Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2020

Supplemental Information

Thiocyanate complexes of the lanthanides, Am and Cm.

Richard E. Wilson, Tyler J. Carter, Matthieu Autillo, Samantha Stegman

Chemical Sciences and Engineering Division

Argonne National Laboratory

Lemont IL 60439

USA

Experimental Details

Caution! ²⁴³Am and ²⁴⁸Cm and their associated decay daughters are α,β,γ -emitting radionuclides. ²⁴⁸Cm decays by spontaneous fission and is a neutron emitter. All experiments described here were performed in a laboratory specially designed for the handling of radionuclides including radiological fume hoods and gloveboxes under the supervision of health physics personnel.

General Methods. All chemicals and solvents, unless otherwise noted, were obtained from commercial sources and used as received. $[Et_4N][NCS]$ was prepared by combining ethanolic solutions of commercially available KNCS and $[Et_4N]Cl$ (in a 1:1 ratio) and removing the resulting KCl precipitate by filtration. The solution was then evaporated to dryness using a rotary evaporator to give $[Et_4N][NCS]$ as a white powder which was used for use in synthesis and spectroscopic studies.

²⁴³Am Stock Solution: Americium in acidic solution was converted to nitrate form by adding 15 M HNO₃ and evaporating to near dryness twice. The residue was then dissolved in 2 M HNO₃ (30 ml) and 1 ml ascorbic acid was added. The solution was loaded onto a 10 ml bed volume of TRU resin which had been conditioned with HNO₃. Once loaded on the column the Am was rinsed with 30 ml of a 2 M HNO₃/0.3 M ascorbic acid solution. Followed by 70 ml of 2 M HNO₃. 11 ml of 9 M HCl was then used to convert the column to Cl⁻ form, and the Am eluted with 4 M HCl. The HCl solution containing the Am was then passed through a column containing Amberlyte XAD-7 resin and filtered through a 0.45 μm syringe filter. The solution was then evaporated to near dryness, and converted to the nitrate form by dissolving in nitric acid and evaporating to near dryness twice. The residue was dissolved in 2 M HNO₃ and

precipitated using 50% NaOH solution (wt/wt). The resulting precipitate was then washed 3 times with 3 ml of water and dissolved in 3 M HOTf. The HOTf solution was allowed to evaporate until crystals of $[Am(H_2O)_9][OTf]_3$ had formed. The crystals were removed from the supernatant and allowed to dry for 6 h before being dissolved in MeOH. The solution concentration was then determined by scintillation counting.

²⁴⁸Cm Stock Solution: The ²⁴⁸Cm was first precipitated from a 0.1 M HClO₄ solution by the addition of aqueous sodium hydroxide. The precipitate was washed three times with dionized water and redissolved in 3 M HOTf. The HOTf solution was allowed to evaporate until crystals of $[Cm(H_2O)_9][OTf]_3$ had formed. The crystals were removed from the supernatant and allowed to dry for 6 hours before being dissolved in MeOH. The solution concentration was determined by scintillation counting.

Synthesis of $[An(NCS)_7(H_2O)][Et_4N]_4$ An: Am, Cm: 150 µl of a 10 mM stock solution of $[An(H_2O)_9][OTf]_3$ in MeOH was combined with 500 µl (125 eq.) of a 0.38 M stock solution of $[Et_4N][NCS]$ in MeOH and diluted with 300 µl of additional MeOH. This solution was placed in a 5 ml shell vial, which was lowered into a 20 ml scintillation vial with 10 ml diethyl ether. The larger vial was capped and allowed to stand at room temperature until pink crystals of Am-NCS or yellow crystals of Cm-NCS had formed.

Synthesis of $[Ln(NCS)_7(H_2O)][Et_4N]_4$ (Ln-NCS, Ln = La-Nd, Sm-Lu): The Ln-NCS compounds were all prepared in the same manner. In each case, crystalline $[Ln(H_2O)_n]Cl_3$ (n = 7 for La-Pr and n = 6 for Nd-Lu) was dissolved in methanol at a concentration of 0.3 M. To 50 µl (15 mmol Ln^{III}) of this solution was added 400 µl (150 mmol, 10 eq.) of a 0.38 M solution of $[Et_4N][NCS]$ dissolved in methanol. The resulting mixture was then diluted with 1 ml additional methanol. The sample was covered loosely with parafilm and left in a Drierite[®] desiccator until evaporation was complete. The resulting crystalline blocks obtained at this stage were suitable for X-ray diffraction and collection of Raman spectroscopy data. However, the product can be obtained free of additional salts by washing 2 x 1 ml with dichloromethane and allowing to dry for 2 h. The remaining solid is then dissolved in 1 ml methanol and allowed to crystallize open to the air until almost dry.

Previously reported diffraction data for La/Pr-NCS were solved in the space group Pm-3.¹ The structures we obtained, however, contained the additional symmetry elements of the space group Pm-3m. Additionally, structural data for Nd/Dy/Er-NCS were included in the same report and solved in I4/m. The structures we obtained, however, contained the additional symmetry elements of the space group I4/mmm. For this reason, we elected to resolve these structures in the correct space groups.

Single Crystal X-ray Diffraction. Crystals were mounted on glass fibers using a heavy oil. Full spheres of data were collected at 100 K on a Bruker Apex II diffractometer using Mo K α radiation. The data were corrected for absorption using SADABS, Structure refinement was carried out using SHELXL software.^{2, 3} Both the cubic and tetragonal structures contained Et₄N⁺ cations in which the carbon atoms were disordered about special positions. As all unique orientations of these carbon atoms were crystallographically equivalent, the occupancy was fixed such that each unique atom had a total occupancy of one. We previously reported a coordinated water molecule disordered over all eight ligand sites at the metal center for the Ce compound, as supported by IR data and the thiocyanate ligands and coordinated water molecule were allowed to freely refine resulting in net occupancies near 7/8 and 1/8 respectively.⁴ However, the difference maps did not support the inclusion of the water molecule in the data here, and we

instead refined the structures using only a 7/8 occupied thiocyanate. The inclusion of the water molecule would there for have been arbitrary. Hydrogen atoms could not be located in the difference map, and a suitable combination of constraints could not be identified to assign hydrogen atoms in riding positions at the disordered cations. Hydrogen atoms were therefore omitted from the structure refinements.

Raman Spectroscopy. Raman spectra of the Ln-NCS compounds were collected on randomly oriented single crystals utilizing a Renishaw inVia Raman microscope using circularly polarized light from a 532 or 785 nm diode laser. Spectra of Am-NCS were collected using a 442 nm diode laser, and the Cm data were collected using 532 nm radiation. Single crystals were spread on a glass slide, and several crystals were examined to ensure sample homogeneity. Radioactive samples were mounted on a glass drop-slide and covered with a glass coverslip affixed with epoxy. Data were collected from 100 to 4000 cm⁻¹. Representative full spectra of La-NCS and Lu-NCS as well as the low frequency and C=N stretching region for all reported compounds are shown in the supporting information.

FT-IR Spectroscopy. IR spectra were collected on a Nicolet Nexus 870 FTIR spectrometer. Samples were ground with KBr and pressed into pellets. Data were collected using 32 scans over 4000-400 cm⁻¹ with a resolution of 2 cm⁻¹.

Electron Microscopy: Single crystals were mounted on carbon tape for analysis. A JEOL JSM-6010LA scanning electron microscope was used at beam voltage of 5kV and 20 kV to reveal the L-emission lines in the lighter lanthanides La-Sm. EDS spectra were collected using an acquisition time of 120 seconds.

Table 1. Crystal data and structure refin	ement for LaSCN.		
Identification code	pm3m		
Empirical formula	C39 H0 La N11 O0 S7		
Formula weight	985.83		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Cubic		
Space group	Pm-3m		
Unit cell dimensions	a = 11.4263(5) Å	α= 90°.	
	b = 11.4263(5) Å	β= 90°.	
	c = 11.4263(5) Å	$\gamma = 90^{\circ}$.	
Volume	1491.8(2) Å ³		
Z	1		
Density (calculated)	1.097 Mg/m ³		
Absorption coefficient	0.991 mm ⁻¹	0.991 mm ⁻¹	
F(000)	480	480	
Crystal size	0.650 x 0.362 x 0.128 mm	0.650 x 0.362 x 0.128 mm ³	
Theta range for data collection	1.782 to 33.080°.	1.782 to 33.080°.	
Index ranges	-16<=h<=16, -17<=k<=1	-16<=h<=16, -17<=k<=17, -17<=l<=17	
Reflections collected	25943	25943	
Independent reflections	625 [R(int) = 0.0454]	625 [R(int) = 0.0454]	
Completeness to theta = 25.242°	100.0 %	100.0 %	
Absorption correction	Semi-empirical from equi	valents	
Max. and min. transmission	0.4351 and 0.3127		
Refinement method	Full-matrix least-squares	Full-matrix least-squares on F ²	
Data / restraints / parameters	625 / 1 / 29	625 / 1 / 29	
Goodness-of-fit on F ²	1.148	1.148	
Final R indices [I>2sigma(I)]	R1 = 0.0533, wR2 = 0.146	R1 = 0.0533, wR2 = 0.1469	
R indices (all data)	R1 = 0.0533, $wR2 = 0.146$	R1 = 0.0533, wR2 = 0.1469	
Extinction coefficient	n/a		
Largest diff. peak and hole	2.140 and -2.261 e.Å ⁻³		

	Х	У	Z	U(eq)
La(1)	0	0	0	21(1)
N(2)	0	0	5000	199(18)
C(2)	0	1080(30)	4161(11)	181(14)
N(3)	5000	5000	5000	34(2)
C(3)	0	2300(20)	5000	157(5)
C(4)	4066(14)	4066(14)	5000	78(5)
C(5)	3001(11)	5000	5000	78(5)
S(1)	2634(2)	2634(2)	2634(2)	106(2)
C(1)	1848(5)	1848(5)	1848(5)	70(3)
N(1)	1274(5)	1274(5)	1274(5)	89(4)

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for LaSCN. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

La(1)-N(1)#1	2.520(9)
La(1)-N(1)#2	2.520(9)
La(1)-N(1)#3	2.520(9)
La(1)-N(1)#4	2.520(9)
La(1)-N(1)#5	2.520(9)
La(1)-N(1)#6	2.520(9)
La(1)-N(1)#7	2.520(9)
La(1)-N(1)	2.521(9)
N(2)-C(2)#8	1.57(2)
N(2)-C(2)#9	1.57(2)
N(2)-C(2)#10	1.57(2)
N(2)-C(2)#6	1.57(2)
N(2)-C(2)#11	1.57(2)
N(2)-C(2)#12	1.57(2)
N(2)-C(2)#13	1.57(2)
N(2)-C(2)	1.57(2)
C(2)-C(2)#8	1.75(4)
C(2)-C(2)#11	1.75(4)
C(2)-C(3)	1.69(3)
C(2)-C(2)#10	1.92(3)
N(3)-C(4)	1.51(2)
N(3)-C(4)#14	1.51(2)
N(3)-C(4)#15	1.51(2)
N(3)-C(4)#16	1.51(2)
N(3)-C(4)#17	1.51(2)
N(3)-C(4)#18	1.51(2)
N(3)-C(4)#19	1.51(2)
N(3)-C(4)#20	1.51(2)
N(3)-C(4)#21	1.51(2)
N(3)-C(4)#22	1.51(2)
N(3)-C(4)#23	1.51(2)
N(3)-C(4)#24	1.51(2)
C(3)-C(2)#10	1.69(3)
C(4)-C(4)#24	1.51(2)

Table 3. Bond lengths [Å] and angles [°] for LaSCN.

C(5)-C(4)#22	1.618(9)
C(5)-C(4)#16	1.618(9)
S(1)-C(1)	1.555(10)
C(1)-N(1)	1.137(12)
N(1)#1-La(1)-N(1)#2	109.471(1)
N(1)#1-La(1)-N(1)#3	70.529(1)
N(1)#2-La(1)-N(1)#3	180.0(2)
N(1)#1-La(1)-N(1)#4	109.5
N(1)#2-La(1)-N(1)#4	109.5
N(1)#3-La(1)-N(1)#4	70.5
N(1)#1-La(1)-N(1)#5	70.5
N(1)#2-La(1)-N(1)#5	70.5
N(1)#3-La(1)-N(1)#5	109.5
N(1)#4-La(1)-N(1)#5	180.0(2)
N(1)#1-La(1)-N(1)#6	70.5
N(1)#2-La(1)-N(1)#6	70.5
N(1)#3-La(1)-N(1)#6	109.5
N(1)#4-La(1)-N(1)#6	70.5
N(1)#5-La(1)-N(1)#6	109.5
N(1)#1-La(1)-N(1)#7	109.5
N(1)#2-La(1)-N(1)#7	109.5
N(1)#3-La(1)-N(1)#7	70.5
N(1)#4-La(1)-N(1)#7	109.5
N(1)#5-La(1)-N(1)#7	70.5
N(1)#6-La(1)-N(1)#7	180.0(4)
N(1)#1-La(1)-N(1)	180.0(6)
N(1)#2-La(1)-N(1)	70.529(1)
N(1)#3-La(1)-N(1)	109.5
N(1)#4-La(1)-N(1)	70.5

C(4)-C(4)#21

C(4)-C(4)#16

C(4)-C(4)#18

C(4)-C(5)#18

C(5)-C(4)#24

C(4)-C(5)

1.51(2)

1.51(2)

1.51(2)

1.618(9)

1.618(9) 1.618(9)

N(1)#5-La(1)-N(1)	109.5
N(1)#6-La(1)-N(1)	109.5
N(1)#7-La(1)-N(1)	70.5
C(2)#8-N(2)-C(2)#9	180.0(7)
C(2)#8-N(2)-C(2)#10	112.0(9)
C(2)#9-N(2)-C(2)#10	68.0(9)
C(2)#8-N(2)-C(2)#6	68.0(9)
C(2)#9-N(2)-C(2)#6	112.0(9)
C(2)#10-N(2)-C(2)#6	180.0
C(2)#8-N(2)-C(2)#11	104.5(17)
C(2)#9-N(2)-C(2)#11	75.5(17)
C(2)#10-N(2)-C(2)#11	112.0(9)
C(2)#6-N(2)-C(2)#11	68.0(9)
C(2)#8-N(2)-C(2)#12	112.0(9)
C(2)#9-N(2)-C(2)#12	68.0(9)
C(2)#10-N(2)-C(2)#12	104.5(17)
C(2)#6-N(2)-C(2)#12	75.5(17)
C(2)#11-N(2)-C(2)#12	112.0(9)
C(2)#8-N(2)-C(2)#13	75.5(17)
C(2)#9-N(2)-C(2)#13	104.5(17)
C(2)#10-N(2)-C(2)#13	68.0(9)
C(2)#6-N(2)-C(2)#13	112.0(9)
C(2)#11-N(2)-C(2)#13	180.0
C(2)#12-N(2)-C(2)#13	68.0(9)
C(2)#8-N(2)-C(2)	68.0(9)
C(2)#9-N(2)-C(2)	112.0(9)
C(2)#10-N(2)-C(2)	75.5(17)
C(2)#6-N(2)-C(2)	104.5(17)
C(2)#11-N(2)-C(2)	68.0(9)
C(2)#12-N(2)-C(2)	180.0
C(2)#13-N(2)-C(2)	112.0(9)
N(2)-C(2)-C(2)#8	56.0(4)
N(2)-C(2)-C(2)#11	56.0(4)
C(2)#8-C(2)-C(2)#11	90.000(1)
N(2)-C(2)-C(3)	107.7(10)
C(2)#8-C(2)-C(3)	125.7(3)

C(2)#11-C(2)-C(3)	125.7(3)
N(2)-C(2)-C(2)#10	52.2(9)
C(2)#8-C(2)-C(2)#10	89.999(1)
C(2)#11-C(2)-C(2)#10	89.999(1)
C(3)-C(2)-C(2)#10	55.5(6)
C(4)-N(3)-C(4)#14	120.0
C(4)-N(3)-C(4)#15	180.0
C(4)#14-N(3)-C(4)#15	60.000(1)
C(4)-N(3)-C(4)#16	60.000(1)
C(4)#14-N(3)-C(4)#16	180.0
C(4)#15-N(3)-C(4)#16	120.0
C(4)-N(3)-C(4)#17	120.000(1)
C(4)#14-N(3)-C(4)#17	60.0
C(4)#15-N(3)-C(4)#17	60.0
C(4)#16-N(3)-C(4)#17	120.0
C(4)-N(3)-C(4)#18	60.000(1)
C(4)#14-N(3)-C(4)#18	120.000(1)
C(4)#15-N(3)-C(4)#18	120.000(1)
C(4)#16-N(3)-C(4)#18	60.000(1)
C(4)#17-N(3)-C(4)#18	180.0
C(4)-N(3)-C(4)#19	120.0
C(4)#14-N(3)-C(4)#19	90.000(2)
C(4)#15-N(3)-C(4)#19	60.000(1)
C(4)#16-N(3)-C(4)#19	90.000(1)
C(4)#17-N(3)-C(4)#19	120.000(1)
C(4)#18-N(3)-C(4)#19	60.000(1)
C(4)-N(3)-C(4)#20	120.000(1)
C(4)#14-N(3)-C(4)#20	120.000(1)
C(4)#15-N(3)-C(4)#20	60.0
C(4)#16-N(3)-C(4)#20	60.0
C(4)#17-N(3)-C(4)#20	90.000(3)
C(4)#18-N(3)-C(4)#20	90.000(1)
C(4)#19-N(3)-C(4)#20	60.0
C(4)-N(3)-C(4)#21	60.0
C(4)#14-N(3)-C(4)#21	60.0
C(4)#15-N(3)-C(4)#21	120.000(1)

C(4)#16-N(3)-C(4)#21	120.000(1)
C(4)#17-N(3)-C(4)#21	90.000(1)
C(4)#18-N(3)-C(4)#21	90.000(3)
C(4)#19-N(3)-C(4)#21	120.000(1)
C(4)#20-N(3)-C(4)#21	180.0
C(4)-N(3)-C(4)#22	90.000(2)
C(4)#14-N(3)-C(4)#22	120.000(1)
C(4)#15-N(3)-C(4)#22	90.0
C(4)#16-N(3)-C(4)#22	60.000(1)
C(4)#17-N(3)-C(4)#22	60.000(1)
C(4)#18-N(3)-C(4)#22	120.000(1)
C(4)#19-N(3)-C(4)#22	120.000(1)
C(4)#20-N(3)-C(4)#22	60.000(1)
C(4)#21-N(3)-C(4)#22	120.000(1)
C(4)-N(3)-C(4)#23	90.0
C(4)#14-N(3)-C(4)#23	60.0
C(4)#15-N(3)-C(4)#23	90.000(2)
C(4)#16-N(3)-C(4)#23	120.000(1)
C(4)#17-N(3)-C(4)#23	120.000(1)
C(4)#18-N(3)-C(4)#23	60.0
C(4)#19-N(3)-C(4)#23	60.0
C(4)#20-N(3)-C(4)#23	120.000(1)
C(4)#21-N(3)-C(4)#23	60.0
C(4)#22-N(3)-C(4)#23	180.0
C(4)-N(3)-C(4)#24	60.000(1)
C(4)#14-N(3)-C(4)#24	90.000(1)
C(4)#15-N(3)-C(4)#24	120.0
C(4)#16-N(3)-C(4)#24	90.000(2)
C(4)#17-N(3)-C(4)#24	60.000(1)
C(4)#18-N(3)-C(4)#24	120.000(1)
C(4)#19-N(3)-C(4)#24	180.0
C(4)#20-N(3)-C(4)#24	120.000(1)
C(4)#21-N(3)-C(4)#24	60.000(1)
C(4)#22-N(3)-C(4)#24	60.000(1)
C(4)#23-N(3)-C(4)#24	120.000(1)
C(2)#10-C(3)-C(2)	69.0(13)

N(3)-C(4)-C(4)#24	60.000(3)
N(3)-C(4)-C(4)#21	60.000(3)
C(4)#24-C(4)-C(4)#21	60.000(1)
N(3)-C(4)-C(4)#16	60.000(3)
C(4)#24-C(4)-C(4)#16	90.000(6)
C(4)#21-C(4)-C(4)#16	120.000(12)
N(3)-C(4)-C(4)#18	60.000(4)
C(4)#24-C(4)-C(4)#18	120.000(12)
C(4)#21-C(4)-C(4)#18	90.000(9)
C(4)#16-C(4)-C(4)#18	60.000(1)
N(3)-C(4)-C(5)	93.8(8)
C(4)#24-C(4)-C(5)	62.2(5)
C(4)#21-C(4)-C(5)	122.1(4)
C(4)#16-C(4)-C(5)	62.2(5)
C(4)#18-C(4)-C(5)	122.1(4)
N(3)-C(4)-C(5)#18	93.8(8)
C(4)#24-C(4)-C(5)#18	122.1(4)
C(4)#21-C(4)-C(5)#18	62.2(5)
C(4)#16-C(4)-C(5)#18	122.1(4)
C(4)#18-C(4)-C(5)#18	62.2(5)
C(5)-C(4)-C(5)#18	172.5(16)
C(4)#24-C(5)-C(4)#22	55.6(10)
C(4)#24-C(5)-C(4)#16	82.5(16)
C(4)#22-C(5)-C(4)#16	55.6(10)
C(4)#24-C(5)-C(4)	55.6(10)
C(4)#22-C(5)-C(4)	82.5(16)
C(4)#16-C(5)-C(4)	55.6(10)
N(1)-C(1)-S(1)	180.0(12)
C(1)-N(1)-La(1)	180.0(10)

Symmetry transformations used to generate equivalent atoms: #1 -x,-y,-z #2 -x,y,z #3 x,-y,-z #4 x,-y,z #5 -x,y,-z #6 -x,-y,z #7 x,y,-z #8 -y,-x,z #9 y,x,-z+1 #10 x,y,-z+1 #11 y,x,z #12 -x,-y,-z+1 #13 -y,-x,-z+1 #14 -y+1,-z+1,-x+1 #15 -x+1,-y+1,-z+1 #16 y,z,x #17 -z+1,-x+1,-y+1 #18 z,x,y #19 -y+1,z,x #20 -z+1,-x+1,y #21 z,x,-y+1 #22 x,-y+1,z #23 -x+1,y,-z+1 #24 y,-z+1,-x+1

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²
 La(1)	21(1)	21(1)	21(1)	0	0	0
N(2)	280(30)	280(30)	38(9)	0	0	0
C(2)	190(30)	290(30)	64(9)	79(16)	0	0
N(3)	34(2)	34(2)	34(2)	0	0	0
C(3)	168(17)	168(18)	135(14)	0	0	0
C(4)	95(8)	95(8)	43(7)	0	0	-23(15)
C(5)	95(8)	95(8)	43(7)	0	0	-23(15)
S(1)	106(2)	106(2)	106(2)	-36(1)	-36(1)	-36(1)
C(1)	70(3)	70(3)	70(3)	-18(2)	-18(2)	-18(2)
N(1)	89(4)	89(4)	89(4)	-27(3)	-27(3)	-27(3)

