## **Supporting Information**

## Green synthesis of mesoporous $MnNbO_x$ oxide by liquid induced selfassembly strategy for low-temperature removal of $NO_x$

Huifang Cheng<sup>a,†</sup>, Guodong Feng<sup>b,c,d,†</sup>, Zhenzhen Yang<sup>c</sup>, Tao Wang<sup>c</sup>, Francis Okejiri<sup>c</sup>, Junbin Tan<sup>b</sup>, Minjie Zhao<sup>b</sup>,

Jixing Liu<sup>b,c\*</sup>, Jian Liu<sup>b,\*</sup>, Zhen Zhao<sup>b</sup>

<sup>a</sup>College of Material Science and Engineering, Hebei University of Engineering, Handan 056038, Hebei, People's Republic of China;

<sup>b</sup>State Key Laboratory of Heavy Oil and Beijing Key Lab of Oil & Gas Pollution Control, China University of

Petroleum, Beijing 102249, P. R. China;

<sup>c</sup>Department of Chemistry, University of Tennessee-Knoxville, Tennessee 37996-1600, United States;

<sup>d</sup>Key Laboratory of Advanced Molecular Engineering Materials, College of Chemistry and Chemical Engineering,

Baoji University of Arts and Sciences, Baoji 721013, P. R. China;

\*Corresponding authors: J.X.L. (E-mail: jxliu0804@gmail.com) and J.L. (E-mail: liujian@cup.edu.cn)

## **Experimental section**

**1.1.** Synthesis of Catalysts. In a typical synthesis of mesoporous  $MnNbO_x$  oxide, 0.65 g of niobium (V) ethoxide (99.999%, Alfa), 2.0 g  $Mn(OOCCH_3)_2 \cdot 4H_2O$  (99%, Aldrich) and 1.0 g of ionic liquid (BmimTf\_2N) were dissolved in 5.0 ml of ethanol. The solution was stirred at room temperature for 2 h until  $Mn(OOCCH_3)_2 \cdot 4H_2O$  was completely dissolved. Subsequently, ethanol (5.0 ml) was added slowly with stirring. The mixed solution was gelled in an open petridish at 50 °C for 24 h and aged at 200 °C for 2 h, and a solid film was obtained. The ionic liquid was extracted by refluxing the sample with ethanol in a Soxhlet extractor for 24 h. The as-made sample was thermally treated at 550 °C for 2 h with the heating rate of  $1K \cdot min^{-1}$  in air, and the final sample denoted as meso-MnNbO<sub>x</sub>.

For comparison purpose, the counterpart catalyst with the same composition as porous meso- $MnNbO_x$  was synthesized by a co-precipitation method.

**1.2. Catalysts characterization.** The microstructure of MnNbO<sub>x</sub> catalysts was conducted on a JEOL JEM LaB6 2100 electron microscope. The phase composition and texture properties of various MnNbO<sub>x</sub> oxides were detected by the XRD and N<sub>2</sub> adsorption-desorption isotherm performed on Micromeritics Tristar I 3020 porosimetry analyzer at –196 °C. The microstructure and the particle size of the MnNbO<sub>x</sub> catalysts were observed by FEI QUANTA 430 thermal field emission scanning electron microscope (SEM). Surface chemical valence states of MnNbO<sub>x</sub> oxides were investigated by X-ray photoelectron spectra (XPS) carried out on a PerkinElmer PHI-1600 ESCA spectrometer using Al K $\alpha$  anode (h $\nu$  = 1253.6 eV) as X-ray source. The element content of as-prepared materials was determined by a Varian 715-ES inductively coupled plasma-atomic emission spectrometer (ICP-AES). Hydrogen (H<sub>2</sub>) temperature-programmed reduction (H<sub>2</sub>-TPR) measurements were performed on a USA Autosorb-iQ-C chemisorption analyzer (Quantachrome). Ammonia temperature-programmed desorption (NH<sub>3</sub>-TPD) experiments were conducted on a USA Quantachrome apparatus. The adsorption properties of NH<sub>3</sub> and NO<sub>x</sub> were probed by *in-situ* diffuse reflection fourier transform infrared spectroscopy (DRIFTS) on a Nicolet IS50 FT-IR spectrometer.

