in	0.1	Μ	K	OH	and	0.1	Μ	HC	ĽlO₄	
	-		- N									-				_		

Catalyst	0.1 M I	HClO ₄	0.1 M KOH			
Catalyst	$J_{\rm k}/{ m mA~cm^{-2}}@0.7~{ m V}$	$J_{\rm k}/{ m mA~cm^{-2}}@0.8~{ m V}$	$J_{\rm k}/{\rm mA~cm^{-2}}@0.8~{\rm V}$	$J_{\rm k}/{\rm mA~cm^{-2}}@0.9~{\rm V}$		
Fe-Zn-N-C-800-2	31.50	4.65	131.86	9.84		
Fe-Zn-N-C-900-2	121.30	16.18	154.46	13.53		
Fe-Zn-N-C-1000-2	25.84	1.15	123.01	5.23		
Fe-Zn-N-C-900-1	41.65	2.84	124.60	5.98		
20% Pt/C	35.85	8.91	30.62	1.12		

Fig. S2. LSV curves of Fe-Zn-N-C-900-2 in (a) 0.1 M HClO₄ and (b) 0.1 M KOH before and after durability test (1600 rpm and 10 mV s⁻¹).

Fig. S3. Methanol tolerance of Fe-Zn-N-C-900-2 and Pt/C in (a) 0.1M HClO₄ and (b) 0.1M KOH.

Table S2. ORR performance comparison for typical non-precious-metal catalysts.

Cotolyst	E _{1/2} /V	Pof	
Catalyst	In acidic media	In alkaline media	Kel.
Fe-Zn-N-C-900-2	0.819	0.918	This work
Fe-Fe ₃ C@Fe-N-C	0.79	0.88	1
Fe-ISAs/CN	0.773	0.900	2
Zn-N-C-1	0.746	0.873	3
Fe _{SA} -N-C	0.776	0.891	4
Zn/CoN-C	0.796	0.861	5
m-FeSNC	-	0.904	6
ZIF'-FA-p	0.81	-	7
Fe@C-Fe-N-C	0.730	0.899	8
SA-Fe-HPC	0.81	0.89	9
SA-Fe/NG	0.80	0.88	10
Fe,N-PCNs	-	0.87	11
Fe/Fe ₅ C ₂ @N-C	0.66	0.85	12
Zn/CoN-C	0.796	0.861	13
Fe,N-HPCC	0.76	0.898	14
FeN _x /GM	0.80	-	15
p-Fe-NCNF	0.74	0.82	16

Fig. S4. TEM images of Fe-Zn-N-C-900-2 (a) and Fe-Zn-N-C-900-1 (b).

Fig. S5. XPS spectra of Fe-Zn-N-C samples.

Sample	C/at. %	N/at. %	O/at. %	Fe/at. %	Zn/at. %
Fe- Zn -N-C-900-1	85.40	7.94	5.58	0.32	0.76
Fe-Zn-N-C-800-2	85.74	7.25	5.67	0.74	0.60
Fe-Zn-N-C-900-2	86.70	6.78	5.43	0.59	0.51
Fe-Zn-N-C-1000-2	92.78	3.31	3.39	0.38	0.14

 Table S3. The composition of Fe-Zn-N-C samples.

Fig. S6. (a) High-resolution N1s XPS spectra of Fe-Zn-N-C samples and (b) the relative contents of the deconvoluted peak areas of N1s XPS spectra.

Fig. S7. High-resolution Fe 2p XPS spectra of (a) Fe-Zn-N-C-900-2 and (b) Fe-Zn-N-C-900-1 samples.

Fig. S8. High-resolution Zn 2p XPS spectra of (a) Fe-Zn-N-C-900-2 and (b) Fe-Zn-N-C-900-1 samples.

Table S4. Specific surface area and pore volume values of Fe-Zn-N-C samples.