Table 4. Anisotropic displacement parameters (Å²x 10³) for LaSCN. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

Table 5. Crystal data and structure refin	ement for CeSCN.		
Identification code	pm3m		
Empirical formula	C39 H0 Ce N11 O0 S7	C39 H0 Ce N11 O0 S7	
Formula weight	987.04		
Temperature	173 K		
Wavelength	0.71073 Å		
Crystal system	Cubic		
Space group	Pm-3m		
Unit cell dimensions	a = 11.3981(7) Å	α= 90°.	
	b = 11.3981(7) Å	β= 90°.	
	c = 11.3981(7) Å	$\gamma = 90^{\circ}$.	
Volume	1480.8(3) Å ³		
Ζ	1		
Density (calculated)	1.107 Mg/m ³		
Absorption coefficient	1.046 mm ⁻¹	1.046 mm ⁻¹	
F(000)	481	481	
Crystal size	0.206 x 0.152 x 0.094 m	0.206 x 0.152 x 0.094 mm ³	
Theta range for data collection	1.787 to 30.563°.	1.787 to 30.563°.	
Index ranges	-16<=h<=16, -15<=k<=	15, -16<=l<=15	
Reflections collected	21416		
Independent reflections	512 [R(int) = 0.0226]		
Completeness to theta = 25.242°	100.0 %	100.0 %	
Refinement method	Full-matrix least-squares	Full-matrix least-squares on F ²	
Data / restraints / parameters	512 / 1 / 27	512 / 1 / 27	
Goodness-of-fit on F ²	1.076		
Final R indices [I>2sigma(I)]	R1 = 0.0560, wR2 = 0.11	590	
R indices (all data)	R1 = 0.0560, wR2 = 0.11	R1 = 0.0560, wR2 = 0.1590	
Extinction coefficient	n/a		
Largest diff. peak and hole	2.183 and -1.901 e.Å ⁻³		

	Х	У	Z	U(eq)
Ce(1)	0	0	0	22(1)
N(2)	0	0	5000	156(15)
C(2)	0	1060(30)	4155(17)	173(9)
N(3)	5000	5000	5000	36(4)
C(3)	0	2290(30)	5000	173(9)
C(4)	4070(20)	4070(20)	5000	88(6)
C(5)	3026(11)	5000	5000	88(6)
S(1)	2630(2)	2630(2)	2630(2)	113(2)
C(1)	1838(6)	1838(6)	1838(6)	75(4)
N(1)	1265(6)	1265(6)	1265(6)	96(5)

Table 6. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for CeSCN. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Ce(1)-N(1)	2.497(12)
Ce(1)-N(1)#1	2.497(12)
Ce(1)-N(1)#2	2.497(12)
Ce(1)-N(1)#3	2.497(12)
Ce(1)-N(1)#4	2.497(12)
Ce(1)-N(1)#5	2.497(12)
Ce(1)-N(1)#6	2.497(12)
Ce(1)-N(1)#7	2.497(12)
N(2)-C(2)#8	1.55(2)
N(2)-C(2)#9	1.55(2)
N(2)-C(2)#10	1.55(2)
N(2)-C(2)#3	1.55(2)
N(2)-C(2)#11	1.55(2)
N(2)-C(2)#12	1.55(2)
N(2)-C(2)#13	1.55(2)
N(2)-C(2)	1.55(2)
C(2)-C(3)	1.70(3)
C(2)-C(2)#8	1.71(5)
C(2)-C(2)#11	1.71(5)
C(2)-C(2)#10	1.93(4)
N(3)-C(4)	1.51(3)
N(3)-C(4)#14	1.51(3)
N(3)-C(4)#15	1.51(3)
N(3)-C(4)#16	1.51(3)
N(3)-C(4)#17	1.51(3)
N(3)-C(4)#18	1.51(3)
N(3)-C(4)#19	1.51(3)
N(3)-C(4)#20	1.51(3)
N(3)-C(4)#21	1.51(3)
N(3)-C(4)#22	1.51(3)
N(3)-C(4)#23	1.51(3)
N(3)-C(4)#24	1.51(3)
C(3)-C(2)#10	1.70(3)
C(4)-C(4)#24	1.51(3)

Table 7. Bond lengths [Å] and angles [°] for CeSCN.

C(4)-C(4)#21	1.51(3)
C(4)-C(4)#16	1.51(3)
C(4)-C(4)#18	1.51(3)
C(4)-C(5)#18	1.593(10)
C(4)-C(5)	1.593(10)
C(5)-C(4)#24	1.593(10)
C(5)-C(4)#22	1.593(10)
C(5)-C(4)#16	1.593(10)
S(1)-C(1)	1.564(13)
C(1)-N(1)	1.131(16)
N(1)-Ce(1)-N(1)#1	180.0(3)
N(1)-Ce(1)-N(1)#2	70.5
N(1)#1-Ce(1)-N(1)#2	109.5
N(1)-Ce(1)-N(1)#3	109.5
N(1)#1-Ce(1)-N(1)#3	70.5
N(1)#2-Ce(1)-N(1)#3	180.0(3)
N(1)-Ce(1)-N(1)#4	70.529(1)
N(1)#1-Ce(1)-N(1)#4	109.5
N(1)#2-Ce(1)-N(1)#4	109.5
N(1)#3-Ce(1)-N(1)#4	70.5
N(1)-Ce(1)-N(1)#5	109.5
N(1)#1-Ce(1)-N(1)#5	70.5
N(1)#2-Ce(1)-N(1)#5	70.5
N(1)#3-Ce(1)-N(1)#5	109.5
N(1)#4-Ce(1)-N(1)#5	70.5
N(1)-Ce(1)-N(1)#6	70.5
N(1)#1-Ce(1)-N(1)#6	109.5
N(1)#2-Ce(1)-N(1)#6	109.5
N(1)#3-Ce(1)-N(1)#6	70.5
N(1)#4-Ce(1)-N(1)#6	109.5
N(1)#5-Ce(1)-N(1)#6	180.0(3)
N(1)-Ce(1)-N(1)#7	109.5
N(1)#1-Ce(1)-N(1)#7	70.529(1)
N(1)#2-Ce(1)-N(1)#7	70.5
N(1)#3-Ce(1)-N(1)#7	109.5

N(1)#4-Ce(1)-N(1)#7	180.0
N(1)#5-Ce(1)-N(1)#7	109.5
N(1)#6-Ce(1)-N(1)#7	70.5
C(2)#8-N(2)-C(2)#9	180.0(12)
C(2)#8-N(2)-C(2)#10	112.8(11)
C(2)#9-N(2)-C(2)#10	67.2(11)
C(2)#8-N(2)-C(2)#3	67.2(11)
C(2)#9-N(2)-C(2)#3	112.8(11)
C(2)#10-N(2)-C(2)#3	180.0
C(2)#8-N(2)-C(2)#11	103(2)
C(2)#9-N(2)-C(2)#11	77(2)
C(2)#10-N(2)-C(2)#11	112.8(11)
C(2)#3-N(2)-C(2)#11	67.2(11)
C(2)#8-N(2)-C(2)#12	112.8(11)
C(2)#9-N(2)-C(2)#12	67.2(11)
C(2)#10-N(2)-C(2)#12	103(2)
C(2)#3-N(2)-C(2)#12	77(2)
C(2)#11-N(2)-C(2)#12	112.8(11)
C(2)#8-N(2)-C(2)#13	77(2)
C(2)#9-N(2)-C(2)#13	103(2)
C(2)#10-N(2)-C(2)#13	67.2(11)
C(2)#3-N(2)-C(2)#13	112.8(11)
C(2)#11-N(2)-C(2)#13	180.0
C(2)#12-N(2)-C(2)#13	67.2(11)
C(2)#8-N(2)-C(2)	67.2(11)
C(2)#9-N(2)-C(2)	112.8(11)
C(2)#10-N(2)-C(2)	77(2)
C(2)#3-N(2)-C(2)	103(2)
C(2)#11-N(2)-C(2)	67.2(11)
C(2)#12-N(2)-C(2)	180.0
C(2)#13-N(2)-C(2)	112.8(11)
N(2)-C(2)-C(3)	107.1(15)
N(2)-C(2)-C(2)#8	56.4(6)
C(3)-C(2)-C(2)#8	125.7(5)
N(2)-C(2)-C(2)#11	56.4(6)
C(3)-C(2)-C(2)#11	125.7(5)

C(2)#8-C(2)-C(2)#11	89.999(1)
N(2)-C(2)-C(2)#10	51.5(11)
C(3)-C(2)-C(2)#10	55.6(9)
C(2)#8-C(2)-C(2)#10	90.000(3)
C(2)#11-C(2)-C(2)#10	90.000(1)
C(4)-N(3)-C(4)#14	120.0
C(4)-N(3)-C(4)#15	180.0
C(4)#14-N(3)-C(4)#15	60.000(2)
C(4)-N(3)-C(4)#16	60.000(2)
C(4)#14-N(3)-C(4)#16	180.0
C(4)#15-N(3)-C(4)#16	120.000(1)
C(4)-N(3)-C(4)#17	120.000(2)
C(4)#14-N(3)-C(4)#17	60.000(1)
C(4)#15-N(3)-C(4)#17	60.000(1)
C(4)#16-N(3)-C(4)#17	120.000(1)
C(4)-N(3)-C(4)#18	60.000(2)
C(4)#14-N(3)-C(4)#18	120.000(2)
C(4)#15-N(3)-C(4)#18	120.000(2)
C(4)#16-N(3)-C(4)#18	60.000(1)
C(4)#17-N(3)-C(4)#18	180.0
C(4)-N(3)-C(4)#19	120.000(1)
C(4)#14-N(3)-C(4)#19	90.000(3)
C(4)#15-N(3)-C(4)#19	60.000(2)
C(4)#16-N(3)-C(4)#19	90.000(2)
C(4)#17-N(3)-C(4)#19	120.000(1)
C(4)#18-N(3)-C(4)#19	60.000(2)
C(4)-N(3)-C(4)#20	120.000(2)
C(4)#14-N(3)-C(4)#20	120.000(2)
C(4)#15-N(3)-C(4)#20	60.000(1)
C(4)#16-N(3)-C(4)#20	60.0
C(4)#17-N(3)-C(4)#20	90.000(3)
C(4)#18-N(3)-C(4)#20	90.000(2)
C(4)#19-N(3)-C(4)#20	60.000(1)
C(4)-N(3)-C(4)#21	60.000(1)
C(4)#14-N(3)-C(4)#21	60.000(1)
C(4)#15-N(3)-C(4)#21	120.000(2)

C(4)#16-N(3)-C(4)#21	120.000(2)
C(4)#17-N(3)-C(4)#21	90.000(2)
C(4)#18-N(3)-C(4)#21	90.000(3)
C(4)#19-N(3)-C(4)#21	120.000(1)
C(4)#20-N(3)-C(4)#21	180.0
C(4)-N(3)-C(4)#22	90.000(3)
C(4)#14-N(3)-C(4)#22	120.000(2)
C(4)#15-N(3)-C(4)#22	90.000(1)
C(4)#16-N(3)-C(4)#22	60.000(2)
C(4)#17-N(3)-C(4)#22	60.000(2)
C(4)#18-N(3)-C(4)#22	120.000(2)
C(4)#19-N(3)-C(4)#22	120.000(1)
C(4)#20-N(3)-C(4)#22	60.000(2)
C(4)#21-N(3)-C(4)#22	120.000(2)
C(4)-N(3)-C(4)#23	90.000(1)
C(4)#14-N(3)-C(4)#23	60.000(1)
C(4)#15-N(3)-C(4)#23	90.000(3)
C(4)#16-N(3)-C(4)#23	120.000(2)
C(4)#17-N(3)-C(4)#23	120.000(2)
C(4)#18-N(3)-C(4)#23	60.0
C(4)#19-N(3)-C(4)#23	60.000(2)
C(4)#20-N(3)-C(4)#23	120.000(2)
C(4)#21-N(3)-C(4)#23	60.0
C(4)#22-N(3)-C(4)#23	180.0
C(4)-N(3)-C(4)#24	60.000(2)
C(4)#14-N(3)-C(4)#24	90.000(2)
C(4)#15-N(3)-C(4)#24	120.0
C(4)#16-N(3)-C(4)#24	90.000(4)
C(4)#17-N(3)-C(4)#24	60.000(2)
C(4)#18-N(3)-C(4)#24	120.000(2)
C(4)#19-N(3)-C(4)#24	180.0
C(4)#20-N(3)-C(4)#24	120.000(2)
C(4)#21-N(3)-C(4)#24	60.000(2)
C(4)#22-N(3)-C(4)#24	60.000(2)
C(4)#23-N(3)-C(4)#24	120.000(2)
C(2)-C(3)-C(2)#10	68.9(18)

N(3)-C(4)-C(4)#24	60.001(4)
N(3)-C(4)-C(4)#21	60.001(4)
C(4)#24-C(4)-C(4)#21	60.001(1)
N(3)-C(4)-C(4)#16	60.001(4)
C(4)#24-C(4)-C(4)#16	90.001(9)
C(4)#21-C(4)-C(4)#16	120.003(16)
N(3)-C(4)-C(4)#18	60.001(5)
C(4)#24-C(4)-C(4)#18	120.003(18)
C(4)#21-C(4)-C(4)#18	90.002(13)
C(4)#16-C(4)-C(4)#18	60.001(1)
N(3)-C(4)-C(5)#18	93.1(12)
C(4)#24-C(4)-C(5)#18	121.7(7)
C(4)#21-C(4)-C(5)#18	61.8(7)
C(4)#16-C(4)-C(5)#18	121.7(7)
C(4)#18-C(4)-C(5)#18	61.8(7)
N(3)-C(4)-C(5)	93.1(12)
C(4)#24-C(4)-C(5)	61.8(7)
C(4)#21-C(4)-C(5)	121.7(7)
C(4)#16-C(4)-C(5)	61.8(7)
C(4)#18-C(4)-C(5)	121.7(7)
C(5)#18-C(4)-C(5)	174(2)
C(4)#24-C(5)-C(4)#22	56.4(14)
C(4)#24-C(5)-C(4)#16	84(2)
C(4)#22-C(5)-C(4)#16	56.4(14)
C(4)#24-C(5)-C(4)	56.4(14)
C(4)#22-C(5)-C(4)	84(2)
C(4)#16-C(5)-C(4)	56.4(14)
N(1)-C(1)-S(1)	180.0(16)
C(1)-N(1)-Ce(1)	180.0(14)

Symmetry transformations used to generate equivalent atoms: #1 -x,-y,-z #2 x,y,-z #3 -x,-y,z #4 -x,y,z #5 -x,y,-z #6 x,-y,z #7 x,-y,-z #8 -y,-x,z #9 y,x,-z+1 #10 x,y,-z+1 #11 y,x,z #12 -x,-y,-z+1 #13 -y,-x,-z+1 #14 -y+1,-z+1,-x+1 #15 -x+1,-y+1,-z+1 #16 y,z,x #17 -z+1,-x+1,-y+1 #18 z,x,y #19 -y+1,z,x #20 -z+1,-x+1,y #21 z,x,-y+1 #22 x,-y+1,z #23 -x+1,y,-z+1 #24 y,-z+1,-x+1

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Ce(1)	22(1)	22(1)	22(1)	0	0	0
N(2)	210(30)	210(30)	50(12)	0	0	0
C(2)	169(13)	250(20)	105(12)	86(17)	0	0
N(3)	36(4)	36(4)	36(4)	0	0	0
C(3)	169(13)	250(20)	105(12)	86(17)	0	0
C(4)	102(12)	102(12)	60(12)	0	0	-20(20)
C(5)	102(12)	102(12)	60(12)	0	0	-20(20)
S(1)	113(2)	113(2)	113(2)	-39(1)	-39(1)	-39(1)
C(1)	75(4)	75(4)	75(4)	-21(3)	-21(3)	-21(3)
N(1)	96(5)	96(5)	96(5)	-30(4)	-30(4)	-30(4)

Table 8. Anisotropic displacement parameters (Å²x 10³) for CeSCN. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

rable 7. Crystal data and structure refinement to	of HISCH.		
Identification code	pm3m		
Empirical formula	C39 H82 N11 O Pr S7		
Formula weight	1086.48		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Cubic		
Space group	Pm-3m		
Unit cell dimensions	a = 11.4242(9) Å	$\alpha = 90^{\circ}$.	
	b = 11.4242(9) Å	β= 90°.	
	c = 11.4242(9) Å	$\gamma = 90^{\circ}$.	
Volume	1491.0(4) Å ³		
Z	1		
Density (calculated)	1.210 Mg/m ³		
Absorption coefficient	1.098 mm ⁻¹		
F(000)	572		
Crystal size	0.365 x 0.124 x 0.120 mm ³		
Theta range for data collection	1.783 to 33.087°.		
Index ranges	-17<=h<=16, -17<=k<=17, -17<=l<=17		
Reflections collected	25892		
Independent reflections	626 [R(int) = 0.0257]		
Completeness to theta = 25.242°	100.0 %		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	626 / 1 / 29		
Goodness-of-fit on F ²	1.022		
Final R indices [I>2sigma(I)]	R1 = 0.0514, $wR2 = 0.1448$		
R indices (all data)	R1 = 0.0514, $wR2 = 0.1448$		
Extinction coefficient	n/a		
Largest diff. peak and hole	2.489 and -2.440 e.Å ⁻³		

Table 9. Crystal data and structure refinement for PrSCN.

	Х	у	Z	U(eq)
Pr(1)	0	0	0	18(1)
N(2)	0	0	5000	149(13)
C(2)	0	1060(20)	4162(12)	160(12)
N(3)	5000	5000	5000	29(2)
C(3)	0	2280(20)	5000	155(7)
C(4)	4056(17)	4056(17)	5000	76(5)
C(5)	3007(11)	5000	5000	76(5)
S(1)	2624(2)	2624(2)	2624(2)	93(1)
C(1)	1835(5)	1835(5)	1835(5)	61(3)
N(1)	1260(5)	1260(5)	1260(5)	78(3)

Table 10. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for PrSCN. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Pr(1)-N(1)#1	2.493(9)
Pr(1)-N(1)#2	2.493(9)
Pr(1)-N(1)#3	2.493(9)
Pr(1)-N(1)#4	2.493(9)
Pr(1)-N(1)#5	2.493(9)
Pr(1)-N(1)#6	2.493(9)
Pr(1)-N(1)#7	2.493(9)
Pr(1)-N(1)	2.493(9)
N(2)-C(2)#8	1.55(2)
N(2)-C(2)#9	1.55(2)
N(2)-C(2)#10	1.55(2)
N(2)-C(2)#6	1.55(2)
N(2)-C(2)#11	1.55(2)
N(2)-C(2)#12	1.55(2)
N(2)-C(2)#13	1.55(2)
N(2)-C(2)	1.55(2)
C(2)-C(2)#8	1.72(4)
C(2)-C(2)#11	1.72(4)
C(2)-C(3)	1.69(3)
C(2)-C(2)#10	1.91(3)
N(3)-C(4)	1.53(3)
N(3)-C(4)#14	1.53(3)
N(3)-C(4)#15	1.53(3)
N(3)-C(4)#16	1.53(3)
N(3)-C(4)#17	1.53(3)
N(3)-C(4)#18	1.53(3)
N(3)-C(4)#19	1.53(3)
N(3)-C(4)#20	1.53(3)
N(3)-C(4)#21	1.53(3)
N(3)-C(4)#22	1.53(3)
N(3)-C(4)#23	1.53(3)
N(3)-C(4)#24	1.53(3)
C(3)-C(2)#10	1.69(3)
C(4)-C(4)#24	1.53(3)

Table 11. Bond lengths [Å] and angles [°] for PrSCN.