**1.3.** NH<sub>3</sub>-SCR of NO<sub>x</sub> test. NH<sub>3</sub>-SCR of NO<sub>x</sub> evaluations for MnNbO<sub>x</sub> catalysts were carried out on a micro instrument under atmospheric pressure. Prior to the measurement of NO<sub>x</sub> light-off curves, 0.20 g catalyst protected by quartz wool was placed into the reactor. Thereafter, the feed gas (500 ml·min<sup>-1</sup>) consisted of 100 ppm SO<sub>2</sub> (when used), 5% H<sub>2</sub>O (when used), 3% O<sub>2</sub>, 500 ppm NH<sub>3</sub>, 500 ppm NO balanced with N<sub>2</sub> were injected into the fixed-bed reactor and corresponding gas hourly space velocity (GHSV) of 100,000 h<sup>-1</sup>. The feed gas concentrations were determined by the NO<sub>x</sub> analyzer (SIGNAL4000 120 VM), and the composition of feed gases at

the outlet was measured by Thermo Nicolet iS-50 spectrometer. Finally,  $NO_x$  conversion and  $N_2$  selectivity were calculated based on the following equations:

$$NO_{x} \text{ conversion} = \frac{[NO_{x}]_{\text{inlet}} - [NO_{x}]_{\text{outlet}}}{[NO_{x}]_{\text{inlet}}} \times 100\%$$

$$N_{2} \text{ Selectivity} = \left(1 - \frac{2[N_{2}O]_{\text{outlet}}}{[NO_{x}]_{\text{inlet}} + [NH_{3}]_{\text{outlet}} - [NO_{x}]_{\text{outlet}}}\right) \times 100\%$$

$$(1)$$

| Sample                        | S <sub>BET</sub> (m²/g) | V (cm <sup>3</sup> /g) | D (nm) | Integrated total TPD yields <sup>a</sup> | Concentration (wt.%) <sup>b</sup> |      |  |
|-------------------------------|-------------------------|------------------------|--------|------------------------------------------|-----------------------------------|------|--|
|                               |                         |                        |        |                                          | Mn                                | Nb   |  |
| meso-MnNbO <sub>x</sub>       | 116.0                   | 0.37                   | 13.7   | 1694.2                                   | 56.4                              | 14.1 |  |
| bulk-MnNbO <sub>x</sub>       | 29.9                    | 0.10                   | 16.2   | 757.7                                    | 54.3                              | 16.2 |  |
| <sup>a</sup> Obtained by TPD. |                         |                        |        |                                          |                                   |      |  |
| b                             |                         | Obtained               |        | by                                       | ICP.                              |      |  |

Table S1 Textural properties of  $\mathsf{MnNbO}_x$  catalysts.

| Catalyst                | surface        |      | atomic |                  | relative concentration ratios |                  |      |                  |                  |                |      |             |
|-------------------------|----------------|------|--------|------------------|-------------------------------|------------------|------|------------------|------------------|----------------|------|-------------|
|                         | concentrations |      |        |                  |                               |                  |      |                  |                  |                |      |             |
|                         | Mn             | Nb   | 0      | Mn <sup>2+</sup> | Mn <sup>3+</sup>              | Mn <sup>4+</sup> | Rª   | Nb <sup>4+</sup> | Nb <sup>5+</sup> | R <sup>b</sup> | Oα   | $O_{\beta}$ |
| meso-MnNbO <sub>x</sub> | 0.21           | 0.6  | 0.73   | 0.17             | 0.62                          | 0.21             | 2.95 | 0.22             | 0.78             | 0.28           | 0.69 | 0.31        |
| bulk-MnNbO <sub>x</sub> | 0.20           | 0.08 | 0.72   | 0.28             | 0.43                          | 0.29             | 1.48 | 0.33             | 0.67             | 0.49           | 0.66 | 0.34        |

Table S2 The surface atomic concentrations of Mn, Nb, O, and the relative concentration ratios.