Samples	$S_{BET}\!/m^2\;g^{\text{-}1}$	$V_{total\ pore}\ /cm^3\ g^{\text{-}1}$	V _{micro} /cm ³ g ⁻¹	$V_{meso/macro}/cm^3 \ g^{\text{-}1}$
Fe-Zn-N-C-800-2	1393	0.844	0.355	0.489
Fe-Zn-N-C-900-2	1303	0.869	0.323	0.546
Fe-Zn-N-C-1000-2	1211	1.018	0.264	0.754
Fe-Zn-N-C-900-1	1257	0.744	0.328	0.416

References

- H. Wang, F. X. Yin, N. Liu, R. H. Kou, X. B. He, C. J. Sun, B. H. Chen, D. J. Liu and H. Q. Yin, *Adv. Funct. Mater.*, 2019, 29, 1-11.
- Y. Chen, S. Ji, Y. Wang, J. Dong, W. Chen, Z. Li, R. Shen, L. Zheng, Z. Zhuang, D. Wang and Y. Li, *Angew. Chem. Int. Ed.*, 2017, 56, 6937-6941.
- J. Li, S. Chen, N. Yang, M. Deng, S. Ibraheem, J. Deng, J. Li, L. Li and Z. Wei, Angew. Chem. Int. Ed., 2019, 58, 7035-7036.
- L. Jiao, G. Wan, R. Zhang, H. Zhou, S.-H. Yu and H.-L. Jiang, *Angew. Chem. Int. Ed.*, 2018, 57, 8525-8529.
- Z. Lu, B. Wang, Y. Hu, W. Liu, Y. Zhao, R. Yang, Z. Li, J. Luo, B. Chi, Z. Jiang, M. Li, S. Mu, S. Liao, J. Zhang and X. Sun, *Angew. Chem. Int. Ed.*, 2019, 58, 2622-2626.
- Z. Guan, X. Zhang, W. Chen, J. Pei, D. Liu, Y. Xue, W. Zhu and Z. Zhuang, *Chem. Commun.*, 2018, 54, 12073-12076.
- C. Zhang, Y. C. Wang, B. An, R. Huang, C. Wang, Z. Zhou and W. Lin, *Adv. Mater.*, 2017, 29, 1-7.
- W.-J. Jiang, L. Gu, L. Li, Y. Zhang, X. Zhang, L.-J. Zhang, J.-Q. Wang, J.-S. Hu, Z. Wei and L.-J. Wan, J. Am. Chem. Soc., 2016, 138, 3570-3578.
- 9. Z. Zhang, J. Sun, F. Wang and L. Dai, *Angew. Chem. Int. Ed.*, 2018, **57**, 9038-9043.
- L. Yang, D. Cheng, H. Xu, X. Zeng, X. Wan, J. Shui, Z. Xiang and D. Cao, *Proc. Natl. Acad.* Sci. USA, 2018, 115, 6626-6631.
- P. Du, F.-X. Ma, F. Lyu, K. He, Z. Li, J. Lu and Y. Y. Li, *Chem. Commun.*, 2019, 55, 5789-5792.
- 12. L. Song, T. Wang, L. Li, C. Wu and J. He, Appl. Catal. B-Environ., 2019, 244, 197-205.
- Z. Lu, B. Wang, Y. Hu, W. Liu, Y. Zhao, R. Yang, Z. Li, J. Luo, B. Chi, Z. Jiang, M. Li, S. Mu, S. Liao, J. Zhang and X. Sun, *Angew. Chem. Int. Ed.*, 2019, 131, 2648-2652.
- 14. Z. Guo, Z. Zhang, Z. Li, M. Dou and F. Wang, Nano Energy, 2019, 57, 108-117.
- X. Fu, N. Li, B. Ren, G. Jiang, Y. Liu, F. M. Hassan, D. Su, J. Zhu, L. Yang, Z. Bai, Z. P. Cano, A. Yu and Z. Chen, *Adv. Energy Mater.*, 2019, 0, 1803737.
- B.-C. Hu, Z.-Y. Wu, S.-Q. Chu, H.-W. Zhu, H.-W. Liang, J. Zhang and S.-H. Yu, *Energ. Environ. Sci.*, 2018, 11, 2208-2215.