C(5)-C(4)#22	1.612(9)
C(5)-C(4)#16	1.612(9)
S(1)-C(1)	1.561(11)
C(1)-N(1)	1.138(12)
N(1)#1-Pr(1)-N(1)#2	109.471(1)
N(1)#1-Pr(1)-N(1)#3	70.529(1)
N(1)#2-Pr(1)-N(1)#3	180.0(4)
N(1)#1-Pr(1)-N(1)#4	109.5
N(1)#2-Pr(1)-N(1)#4	109.5
N(1)#3-Pr(1)-N(1)#4	70.5
N(1)#1-Pr(1)-N(1)#5	70.5
N(1)#2-Pr(1)-N(1)#5	70.5
N(1)#3-Pr(1)-N(1)#5	109.5
N(1)#4-Pr(1)-N(1)#5	180.0(6)
N(1)#1-Pr(1)-N(1)#6	70.5
N(1)#2-Pr(1)-N(1)#6	70.5
N(1)#3-Pr(1)-N(1)#6	109.5
N(1)#4-Pr(1)-N(1)#6	70.5
N(1)#5-Pr(1)-N(1)#6	109.5
N(1)#1-Pr(1)-N(1)#7	109.5
N(1)#2-Pr(1)-N(1)#7	109.5
N(1)#3-Pr(1)-N(1)#7	70.5
N(1)#4-Pr(1)-N(1)#7	109.5
N(1)#5-Pr(1)-N(1)#7	70.5
N(1)#6-Pr(1)-N(1)#7	180.0(6)
N(1)#1-Pr(1)-N(1)	180.0(6)
N(1)#2-Pr(1)-N(1)	70.529(1)
N(1)#3-Pr(1)-N(1)	109.5
N(1)#4-Pr(1)-N(1)	70.5

C(4)-C(4)#21

C(4)-C(4)#16

C(4)-C(4)#18

C(4)-C(5)#18

C(5)-C(4)#24

C(4)-C(5)

1.53(3)

1.53(3)

1.53(3)

1.612(9)

1.612(9)

1.612(9)

N(1)#5-Pr(1)-N(1)	109.5
N(1)#6-Pr(1)-N(1)	109.5
N(1)#7-Pr(1)-N(1)	70.529(1)
C(2)#8-N(2)-C(2)#9	180.0(8)
C(2)#8-N(2)-C(2)#10	112.5(9)
C(2)#9-N(2)-C(2)#10	67.5(9)
C(2)#8-N(2)-C(2)#6	67.5(9)
C(2)#9-N(2)-C(2)#6	112.5(9)
C(2)#10-N(2)-C(2)#6	180.0
C(2)#8-N(2)-C(2)#11	103.5(17)
C(2)#9-N(2)-C(2)#11	76.5(17)
C(2)#10-N(2)-C(2)#11	112.5(9)
C(2)#6-N(2)-C(2)#11	67.5(9)
C(2)#8-N(2)-C(2)#12	112.5(9)
C(2)#9-N(2)-C(2)#12	67.5(9)
C(2)#10-N(2)-C(2)#12	103.5(17)
C(2)#6-N(2)-C(2)#12	76.5(17)
C(2)#11-N(2)-C(2)#12	112.5(9)
C(2)#8-N(2)-C(2)#13	76.5(17)
C(2)#9-N(2)-C(2)#13	103.5(17)
C(2)#10-N(2)-C(2)#13	67.5(9)
C(2)#6-N(2)-C(2)#13	112.5(9)
C(2)#11-N(2)-C(2)#13	180.0
C(2)#12-N(2)-C(2)#13	67.5(9)
C(2)#8-N(2)-C(2)	67.5(9)
C(2)#9-N(2)-C(2)	112.5(9)
C(2)#10-N(2)-C(2)	76.5(17)
C(2)#6-N(2)-C(2)	103.5(17)
C(2)#11-N(2)-C(2)	67.5(9)
C(2)#12-N(2)-C(2)	180.0
C(2)#13-N(2)-C(2)	112.5(9)
N(2)-C(2)-C(2)#8	56.3(5)
N(2)-C(2)-C(2)#11	56.3(5)
C(2)#8-C(2)-C(2)#11	90.000(2)
N(2)-C(2)-C(3)	107.2(11)
C(2)#8-C(2)-C(3)	125.6(3)

C(2)#11-C(2)-C(3)	125.6(3)
N(2)-C(2)-C(2)#10	51.8(9)
C(2)#8-C(2)-C(2)#10	89.999(2)
C(2)#11-C(2)-C(2)#10	89.999(1)
C(3)-C(2)-C(2)#10	55.4(7)
C(4)-N(3)-C(4)#14	120.0
C(4)-N(3)-C(4)#15	180.0
C(4)#14-N(3)-C(4)#15	60.000(1)
C(4)-N(3)-C(4)#16	60.000(2)
C(4)#14-N(3)-C(4)#16	180.0
C(4)#15-N(3)-C(4)#16	120.0
C(4)-N(3)-C(4)#17	120.000(1)
C(4)#14-N(3)-C(4)#17	60.0
C(4)#15-N(3)-C(4)#17	60.0
C(4)#16-N(3)-C(4)#17	120.0
C(4)-N(3)-C(4)#18	60.000(1)
C(4)#14-N(3)-C(4)#18	120.000(2)
C(4)#15-N(3)-C(4)#18	120.000(2)
C(4)#16-N(3)-C(4)#18	60.000(1)
C(4)#17-N(3)-C(4)#18	180.0
C(4)-N(3)-C(4)#19	120.0
C(4)#14-N(3)-C(4)#19	90.000(3)
C(4)#15-N(3)-C(4)#19	60.000(2)
C(4)#16-N(3)-C(4)#19	90.000(1)
C(4)#17-N(3)-C(4)#19	120.000(2)
C(4)#18-N(3)-C(4)#19	60.000(1)
C(4)-N(3)-C(4)#20	120.000(2)
C(4)#14-N(3)-C(4)#20	120.000(1)
C(4)#15-N(3)-C(4)#20	60.0
C(4)#16-N(3)-C(4)#20	60.0
C(4)#17-N(3)-C(4)#20	90.000(3)
C(4)#18-N(3)-C(4)#20	90.000(1)
C(4)#19-N(3)-C(4)#20	60.0
C(4)-N(3)-C(4)#21	60.0
C(4)#14-N(3)-C(4)#21	60.0
C(4)#15-N(3)-C(4)#21	120.000(1)

C(4)#16-N(3)-C(4)#21	120.000(2)
C(4)#17-N(3)-C(4)#21	90.000(1)
C(4)#18-N(3)-C(4)#21	90.000(3)
C(4)#19-N(3)-C(4)#21	120.000(1)
C(4)#20-N(3)-C(4)#21	180.0
C(4)-N(3)-C(4)#22	90.000(3)
C(4)#14-N(3)-C(4)#22	120.000(1)
C(4)#15-N(3)-C(4)#22	90.0
C(4)#16-N(3)-C(4)#22	60.000(1)
C(4)#17-N(3)-C(4)#22	60.000(1)
C(4)#18-N(3)-C(4)#22	120.000(1)
C(4)#19-N(3)-C(4)#22	120.000(1)
C(4)#20-N(3)-C(4)#22	60.000(1)
C(4)#21-N(3)-C(4)#22	120.000(1)
C(4)-N(3)-C(4)#23	90.0
C(4)#14-N(3)-C(4)#23	60.000(1)
C(4)#15-N(3)-C(4)#23	90.000(3)
C(4)#16-N(3)-C(4)#23	120.000(1)
C(4)#17-N(3)-C(4)#23	120.000(2)
C(4)#18-N(3)-C(4)#23	60.0
C(4)#19-N(3)-C(4)#23	60.000(1)
C(4)#20-N(3)-C(4)#23	120.000(2)
C(4)#21-N(3)-C(4)#23	60.0
C(4)#22-N(3)-C(4)#23	180.0
C(4)-N(3)-C(4)#24	60.000(2)
C(4)#14-N(3)-C(4)#24	90.000(1)
C(4)#15-N(3)-C(4)#24	120.0
C(4)#16-N(3)-C(4)#24	90.000(3)
C(4)#17-N(3)-C(4)#24	60.000(1)
C(4)#18-N(3)-C(4)#24	120.000(2)
C(4)#19-N(3)-C(4)#24	180.0
C(4)#20-N(3)-C(4)#24	120.000(2)
C(4)#21-N(3)-C(4)#24	60.000(1)
C(4)#22-N(3)-C(4)#24	60.000(2)
C(4)#23-N(3)-C(4)#24	120.000(2)
C(2)#10-C(3)-C(2)	69.2(13)

60.000(3)
60.000(4)
60.0
60.000(3)
90.000(5)
120.000(13)
60.000(4)
120.000(14)
90.000(10)
60.000(1)
93.0(10)
61.8(6)
121.7(5)
61.8(6)
121.7(5)
93.0(10)
121.7(5)
61.8(6)
121.7(5)
61.8(6)
174.0(19)
56.5(11)
84.0(19)
56.5(11)
56.5(11)
84.0(19)
56.5(11)
180.0(13)
180.0(11)

Symmetry transformations used to generate equivalent atoms: #1 -x,-y,-z #2 -x,y,z #3 x,-y,-z #4 x,-y,z #5 -x,y,-z #6 -x,-y,z #7 x,y,-z #8 -y,-x,z #9 y,x,-z+1 #10 x,y,-z+1 #11 y,x,z #12 -x,-y,-z+1 #13 -y,-x,-z+1 #14 -y+1,-z+1,-x+1 #15 -x+1,-y+1,-z+1 #16 y,z,x #17 -z+1,-x+1,-y+1 #18 z,x,y #19 -y+1,z,x #20 -z+1,-x+1,y #21 z,x,-y+1 #22 x,-y+1,z #23 -x+1,y,-z+1 #24 y,-z+1,-x+1

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²
Pr(1)	18(1)	18(1)	18(1)	0	0	0
N(2)	210(20)	210(20)	35(8)	0	0	0
C(2)	160(20)	260(30)	55(8)	74(14)	0	0
N(3)	29(2)	29(2)	29(2)	0	0	0
C(3)	157(17)	159(18)	150(17)	0	0	0
C(4)	93(9)	93(9)	41(7)	0	0	-22(17)
C(5)	93(9)	93(9)	41(7)	0	0	-22(17)
S(1)	93(1)	93(1)	93(1)	-31(1)	-31(1)	-31(1)
C(1)	61(3)	61(3)	61(3)	-15(2)	-15(2)	-15(2)
N(1)	78(3)	78(3)	78(3)	-24(3)	-24(3)	-24(3)

Table 12. Anisotropic displacement parameters (Å²x 10³) for PrSCN. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

•				
Identification code	pm3m			
Empirical formula	C39 H0 N11 Nd O0 S7			
Formula weight	991.16			
Temperature	100(2) K			
Wavelength	0.71073 Å			
Crystal system	Cubic			
Space group	Pm-3m			
Unit cell dimensions	a = 11.3976(4) Å	$\alpha = 90^{\circ}$.		
	b = 11.3976(4) Å	β= 90°.		
	c = 11.3976(4) Å	$\gamma = 90^{\circ}$.		
Volume	1480.61(16) Å ³			
Z	1			
Density (calculated)	1.112 Mg/m ³			
Absorption coefficient	1.154 mm ⁻¹	1.154 mm ⁻¹		
F(000)	483	483		
Crystal size	0.270 x 0.109 x 0.058 m	0.270 x 0.109 x 0.058 mm ³		
Theta range for data collection	1.787 to 33.113°.	1.787 to 33.113°.		
Index ranges	-17<=h<=17, -17<=k<=	-17<=h<=17, -17<=k<=17, -17<=l<=17		
Reflections collected	25898	25898		
Independent reflections	625 [R(int) = 0.0183]	625 [R(int) = 0.0183]		
Completeness to theta = 25.242°	100.0 %	100.0 %		
Refinement method	Full-matrix least-square	Full-matrix least-squares on F ²		
Data / restraints / parameters	625 / 1 / 29	625 / 1 / 29		
Goodness-of-fit on F ²	0.973			
Final R indices [I>2sigma(I)]	R1 = 0.0502, wR2 = 0.1	R1 = 0.0502, w $R2 = 0.1414$		
R indices (all data)	R1 = 0.0502, wR2 = 0.1	R1 = 0.0502, $wR2 = 0.1414$		
Extinction coefficient	n/a	n/a		
Largest diff. peak and hole	2.573 and -2.412 e.Å ⁻³	2.573 and -2.412 e.Å ⁻³		

Table 13. Crystal data and structure refinement for NdSCN.
	х	у	Z	U(eq)
Nd(1)	0	0	0	18(1)
N(2)	0	0	5000	141(13)
C(2)	0	1040(20)	4165(13)	158(12)
N(3)	5000	5000	5000	28(3)
C(3)	0	2280(20)	5000	155(7)
C(4)	4053(18)	4053(18)	5000	76(5)
C(5)	3003(11)	5000	5000	76(5)
S(1)	2622(2)	2622(2)	2622(2)	95(1)
C(1)	1831(5)	1831(5)	1831(5)	63(3)
N(1)	1253(5)	1253(5)	1253(5)	80(4)

Table 14. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3) for NdSCN. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Nd(1)-N(1)	2.473(10)
Nd(1)-N(1)#1	2.473(10)
Nd(1)-N(1)#2	2.473(10)
Nd(1)-N(1)#3	2.473(10)
Nd(1)-N(1)#4	2.473(10)
Nd(1)-N(1)#5	2.473(10)
Nd(1)-N(1)#6	2.473(10)
Nd(1)-N(1)#7	2.473(10)
N(2)-C(2)	1.52(2)
N(2)-C(2)#8	1.52(2)
N(2)-C(2)#9	1.52(2)
N(2)-C(2)#3	1.52(2)
N(2)-C(2)#10	1.52(2)
N(2)-C(2)#11	1.52(2)
N(2)-C(2)#12	1.52(2)
N(2)-C(2)#13	1.52(2)
C(2)-C(2)#8	1.68(4)
C(2)-C(2)#11	1.68(4)
C(2)-C(3)	1.70(3)
C(2)-C(2)#10	1.90(3)
N(3)-C(4)#14	1.53(3)
N(3)-C(4)#15	1.53(3)
N(3)-C(4)#16	1.53(3)
N(3)-C(4)#17	1.53(3)
N(3)-C(4)#18	1.53(3)
N(3)-C(4)#19	1.53(3)
N(3)-C(4)#20	1.53(3)
N(3)-C(4)#21	1.53(3)
N(3)-C(4)#22	1.53(3)
N(3)-C(4)#23	1.53(3)
N(3)-C(4)#24	1.53(3)
N(3)-C(4)	1.53(3)
C(3)-C(2)#10	1.70(3)
C(4)-C(4)#24	1.53(3)

Table 15. Bond lengths [Å] and angles [°] for NdSCN.

$C(3)^{-}C(4)^{+}2^{-}4$	1.012()
C(5)-C(4)#15	1.612(9
S(1)-C(1)	1.561(1
C(1)-N(1)	1.141(1
N(1)-Nd(1)-N(1)#1	180.0(4)
N(1)-Nd(1)-N(1)#2	70.5
N(1)#1-Nd(1)-N(1)#2	109.5
N(1)-Nd(1)-N(1)#3	109.5
N(1)#1-Nd(1)-N(1)#3	70.5
N(1)#2-Nd(1)-N(1)#3	70.5
N(1)-Nd(1)-N(1)#4	70.5
N(1)#1-Nd(1)-N(1)#4	109.5
N(1)#2-Nd(1)-N(1)#4	109.5
N(1)#3-Nd(1)-N(1)#4	180.0(6)
N(1)-Nd(1)-N(1)#5	109.5
N(1)#1-Nd(1)-N(1)#5	70.5
N(1)#2-Nd(1)-N(1)#5	70.5
N(1)#3-Nd(1)-N(1)#5	109.5
N(1)#4-Nd(1)-N(1)#5	70.5
N(1)-Nd(1)-N(1)#6	70.5
N(1)#1-Nd(1)-N(1)#6	109.5
N(1)#2-Nd(1)-N(1)#6	109.5
N(1)#3-Nd(1)-N(1)#6	70.5
N(1)#4-Nd(1)-N(1)#6	109.5
N(1)#5-Nd(1)-N(1)#6	180.0(6)
N(1)-Nd(1)-N(1)#7	109.5
N(1)#1-Nd(1)-N(1)#7	70.5
N(1)#2-Nd(1)-N(1)#7	180.0(4)
N(1)#3-Nd(1)-N(1)#7	109.5

C(4)-C(4)#22	1.53(3)
C(4)-C(4)#15	1.53(3)
C(4)-C(4)#18	1.53(3)
C(4)-C(5)#18	1.612(9)
C(4)-C(5)	1.612(9)
C(5)-C(4)#20	1.612(9)
C(5)-C(4)#24	1.612(9)
C(5)-C(4)#15	1.612(9)
S(1)-C(1)	1.561(11)
C(1)-N(1)	1.141(13)

N(1)#4-Nd(1)-N(1)#7	70.5
N(1)#5-Nd(1)-N(1)#7	109.5
N(1)#6-Nd(1)-N(1)#7	70.5
C(2)-N(2)-C(2)#8	67.0(10)
C(2)-N(2)-C(2)#9	113.0(10)
C(2)#8-N(2)-C(2)#9	180.0(8)
C(2)-N(2)-C(2)#3	102.6(18)
C(2)#8-N(2)-C(2)#3	67.0(10)
C(2)#9-N(2)-C(2)#3	113.0(10)
C(2)-N(2)-C(2)#10	77.4(18)
C(2)#8-N(2)-C(2)#10	113.0(10)
C(2)#9-N(2)-C(2)#10	67.0(10)
C(2)#3-N(2)-C(2)#10	180.0(8)
C(2)-N(2)-C(2)#11	67.0(10)
C(2)#8-N(2)-C(2)#11	102.6(18)
C(2)#9-N(2)-C(2)#11	77.4(18)
C(2)#3-N(2)-C(2)#11	67.0(10)
C(2)#10-N(2)-C(2)#11	113.0(10)
C(2)-N(2)-C(2)#12	180.0
C(2)#8-N(2)-C(2)#12	113.0(10)
C(2)#9-N(2)-C(2)#12	67.0(10)
C(2)#3-N(2)-C(2)#12	77.4(18)
C(2)#10-N(2)-C(2)#12	102.6(18)
C(2)#11-N(2)-C(2)#12	113.0(10)
C(2)-N(2)-C(2)#13	113.0(10)
C(2)#8-N(2)-C(2)#13	77.4(18)
C(2)#9-N(2)-C(2)#13	102.6(18)
C(2)#3-N(2)-C(2)#13	113.0(10)
C(2)#10-N(2)-C(2)#13	67.0(10)
C(2)#11-N(2)-C(2)#13	180.0(13)
C(2)#12-N(2)-C(2)#13	67.0(10)
N(2)-C(2)-C(2)#8	56.5(5)
N(2)-C(2)-C(2)#11	56.5(5)
C(2)#8-C(2)-C(2)#11	90.001(1)
N(2)-C(2)-C(3)	107.2(11)
C(2)#8-C(2)-C(3)	125.9(3)

C(2)#11-C(2)-C(3)	125.9(3)
N(2)-C(2)-C(2)#10	51.3(9)
C(2)#8-C(2)-C(2)#10	90.001(2)
C(2)#11-C(2)-C(2)#10	90.001(1)
C(3)-C(2)-C(2)#10	55.9(7)
C(4)#14-N(3)-C(4)#15	180.0
C(4)#14-N(3)-C(4)#16	60.000(1)
C(4)#15-N(3)-C(4)#16	120.000(1)
C(4)#14-N(3)-C(4)#17	60.0
C(4)#15-N(3)-C(4)#17	120.0
C(4)#16-N(3)-C(4)#17	60.0
C(4)#14-N(3)-C(4)#18	120.000(2)
C(4)#15-N(3)-C(4)#18	60.000(1)
C(4)#16-N(3)-C(4)#18	120.000(2)
C(4)#17-N(3)-C(4)#18	180.0
C(4)#14-N(3)-C(4)#19	90.000(3)
C(4)#15-N(3)-C(4)#19	90.000(1)
C(4)#16-N(3)-C(4)#19	60.000(2)
C(4)#17-N(3)-C(4)#19	120.000(2)
C(4)#18-N(3)-C(4)#19	60.000(2)
C(4)#14-N(3)-C(4)#20	120.000(1)
C(4)#15-N(3)-C(4)#20	60.0
C(4)#16-N(3)-C(4)#20	90.0
C(4)#17-N(3)-C(4)#20	60.000(1)
C(4)#18-N(3)-C(4)#20	120.000(1)
C(4)#19-N(3)-C(4)#20	120.0
C(4)#14-N(3)-C(4)#21	120.000(2)
C(4)#15-N(3)-C(4)#21	60.0
C(4)#16-N(3)-C(4)#21	60.0
C(4)#17-N(3)-C(4)#21	90.000(3)
C(4)#18-N(3)-C(4)#21	90.000(1)
C(4)#19-N(3)-C(4)#21	60.0
C(4)#20-N(3)-C(4)#21	60.0
C(4)#14-N(3)-C(4)#22	60.0
C(4)#15-N(3)-C(4)#22	120.000(2)
C(4)#16-N(3)-C(4)#22	120.000(1)

C(4)#17-N(3)-C(4)#22	90.000(1)
C(4)#18-N(3)-C(4)#22	90.000(3)
C(4)#19-N(3)-C(4)#22	120.000(1)
C(4)#20-N(3)-C(4)#22	120.000(1)
C(4)#21-N(3)-C(4)#22	180.0
C(4)#14-N(3)-C(4)#23	60.0
C(4)#15-N(3)-C(4)#23	120.000(1)
C(4)#16-N(3)-C(4)#23	90.000(3)
C(4)#17-N(3)-C(4)#23	120.000(2)
C(4)#18-N(3)-C(4)#23	60.0
C(4)#19-N(3)-C(4)#23	60.0
C(4)#20-N(3)-C(4)#23	180.0
C(4)#21-N(3)-C(4)#23	120.000(2)
C(4)#22-N(3)-C(4)#23	60.0
C(4)#14-N(3)-C(4)#24	90.000(1)
C(4)#15-N(3)-C(4)#24	90.000(3)
C(4)#16-N(3)-C(4)#24	120.0
C(4)#17-N(3)-C(4)#24	60.000(1)
C(4)#18-N(3)-C(4)#24	120.000(2)
C(4)#19-N(3)-C(4)#24	180.0
C(4)#20-N(3)-C(4)#24	60.000(1)
C(4)#21-N(3)-C(4)#24	120.000(2)
C(4)#22-N(3)-C(4)#24	60.000(1)
C(4)#23-N(3)-C(4)#24	120.000(1)
C(4)#14-N(3)-C(4)	120.000(2)
C(4)#15-N(3)-C(4)	60.000(2)
C(4)#16-N(3)-C(4)	180.0
C(4)#17-N(3)-C(4)	120.000(2)
C(4)#18-N(3)-C(4)	60.000(1)
C(4)#19-N(3)-C(4)	120.000(2)
C(4)#20-N(3)-C(4)	90.000(3)
C(4)#21-N(3)-C(4)	120.000(1)
C(4)#22-N(3)-C(4)	60.000(2)
C(4)#23-N(3)-C(4)	90.000(3)
C(4)#24-N(3)-C(4)	60.000(2)
C(2)#10-C(3)-C(2)	68.1(13)

C(4)#24-C(4)-C(4)#22	59.999(1)
C(4)#24-C(4)-C(4)#15	89.999(8)
C(4)#22-C(4)-C(4)#15	119.998(13)
C(4)#24-C(4)-C(4)#18	119.998(14)
C(4)#22-C(4)-C(4)#18	89.999(12)
C(4)#15-C(4)-C(4)#18	59.999(1)
C(4)#24-C(4)-N(3)	59.999(4)
C(4)#22-C(4)-N(3)	59.999(3)
C(4)#15-C(4)-N(3)	59.999(4)
C(4)#18-C(4)-N(3)	59.999(3)
C(4)#24-C(4)-C(5)#18	121.7(6)
C(4)#22-C(4)-C(5)#18	61.7(6)
C(4)#15-C(4)-C(5)#18	121.7(6)
C(4)#18-C(4)-C(5)#18	61.7(6)
N(3)-C(4)-C(5)#18	92.9(10)
C(4)#24-C(4)-C(5)	61.7(6)
C(4)#22-C(4)-C(5)	121.7(6)
C(4)#15-C(4)-C(5)	61.7(6)
C(4)#18-C(4)-C(5)	121.7(6)
N(3)-C(4)-C(5)	92.9(10)
C(5)#18-C(4)-C(5)	174(2)
C(4)-C(5)-C(4)#20	84(2)
C(4)-C(5)-C(4)#24	56.6(12)
C(4)#20-C(5)-C(4)#24	56.6(12)
C(4)-C(5)-C(4)#15	56.6(12)
C(4)#20-C(5)-C(4)#15	56.6(12)
C(4)#24-C(5)-C(4)#15	84(2)
N(1)-C(1)-S(1)	180.0(13)
C(1)-N(1)-Nd(1)	180.0(11)

Symmetry transformations used to generate equivalent atoms: #1 -x,-y,-z #2 -x,y,z #3 -x,-y,z #4 x,y,-z #5 -x,y,-z #6 x,-y,z #7 x,-y,-z #8 -y,-x,z #9 y,x,-z+1 #10 x,y,-z+1 #11 y,x,z #12 -x,-y,-z+1 #13 -y,-x,-z+1 #14 -y+1,-z+1,-x+1 #15 y,z,x #16 -x+1,-y+1,-z+1 #17 -z+1,-x+1,-y+1 #18 z,x,y #19 -y+1,z,x #20 x,-y+1,z #21 -z+1,-x+1,y #22 z,x,-y+1 #23 -x+1,y,-z+1 #24 y,-z+1,-x+1

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²
Nd(1)	18(1)	18(1)	18(1)	0	0	0
N(2)	200(20)	200(20)	33(8)	0	0	0
C(2)	150(19)	270(30)	57(8)	78(14)	0	0
N(3)	28(3)	28(3)	28(3)	0	0	0
C(3)	147(17)	157(18)	161(18)	0	0	0
C(4)	92(9)	92(9)	44(8)	0	0	-23(17)
C(5)	92(9)	92(9)	44(8)	0	0	-23(17)
S(1)	95(1)	95(1)	95(1)	-32(1)	-32(1)	-32(1)
C(1)	63(3)	63(3)	63(3)	-17(3)	-17(3)	-17(3)
N(1)	80(4)	80(4)	80(4)	-25(3)	-25(3)	-25(3)

Table 16. Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for NdSCN. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 \ a^{*2}U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12}]$

5			
Identification code	pm3m		
Empirical formula	C39 H0 N11 O0 S7 Sm		
Formula weight	997.27		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Cubic		
Space group	Pm-3m		
Unit cell dimensions	a = 11.3772(6) Å	α=90°.	
	b = 11.3772(6) Å	β= 90°.	
	c = 11.3772(6) Å	$\gamma = 90^{\circ}$.	
Volume	1472.7(2) Å ³		
Z	1		
Density (calculated)	1.124 Mg/m ³		
Absorption coefficient	1.276 mm ⁻¹		
F(000)	485		
Crystal size	0.128 x 0.070 x 0.058 mm ³		
Theta range for data collection	1.790 to 33.058°.		
Index ranges	-16<=h<=16, -17<=k<=17, -16	<=l<=16	
Reflections collected	25736		
Independent reflections	615 [R(int) = 0.0366]		
Completeness to theta = 25.242°	100.0 %		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	615 / 0 / 32		
Goodness-of-fit on F ²	1.043		
Final R indices [I>2sigma(I)]	R1 = 0.0392, wR2 = 0.1136		
R indices (all data)	R1 = 0.0392, wR2 = 0.1136		
Extinction coefficient	n/a		
Largest diff. peak and hole	1.383 and -0.827 e.Å ⁻³		

Table 17. Crystal data and structure refinement for SmSCN.