<sup>a</sup> The Ce species ratio of Mn<sup>3+</sup>/Mn<sup>4+</sup>; <sup>b</sup> The O species ratio of Nb<sup>4+</sup>/Nb<sup>5+</sup>.

| Catalyst                                 | Reaction Condition                                         | C (T/ºC)   | Temperature Window (°C) | Reference |
|------------------------------------------|------------------------------------------------------------|------------|-------------------------|-----------|
| meso-MnNbO <sub>x</sub>                  | [NO] = [NH <sub>3</sub> ] = 500 ppm, [O <sub>2</sub> ] = 3 | 100% (100) | 100-225                 | This work |
|                                          | vol.%, GHSV = 100,000 h <sup>-1</sup>                      |            |                         |           |
| Fe/TiO <sub>2</sub>                      | [NO] = [NH <sub>3</sub> ] = 200 ppm, [O <sub>2</sub> ] = 5 | 100% (230) | 230-275                 | 1         |
|                                          | vol.%, GHSV = 12,000 h <sup>-1</sup>                       |            |                         |           |
| Mn/TiO <sub>2</sub>                      | [NO] = [NH <sub>3</sub> ] = 1000 ppm, [O <sub>2</sub> ] =  | 100% (110) | -                       | 2         |
|                                          | 3 vol.%, GHSV = 30,000 h <sup>-1</sup>                     |            |                         |           |
| $MnO_2$                                  | [NO] = [NH <sub>3</sub> ] = 500 ppm, [O <sub>2</sub> ] = 5 | 98% (160)  | 160-220                 | 3         |
|                                          | vol.%, GHSV = 50,000 h <sup>-1</sup>                       |            |                         |           |
| MnO <sub>x</sub> -CeO <sub>2</sub> /SBA- | [NO] = 1000 ppm, [NH <sub>3</sub> ] = 1100                 | 90% (150)  | 150-275                 | 4         |
| 15                                       | ppm, [O <sub>2</sub> ] = 8 vol.%, GHSV =                   |            |                         |           |
|                                          | 10,000 h <sup>-1</sup>                                     |            |                         |           |
| MnO <sub>x</sub> -CeO <sub>2</sub>       | [NO] = [NH <sub>3</sub> ] = 300 ppm, [O <sub>2</sub> ] = 5 | 90% (150)  | 150-240                 | 5         |
|                                          | vol.%, GHSV = 120,000 h <sup>-1</sup>                      |            |                         |           |
| meso-NiMnO <sub>x</sub>                  | [NO] = [NH <sub>3</sub> ] = 500 ppm, [O <sub>2</sub> ] = 5 | 100% (150) | 150-275                 | 6         |
|                                          | vol.%, GHSV = 60,000 h <sup>-1</sup>                       |            |                         |           |
| CuO/MnO <sub>2</sub> -mTiO <sub>2</sub>  | [NO] = [NH <sub>3</sub> ] = 1000 ppm, [O <sub>2</sub> ] =  | 98% (160)  | 160-280                 | 7         |
|                                          | 5 vol.%, GHSV = 20,000 h <sup>-1</sup>                     |            |                         |           |
| FeMnZrO <sub>x</sub>                     | [NO] = [NH <sub>3</sub> ] = 500 ppm, [O <sub>2</sub> ] = 4 | 100% (200) | 200-360                 | 8         |
|                                          | vol.%, GHSV = 35,000 h <sup>-1</sup>                       |            |                         |           |
| Sn/Cr-MnO <sub>x</sub>                   | [NO] = [NH <sub>3</sub> ] = 500 ppm, [O <sub>2</sub> ] = 3 | 100% (150) | 150-250                 | 9         |
|                                          | vol.%, GHSV = 35,000 h <sup>-1</sup>                       |            |                         |           |
| $meso-MnCo_2O_4$                         | [NO] = [NH <sub>3</sub> ] = 500 ppm, [O <sub>2</sub> ] = 3 | 95% (100)  | 100-250                 | 10        |
|                                          | vol.%, GHSV = 32,000 h <sup>-1</sup>                       |            |                         |           |
| WO <sub>3</sub> (1)-CeO <sub>2</sub>     | [NO] = [NH <sub>3</sub> ] = 500 ppm, [O <sub>2</sub> ] = 5 | 100% (225) | 225-350                 | 11        |
|                                          | vol.%, GHSV = 30,000 h <sup>-1</sup>                       |            |                         |           |
| CeWO <sub>x</sub>                        | [NO] = [NH <sub>3</sub> ] = 500 ppm, [O <sub>2</sub> ] = 5 | 90% (250)  | 250-425                 | 12        |
|                                          | vol.%, GHSV = 300,000 h <sup>-1</sup>                      |            |                         |           |

**Table S3** Comparison of  $NH_3$ -SCR performance over meso-MnNbO<sub>x</sub> with the state-of-the-art catalysts and other mesoporous oxides prepared with soft- or hard-templating methods.