	х	У	Z	U(eq)
Sm(1)	0	0	0	17(1)
N(2)	0	0	5000	141(11)
C(2)	0	1000(20)	4152(12)	157(10)
N(3)	5000	5000	5000	30(2)
C(3)	0	2200(20)	5000	175(8)
C(4)	4063(9)	4063(9)	5000	54(5)
C(5)	2742(12)	5000	5000	59(3)
S(1)	2617(2)	2617(2)	2617(2)	98(1)
C(1)	1823(5)	1823(5)	1823(5)	64(3)
N(1)	1244(4)	1244(4)	1244(4)	80(3)

Table 18. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for SmSCN. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Sm(1)-N(1)	2.452(8)
Sm(1)-N(1)#1	2.452(8)
Sm(1)-N(1)#2	2.452(8)
Sm(1)-N(1)#3	2.452(8)
Sm(1)-N(1)#4	2.452(8)
Sm(1)-N(1)#5	2.452(8)
Sm(1)-N(1)#6	2.452(8)
Sm(1)-N(1)#7	2.452(8)
N(2)-C(2)#8	1.490(18)
N(2)-C(2)#9	1.490(18)
N(2)-C(2)#10	1.490(18)
N(2)-C(2)#3	1.490(18)
N(2)-C(2)#11	1.490(18)
N(2)-C(2)#12	1.490(18)
N(2)-C(2)#13	1.490(18)
N(2)-C(2)	1.490(18)
C(2)-C(2)#8	1.61(3)
C(2)-C(2)#11	1.61(3)
C(2)-C(3)	1.67(2)
C(2)-C(2)#10	1.93(3)
N(3)-C(4)#14	1.508(15)
N(3)-C(4)	1.508(15)
N(3)-C(4)#15	1.508(15)
N(3)-C(4)#16	1.508(15)
N(3)-C(4)#17	1.508(14)
N(3)-C(4)#18	1.508(14)
N(3)-C(4)#19	1.508(15)
N(3)-C(4)#20	1.508(14)
N(3)-C(4)#21	1.508(14)
N(3)-C(4)#22	1.508(14)
N(3)-C(4)#23	1.508(15)
N(3)-C(4)#24	1.508(15)
C(3)-C(2)#10	1.67(2)
C(4)-C(4)#24	1.508(14)

Table 19. Bond lengths [Å] and angles [°] for SmSCN.

C(4)-C(4)#21	1.508(14)
C(4)-C(4)#16	1.508(14)
C(4)-C(4)#18	1.508(14)
C(4)-C(5)	1.843(11)
C(4)-C(5)#18	1.843(11)
C(5)-C(4)#22	1.843(11)
C(5)-C(4)#24	1.843(11)
C(5)-C(4)#16	1.843(11)
S(1)-C(1)	1.566(10)
C(1)-N(1)	1.140(11)
N(1)-Sm(1)-N(1)#1	180.0(4)
N(1)-Sm(1)-N(1)#2	70.529(1)
N(1)#1-Sm(1)-N(1)#2	109.471(1)
N(1)-Sm(1)-N(1)#3	109.5
N(1)#1-Sm(1)-N(1)#3	70.529(1)
N(1)#2-Sm(1)-N(1)#3	70.5
N(1)-Sm(1)-N(1)#4	70.5
N(1)#1-Sm(1)-N(1)#4	109.5
N(1)#2-Sm(1)-N(1)#4	109.5
N(1)#3-Sm(1)-N(1)#4	180.0(6)
N(1)-Sm(1)-N(1)#5	109.5
N(1)#1-Sm(1)-N(1)#5	70.529(1)
N(1)#2-Sm(1)-N(1)#5	70.5
N(1)#3-Sm(1)-N(1)#5	109.5
N(1)#4-Sm(1)-N(1)#5	70.5
N(1)-Sm(1)-N(1)#6	70.5
N(1)#1-Sm(1)-N(1)#6	109.5
N(1)#2-Sm(1)-N(1)#6	109.5
N(1)#3-Sm(1)-N(1)#6	70.5
N(1)#4-Sm(1)-N(1)#6	109.5
N(1)#5-Sm(1)-N(1)#6	180.0(6)
N(1)-Sm(1)-N(1)#7	109.471(1)
N(1)#1-Sm(1)-N(1)#7	70.529(1)
N(1)#2-Sm(1)-N(1)#7	180.0(4)
N(1)#3-Sm(1)-N(1)#7	109.5

N(1)#4-Sm(1)-N(1)#7	70.5
N(1)#5-Sm(1)-N(1)#7	109.5
N(1)#6-Sm(1)-N(1)#7	70.5
C(2)#8-N(2)-C(2)#9	180.0(8)
C(2)#8-N(2)-C(2)#10	114.8(9)
C(2)#9-N(2)-C(2)#10	65.2(9)
C(2)#8-N(2)-C(2)#3	65.2(9)
C(2)#9-N(2)-C(2)#3	114.8(9)
C(2)#10-N(2)-C(2)#3	180.0
C(2)#8-N(2)-C(2)#11	99.3(17)
C(2)#9-N(2)-C(2)#11	80.7(17)
C(2)#10-N(2)-C(2)#11	114.8(9)
C(2)#3-N(2)-C(2)#11	65.2(9)
C(2)#8-N(2)-C(2)#12	114.8(9)
C(2)#9-N(2)-C(2)#12	65.2(9)
C(2)#10-N(2)-C(2)#12	99.3(17)
C(2)#3-N(2)-C(2)#12	80.7(17)
C(2)#11-N(2)-C(2)#12	114.8(9)
C(2)#8-N(2)-C(2)#13	80.7(17)
C(2)#9-N(2)-C(2)#13	99.3(17)
C(2)#10-N(2)-C(2)#13	65.2(9)
C(2)#3-N(2)-C(2)#13	114.8(9)
C(2)#11-N(2)-C(2)#13	180.0
C(2)#12-N(2)-C(2)#13	65.2(9)
C(2)#8-N(2)-C(2)	65.2(9)
C(2)#9-N(2)-C(2)	114.8(9)
C(2)#10-N(2)-C(2)	80.7(17)
C(2)#3-N(2)-C(2)	99.3(17)
C(2)#11-N(2)-C(2)	65.2(9)
C(2)#12-N(2)-C(2)	180.0
C(2)#13-N(2)-C(2)	114.8(9)
N(2)-C(2)-C(2)#8	57.4(5)
N(2)-C(2)-C(2)#11	57.4(5)
C(2)#8-C(2)-C(2)#11	90.0
N(2)-C(2)-C(3)	104.4(11)
C(2)#8-C(2)-C(3)	125.3(3)

C(2)#11-C(2)-C(3)	125.3(3)
N(2)-C(2)-C(2)#10	49.6(8)
C(2)#8-C(2)-C(2)#10	90.000(2)
C(2)#11-C(2)-C(2)#10	90.000(1)
C(3)-C(2)-C(2)#10	54.7(6)
C(4)#14-N(3)-C(4)	120.000(1)
C(4)#14-N(3)-C(4)#15	60.000(1)
C(4)-N(3)-C(4)#15	180.0(6)
C(4)#14-N(3)-C(4)#16	180.0
C(4)-N(3)-C(4)#16	60.000(1)
C(4)#15-N(3)-C(4)#16	120.0
C(4)#14-N(3)-C(4)#17	60.0
C(4)-N(3)-C(4)#17	120.0
C(4)#15-N(3)-C(4)#17	60.0
C(4)#16-N(3)-C(4)#17	120.0
C(4)#14-N(3)-C(4)#18	120.000(1)
C(4)-N(3)-C(4)#18	60.000(1)
C(4)#15-N(3)-C(4)#18	120.000(1)
C(4)#16-N(3)-C(4)#18	60.000(1)
C(4)#17-N(3)-C(4)#18	180.0
C(4)#14-N(3)-C(4)#19	90.000(2)
C(4)-N(3)-C(4)#19	120.0
C(4)#15-N(3)-C(4)#19	60.000(1)
C(4)#16-N(3)-C(4)#19	90.000(1)
C(4)#17-N(3)-C(4)#19	120.000(1)
C(4)#18-N(3)-C(4)#19	60.000(1)
C(4)#14-N(3)-C(4)#20	120.000(1)
C(4)-N(3)-C(4)#20	120.000(1)
C(4)#15-N(3)-C(4)#20	60.0
C(4)#16-N(3)-C(4)#20	60.0
C(4)#17-N(3)-C(4)#20	90.000(1)
C(4)#18-N(3)-C(4)#20	90.000(1)
C(4)#19-N(3)-C(4)#20	60.0
C(4)#14-N(3)-C(4)#21	60.0
C(4)-N(3)-C(4)#21	60.0
C(4)#15-N(3)-C(4)#21	120.000(1)

C(4)#16-N(3)-C(4)#21	120.000(1)
C(4)#17-N(3)-C(4)#21	90.000(1)
C(4)#18-N(3)-C(4)#21	90.000(2)
C(4)#19-N(3)-C(4)#21	120.000(1)
C(4)#20-N(3)-C(4)#21	180.0
C(4)#14-N(3)-C(4)#22	120.0
C(4)-N(3)-C(4)#22	90.000(2)
C(4)#15-N(3)-C(4)#22	90.0
C(4)#16-N(3)-C(4)#22	60.0
C(4)#17-N(3)-C(4)#22	60.000(1)
C(4)#18-N(3)-C(4)#22	120.000(1)
C(4)#19-N(3)-C(4)#22	120.0
C(4)#20-N(3)-C(4)#22	60.0
C(4)#21-N(3)-C(4)#22	120.000(1)
C(4)#14-N(3)-C(4)#23	60.0
C(4)-N(3)-C(4)#23	90.0
C(4)#15-N(3)-C(4)#23	90.000(1)
C(4)#16-N(3)-C(4)#23	120.0
C(4)#17-N(3)-C(4)#23	120.000(1)
C(4)#18-N(3)-C(4)#23	60.0
C(4)#19-N(3)-C(4)#23	60.0
C(4)#20-N(3)-C(4)#23	120.000(1)
C(4)#21-N(3)-C(4)#23	60.0
C(4)#22-N(3)-C(4)#23	180.0
C(4)#14-N(3)-C(4)#24	90.000(1)
C(4)-N(3)-C(4)#24	60.000(1)
C(4)#15-N(3)-C(4)#24	120.0
C(4)#16-N(3)-C(4)#24	90.000(2)
C(4)#17-N(3)-C(4)#24	60.000(1)
C(4)#18-N(3)-C(4)#24	120.000(1)
C(4)#19-N(3)-C(4)#24	180.0
C(4)#20-N(3)-C(4)#24	120.000(1)
C(4)#21-N(3)-C(4)#24	60.000(1)
C(4)#22-N(3)-C(4)#24	60.000(1)
C(4)#23-N(3)-C(4)#24	120.000(1)
C(2)-C(3)-C(2)#10	70.5(13)

C(4)#24-C(4)-N(3)	60.000(2)
C(4)#24-C(4)-C(4)#21	60.0
N(3)-C(4)-C(4)#21	60.000(2)
C(4)#24-C(4)-C(4)#16	90.000(4)
N(3)-C(4)-C(4)#16	60.000(2)
C(4)#21-C(4)-C(4)#16	120.000(7)
C(4)#24-C(4)-C(4)#18	120.000(8)
N(3)-C(4)-C(4)#18	60.000(2)
C(4)#21-C(4)-C(4)#18	90.000(6)
C(4)#16-C(4)-C(4)#18	60.0
C(4)#24-C(4)-C(5)	65.9(3)
N(3)-C(4)-C(5)	99.7(5)
C(4)#21-C(4)-C(5)	125.2(2)
C(4)#16-C(4)-C(5)	65.9(3)
C(4)#18-C(4)-C(5)	125.2(2)
C(4)#24-C(4)-C(5)#18	125.2(2)
N(3)-C(4)-C(5)#18	99.7(5)
C(4)#21-C(4)-C(5)#18	65.9(3)
C(4)#16-C(4)-C(5)#18	125.2(2)
C(4)#18-C(4)-C(5)#18	65.9(3)
C(5)-C(4)-C(5)#18	160.7(10)
C(4)#22-C(5)-C(4)#24	48.3(6)
C(4)#22-C(5)-C(4)	70.7(10)
C(4)#24-C(5)-C(4)	48.3(6)
C(4)#22-C(5)-C(4)#16	48.3(6)
C(4)#24-C(5)-C(4)#16	70.7(10)
C(4)-C(5)-C(4)#16	48.3(6)
N(1)-C(1)-S(1)	180.0(11)
C(1)-N(1)-Sm(1)	180.0(10)

Symmetry transformations used to generate equivalent atoms: #1 -x,-y,-z #2 -x,y,z #3 -x,-y,z #4 x,y,-z #5 -x,y,-z #6 x,-y,z #7 x,-y,-z #8 -y,-x,z #9 y,x,-z+1 #10 x,y,-z+1 #11 y,x,z #12 -x,-y,-z+1 #13 -y,-x,-z+1 #14 -y+1,-z+1,-x+1 #15 -x+1,-y+1,-z+1 #16 y,z,x #17 -z+1,-x+1,-y+1 #18 z,x,y #19 -y+1,z,x #20 -z+1,-x+1,y #21 z,x,-y+1 #22 x,-y+1,z #23 -x+1,y,-z+1 #24 y,-z+1,-x+1

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²
Sm(1)	17(1)	17(1)	17(1)	0	0	0
N(2)	197(17)	197(17)	28(6)	0	0	0
C(2)	143(16)	260(30)	65(8)	77(13)	0	0
N(3)	30(2)	30(2)	30(2)	0	0	0
C(3)	124(13)	190(20)	210(20)	0	0	0
C(4)	63(7)	63(7)	36(7)	0	0	-38(9)
C(5)	28(5)	74(6)	74(6)	0	0	0
S(1)	98(1)	98(1)	98(1)	-34(1)	-34(1)	-34(1)
C(1)	64(3)	64(3)	64(3)	-17(2)	-17(2)	-17(2)
N(1)	80(3)	80(3)	80(3)	-25(2)	-25(2)	-25(2)
				- ()	-()	

Table 20. Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for SmSCN. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 \ a^{*2}U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12}]$

5			
Identification code	i4mmm		
Empirical formula	C39 H82 Eu N11 O S7		
Formula weight	1097.53		
Temperature	100(2) K	100(2) K	
Wavelength	0.71073 Å	0.71073 Å	
Crystal system	Tetragonal	Tetragonal	
Space group	I4/mmm		
Unit cell dimensions	a = 11.3876(5) Å	$\alpha = 90^{\circ}$.	
	b = 11.3876(5) Å	β= 90°.	
	c = 22.5539(11) Å	$\gamma = 90^{\circ}$.	
Volume	2924.7(3) Å ³		
Z	2		
Density (calculated)	1.246 Mg/m ³		
Absorption coefficient	1.359 mm ⁻¹		
F(000)	1152		
Crystal size	0.107 x 0.080 x 0.033 m	0.107 x 0.080 x 0.033 mm ³	
Theta range for data collection	1.806 to 33.198°.	1.806 to 33.198°.	
Index ranges	-17<=h<=16, -16<=k<=1	-17<=h<=16, -16<=k<=16, -33<=l<=34	
Reflections collected	25799		
Independent reflections	1605 [R(int) = 0.0288]		
Completeness to theta = 25.242°	100.0 %		
Refinement method	Full-matrix least-squares	Full-matrix least-squares on F ²	
Data / restraints / parameters	1605 / 0 / 60		
Goodness-of-fit on F ²	1.063		
Final R indices [I>2sigma(I)]	R1 = 0.0533, wR2 = 0.14	R1 = 0.0533, $wR2 = 0.1489$	
R indices (all data)	R1 = 0.0544, WR2 = 0.15	R1 = 0.0544, WR2 = 0.1513	
Extinction coefficient	n/a		
Largest diff. peak and hole	4.928 and -1.769 e.Å ⁻³		

Table 21. Crystal data and structure refinement for EuSCN.

	Х	У	Z	U(eq)
Eu(1)	0	0	0	29(1)
S(1)	2591(1)	2591(1)	1320(1)	77(1)
C(1)	1806(4)	1806(4)	914(4)	65(2)
N(1)	1237(5)	1237(5)	607(4)	99(3)
N(2)	0	5000	0	81(3)
C(2)	0	5786(16)	-524(12)	145(9)
C(3)	0	5000	-1134(8)	146(7)
C(4)	-1010(30)	5798(16)	0	145(9)
C(5)	-2220(30)	5000	0	171(11)
N(3)	0	0	2515(6)	81(3)
C(6)	1090(20)	0	2110(6)	93(6)
C(7)	1051(10)	0	2924(5)	54(2)
C(8)	2267(9)	0	2533(7)	100(3)

Table 22. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for EuSCN. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Eu(1)-N(1)#1	2.417(7)
Eu(1)-N(1)#2	2.417(7)
Eu(1)-N(1)#3	2.417(7)
Eu(1)-N(1)#4	2.417(7)
Eu(1)-N(1)#5	2.417(7)
Eu(1)-N(1)#6	2.417(7)
Eu(1)-N(1)#7	2.417(7)
Eu(1)-N(1)	2.417(7)
S(1)-C(1)	1.561(7)
C(1)-N(1)	1.148(9)
N(2)-C(4)#8	1.47(3)
N(2)-C(4)#9	1.47(3)
N(2)-C(4)#10	1.47(3)
N(2)-C(4)	1.47(3)
N(2)-C(2)#11	1.482(19)
N(2)-C(2)#2	1.482(19)
N(2)-C(2)#10	1.482(19)
N(2)-C(2)	1.482(19)
C(2)-C(3)	1.64(3)
C(2)-C(4)#9	1.65(3)
C(2)-C(4)	1.65(3)
C(2)-C(2)#11	1.79(4)
C(3)-C(2)#11	1.64(3)
C(4)-C(2)#2	1.65(3)
C(4)-C(5)	1.65(4)
C(4)-C(4)#8	1.82(4)
C(5)-C(4)#8	1.65(4)
N(3)-C(7)#6	1.511(13)
N(3)-C(7)#5	1.511(13)
N(3)-C(7)#3	1.511(13)
N(3)-C(7)	1.511(13)
N(3)-C(6)	1.543(18)
N(3)-C(6)#5	1.543(18)
N(3)-C(6)#3	1.543(18)

Table 23. Bond lengths [Å] and angles [°] for EuSCN.

C(6)-C(8)	1.64(3)
C(6)-C(6)#5	1.76(3)
C(6)-C(6)#6	1.76(3)
C(6)-C(7)	1.836(15)
C(7)-C(8)	1.642(15)
C(7)-C(7)#5	1.692(17)
C(7)-C(7)#6	1.692(17)
N(1)#1-Eu(1)-N(1)#2	111.0(5)
N(1)#1-Eu(1)-N(1)#3	69.0(5)
N(1)#2-Eu(1)-N(1)#3	180.0(5)
N(1)#1-Eu(1)-N(1)#4	71.3(2)
N(1)#2-Eu(1)-N(1)#4	71.3(2)
N(1)#3-Eu(1)-N(1)#4	108.7(2)
N(1)#1-Eu(1)-N(1)#5	108.7(2)
N(1)#2-Eu(1)-N(1)#5	108.7(2)
N(1)#3-Eu(1)-N(1)#5	71.3(2)
N(1)#4-Eu(1)-N(1)#5	180.0(5)
N(1)#1-Eu(1)-N(1)#6	108.7(2)
N(1)#2-Eu(1)-N(1)#6	108.7(2)
N(1)#3-Eu(1)-N(1)#6	71.3(2)
N(1)#4-Eu(1)-N(1)#6	69.0(5)
N(1)#5-Eu(1)-N(1)#6	111.0(5)
N(1)#1-Eu(1)-N(1)#7	71.3(2)
N(1)#2-Eu(1)-N(1)#7	71.3(2)
N(1)#3-Eu(1)-N(1)#7	108.7(2)
N(1)#4-Eu(1)-N(1)#7	111.0(5)
N(1)#5-Eu(1)-N(1)#7	69.0(5)
N(1)#6-Eu(1)-N(1)#7	180.0(4)
N(1)#1-Eu(1)-N(1)	180.0
N(1)#2-Eu(1)-N(1)	69.0(5)
N(1)#3-Eu(1)-N(1)	111.0(5)
N(1)#4-Eu(1)-N(1)	108.7(2)
N(1)#5-Eu(1)-N(1)	71.3(2)
N(1)#6-Eu(1)-N(1)	71.3(2)

N(3)-C(6)#6

1.543(18)

N(1)#7-Eu(1)-N(1)	108.7(2)
N(1)-C(1)-S(1)	178.9(9)
C(1)-N(1)-Eu(1)	177.5(9)
C(4)#8-N(2)-C(4)#9	180.0(11)
C(4)#8-N(2)-C(4)#10	103(2)
C(4)#9-N(2)-C(4)#10	77(2)
C(4)#8-N(2)-C(4)	77(2)
C(4)#9-N(2)-C(4)	103(2)
C(4)#10-N(2)-C(4)	180.0
C(4)#8-N(2)-C(2)#11	68.0(7)
C(4)#9-N(2)-C(2)#11	112.0(7)
C(4)#10-N(2)-C(2)#11	68.0(7)
C(4)-N(2)-C(2)#11	112.0(7)
C(4)#8-N(2)-C(2)#2	112.0(7)
C(4)#9-N(2)-C(2)#2	68.0(7)
C(4)#10-N(2)-C(2)#2	112.0(7)
C(4)-N(2)-C(2)#2	68.0(7)
C(2)#11-N(2)-C(2)#2	180.0(12)
C(4)#8-N(2)-C(2)#10	68.0(7)
C(4)#9-N(2)-C(2)#10	112.0(7)
C(4)#10-N(2)-C(2)#10	68.0(7)
C(4)-N(2)-C(2)#10	112.0(7)
C(2)#11-N(2)-C(2)#10	106(2)
C(2)#2-N(2)-C(2)#10	74(2)
C(4)#8-N(2)-C(2)	112.0(7)
C(4)#9-N(2)-C(2)	68.0(7)
C(4)#10-N(2)-C(2)	112.0(7)
C(4)-N(2)-C(2)	68.0(7)
C(2)#11-N(2)-C(2)	74(2)
C(2)#2-N(2)-C(2)	106(2)
C(2)#10-N(2)-C(2)	180.0
N(2)-C(2)-C(3)	109.9(13)
N(2)-C(2)-C(4)#9	55.5(11)
C(3)-C(2)-C(4)#9	127.3(13)
N(2)-C(2)-C(4)	55.5(11)
C(3)-C(2)-C(4)	127.3(13)

C(4)#9-C(2)-C(4)	88(2)
N(2)-C(2)-C(2)#11	52.9(10)
C(3)-C(2)-C(2)#11	57.0(6)
C(4)#9-C(2)-C(2)#11	90.5(9)
C(4)-C(2)-C(2)#11	90.5(9)
C(2)-C(3)-C(2)#11	66.0(12)
N(2)-C(4)-C(2)#2	56.5(12)
N(2)-C(4)-C(2)	56.5(12)
C(2)#2-C(4)-C(2)	92(2)
N(2)-C(4)-C(5)	108.3(14)
C(2)#2-C(4)-C(5)	125.3(13)
C(2)-C(4)-C(5)	125.3(13)
N(2)-C(4)-C(4)#8	51.7(11)
C(2)#2-C(4)-C(4)#8	89.5(9)
C(2)-C(4)-C(4)#8	89.5(9)
C(5)-C(4)-C(4)#8	56.6(10)
C(4)#8-C(5)-C(4)	66.8(19)
C(7)#6-N(3)-C(7)#5	104.7(12)
C(7)#6-N(3)-C(7)#3	68.1(6)
C(7)#5-N(3)-C(7)#3	68.1(6)
C(7)#6-N(3)-C(7)	68.1(6)
C(7)#5-N(3)-C(7)	68.1(6)
C(7)#3-N(3)-C(7)	104.7(12)
C(7)#6-N(3)-C(6)	111.2(4)
C(7)#5-N(3)-C(6)	111.2(4)
C(7)#3-N(3)-C(6)	178.7(13)
C(7)-N(3)-C(6)	73.9(8)
C(7)#6-N(3)-C(6)#5	178.7(13)
C(7)#5-N(3)-C(6)#5	73.9(8)
C(7)#3-N(3)-C(6)#5	111.2(4)
C(7)-N(3)-C(6)#5	111.2(4)
C(6)-N(3)-C(6)#5	69.5(9)
C(7)#6-N(3)-C(6)#3	111.2(4)
C(7)#5-N(3)-C(6)#3	111.2(4)
C(7)#3-N(3)-C(6)#3	73.9(8)
C(7)-N(3)-C(6)#3	178.7(13)

C(6)-N(3)-C(6)#3	107.4(18)
C(6)#5-N(3)-C(6)#3	69.5(9)
C(7)#6-N(3)-C(6)#6	73.9(8)
C(7)#5-N(3)-C(6)#6	178.7(13)
C(7)#3-N(3)-C(6)#6	111.2(4)
C(7)-N(3)-C(6)#6	111.2(4)
C(6)-N(3)-C(6)#6	69.5(9)
C(6)#5-N(3)-C(6)#6	107.4(18)
C(6)#3-N(3)-C(6)#6	69.5(9)
N(3)-C(6)-C(8)	108.2(10)
N(3)-C(6)-C(6)#5	55.3(5)
C(8)-C(6)-C(6)#5	125.2(3)
N(3)-C(6)-C(6)#6	55.3(5)
C(8)-C(6)-C(6)#6	125.2(3)
C(6)#5-C(6)-C(6)#6	90.002(1)
N(3)-C(6)-C(7)	52.2(7)
C(8)-C(6)-C(7)	56.0(8)
C(6)#5-C(6)-C(7)	89.0(6)
C(6)#6-C(6)-C(7)	89.0(6)
N(3)-C(7)-C(8)	109.9(8)
N(3)-C(7)-C(7)#5	55.9(3)
C(8)-C(7)-C(7)#5	126.6(3)
N(3)-C(7)-C(7)#6	55.9(3)
C(8)-C(7)-C(7)#6	126.6(3)
C(7)#5-C(7)-C(7)#6	89.999(1)
N(3)-C(7)-C(6)	53.8(9)
C(8)-C(7)-C(6)	56.1(10)
C(7)#5-C(7)-C(6)	91.0(6)
C(7)#6-C(7)-C(6)	91.0(6)
C(7)-C(8)-C(6)	67.9(6)

Symmetry transformations used to generate equivalent atoms:

#1 -x,-y,-z #2 x,y,-z #3 -x,-y,z #4 -y,x,-z #5 y,-x,z #6 -y,x,z #7 y,-x,-z #8 x,-y+1,z

#9 -x,y,-z #10 -x,-y+1,-z #11 -x,-y+1,z

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Eu(1)	25(1)	25(1)	36(1)	0	0	0
S(1)	86(1)	86(1)	60(1)	-6(1)	-6(1)	-39(1)
C(1)	60(2)	60(2)	75(4)	-10(2)	-10(2)	-18(3)
N(1)	77(3)	77(3)	144(8)	-32(4)	-32(4)	-16(4)
N(2)	152(11)	34(3)	57(4)	0	0	0
C(2)	230(30)	55(6)	149(15)	55(9)	0	0
C(3)	190(20)	150(20)	97(10)	0	0	0
C(4)	230(30)	55(6)	149(15)	55(9)	0	0
C(5)	230(30)	210(30)	71(7)	0	0	0
N(3)	152(11)	34(3)	57(4)	0	0	0
C(6)	155(18)	53(6)	71(7)	0	58(10)	0
C(7)	48(5)	64(6)	51(4)	0	-7(4)	0
C(8)	74(5)	84(6)	143(7)	0	27(6)	0

Table 24. Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for EuSCN. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 \ a^{*2}U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12}]$

-		
Identification code	i4mmm	
Empirical formula	C39 H0 Gd N11 O S7	
Formula weight	1020.17	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Tetragonal	
Space group	I4/mmm	
Unit cell dimensions	a = 11.418(2) Å	α= 90°.
	b = 11.418(2) Å	β= 90°.
	c = 22.504(4) Å	$\gamma = 90^{\circ}$.
Volume	2934.1(12) Å ³	
Z	2	
Density (calculated)	1.155 Mg/m ³	
Absorption coefficient	1.412 mm ⁻¹	
F(000)	990	
Crystal size	0.120 x 0.100 x 0.090 mm ³	
Theta range for data collection	1.810 to 32.961°.	
Index ranges	-17<=h<=17, -17<=k<=17, -34	l<=l<=34
Reflections collected	24130	
Independent reflections	1592 [R(int) = 0.0501]	
Completeness to theta = 25.242°	100.0 %	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	1592 / 0 / 59	
Goodness-of-fit on F ²	1.295	
Final R indices [I>2sigma(I)]	R1 = 0.0647, wR2 = 0.1727	
R indices (all data)	R1 = 0.0655, wR2 = 0.1738	
Extinction coefficient	n/a	
Largest diff. peak and hole	2.434 and -1.532 e.Å ⁻³	

Table 25. Crystal data and structure refinement for GdSCN.

• • • • • • • • • • • • • • • • • • • •				
	Х	У	Z	U(eq)
Gd(1)	0	0	0	29(1)
S(1)	2575(2)	2575(2)	1322(1)	75(1)
C(1)	1803(5)	1803(5)	916(4)	61(2)
N(1)	1227(5)	1227(5)	611(5)	91(3)
N(2)	0	5000	0	80(5)
C(2)	0	5800(20)	-561(16)	126(8)
C(3)	0	5000	-1097(14)	163(10)
C(4)	-950(30)	5820(20)	0	126(8)
C(5)	-2090(50)	5000	0	240(20)
N(3)	0	0	2515(5)	54(2)
C(6)	1100(20)	0	2125(7)	73(3)
C(7)	1050(20)	0	2933(7)	73(3)
C(8)	2236(12)	0	2553(8)	110(4)
OW1	-5000	5000	0	12(1)

Table 26. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for GdSCN. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Gd(1)-N(1)#1	2.412(8)
Gd(1)-N(1)#2	2.412(8)
Gd(1)-N(1)#3	2.412(8)
Gd(1)-N(1)#4	2.412(8)
Gd(1)-N(1)#5	2.412(8)
Gd(1)-N(1)#6	2.412(8)
Gd(1)-N(1)#7	2.412(8)
Gd(1)-N(1)	2.412(8)
S(1)-C(1)	1.545(7)
C(1)-N(1)	1.156(10)
N(2)-C(4)	1.43(3)
N(2)-C(4)#8	1.43(3)
N(2)-C(4)#9	1.43(3)
N(2)-C(4)#10	1.43(3)
N(2)-C(2)#11	1.56(2)
N(2)-C(2)#2	1.56(2)
N(2)-C(2)#10	1.56(2)
N(2)-C(2)	1.56(2)
C(2)-C(3)	1.52(3)
C(2)-C(4)	1.66(3)
C(2)-C(4)#9	1.66(3)
C(2)-C(2)#11	1.84(5)
C(3)-C(2)#11	1.52(3)
C(4)-C(5)	1.60(4)
C(4)-C(2)#2	1.66(3)
C(4)-C(4)#8	1.87(5)
C(5)-C(4)#8	1.60(4)
N(3)-C(7)#6	1.52(2)
N(3)-C(7)#5	1.52(2)
N(3)-C(7)#3	1.52(2)
N(3)-C(7)	1.52(2)
N(3)-C(6)	1.53(2)
N(3)-C(6)#5	1.53(2)
N(3)-C(6)#3	1.53(2)

Table 27. Bond lengths [Å] and angles [°] for GdSCN.

.

C(6)-C(7)	1.821(19)
C(7)-C(8)	1.60(2)
C(7)-C(7)#5	1.69(3)
C(7)-C(7)#6	1.69(3)
N(1)#1-Gd(1)-N(1)#2	110.5(6)
N(1)#1-Gd(1)-N(1)#3	69.5(6)
N(1)#2-Gd(1)-N(1)#3	180.0(6)
N(1)#1-Gd(1)-N(1)#4	71.1(3)
N(1)#2-Gd(1)-N(1)#4	71.1(3)
N(1)#3-Gd(1)-N(1)#4	108.9(3)
N(1)#1-Gd(1)-N(1)#5	108.9(3)
N(1)#2-Gd(1)-N(1)#5	108.9(3)
N(1)#3-Gd(1)-N(1)#5	71.1(3)
N(1)#4-Gd(1)-N(1)#5	180.0(6)
N(1)#1-Gd(1)-N(1)#6	108.9(3)
N(1)#2-Gd(1)-N(1)#6	108.9(3)
N(1)#3-Gd(1)-N(1)#6	71.1(3)
N(1)#4-Gd(1)-N(1)#6	69.5(6)
N(1)#5-Gd(1)-N(1)#6	110.5(6)
N(1)#1-Gd(1)-N(1)#7	71.1(3)
N(1)#2-Gd(1)-N(1)#7	71.1(3)
N(1)#3-Gd(1)-N(1)#7	108.9(3)
N(1)#4-Gd(1)-N(1)#7	110.5(6)
N(1)#5-Gd(1)-N(1)#7	69.5(6)
N(1)#6-Gd(1)-N(1)#7	180.0(4)
N(1)#1-Gd(1)-N(1)	180.0
N(1)#2-Gd(1)-N(1)	69.5(6)
N(1)#3-Gd(1)-N(1)	110.5(6)
N(1)#4-Gd(1)-N(1)	108.9(3)
N(1)#5-Gd(1)-N(1)	71.1(3)
N(1)#6-Gd(1)-N(1)	71.1(3)

N(3)-C(6)#6

C(6)-C(6)#5

C(6)-C(6)#6

C(6)-C(8)

1.53(2)

1.62(3)

1.77(3)

1.77(3)

N(1)#7-Gd(1)-N(1)	108.9(3)
N(1)-C(1)-S(1)	179.7(11)
C(1)-N(1)-Gd(1)	178.2(10)
C(4)-N(2)-C(4)#8	81(3)
C(4)-N(2)-C(4)#9	99(3)
C(4)#8-N(2)-C(4)#9	180.0(14)
C(4)-N(2)-C(4)#10	180.0
C(4)#8-N(2)-C(4)#10	99(3)
C(4)#9-N(2)-C(4)#10	81(3)
C(4)-N(2)-C(2)#11	112.6(9)
C(4)#8-N(2)-C(2)#11	67.4(9)
C(4)#9-N(2)-C(2)#11	112.6(9)
C(4)#10-N(2)-C(2)#11	67.4(9)
C(4)-N(2)-C(2)#2	67.4(9)
C(4)#8-N(2)-C(2)#2	112.6(9)
C(4)#9-N(2)-C(2)#2	67.4(9)
C(4)#10-N(2)-C(2)#2	112.6(9)
C(2)#11-N(2)-C(2)#2	180.0(15)
C(4)-N(2)-C(2)#10	112.6(9)
C(4)#8-N(2)-C(2)#10	67.4(9)
C(4)#9-N(2)-C(2)#10	112.6(9)
C(4)#10-N(2)-C(2)#10	67.4(9)
C(2)#11-N(2)-C(2)#10	108(3)
C(2)#2-N(2)-C(2)#10	72(3)
C(4)-N(2)-C(2)	67.4(9)
C(4)#8-N(2)-C(2)	112.6(9)
C(4)#9-N(2)-C(2)	67.4(9)
C(4)#10-N(2)-C(2)	112.6(9)
C(2)#11-N(2)-C(2)	72(3)
C(2)#2-N(2)-C(2)	108(3)
C(2)#10-N(2)-C(2)	180.0
C(3)-C(2)-N(2)	106.7(18)
C(3)-C(2)-C(4)	127.5(17)
N(2)-C(2)-C(4)	52.5(13)
C(3)-C(2)-C(4)#9	127.5(17)
N(2)-C(2)-C(4)#9	52.5(13)

C(4)-C(2)-C(4)#9	81(3)
C(3)-C(2)-C(2)#11	52.7(10)
N(2)-C(2)-C(2)#11	53.9(13)
C(4)-C(2)-C(2)#11	90.5(12)
C(4)#9-C(2)-C(2)#11	90.5(12)
C(2)-C(3)-C(2)#11	74.6(19)
N(2)-C(4)-C(5)	104(2)
N(2)-C(4)-C(2)#2	60.0(13)
C(5)-C(4)-C(2)#2	121.7(17)
N(2)-C(4)-C(2)	60.0(13)
C(5)-C(4)-C(2)	121.7(17)
C(2)#2-C(4)-C(2)	99(3)
N(2)-C(4)-C(4)#8	49.3(13)
C(5)-C(4)-C(4)#8	54.4(13)
C(2)#2-C(4)-C(4)#8	89.5(12)
C(2)-C(4)-C(4)#8	89.5(12)
C(4)#8-C(5)-C(4)	71(3)
C(7)#6-N(3)-C(7)#5	103.6(15)
C(7)#6-N(3)-C(7)#3	67.5(8)
C(7)#5-N(3)-C(7)#3	67.5(8)
C(7)#6-N(3)-C(7)	67.5(8)
C(7)#5-N(3)-C(7)	67.5(8)
C(7)#3-N(3)-C(7)	103.6(15)
C(7)#6-N(3)-C(6)	110.8(5)
C(7)#5-N(3)-C(6)	110.8(5)
C(7)#3-N(3)-C(6)	176.9(13)
C(7)-N(3)-C(6)	73.3(9)
C(7)#6-N(3)-C(6)#5	176.9(13)
C(7)#5-N(3)-C(6)#5	73.3(9)
C(7)#3-N(3)-C(6)#5	110.8(5)
C(7)-N(3)-C(6)#5	110.8(5)
C(6)-N(3)-C(6)#5	70.7(8)
C(7)#6-N(3)-C(6)#3	110.8(5)
C(7)#5-N(3)-C(6)#3	110.8(5)
C(7)#3-N(3)-C(6)#3	73.3(9)
C(7)-N(3)-C(6)#3	176.9(13)

C(6)-N(3)-C(6)#3	109.8(16)
C(6)#5-N(3)-C(6)#3	70.7(8)
C(7)#6-N(3)-C(6)#6	73.3(9)
C(7)#5-N(3)-C(6)#6	176.9(13)
C(7)#3-N(3)-C(6)#6	110.8(5)
C(7)-N(3)-C(6)#6	110.8(5)
C(6)-N(3)-C(6)#6	70.7(8)
C(6)#5-N(3)-C(6)#6	109.8(16)
C(6)#3-N(3)-C(6)#6	70.7(8)
N(3)-C(6)-C(8)	108.4(10)
N(3)-C(6)-C(6)#5	54.6(4)
C(8)-C(6)-C(6)#5	124.6(4)
N(3)-C(6)-C(6)#6	54.6(4)
C(8)-C(6)-C(6)#6	124.6(4)
C(6)#5-C(6)-C(6)#6	89.998(1)
N(3)-C(6)-C(7)	53.2(10)
C(8)-C(6)-C(7)	55.2(11)
C(6)#5-C(6)-C(7)	88.8(8)
C(6)#6-C(6)-C(7)	88.8(8)
N(3)-C(7)-C(8)	109.6(11)
N(3)-C(7)-C(7)#5	56.2(4)
C(8)-C(7)-C(7)#5	126.7(4)
N(3)-C(7)-C(7)#6	56.2(4)
C(8)-C(7)-C(7)#6	126.7(4)
C(7)#5-C(7)-C(7)#6	90.000(1)
N(3)-C(7)-C(6)	53.5(10)
C(8)-C(7)-C(6)	56.0(11)
C(7)#5-C(7)-C(6)	91.2(8)
C(7)#6-C(7)-C(6)	91.2(8)
C(7)-C(8)-C(6)	68.7(9)

Symmetry transformations used to generate equivalent atoms:

#1 -x,-y,-z #2 x,y,-z #3 -x,-y,z #4 -y,x,-z #5 y,-x,z #6 -y,x,z #7 y,-x,-z #8 x,-y+1,z

#9 -x,y,-z #10 -x,-y+1,-z #11 -x,-y+1,z

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Gd(1)	22(1)	22(1)	41(1)	0	0	0
S(1)	78(1)	78(1)	68(1)	-10(1)	-10(1)	-30(1)
C(1)	55(2)	55(2)	73(4)	-13(2)	-13(2)	-16(3)
N(1)	66(3)	66(3)	141(9)	-30(4)	-30(4)	-13(4)
N(2)	121(17)	46(7)	73(8)	0	0	0
C(2)	150(20)	66(10)	159(19)	60(13)	0	0
C(3)	120(20)	200(30)	170(20)	0	0	0
C(4)	150(20)	66(10)	159(19)	60(13)	0	0
C(5)	330(70)	270(50)	118(18)	0	0	0
N(3)	56(4)	56(4)	51(5)	0	0	0
C(6)	93(9)	66(6)	61(4)	0	12(5)	0
C(7)	93(9)	66(6)	61(4)	0	12(5)	0
C(8)	79(8)	88(8)	164(11)	0	30(9)	0
OW1	16(1)	16(1)	5(1)	0	0	0

Table 28. Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for GdSCN. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2 \ a^{*2}U^{11} + ... + 2h \ k \ a^* \ b^* \ U^{12}]$

5		
Identification code	i4mmm	
Empirical formula	C39 H0 N11 O0 S7 Tb	
Formula weight	1005.84	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Tetragonal	
Space group	I4/mmm	
Unit cell dimensions	a = 11.3933(6) Å	α= 90°.
	b = 11.3933(6) Å	β= 90°.
	c = 22.4759(12) Å	$\gamma = 90^{\circ}$.
Volume	2917.5(3) Å ³	
Z	2	
Density (calculated)	1.145 Mg/m ³	
Absorption coefficient	1.494 mm ⁻¹	
F(000)	976	
Crystal size	0.177 x 0.118 x 0.065 mm ³	
Theta range for data collection	1.812 to 33.129°.	
Index ranges	-16<=h<=16, -16<=k<=17, -33	<=l<=33
Reflections collected	25720	
Independent reflections	1580 [R(int) = 0.0261]	
Completeness to theta = 25.242°	99.9 %	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	1580 / 12 / 58	
Goodness-of-fit on F ²	1.043	
Final R indices [I>2sigma(I)]	R1 = 0.0466, wR2 = 0.1344	
R indices (all data)	R1 = 0.0469, wR2 = 0.1349	
Extinction coefficient	n/a	
Largest diff. peak and hole	1.031 and -0.901 e.Å-3	

Table 29. Crystal data and structure refinement for TbSCN.
	Х	у	Z	U(eq)
	0	0	0	30(1)
S(1)	2575(1)	2575(1)	1317(1)	73(1)
C(1)	1792(4)	1792(4)	912(3)	64(2)
N(1)	1221(4)	1221(4)	604(4)	95(3)
N(2)	0	5000	0	97(6)
C(2)	0	5795(12)	-531(7)	132(7)
C(3)	0	5000	-1134(7)	151(5)
C(4)	-1053(16)	5801(12)	0	132(7)
C(5)	-2250(20)	5000	0	151(5)
N(3)	0	0	2519(4)	57(2)
C(6)	1080(13)	0	2116(5)	89(5)
C(7)	1049(8)	0	2934(4)	54(2)
C(8)	2256(8)	0	2540(6)	101(3)

Table 30. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for TbSCN. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Tb(1)-N(1)#1	2.391(7)
Tb(1)-N(1)#2	2.391(7)
Tb(1)-N(1)#3	2.391(7)
Tb(1)-N(1)#4	2.391(7)
Tb(1)-N(1)#5	2.391(7)
Tb(1)-N(1)#6	2.391(7)
Tb(1)-N(1)#7	2.391(7)
Tb(1)-N(1)	2.391(7)
S(1)-C(1)	1.557(6)
C(1)-N(1)	1.150(8)
N(2)-C(2)#7	1.499(12)
N(2)-C(2)#8	1.499(12)
N(2)-C(2)#9	1.499(12)
N(2)-C(2)	1.499(12)
N(2)-C(4)#10	1.507(14)
N(2)-C(4)#11	1.507(14)
N(2)-C(4)#9	1.507(14)
N(2)-C(4)	1.507(14)
C(2)-C(3)	1.630(15)
C(2)-C(4)#11	1.693(19)
C(2)-C(4)	1.693(19)
C(2)-C(2)#8	1.81(3)
C(3)-C(2)#8	1.630(15)
C(4)-C(5)	1.637(16)
C(4)-C(2)#7	1.693(19)
C(4)-C(4)#10	1.82(3)
C(5)-C(4)#10	1.637(16)
N(3)-C(7)#5	1.516(9)
N(3)-C(7)#3	1.516(9)
N(3)-C(7)#6	1.516(9)
N(3)-C(7)	1.516(9)
N(3)-C(6)#6	1.528(11)
N(3)-C(6)#3	1.528(11)
N(3)-C(6)#5	1.528(11)

Table 31. Bond lengths [Å] and angles [°] for TbSCN.