Fig. S1 (a) TEM image and (b) HRTEM image of metal salt/ionic liquid precursor.



**Fig. S2** (A) Nitrogen adsorption-desorption isotherms and size distribution curves, and (B) XRD profile of the catalysts: (a) meso-MnNbO<sub>x</sub>, (b) bulk-MnNbO<sub>x</sub> (c) NbO<sub>x</sub>, and (d)  $Mn_2O_3$ .



Fig. S3 SEM images of the catalysts: (a)meso-MnNbO $_x$  and (b) bulk-MnNbO $_x$ .



Fig. S4 (A) XPS full spectra, (B) Mn 2p, (C) Nb 3d, and (D) O 1s of the catalysts: (a) meso-MnNbO<sub>x</sub> and (b) bulk-MnNbO<sub>x</sub>.



Fig. S5 Stability test of meso-MnNbO<sub>x</sub> catalyst at 280 °C. Reaction conditions:  $[NO] = [NH_3] = 500$  ppm,  $[O_2] = 3$  vol.%, balanced with N<sub>2</sub>, GHSV = 100,000 h<sup>-1</sup>.



**Fig. S6** (A) Nitrogen adsorption-desorption isotherms, and (B) XRD profile of the recovered catalysts after stability test: (a) meso-MnNbO<sub>x</sub> and (b) bulk-MnNbO<sub>x</sub>.



Fig. S7 (a) TEM image and (b) HRTEM images of the recovered meso-MnNbO<sub>x</sub> catalyst after stability test.

## References

- 1. Y. Li, X. Han, Y. Hou, Y. Guo, Y. Liu, N. Xiang, Y. Cui and Z. Huang, Chinese J. Catal., 2017, 38, 1831-1841.
- 2. Y. Shi, S. Chen, H. Sun, Y. Shu and X. Quan, Catal. Commun., 2013, 42, 10-13.
- 3. H. Jiang, Y. Wang, J. Zhou, Y. Chen and M. Zhang, *Mater. Lett.*, 2018, 233, 250-253.
- 4. X. Ran, M. Li, K. Wang, X. Qian, J. Fan, Y. Sun, W. Luo, W. Teng, W.-x. Zhang and J. Yang, ACS Appl. Mater. Interfaces, 2019, 11, 19242-19251.
- 5. Y. Yue, Y. Wang, J. Ling, W. Sun and Z. Shen, Aust. J. Chem., 2019, 72, 657-662.
- 6. H. Zhang, H. Wang, Z. Hao, R. Wang, Y. Xia, P. Wang and S. Zhan, Acs Applied Nano Materials, 2019, 2, 505-516.
- 7. J. Fan, M. Lv, W. Luo, X. Ran, Y. Deng, W.-x. Zhang and J. Yang, Chem. Commun., 2018, 54, 3783-3786.
- 8. N. Fang, J. Guo, S. Shu, H. Luo, Y. Chu and J. Li, Chem. Eng. J. 2017, 325, 114-123.
- 9. M. Qiu, S. Zhan, D. Zhu, H. Yu and Q. Shi, *Catal. Today*, 2015, **258**, 103-111.
- 10. M. Qiu, S. Zhan, H. Yu, D. Zhu and S. Wang, Nanoscale, 2015, 7, 2568-2577.
- 11. S. Zhan, H. Zhang, Y. Zhang, Q. Shi, Y. Li and X. Li, Applied catalysis. B, Environmental, 2017, 203, 199-209.
- 12. W. Shan, Y. Geng, X. Chen, N. Huang, F. Liu and S. Yang, Catal. Sci. Technol., 2016, 6, 1195-1200.