C(6)-C(6)#3	1.74(2)
C(6)-C(6)#5	1.74(2)
C(6)-C(7)	1.839(13)
C(7)-C(8)	1.636(11)
C(7)-C(7)#3	1.690(13)
C(7)-C(7)#5	1.690(13)
N(1)#1-Tb(1)-N(1)#2	71.2(2)
N(1)#1-Tb(1)-N(1)#3	108.8(2)
N(1)#2-Tb(1)-N(1)#3	180.0(5)
N(1)#1-Tb(1)-N(1)#4	71.2(2)
N(1)#2-Tb(1)-N(1)#4	110.8(4)
N(1)#3-Tb(1)-N(1)#4	69.2(4)
N(1)#1-Tb(1)-N(1)#5	108.8(2)
N(1)#2-Tb(1)-N(1)#5	69.2(4)
N(1)#3-Tb(1)-N(1)#5	110.8(4)
N(1)#4-Tb(1)-N(1)#5	180.0(5)
N(1)#1-Tb(1)-N(1)#6	69.2(4)
N(1)#2-Tb(1)-N(1)#6	108.8(2)
N(1)#3-Tb(1)-N(1)#6	71.2(2)
N(1)#4-Tb(1)-N(1)#6	108.8(2)
N(1)#5-Tb(1)-N(1)#6	71.2(2)
N(1)#1-Tb(1)-N(1)#7	110.8(4)
N(1)#2-Tb(1)-N(1)#7	71.2(2)
N(1)#3-Tb(1)-N(1)#7	108.8(2)
N(1)#4-Tb(1)-N(1)#7	71.2(2)
N(1)#5-Tb(1)-N(1)#7	108.8(2)
N(1)#6-Tb(1)-N(1)#7	180.0(5)
N(1)#1-Tb(1)-N(1)	180.0
N(1)#2-Tb(1)-N(1)	108.8(2)
N(1)#3-Tb(1)-N(1)	71.2(2)
N(1)#4-Tb(1)-N(1)	108.8(2)
N(1)#5-Tb(1)-N(1)	71.2(2)
N(1)#6-Tb(1)-N(1)	110.8(4)

N(3)-C(6)

C(6)-C(8)

1.528(11)

1.643(14)

N(1)#7-Tb(1)-N(1)	69.2(4)
N(1)-C(1)-S(1)	178.9(8)
C(1)-N(1)-Tb(1)	177.7(8)
C(2)#7-N(2)-C(2)#8	180.0(9)
C(2)#7-N(2)-C(2)#9	74.4(13)
C(2)#8-N(2)-C(2)#9	105.6(13)
C(2)#7-N(2)-C(2)	105.6(13)
C(2)#8-N(2)-C(2)	74.4(13)
C(2)#9-N(2)-C(2)	180.0
C(2)#7-N(2)-C(4)#10	111.5(5)
C(2)#8-N(2)-C(4)#10	68.5(5)
C(2)#9-N(2)-C(4)#10	68.5(5)
C(2)-N(2)-C(4)#10	111.5(5)
C(2)#7-N(2)-C(4)#11	68.5(5)
C(2)#8-N(2)-C(4)#11	111.5(5)
C(2)#9-N(2)-C(4)#11	111.5(5)
C(2)-N(2)-C(4)#11	68.5(5)
C(4)#10-N(2)-C(4)#11	180.0
C(2)#7-N(2)-C(4)#9	111.5(5)
C(2)#8-N(2)-C(4)#9	68.5(5)
C(2)#9-N(2)-C(4)#9	68.5(5)
C(2)-N(2)-C(4)#9	111.5(5)
C(4)#10-N(2)-C(4)#9	105.5(14)
C(4)#11-N(2)-C(4)#9	74.5(14)
C(2)#7-N(2)-C(4)	68.5(5)
C(2)#8-N(2)-C(4)	111.5(5)
C(2)#9-N(2)-C(4)	111.5(5)
C(2)-N(2)-C(4)	68.5(5)
C(4)#10-N(2)-C(4)	74.5(14)
C(4)#11-N(2)-C(4)	105.5(14)
C(4)#9-N(2)-C(4)	180.0
N(2)-C(2)-C(3)	109.1(10)
N(2)-C(2)-C(4)#11	56.0(5)
C(3)-C(2)-C(4)#11	126.1(8)
N(2)-C(2)-C(4)	56.0(5)
C(3)-C(2)-C(4)	126.1(8)

C(4)#11-C(2)-C(4)	90.3(10)
N(2)-C(2)-C(2)#8	52.8(7)
C(3)-C(2)-C(2)#8	56.2(5)
C(4)#11-C(2)-C(2)#8	90.2(7)
C(4)-C(2)-C(2)#8	90.2(7)
C(2)-C(3)-C(2)#8	67.5(10)
N(2)-C(4)-C(5)	108.9(11)
N(2)-C(4)-C(2)#7	55.5(5)
C(5)-C(4)-C(2)#7	125.9(9)
N(2)-C(4)-C(2)	55.5(5)
C(5)-C(4)-C(2)	125.9(9)
C(2)#7-C(4)-C(2)	89.7(10)
N(2)-C(4)-C(4)#10	52.8(7)
C(5)-C(4)-C(4)#10	56.1(6)
C(2)#7-C(4)-C(4)#10	89.8(7)
C(2)-C(4)-C(4)#10	89.8(7)
C(4)-C(5)-C(4)#10	67.7(13)
C(7)#5-N(3)-C(7)#3	104.0(9)
C(7)#5-N(3)-C(7)#6	67.7(5)
C(7)#3-N(3)-C(7)#6	67.7(5)
C(7)#5-N(3)-C(7)	67.7(5)
C(7)#3-N(3)-C(7)	67.7(5)
C(7)#6-N(3)-C(7)	104.0(9)
C(7)#5-N(3)-C(6)#6	111.4(3)
C(7)#3-N(3)-C(6)#6	111.4(3)
C(7)#6-N(3)-C(6)#6	74.3(6)
C(7)-N(3)-C(6)#6	178.4(9)
C(7)#5-N(3)-C(6)#3	178.3(9)
C(7)#3-N(3)-C(6)#3	74.3(6)
C(7)#6-N(3)-C(6)#3	111.4(3)
C(7)-N(3)-C(6)#3	111.4(3)
C(6)#6-N(3)-C(6)#3	69.4(7)
C(7)#5-N(3)-C(6)#5	74.3(6)
C(7)#3-N(3)-C(6)#5	178.3(9)
C(7)#6-N(3)-C(6)#5	111.4(3)
C(7)-N(3)-C(6)#5	111.4(3)

C(6)#6-N(3)-C(6)#5	69.4(7)
C(6)#3-N(3)-C(6)#5	107.3(13)
C(7)#5-N(3)-C(6)	111.4(3)
C(7)#3-N(3)-C(6)	111.4(3)
C(7)#6-N(3)-C(6)	178.4(9)
C(7)-N(3)-C(6)	74.3(6)
C(6)#6-N(3)-C(6)	107.3(13)
C(6)#3-N(3)-C(6)	69.4(7)
C(6)#5-N(3)-C(6)	69.4(7)
N(3)-C(6)-C(8)	108.3(7)
N(3)-C(6)-C(6)#3	55.3(3)
C(8)-C(6)-C(6)#3	125.2(3)
N(3)-C(6)-C(6)#5	55.3(3)
C(8)-C(6)-C(6)#5	125.2(3)
C(6)#3-C(6)-C(6)#5	90.002(2)
N(3)-C(6)-C(7)	52.5(5)
C(8)-C(6)-C(7)	55.7(5)
C(6)#3-C(6)-C(7)	89.2(4)
C(6)#5-C(6)-C(7)	89.2(4)
N(3)-C(7)-C(8)	109.2(6)
N(3)-C(7)-C(7)#3	56.1(2)
C(8)-C(7)-C(7)#3	126.5(3)
N(3)-C(7)-C(7)#5	56.1(2)
C(8)-C(7)-C(7)#5	126.5(3)
C(7)#3-C(7)-C(7)#5	89.999(1)
N(3)-C(7)-C(6)	53.1(5)
C(8)-C(7)-C(6)	56.1(5)
C(7)#3-C(7)-C(6)	90.8(4)
C(7)#5-C(7)-C(6)	90.8(4)
C(7)-C(8)-C(6)	68.2(5)

#1 -x,-y,-z #2 -y,x,-z #3 y,-x,z #4 y,-x,-z

#5 -y,x,z #6 -x,-y,z #7 x,y,-z #8 -x,-y+1,z

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Tb(1)	26(1)	26(1)	37(1)	0	0	0
S(1)	78(1)	78(1)	62(1)	-5(1)	-5(1)	-33(1)
C(1)	59(2)	59(2)	75(3)	-10(2)	-10(2)	-16(3)
N(1)	73(3)	73(3)	139(7)	-28(3)	-28(3)	-14(4)
N(2)	176(18)	37(5)	79(7)	0	0	0
C(2)	200(20)	54(6)	145(13)	50(8)	0	0
C(3)	179(16)	180(15)	94(6)	0	0	0
C(4)	200(20)	54(6)	145(13)	50(8)	0	0
C(5)	179(16)	180(15)	94(6)	0	0	0
N(3)	62(3)	62(3)	48(4)	0	0	0
C(6)	146(15)	51(6)	71(7)	0	53(9)	0
C(7)	49(4)	63(5)	49(4)	0	-7(3)	0
C(8)	70(5)	81(5)	151(7)	0	26(6)	0

Table 32. Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for TbSCN. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2 \ a^{*2}U^{11} + ... + 2h \ k \ a^* \ b^* \ U^{12}]$

2	2		
Identification code	i4mmm		
Empirical formula	C39 H0 Dy N11 O0 S7		
Formula weight	1009.42		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Tetragonal		
Space group	I4/mmm		
Unit cell dimensions	a = 11.4134(6) Å	α= 90°.	
	b = 11.4134(6) Å	β= 90°.	
	c = 22.6144(11) Å	$\gamma = 90^{\circ}$.	
Volume	2945.9(3) Å ³		
Z	2		
Density (calculated)	1.138 Mg/m ³		
Absorption coefficient	1.547 mm ⁻¹		
F(000)	978		
Crystal size	0.147 x 0.125 x 0.060 m	m ³	
Theta range for data collection	1.801 to 30.465°.		
Index ranges	-16<=h<=16, -16<=k<=	16, - 31<=l<=31	
Reflections collected	21181		
Independent reflections	1310 [R(int) = 0.0172]		
Completeness to theta = 25.242°	100.0 %		
Refinement method	Full-matrix least-squares	s on F ²	
Data / restraints / parameters	1310 / 12 / 58		
Goodness-of-fit on F ²	1.036		
Final R indices [I>2sigma(I)]	R1 = 0.0393, $wR2 = 0.1$	R1 = 0.0393, wR2 = 0.1132	
R indices (all data)	R1 = 0.0393, $wR2 = 0.1$	R1 = 0.0393, wR2 = 0.1132	
Extinction coefficient	n/a		
Largest diff. peak and hole	0.906 and -0.802 e.Å ⁻³		

Table 33. Crystal data and structure refinement for DySCN.

	Х	у	Z	U(eq)
Dy(1)	0	0	0	28(1)
S(1)	2564(1)	2564(1)	1320(1)	73(1)
C(1)	1779(4)	1779(4)	916(3)	61(1)
N(1)	1215(4)	1215(4)	615(3)	80(2)
N(2)	0	5000	0	104(6)
C(2)	0	5799(12)	-528(7)	133(6)
C(3)	0	5000	-1124(7)	147(5)
C(4)	-1058(15)	5805(12)	0	133(6)
C(5)	-2240(18)	5000	0	147(5)
N(3)	0	0	2534(4)	55(2)
C(6)	1081(12)	0	2133(4)	86(5)
C(7)	1060(8)	0	2942(3)	52(2)
C(8)	2259(7)	0	2548(5)	92(2)

Table 34. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for DySCN. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Dy(1)-N(1)	2.403(6)
Dy(1)-N(1)#1	2.404(6)
Dy(1)-N(1)#2	2.404(6)
Dy(1)-N(1)#3	2.404(6)
Dy(1)-N(1)#4	2.404(6)
Dy(1)-N(1)#5	2.404(6)
Dy(1)-N(1)#6	2.404(6)
Dy(1)-N(1)#7	2.404(6)
S(1)-C(1)	1.563(6)
C(1)-N(1)	1.136(7)
N(2)-C(2)#4	1.502(12)
N(2)-C(2)#8	1.502(12)
N(2)-C(2)#9	1.502(12)
N(2)-C(2)	1.502(12)
N(2)-C(4)#10	1.518(14)
N(2)-C(4)#11	1.518(14)
N(2)-C(4)#9	1.518(14)
N(2)-C(4)	1.518(14)
C(2)-C(3)	1.628(14)
C(2)-C(4)#11	1.698(18)
C(2)-C(4)	1.698(18)
C(2)-C(2)#8	1.82(3)
C(3)-C(2)#8	1.628(14)
C(4)-C(5)	1.632(15)
C(4)-C(2)#4	1.698(18)
C(4)-C(4)#10	1.84(3)
C(5)-C(4)#10	1.632(15)
N(3)-C(7)#5	1.520(9)
N(3)-C(7)	1.520(9)
N(3)-C(7)#7	1.520(9)
N(3)-C(7)#3	1.520(9)
N(3)-C(6)#3	1.531(10)
N(3)-C(6)#7	1.531(10)
N(3)-C(6)#5	1.531(10)

Table 35. Bond lengths [Å] and angles [°] for DySCN.

.

C(7)-C(8)	1.633(10)
C(7)-C(7)#7	1.710(12)
C(7)-C(7)#5	1.710(12)
N(1)-Dy(1)-N(1)#1	180.0
N(1)-Dy(1)-N(1)#2	109.55(16)
N(1)#1-Dy(1)-N(1)#2	70.45(16)
N(1)-Dy(1)-N(1)#3	109.3(3)
N(1)#1-Dy(1)-N(1)#3	70.7(3)
N(1)#2-Dy(1)-N(1)#3	109.55(16)
N(1)-Dy(1)-N(1)#4	70.7(3)
N(1)#1-Dy(1)-N(1)#4	109.3(3)
N(1)#2-Dy(1)-N(1)#4	70.45(16)
N(1)#3-Dy(1)-N(1)#4	180.0(4)
N(1)-Dy(1)-N(1)#5	70.45(16)
N(1)#1-Dy(1)-N(1)#5	109.55(16)
N(1)#2-Dy(1)-N(1)#5	70.7(3)
N(1)#3-Dy(1)-N(1)#5	70.45(16)
N(1)#4-Dy(1)-N(1)#5	109.55(16)
N(1)-Dy(1)-N(1)#6	109.55(16)
N(1)#1-Dy(1)-N(1)#6	70.45(16)
N(1)#2-Dy(1)-N(1)#6	109.3(3)
N(1)#3-Dy(1)-N(1)#6	109.55(16)
N(1)#4-Dy(1)-N(1)#6	70.45(16)
N(1)#5-Dy(1)-N(1)#6	180.0(3)
N(1)-Dy(1)-N(1)#7	70.45(16)
N(1)#1-Dy(1)-N(1)#7	109.55(16)
N(1)#2-Dy(1)-N(1)#7	180.0(4)
N(1)#3-Dy(1)-N(1)#7	70.45(16)
N(1)#4-Dy(1)-N(1)#7	109.55(16)
N(1)#5-Dy(1)-N(1)#7	109.3(3)

N(3)-C(6)

C(6)-C(8)

C(6)-C(6)#7

C(6)-C(6)#5

C(6)-C(7)

1.531(10)

1.640(13)

1.745(19)

1.745(19)

1.828(11)

N(1)#6-Dy(1)-N(1)#7	70.7(3)
N(1)-C(1)-S(1)	179.1(7)
C(1)-N(1)-Dy(1)	178.6(6)
C(2)#4-N(2)-C(2)#8	180.0(8)
C(2)#4-N(2)-C(2)#9	74.8(13)
C(2)#8-N(2)-C(2)#9	105.2(13)
C(2)#4-N(2)-C(2)	105.2(13)
C(2)#8-N(2)-C(2)	74.8(13)
C(2)#9-N(2)-C(2)	180.0
C(2)#4-N(2)-C(4)#10	111.6(5)
C(2)#8-N(2)-C(4)#10	68.4(5)
C(2)#9-N(2)-C(4)#10	68.4(5)
C(2)-N(2)-C(4)#10	111.6(5)
C(2)#4-N(2)-C(4)#11	68.4(5)
C(2)#8-N(2)-C(4)#11	111.6(5)
C(2)#9-N(2)-C(4)#11	111.6(5)
C(2)-N(2)-C(4)#11	68.4(5)
C(4)#10-N(2)-C(4)#11	180.0(8)
C(2)#4-N(2)-C(4)#9	111.6(5)
C(2)#8-N(2)-C(4)#9	68.4(5)
C(2)#9-N(2)-C(4)#9	68.4(5)
C(2)-N(2)-C(4)#9	111.6(5)
C(4)#10-N(2)-C(4)#9	105.5(13)
C(4)#11-N(2)-C(4)#9	74.5(13)
C(2)#4-N(2)-C(4)	68.4(5)
C(2)#8-N(2)-C(4)	111.6(5)
C(2)#9-N(2)-C(4)	111.6(5)
C(2)-N(2)-C(4)	68.4(5)
C(4)#10-N(2)-C(4)	74.5(13)
C(4)#11-N(2)-C(4)	105.5(13)
C(4)#9-N(2)-C(4)	180.0
N(2)-C(2)-C(3)	108.5(10)
N(2)-C(2)-C(4)#11	56.2(5)
C(3)-C(2)-C(4)#11	125.8(8)
N(2)-C(2)-C(4)	56.2(5)
C(3)-C(2)-C(4)	125.8(8)

C(4)#11-C(2)-C(4)	90.7(10)
N(2)-C(2)-C(2)#8	52.6(7)
C(3)-C(2)-C(2)#8	55.9(5)
C(4)#11-C(2)-C(2)#8	90.2(7)
C(4)-C(2)-C(2)#8	90.2(7)
C(2)-C(3)-C(2)#8	68.1(10)
N(2)-C(4)-C(5)	108.5(11)
N(2)-C(4)-C(2)#4	55.3(5)
C(5)-C(4)-C(2)#4	125.8(9)
N(2)-C(4)-C(2)	55.3(5)
C(5)-C(4)-C(2)	125.8(9)
C(2)#4-C(4)-C(2)	89.3(10)
N(2)-C(4)-C(4)#10	52.7(6)
C(5)-C(4)-C(4)#10	55.7(6)
C(2)#4-C(4)-C(4)#10	89.8(7)
C(2)-C(4)-C(4)#10	89.8(7)
C(4)-C(5)-C(4)#10	68.6(12)
C(7)#5-N(3)-C(7)	68.4(4)
C(7)#5-N(3)-C(7)#7	105.4(9)
C(7)-N(3)-C(7)#7	68.4(4)
C(7)#5-N(3)-C(7)#3	68.4(4)
C(7)-N(3)-C(7)#3	105.4(9)
C(7)#7-N(3)-C(7)#3	68.4(4)
C(7)#5-N(3)-C(6)#3	111.0(3)
C(7)-N(3)-C(6)#3	179.0(8)
C(7)#7-N(3)-C(6)#3	111.0(3)
C(7)#3-N(3)-C(6)#3	73.6(6)
C(7)#5-N(3)-C(6)#7	179.0(8)
C(7)-N(3)-C(6)#7	111.0(3)
C(7)#7-N(3)-C(6)#7	73.6(6)
C(7)#3-N(3)-C(6)#7	111.0(3)
C(6)#3-N(3)-C(6)#7	69.5(6)
C(7)#5-N(3)-C(6)#5	73.6(6)
C(7)-N(3)-C(6)#5	111.0(3)
C(7)#7-N(3)-C(6)#5	179.0(8)
C(7)#3-N(3)-C(6)#5	111.0(3)

C(6)#3-N(3)-C(6)#5	69.5(6)
C(6)#7-N(3)-C(6)#5	107.4(11)
C(7)#5-N(3)-C(6)	111.0(3)
C(7)-N(3)-C(6)	73.6(6)
C(7)#7-N(3)-C(6)	111.0(3)
C(7)#3-N(3)-C(6)	179.0(8)
C(6)#3-N(3)-C(6)	107.4(11)
C(6)#7-N(3)-C(6)	69.5(6)
C(6)#5-N(3)-C(6)	69.5(6)
N(3)-C(6)-C(8)	108.8(6)
N(3)-C(6)-C(6)#7	55.3(3)
C(8)-C(6)-C(6)#7	125.4(2)
N(3)-C(6)-C(6)#5	55.3(3)
C(8)-C(6)-C(6)#5	125.4(2)
C(6)#7-C(6)-C(6)#5	89.998(1)
N(3)-C(6)-C(7)	52.9(4)
C(8)-C(6)-C(7)	55.9(5)
C(6)#7-C(6)-C(7)	89.5(4)
C(6)#5-C(6)-C(7)	89.5(4)
N(3)-C(7)-C(8)	109.7(6)
N(3)-C(7)-C(7)#7	55.8(2)
C(8)-C(7)-C(7)#7	126.4(2)
N(3)-C(7)-C(7)#5	55.8(2)
C(8)-C(7)-C(7)#5	126.4(2)
C(7)#7-C(7)-C(7)#5	90.001(1)
N(3)-C(7)-C(6)	53.5(5)
C(8)-C(7)-C(6)	56.2(5)
C(7)#7-C(7)-C(6)	90.5(4)
C(7)#5-C(7)-C(6)	90.5(4)
C(7)-C(8)-C(6)	67.9(5)

#1 -x,-y,-z #2 -y,x,-z #3 -x,-y,z #4 x,y,-z

#5 -y,x,z #6 y,-x,-z #7 y,-x,z #8 -x,-y+1,z

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Dy(1)	26(1)	26(1)	31(1)	0	0	0
S(1)	78(1)	78(1)	64(1)	-6(1)	-6(1)	-30(1)
C(1)	60(2)	60(2)	62(3)	-9(2)	-9(2)	-16(3)
N(1)	73(2)	73(2)	94(4)	-16(2)	-16(2)	-18(3)
N(2)	177(18)	37(5)	99(9)	0	0	0
C(2)	181(18)	54(5)	164(14)	54(9)	0	0
C(3)	163(13)	167(13)	112(7)	0	0	0
C(4)	181(18)	54(5)	164(14)	54(9)	0	0
C(5)	163(13)	167(13)	112(7)	0	0	0
N(3)	60(3)	60(3)	44(3)	0	0	0
C(6)	147(14)	51(5)	59(5)	0	50(8)	0
C(7)	46(4)	66(5)	44(4)	0	-9(3)	0
C(8)	65(4)	79(4)	132(6)	0	18(5)	0

Table 36. Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for DySCN. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 \ a^{*2}U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12}]$

5		
Identification code	i4mmm	
Empirical formula	C39 H0 Ho N11 O0 S7	
Formula weight	1011.85	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Tetragonal	
Space group	I4/mmm	
Unit cell dimensions	a = 11.4039(4) Å	α= 90°.
	b = 11.4039(4) Å	β= 90°.
	c = 22.5714(8) Å	$\gamma = 90^{\circ}$.
Volume	2935.4(2) Å ³	
Z	2	
Density (calculated)	1.145 Mg/m ³	
Absorption coefficient	1.628 mm ⁻¹	
F(000)	980	
Crystal size	0.150 x 0.110 x 0.044 mm ³	
Theta range for data collection	1.804 to 33.092°.	
Index ranges	-16<=h<=17, -17<=k<=17, -34	<=l<=33
Reflections collected	25910	
Independent reflections	1615 [R(int) = 0.0196]	
Completeness to theta = 25.242°	100.0 %	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	1615 / 12 / 58	
Goodness-of-fit on F ²	0.987	
Final R indices [I>2sigma(I)]	R1 = 0.0398, wR2 = 0.1151	
R indices (all data)	R1 = 0.0398, wR2 = 0.1151	
Extinction coefficient	n/a	
Largest diff. peak and hole	1.017 and -0.932 e.Å ⁻³	

Table 37. Crystal data and structure refinement for HoSCN.

	Х	у	Z	U(eq)
Ho(1)	0	0	0	27(1)
S(1)	2563(1)	2563(1)	1319(1)	72(1)
C(1)	1782(3)	1782(3)	917(3)	58(1)
N(1)	1210(3)	1210(3)	612(3)	75(2)
N(2)	0	5000	0	102(6)
C(2)	0	5801(11)	-524(7)	131(6)
C(3)	0	5000	-1123(7)	150(5)
C(4)	-1054(15)	5809(12)	0	131(6)
C(5)	-2238(19)	5000	0	150(5)
N(3)	0	0	2533(3)	53(2)
C(6)	1081(11)	0	2132(4)	84(5)
C(7)	1056(7)	0	2944(3)	49(2)
C(8)	2259(6)	0	2551(5)	91(2)

Table 38. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for HoSCN. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Ho(1)-N(1)	2.391(5)
Ho(1)-N(1)#1	2.391(5)
Ho(1)-N(1)#2	2.391(5)
Ho(1)-N(1)#3	2.391(5)
Ho(1)-N(1)#4	2.391(5)
Ho(1)-N(1)#5	2.391(5)
Ho(1)-N(1)#6	2.391(5)
Ho(1)-N(1)#7	2.391(5)
S(1)-C(1)	1.551(6)
C(1)-N(1)	1.152(7)
N(2)-C(2)#4	1.495(12)
N(2)-C(2)#8	1.495(12)
N(2)-C(2)#9	1.495(12)
N(2)-C(2)	1.495(12)
N(2)-C(4)#10	1.515(14)
N(2)-C(4)#11	1.515(14)
N(2)-C(4)#9	1.515(14)
N(2)-C(4)	1.515(14)
C(2)-C(3)	1.632(14)
C(2)-C(4)#11	1.687(18)
C(2)-C(4)	1.687(18)
C(2)-C(2)#8	1.83(3)
C(3)-C(2)#8	1.632(14)
C(4)-C(5)	1.635(16)
C(4)-C(2)#4	1.687(18)
C(4)-C(4)#10	1.85(3)
C(5)-C(4)#10	1.635(16)
N(3)-C(7)#5	1.519(8)
N(3)-C(7)#7	1.519(8)
N(3)-C(7)#3	1.519(8)
N(3)-C(7)	1.519(8)
N(3)-C(6)#3	1.529(10)
N(3)-C(6)#7	1.529(10)
N(3)-C(6)#5	1.529(10)

Table 39. Bond lengths [Å] and angles [°] for HoSCN.

.

C(7)-C(7)#7	1.702(12)
C(7)-C(7)#5	1.702(12)
N(1)-Ho(1)-N(1)#1	180.0
N(1)-Ho(1)-N(1)#2	109.48(16)
N(1)#1-Ho(1)-N(1)#2	70.52(16)
N(1)-Ho(1)-N(1)#3	109.4(3)
N(1)#1-Ho(1)-N(1)#3	70.6(3)
N(1)#2-Ho(1)-N(1)#3	109.48(16)
N(1)-Ho(1)-N(1)#4	70.6(3)
N(1)#1-Ho(1)-N(1)#4	109.4(3)
N(1)#2-Ho(1)-N(1)#4	70.52(16)
N(1)#3-Ho(1)-N(1)#4	180.0(4)
N(1)-Ho(1)-N(1)#5	70.52(16)
N(1)#1-Ho(1)-N(1)#5	109.48(16)
N(1)#2-Ho(1)-N(1)#5	70.6(3)
N(1)#3-Ho(1)-N(1)#5	70.52(16)
N(1)#4-Ho(1)-N(1)#5	109.48(16)
N(1)-Ho(1)-N(1)#6	109.48(16)
N(1)#1-Ho(1)-N(1)#6	70.52(16)
N(1)#2-Ho(1)-N(1)#6	109.4(3)
N(1)#3-Ho(1)-N(1)#6	109.48(16)
N(1)#4-Ho(1)-N(1)#6	70.52(16)
N(1)#5-Ho(1)-N(1)#6	180.0(3)
N(1)-Ho(1)-N(1)#7	70.52(16)
N(1)#1-Ho(1)-N(1)#7	109.48(16)
N(1)#2-Ho(1)-N(1)#7	180.0(4)
N(1)#3-Ho(1)-N(1)#7	70.52(16)
N(1)#4-Ho(1)-N(1)#7	109.48(16)
N(1)#5-Ho(1)-N(1)#7	109.4(3)

N(3)-C(6)	1.529(10)
C(6)-C(8)	1.643(13)
C(6)-C(6)#7	1.743(19)
C(6)-C(6)#5	1.743(19)
C(6)-C(7)	1.832(11)
C(7)-C(8)	1.634(10)
C(7)-C(7)#7	1.702(12)
C(7)-C(7)#5	1.702(12)

N(1)#6-Ho(1)-N(1)#7	70.6(3)
N(1)-C(1)-S(1)	179.0(7)
C(1)-N(1)-Ho(1)	178.5(6)
C(2)#4-N(2)-C(2)#8	180.0(8)
C(2)#4-N(2)-C(2)#9	75.3(13)
C(2)#8-N(2)-C(2)#9	104.7(13)
C(2)#4-N(2)-C(2)	104.7(13)
C(2)#8-N(2)-C(2)	75.3(13)
C(2)#9-N(2)-C(2)	180.0
C(2)#4-N(2)-C(4)#10	111.9(5)
C(2)#8-N(2)-C(4)#10	68.1(5)
C(2)#9-N(2)-C(4)#10	68.1(5)
C(2)-N(2)-C(4)#10	111.9(5)
C(2)#4-N(2)-C(4)#11	68.1(5)
C(2)#8-N(2)-C(4)#11	111.9(5)
C(2)#9-N(2)-C(4)#11	111.9(5)
C(2)-N(2)-C(4)#11	68.1(5)
C(4)#10-N(2)-C(4)#11	180.0(8)
C(2)#4-N(2)-C(4)#9	111.9(5)
C(2)#8-N(2)-C(4)#9	68.1(5)
C(2)#9-N(2)-C(4)#9	68.1(5)
C(2)-N(2)-C(4)#9	111.9(5)
C(4)#10-N(2)-C(4)#9	105.0(13)
C(4)#11-N(2)-C(4)#9	75.0(13)
C(2)#4-N(2)-C(4)	68.1(5)
C(2)#8-N(2)-C(4)	111.9(5)
C(2)#9-N(2)-C(4)	111.9(5)
C(2)-N(2)-C(4)	68.1(5)
C(4)#10-N(2)-C(4)	75.0(13)
C(4)#11-N(2)-C(4)	105.0(13)
C(4)#9-N(2)-C(4)	180.0(8)
N(2)-C(2)-C(3)	108.3(10)
N(2)-C(2)-C(4)#11	56.5(5)
C(3)-C(2)-C(4)#11	125.8(8)
N(2)-C(2)-C(4)	56.5(5)
C(3)-C(2)-C(4)	125.8(8)

C(4)#11-C(2)-C(4)	90.9(10)
N(2)-C(2)-C(2)#8	52.3(6)
C(3)-C(2)-C(2)#8	55.9(5)
C(4)#11-C(2)-C(2)#8	90.3(6)
C(4)-C(2)-C(2)#8	90.3(6)
C(2)-C(3)-C(2)#8	68.1(9)
N(2)-C(4)-C(5)	108.1(11)
N(2)-C(4)-C(2)#4	55.4(5)
C(5)-C(4)-C(2)#4	125.8(9)
N(2)-C(4)-C(2)	55.4(5)
C(5)-C(4)-C(2)	125.8(9)
C(2)#4-C(4)-C(2)	89.1(10)
N(2)-C(4)-C(4)#10	52.5(6)
C(5)-C(4)-C(4)#10	55.7(6)
C(2)#4-C(4)-C(4)#10	89.7(6)
C(2)-C(4)-C(4)#10	89.7(6)
C(4)-C(5)-C(4)#10	68.7(12)
C(7)#5-N(3)-C(7)#7	104.8(8)
C(7)#5-N(3)-C(7)#3	68.2(4)
C(7)#7-N(3)-C(7)#3	68.2(4)
C(7)#5-N(3)-C(7)	68.2(4)
C(7)#7-N(3)-C(7)	68.2(4)
C(7)#3-N(3)-C(7)	104.8(8)
C(7)#5-N(3)-C(6)#3	111.2(3)
C(7)#7-N(3)-C(6)#3	111.2(3)
C(7)#3-N(3)-C(6)#3	73.9(6)
C(7)-N(3)-C(6)#3	178.7(8)
C(7)#5-N(3)-C(6)#7	178.7(8)
C(7)#7-N(3)-C(6)#7	73.9(6)
C(7)#3-N(3)-C(6)#7	111.2(3)
C(7)-N(3)-C(6)#7	111.2(3)
C(6)#3-N(3)-C(6)#7	69.5(6)
C(7)#5-N(3)-C(6)#5	73.9(6)
C(7)#7-N(3)-C(6)#5	178.7(8)
C(7)#3-N(3)-C(6)#5	111.2(3)
C(7)-N(3)-C(6)#5	111.2(3)

C(6)#3-N(3)-C(6)#5	69.5(6)
C(6)#7-N(3)-C(6)#5	107.4(11)
C(7)#5-N(3)-C(6)	111.2(3)
C(7)#7-N(3)-C(6)	111.2(3)
C(7)#3-N(3)-C(6)	178.7(8)
C(7)-N(3)-C(6)	73.9(6)
C(6)#3-N(3)-C(6)	107.4(11)
C(6)#7-N(3)-C(6)	69.5(6)
C(6)#5-N(3)-C(6)	69.5(6)
N(3)-C(6)-C(8)	108.6(6)
N(3)-C(6)-C(6)#7	55.3(3)
C(8)-C(6)-C(6)#7	125.3(2)
N(3)-C(6)-C(6)#5	55.3(3)
C(8)-C(6)-C(6)#5	125.3(2)
C(6)#7-C(6)-C(6)#5	90.001(1)
N(3)-C(6)-C(7)	52.8(4)
C(8)-C(6)-C(7)	55.8(4)
C(6)#7-C(6)-C(7)	89.4(3)
C(6)#5-C(6)-C(7)	89.4(3)
N(3)-C(7)-C(8)	109.5(6)
N(3)-C(7)-C(7)#7	55.9(2)
C(8)-C(7)-C(7)#7	126.4(2)
N(3)-C(7)-C(7)#5	55.9(2)
C(8)-C(7)-C(7)#5	126.4(2)
C(7)#7-C(7)-C(7)#5	90.000(1)
N(3)-C(7)-C(6)	53.3(5)
C(8)-C(7)-C(6)	56.2(5)
C(7)#7-C(7)-C(6)	90.6(3)
C(7)#5-C(7)-C(6)	90.6(3)
C(7)-C(8)-C(6)	68.0(5)

#1 -x,-y,-z #2 -y,x,-z #3 -x,-y,z #4 x,y,-z

#5 -y,x,z #6 y,-x,-z #7 y,-x,z #8 -x,-y+1,z

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Ho(1)	26(1)	26(1)	30(1)	0	0	0
S(1)	77(1)	77(1)	61(1)	-6(1)	-6(1)	-31(1)
C(1)	57(2)	57(2)	60(2)	-7(1)	-7(1)	-14(2)
N(1)	67(2)	67(2)	89(4)	-16(2)	-16(2)	-15(3)
N(2)	177(18)	39(4)	92(8)	0	0	0
C(2)	186(18)	55(5)	151(13)	52(8)	0	0
C(3)	171(14)	175(14)	102(7)	0	0	0
C(4)	186(18)	55(5)	151(13)	52(8)	0	0
C(5)	171(14)	175(14)	102(7)	0	0	0
N(3)	59(3)	59(3)	40(3)	0	0	0
C(6)	146(13)	48(5)	57(5)	0	51(7)	0
C(7)	47(4)	57(4)	45(3)	0	-8(3)	0
C(8)	62(4)	77(4)	135(6)	0	17(5)	0

Table 40. Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for HoSCN. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2 \ a^{*2}U^{11} + ... + 2h \ k \ a^* \ b^* \ U^{12}]$

··· · · J · · · · · · · · · · · · · · ·			
Identification code	i4mmm	i4mmm	
Empirical formula	C39 H0 Er N11 O0 S7	C39 H0 Er N11 O0 S7	
Formula weight	1014.18		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Tetragonal		
Space group	I4/mmm		
Unit cell dimensions	a = 11.4093(6) Å	α= 90°.	
	b = 11.4093(6) Å	β= 90°.	
	c = 22.5770(11) Å	$\gamma = 90^{\circ}$.	
Volume	2938.9(3) Å ³		
Z	2		
Density (calculated)	1.146 Mg/m ³		
Absorption coefficient	1.707 mm ⁻¹		
F(000)	982	982	
Crystal size	0.160 x 0.074 x 0.070 mm	$0.160 \ge 0.074 \ge 0.070 \text{ mm}^3$	
Theta range for data collection	1.804 to 30.552°.	1.804 to 30.552°.	
Index ranges	-16<=h<=16, -16<=k<=1	-16<=h<=16, -16<=k<=16, -31<=l<=32	
Reflections collected	21183	21183	
Independent reflections	1317 [R(int) = 0.0193]	1317 [R(int) = 0.0193]	
Completeness to theta = 25.242°	100.0 %	100.0 %	
Refinement method	Full-matrix least-squares	Full-matrix least-squares on F ²	
Data / restraints / parameters	1317 / 12 / 57	1317 / 12 / 57	
Goodness-of-fit on F ²	1.095	1.095	
Final R indices [I>2sigma(I)]	R1 = 0.0397, wR2 = 0.11	R1 = 0.0397, w $R2 = 0.1143$	
R indices (all data)	R1 = 0.0398, wR2 = 0.11	R1 = 0.0398, $wR2 = 0.1145$	
Extinction coefficient	n/a	n/a	
Largest diff. peak and hole	0.944 and -0.868 e.Å ⁻³	0.944 and -0.868 e.Å ⁻³	

Table 41. Crystal data and structure refinement for ErSCN.

	X	у	Z	U(eq)
Er(1)	0	0	0	27(1)
S(1)	2555(1)	2555(1)	1319(1)	72(1)
C(1)	1769(4)	1769(4)	914(3)	60(1)
N(1)	1202(4)	1202(4)	613(3)	75(2)
N(2)	0	5000	0	108(6)
C(2)	0	5811(12)	-524(8)	129(6)
C(3)	0	5000	-1117(8)	144(6)
C(4)	-1050(16)	5819(13)	0	129(6)
C(5)	-2220(20)	5000	0	160(9)
N(3)	0	0	2539(4)	54(2)
C(6)	1073(10)	0	2131(4)	61(2)
C(7)	1052(10)	0	2952(4)	61(2)
C(8)	2252(7)	0	2552(5)	90(2)

Table 42. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for ErSCN. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Er(1)-N(1)	2.384(6)
Er(1)-N(1)#1	2.384(6)
Er(1)-N(1)#2	2.384(6)
Er(1)-N(1)#3	2.384(6)
Er(1)-N(1)#4	2.384(6)
Er(1)-N(1)#5	2.384(6)
Er(1)-N(1)#6	2.384(6)
Er(1)-N(1)#7	2.384(6)
S(1)-C(1)	1.564(6)
C(1)-N(1)	1.139(8)
N(2)-C(2)#4	1.503(12)
N(2)-C(2)#8	1.503(12)
N(2)-C(2)#9	1.503(12)
N(2)-C(2)	1.503(12)
N(2)-C(4)#10	1.519(14)
N(2)-C(4)#11	1.519(14)
N(2)-C(4)#9	1.519(14)
N(2)-C(4)	1.519(14)
C(2)-C(3)	1.628(15)
C(2)-C(4)#11	1.684(19)
C(2)-C(4)	1.684(19)
C(2)-C(2)#8	1.85(3)
C(3)-C(2)#8	1.628(15)
C(4)-C(5)	1.631(16)
C(4)-C(2)#4	1.684(19)
C(4)-C(4)#10	1.87(3)
C(5)-C(4)#10	1.631(16)
N(3)-C(7)#5	1.520(11)
N(3)-C(7)#7	1.520(11)
N(3)-C(7)#3	1.520(11)
N(3)-C(7)	1.520(11)
N(3)-C(6)#3	1.531(10)
N(3)-C(6)#7	1.531(10)
N(3)-C(6)#5	1.531(10)

Table 43. Bond lengths [Å] and angles [°] for ErSCN.

C(7)-C(8)	1.640(12)
C(7)-C(7)#7	1.697(16)
C(7)-C(7)#5	1.697(16)
N(1)-Er(1)-N(1)#1	180.0
N(1)-Er(1)-N(1)#2	109.73(17)
N(1)#1-Er(1)-N(1)#2	70.27(17)
N(1)-Er(1)-N(1)#3	109.0(3)
N(1)#1-Er(1)-N(1)#3	71.0(3)
N(1)#2-Er(1)-N(1)#3	109.73(17)
N(1)-Er(1)-N(1)#4	71.0(3)
N(1)#1-Er(1)-N(1)#4	109.0(3)
N(1)#2-Er(1)-N(1)#4	70.27(17)
N(1)#3-Er(1)-N(1)#4	180.0(4)
N(1)-Er(1)-N(1)#5	70.27(17)
N(1)#1-Er(1)-N(1)#5	109.73(17)
N(1)#2-Er(1)-N(1)#5	71.0(3)
N(1)#3-Er(1)-N(1)#5	70.27(17)
N(1)#4-Er(1)-N(1)#5	109.73(17)
N(1)-Er(1)-N(1)#6	109.73(17)
N(1)#1-Er(1)-N(1)#6	70.27(17)
N(1)#2-Er(1)-N(1)#6	109.0(3)
N(1)#3-Er(1)-N(1)#6	109.73(17)
N(1)#4-Er(1)-N(1)#6	70.27(17)
N(1)#5-Er(1)-N(1)#6	180.0(3)
N(1)-Er(1)-N(1)#7	70.27(17)
N(1)#1-Er(1)-N(1)#7	109.73(17)
N(1)#2-Er(1)-N(1)#7	180.0(4)
N(1)#3-Er(1)-N(1)#7	70.27(17)
N(1)#4-Er(1)-N(1)#7	109.73(17)
N(1)#5-Er(1)-N(1)#7	109.0(3)

N(3)-C(6)	1.531(10)
C(6)-C(8)	1.647(12)
C(6)-C(6)#7	1.731(16)
C(6)-C(6)#5	1.731(16)
C(6)-C(7)	1.853(12)
C(7)-C(8)	1.640(12)
C(7)-C(7)#7	1.697(16)
C(7)-C(7)#5	1.697(16)

N(1)#6-Er(1)-N(1)#7	71.0(3)
N(1)-C(1)-S(1)	179.2(7)
C(1)-N(1)-Er(1)	178.9(6)
C(2)#4-N(2)-C(2)#8	180.0(9)
C(2)#4-N(2)-C(2)#9	76.0(14)
C(2)#8-N(2)-C(2)#9	104.0(14)
C(2)#4-N(2)-C(2)	104.0(14)
C(2)#8-N(2)-C(2)	76.0(14)
C(2)#9-N(2)-C(2)	180.0
C(2)#4-N(2)-C(4)#10	112.3(5)
C(2)#8-N(2)-C(4)#10	67.7(5)
C(2)#9-N(2)-C(4)#10	67.7(5)
C(2)-N(2)-C(4)#10	112.3(5)
C(2)#4-N(2)-C(4)#11	67.7(5)
C(2)#8-N(2)-C(4)#11	112.3(5)
C(2)#9-N(2)-C(4)#11	112.3(5)
C(2)-N(2)-C(4)#11	67.7(5)
C(4)#10-N(2)-C(4)#11	180.0(9)
C(2)#4-N(2)-C(4)#9	112.3(5)
C(2)#8-N(2)-C(4)#9	67.7(5)
C(2)#9-N(2)-C(4)#9	67.7(5)
C(2)-N(2)-C(4)#9	112.3(5)
C(4)#10-N(2)-C(4)#9	104.1(14)
C(4)#11-N(2)-C(4)#9	75.9(14)
C(2)#4-N(2)-C(4)	67.7(5)
C(2)#8-N(2)-C(4)	112.3(5)
C(2)#9-N(2)-C(4)	112.3(5)
C(2)-N(2)-C(4)	67.7(5)
C(4)#10-N(2)-C(4)	75.9(14)
C(4)#11-N(2)-C(4)	104.1(14)
C(4)#9-N(2)-C(4)	180.0
N(2)-C(2)-C(3)	107.3(11)
N(2)-C(2)-C(4)#11	56.6(5)
C(3)-C(2)-C(4)#11	125.5(9)
N(2)-C(2)-C(4)	56.6(5)
C(3)-C(2)-C(4)	125.5(9)

C(4)#11-C(2)-C(4)	90.7(11)
N(2)-C(2)-C(2)#8	52.0(7)
C(3)-C(2)-C(2)#8	55.3(5)
C(4)#11-C(2)-C(2)#8	90.3(7)
C(4)-C(2)-C(2)#8	90.3(7)
C(2)#8-C(3)-C(2)	69.3(11)
N(2)-C(4)-C(5)	107.1(12)
N(2)-C(4)-C(2)	55.7(5)
C(5)-C(4)-C(2)	125.5(10)
N(2)-C(4)-C(2)#4	55.7(5)
C(5)-C(4)-C(2)#4	125.5(10)
C(2)-C(4)-C(2)#4	89.3(11)
N(2)-C(4)-C(4)#10	52.1(7)
C(5)-C(4)-C(4)#10	55.1(7)
C(2)-C(4)-C(4)#10	89.7(7)
C(2)#4-C(4)-C(4)#10	89.7(7)
C(4)-C(5)-C(4)#10	69.9(13)
C(7)#5-N(3)-C(7)#7	104.3(9)
C(7)#5-N(3)-C(7)#3	67.9(5)
C(7)#7-N(3)-C(7)#3	67.9(5)
C(7)#5-N(3)-C(7)	67.9(5)
C(7)#7-N(3)-C(7)	67.9(5)
C(7)#3-N(3)-C(7)	104.3(9)
C(7)#5-N(3)-C(6)#3	111.6(3)
C(7)#7-N(3)-C(6)#3	111.6(3)
C(7)#3-N(3)-C(6)#3	74.8(5)
C(7)-N(3)-C(6)#3	179.1(8)
C(7)#5-N(3)-C(6)#7	179.1(8)
C(7)#7-N(3)-C(6)#7	74.8(5)
C(7)#3-N(3)-C(6)#7	111.6(3)
C(7)-N(3)-C(6)#7	111.6(3)
C(6)#3-N(3)-C(6)#7	68.9(5)
C(7)#5-N(3)-C(6)#5	74.8(5)
C(7)#7-N(3)-C(6)#5	179.1(8)
C(7)#3-N(3)-C(6)#5	111.6(3)
C(7)-N(3)-C(6)#5	111.6(3)

C(6)#3-N(3)-C(6)#5	68.9(5)
C(6)#7-N(3)-C(6)#5	106.2(10)
C(7)#5-N(3)-C(6)	111.6(3)
C(7)#7-N(3)-C(6)	111.6(3)
C(7)#3-N(3)-C(6)	179.1(8)
C(7)-N(3)-C(6)	74.8(5)
C(6)#3-N(3)-C(6)	106.2(10)
C(6)#7-N(3)-C(6)	68.8(5)
C(6)#5-N(3)-C(6)	68.8(5)
N(3)-C(6)-C(8)	107.9(6)
N(3)-C(6)-C(6)#7	55.6(3)
C(8)-C(6)-C(6)#7	125.3(2)
N(3)-C(6)-C(6)#5	55.6(3)
C(8)-C(6)-C(6)#5	125.3(2)
C(6)#7-C(6)-C(6)#5	90.000(1)
N(3)-C(6)-C(7)	52.3(4)
C(8)-C(6)-C(7)	55.5(5)
C(6)#7-C(6)-C(7)	89.5(3)
C(6)#5-C(6)-C(7)	89.5(3)
N(3)-C(7)-C(8)	108.8(6)
N(3)-C(7)-C(7)#7	56.1(2)
C(8)-C(7)-C(7)#7	126.2(3)
N(3)-C(7)-C(7)#5	56.1(2)
C(8)-C(7)-C(7)#5	126.2(3)
C(7)#7-C(7)-C(7)#5	90.001(1)
N(3)-C(7)-C(6)	52.9(5)
C(8)-C(7)-C(6)	55.9(5)
C(7)#7-C(7)-C(6)	90.5(3)
C(7)#5-C(7)-C(6)	90.5(3)
C(7)-C(8)-C(6)	68.6(6)

#1 -x,-y,-z #2 -y,x,-z #3 -x,-y,z #4 x,y,-z

#5 -y,x,z #6 y,-x,-z #7 y,-x,z #8 -x,-y+1,z

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Er(1)	26(1)	26(1)	30(1)	0	0	0
S(1)	77(1)	77(1)	63(1)	-6(1)	-6(1)	-29(1)
C(1)	59(2)	59(2)	61(3)	-7(2)	-7(2)	-14(3)
N(1)	71(2)	71(2)	82(4)	-15(2)	-15(2)	-18(3)
N(2)	183(19)	31(5)	109(11)	0	0	0
C(2)	172(18)	58(6)	156(15)	52(10)	0	0
C(3)	160(20)	150(20)	122(12)	0	0	0
C(4)	172(18)	58(6)	156(15)	52(10)	0	0
C(5)	180(20)	200(20)	96(10)	0	0	0
N(3)	58(3)	58(3)	45(4)	0	0	0
C(6)	74(5)	63(4)	46(3)	0	8(3)	0
C(7)	74(5)	63(4)	46(3)	0	8(3)	0
C(8)	63(4)	75(4)	132(7)	0	15(5)	0

Table 44. Anisotropic displacement parameters $(Å^2x \ 10^3)$ for ErSCN. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2 \ a^{*2}U^{11} + ... + 2h \ k \ a^* \ b^* \ U^{12}]$

5			
Identification code	i4mmm		
Empirical formula	C39 H0 N11 O0 S7 Tm		
Formula weight	1015.85		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Tetragonal		
Space group	I4/mmm		
Unit cell dimensions	a = 11.3875(10) Å	α= 90°.	
	b = 11.3875(10) Å	β= 90°.	
	c = 22.478(2) Å	$\gamma = 90^{\circ}$.	
Volume	2914.9(6) Å ³		
Z	2		
Density (calculated)	1.157 Mg/m ³		
Absorption coefficient	1.804 mm ⁻¹		
F(000)	984		
Crystal size	0.130 x 0.128 x 0.065 mm ³		
Theta range for data collection	1.812 to 33.060°.		
Index ranges	-17<=h<=17, -17<=k<=17, -34<=l<=34		
Reflections collected	25512		
Independent reflections	1582 [R(int) = 0.0248]		
Completeness to theta = 25.242°	100.0 %		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	1582 / 12 / 59		
Goodness-of-fit on F ²	1.042		
Final R indices [I>2sigma(I)]	R1 = 0.0390, $wR2 = 0.1132$		
R indices (all data)	R1 = 0.0391, $wR2 = 0.1134$		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.966 and -0.912 e.Å ⁻³		

Table 45. Crystal data and structure refinement for TmSCN.

	х	у	Z	U(eq)
 Tm(1)	0	0	0	26(1)
S(1)	2559(1)	2559(1)	1316(1)	70(1)
C(1)	1773(4)	1773(4)	913(3)	59(1)
N(1)	1202(4)	1202(4)	603(3)	76(2)
N(2)	0	5000	0	103(6)
C(2)	0	5795(12)	-528(7)	126(6)
C(3)	0	5000	-1132(7)	150(6)
C(4)	-1046(15)	5814(12)	0	126(6)
C(5)	-2223(19)	5000	0	150(6)
N(3)	0	0	2536(4)	50(2)
C(6)	1076(12)	0	2131(4)	80(5)
C(7)	1053(7)	0	2948(4)	48(2)
C(8)	2256(7)	0	2552(5)	89(2)

Table 46. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for TmSCN. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Tm(1)-N(1)#1	2.364(6)
Tm(1)-N(1)#2	2.364(6)
Tm(1)-N(1)#3	2.364(6)
Tm(1)-N(1)#4	2.364(6)
Tm(1)-N(1)#5	2.364(6)
Tm(1)-N(1)#6	2.364(6)
Tm(1)-N(1)#7	2.364(6)
Tm(1)-N(1)	2.364(6)
S(1)-C(1)	1.557(6)
C(1)-N(1)	1.152(7)
N(2)-C(2)	1.493(12)
N(2)-C(2)#5	1.493(12)
N(2)-C(2)#8	1.493(12)
N(2)-C(2)#9	1.493(12)
N(2)-C(4)	1.509(14)
N(2)-C(4)#10	1.509(14)
N(2)-C(4)#11	1.509(14)
N(2)-C(4)#9	1.509(14)
C(2)-C(3)	1.631(15)
C(2)-C(4)#11	1.682(18)
C(2)-C(4)	1.682(18)
C(2)-C(2)#8	1.81(3)
C(3)-C(2)#8	1.631(15)
C(4)-C(5)	1.629(16)
C(4)-C(2)#5	1.682(18)
C(4)-C(4)#10	1.85(3)
C(5)-C(4)#10	1.629(16)
N(3)-C(7)	1.516(8)
N(3)-C(7)#6	1.516(8)
N(3)-C(7)#3	1.516(8)
N(3)-C(7)#4	1.516(8)
N(3)-C(6)#4	1.527(10)
N(3)-C(6)#3	1.527(10)
N(3)-C(6)#6	1.527(10)

Table 47. Bond lengths [Å] and angles [°] for TmSCN.

C(6)-C(8)	1.644(14)
C(6)-C(6)#3	1.733(19)
C(6)-C(6)#6	1.733(19)
C(6)-C(7)	1.837(12)
C(7)-C(8)	1.634(10)
C(7)-C(7)#3	1.697(12)
C(7)-C(7)#6	1.697(12)
N(1)#1-Tm(1)-N(1)#2	70.79(18)
N(1)#1-Tm(1)-N(1)#3	109.21(18)
N(1)#2-Tm(1)-N(1)#3	180.0(4)
N(1)#1-Tm(1)-N(1)#4	70.0(4)
N(1)#2-Tm(1)-N(1)#4	109.21(18)
N(1)#3-Tm(1)-N(1)#4	70.79(18)
N(1)#1-Tm(1)-N(1)#5	110.0(4)
N(1)#2-Tm(1)-N(1)#5	70.79(18)
N(1)#3-Tm(1)-N(1)#5	109.21(18)
N(1)#4-Tm(1)-N(1)#5	180.0(3)
N(1)#1-Tm(1)-N(1)#6	109.21(18)
N(1)#2-Tm(1)-N(1)#6	70.0(4)
N(1)#3-Tm(1)-N(1)#6	110.0(4)
N(1)#4-Tm(1)-N(1)#6	70.79(18)
N(1)#5-Tm(1)-N(1)#6	109.21(18)
N(1)#1-Tm(1)-N(1)#7	70.79(18)
N(1)#2-Tm(1)-N(1)#7	110.0(4)
N(1)#3-Tm(1)-N(1)#7	70.0(4)
N(1)#4-Tm(1)-N(1)#7	109.21(18)
N(1)#5-Tm(1)-N(1)#7	70.79(18)
N(1)#6-Tm(1)-N(1)#7	180.0(3)
N(1)#1-Tm(1)-N(1)	180.0
N(1)#2-Tm(1)-N(1)	109.21(18)
N(1)#3-Tm(1)-N(1)	70.79(18)
N(1)#4-Tm(1)-N(1)	110.0(4)
N(1)#5-Tm(1)-N(1)	70.0(4)
N(1)#6-Tm(1)-N(1)	70.79(18)

1.527(10)

N(3)-C(6)

N(1)#7-Tm(1)-N(1)	109.21(18)
N(1)-C(1)-S(1)	178.5(7)
C(1)-N(1)-Tm(1)	177.8(6)
C(2)-N(2)-C(2)#5	105.4(13)
C(2)-N(2)-C(2)#8	74.6(13)
C(2)#5-N(2)-C(2)#8	180.0(8)
C(2)-N(2)-C(2)#9	180.0
C(2)#5-N(2)-C(2)#9	74.6(13)
C(2)#8-N(2)-C(2)#9	105.4(13)
C(2)-N(2)-C(4)	68.1(5)
C(2)#5-N(2)-C(4)	68.1(5)
C(2)#8-N(2)-C(4)	111.9(5)
C(2)#9-N(2)-C(4)	111.9(5)
C(2)-N(2)-C(4)#10	111.9(5)
C(2)#5-N(2)-C(4)#10	111.9(5)
C(2)#8-N(2)-C(4)#10	68.1(5)
C(2)#9-N(2)-C(4)#10	68.1(5)
C(4)-N(2)-C(4)#10	75.8(13)
C(2)-N(2)-C(4)#11	68.1(5)
C(2)#5-N(2)-C(4)#11	68.1(5)
C(2)#8-N(2)-C(4)#11	111.9(5)
C(2)#9-N(2)-C(4)#11	111.9(5)
C(4)-N(2)-C(4)#11	104.2(13)
C(4)#10-N(2)-C(4)#11	180.0(8)
C(2)-N(2)-C(4)#9	111.9(5)
C(2)#5-N(2)-C(4)#9	111.9(5)
C(2)#8-N(2)-C(4)#9	68.1(5)
C(2)#9-N(2)-C(4)#9	68.1(5)
C(4)-N(2)-C(4)#9	180.0
C(4)#10-N(2)-C(4)#9	104.2(13)
C(4)#11-N(2)-C(4)#9	75.8(13)
N(2)-C(2)-C(3)	109.0(10)
N(2)-C(2)-C(4)#11	56.4(5)
C(3)-C(2)-C(4)#11	126.5(8)
N(2)-C(2)-C(4)	56.4(5)
C(3)-C(2)-C(4)	126.5(8)
C(4)#11-C(2)-C(4)	90.1(10)
---------------------	-----------
N(2)-C(2)-C(2)#8	52.7(6)
C(3)-C(2)-C(2)#8	56.3(5)
C(4)#11-C(2)-C(2)#8	90.7(6)
C(4)-C(2)-C(2)#8	90.7(6)
C(2)#8-C(3)-C(2)	67.4(10)
N(2)-C(4)-C(5)	107.5(11)
N(2)-C(4)-C(2)	55.5(5)
C(5)-C(4)-C(2)	125.1(9)
N(2)-C(4)-C(2)#5	55.5(5)
C(5)-C(4)-C(2)#5	125.1(9)
C(2)-C(4)-C(2)#5	89.8(10)
N(2)-C(4)-C(4)#10	52.1(6)
C(5)-C(4)-C(4)#10	55.3(6)
C(2)-C(4)-C(4)#10	89.3(6)
C(2)#5-C(4)-C(4)#10	89.3(6)
C(4)-C(5)-C(4)#10	69.3(12)
C(7)-N(3)-C(7)#6	68.1(4)
C(7)-N(3)-C(7)#3	68.1(4)
C(7)#6-N(3)-C(7)#3	104.6(8)
C(7)-N(3)-C(7)#4	104.6(8)
C(7)#6-N(3)-C(7)#4	68.1(4)
C(7)#3-N(3)-C(7)#4	68.1(4)
C(7)-N(3)-C(6)#4	178.9(8)
C(7)#6-N(3)-C(6)#4	111.4(3)
C(7)#3-N(3)-C(6)#4	111.4(3)
C(7)#4-N(3)-C(6)#4	74.3(6)
C(7)-N(3)-C(6)#3	111.4(3)
C(7)#6-N(3)-C(6)#3	178.9(8)
C(7)#3-N(3)-C(6)#3	74.3(6)
C(7)#4-N(3)-C(6)#3	111.4(3)
C(6)#4-N(3)-C(6)#3	69.2(6)
C(7)-N(3)-C(6)#6	111.4(3)
C(7)#6-N(3)-C(6)#6	74.3(6)
C(7)#3-N(3)-C(6)#6	178.9(8)
C(7)#4-N(3)-C(6)#6	111.4(3)

C(6)#4-N(3)-C(6)#6	69.2(6)
C(6)#3-N(3)-C(6)#6	106.8(11)
C(7)-N(3)-C(6)	74.3(6)
C(7)#6-N(3)-C(6)	111.4(3)
C(7)#3-N(3)-C(6)	111.4(3)
C(7)#4-N(3)-C(6)	178.9(8)
C(6)#4-N(3)-C(6)	106.8(11)
C(6)#3-N(3)-C(6)	69.2(6)
C(6)#6-N(3)-C(6)	69.2(6)
N(3)-C(6)-C(8)	108.2(6)
N(3)-C(6)-C(6)#3	55.4(3)
C(8)-C(6)-C(6)#3	125.3(2)
N(3)-C(6)-C(6)#6	55.4(3)
C(8)-C(6)-C(6)#6	125.3(2)
C(6)#3-C(6)-C(6)#6	89.999(1)
N(3)-C(6)-C(7)	52.6(4)
C(8)-C(6)-C(7)	55.6(5)
C(6)#3-C(6)-C(7)	89.4(3)
C(6)#6-C(6)-C(7)	89.4(3)
N(3)-C(7)-C(8)	109.3(6)
N(3)-C(7)-C(7)#3	56.0(2)
C(8)-C(7)-C(7)#3	126.4(2)
N(3)-C(7)-C(7)#6	56.0(2)
C(8)-C(7)-C(7)#6	126.4(2)
C(7)#3-C(7)-C(7)#6	90.000(1)
N(3)-C(7)-C(6)	53.1(5)
C(8)-C(7)-C(6)	56.2(5)
C(7)#3-C(7)-C(6)	90.6(3)
C(7)#6-C(7)-C(6)	90.6(3)
C(7)-C(8)-C(6)	68.2(5)

Symmetry transformations used to generate equivalent atoms:

#1 -x,-y,-z #2 -y,x,-z #3 y,-x,z #4 -x,-y,z

#5 x,y,-z #6 -y,x,z #7 y,-x,-z #8 -x,-y+1,z

#9 -x,-y+1,-z #10 x,-y+1,z #11 -x,y,-z

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²
Tm(1)	25(1)	25(1)	28(1)	0	0	0
S(1)	76(1)	76(1)	59(1)	-6(1)	-6(1)	-33(1)
C(1)	57(2)	57(2)	63(3)	-7(2)	-7(2)	-13(2)
N(1)	66(2)	66(2)	98(4)	-18(2)	-18(2)	-15(3)
N(2)	186(19)	36(4)	87(8)	0	0	0
C(2)	189(19)	52(5)	136(12)	45(8)	0	0
C(3)	179(16)	183(16)	90(6)	0	0	0
C(4)	189(19)	52(5)	136(12)	45(8)	0	0
C(5)	179(16)	183(16)	90(6)	0	0	0
N(3)	55(3)	55(3)	41(3)	0	0	0
C(6)	137(13)	43(4)	61(5)	0	50(7)	0
C(7)	44(4)	57(5)	43(3)	0	-10(3)	0
C(8)	60(4)	76(4)	132(6)	0	17(5)	0

Table 48. Anisotropic displacement parameters (Å²x 10³) for TmSCN. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

Identification code	i4mmm		
Empirical formula	C39 H0 N11 O0 S7 Yb		
Formula weight	1019.96		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Tetragonal		
Space group	I4/mmm		
Unit cell dimensions	a = 11.3736(4) Å	α= 90°.	
	b = 11.3736(4) Å	β= 90°.	
	c = 22.4950(8) Å	$\gamma = 90^{\circ}$.	
Volume	2909.9(2) Å ³		
Z	2		
Density (calculated)	1.164 Mg/m ³		
Absorption coefficient	1.889 mm ⁻¹		
F(000)	986		
Crystal size	0.202 x 0.139 x 0.081 mm ³		
Theta range for data collection	1.811 to 33.115°.		
Index ranges	-17<=h<=17, -16<=k<=16, -33<=l<=33		
Reflections collected	25655		
Independent reflections	1600 [R(int) = 0.0192]		
Completeness to theta = 25.242°	99.9 %		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	1600 / 12 / 56		
Goodness-of-fit on F ²	1.110		
Final R indices [I>2sigma(I)]	R1 = 0.0446, $wR2 = 0.1261$		
R indices (all data)	R1 = 0.0446, $wR2 = 0.1261$		
Extinction coefficient	n/a		
Largest diff. peak and hole	2.921 and -1.630 e.Å-3		

Table 49. Crystal data and structure refinement for YbSCN.

	Х	у	Z	U(eq)
Yb(1)	0	0	0	26(1)
S(1)	2573(1)	2573(1)	1318(1)	67(1)
C(1)	1785(4)	1785(4)	914(3)	54(1)
N(1)	1214(4)	1214(4)	603(3)	71(2)
N(2)	0	5000	0	78(3)
C(2)	0	5806(12)	-527(8)	124(7)
C(3)	0	5000	-1120(8)	164(7)
C(4)	-1027(17)	5835(13)	0	124(7)
C(5)	-2170(20)	5000	0	164(7)
N(3)	0	0	2524(5)	78(3)
C(6)	1085(12)	0	2119(5)	76(5)
C(7)	1056(8)	0	2936(3)	44(2)
C(8)	2261(7)	0	2541(6)	84(2)

Table 50. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for YbSCN. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Yb(1)-N(1)	2.378(6)
Yb(1)-N(1)#1	2.378(6)
Yb(1)-N(1)#2	2.378(6)
Yb(1)-N(1)#3	2.378(6)
Yb(1)-N(1)#4	2.378(6)
Yb(1)-N(1)#5	2.378(6)
Yb(1)-N(1)#6	2.378(6)
Yb(1)-N(1)#7	2.378(6)
S(1)-C(1)	1.558(6)
C(1)-N(1)	1.156(8)
N(2)-C(2)#4	1.498(12)
N(2)-C(2)#8	1.498(12)
N(2)-C(2)#9	1.498(12)
N(2)-C(2)	1.498(12)
N(2)-C(4)	1.505(15)
N(2)-C(4)#10	1.505(15)
N(2)-C(4)#11	1.505(15)
N(2)-C(4)#9	1.505(15)
C(2)-C(3)	1.620(15)
C(2)-C(4)	1.66(2)
C(2)-C(4)#11	1.66(2)
C(2)-C(2)#8	1.83(3)
C(3)-C(2)#8	1.620(15)
C(4)-C(5)	1.612(17)
C(4)-C(2)#4	1.66(2)
C(4)-C(4)#10	1.90(3)
C(5)-C(4)#10	1.612(17)
N(3)-C(7)#5	1.516(9)
N(3)-C(7)#7	1.516(9)
N(3)-C(7)#3	1.516(9)
N(3)-C(7)	1.517(9)
N(3)-C(6)#3	1.533(11)
N(3)-C(6)#7	1.533(11)
N(3)-C(6)#5	1.533(11)

Table 51. Bond lengths [Å] and angles [°] for YbSCN.

.

C(7)-C(8)	1.633(11)
C(7)-C(7)#7	1.698(12)
C(7)-C(7)#5	1.698(12)
N(1)-Yb(1)-N(1)#1	180.0
N(1)-Yb(1)-N(1)#2	109.01(19)
N(1)#1-Yb(1)-N(1)#2	70.99(19)
N(1)-Yb(1)-N(1)#3	110.4(4)
N(1)#1-Yb(1)-N(1)#3	69.6(4)
N(1)#2-Yb(1)-N(1)#3	109.01(19)
N(1)-Yb(1)-N(1)#4	69.6(4)
N(1)#1-Yb(1)-N(1)#4	110.4(4)
N(1)#2-Yb(1)-N(1)#4	70.99(19)
N(1)#3-Yb(1)-N(1)#4	180.0(4)
N(1)-Yb(1)-N(1)#5	70.99(19)
N(1)#1-Yb(1)-N(1)#5	109.01(19)
N(1)#2-Yb(1)-N(1)#5	69.6(4)
N(1)#3-Yb(1)-N(1)#5	70.99(19)
N(1)#4-Yb(1)-N(1)#5	109.01(19)
N(1)-Yb(1)-N(1)#6	109.01(19)
N(1)#1-Yb(1)-N(1)#6	70.99(19)
N(1)#2-Yb(1)-N(1)#6	110.4(4)
N(1)#3-Yb(1)-N(1)#6	109.01(19)
N(1)#4-Yb(1)-N(1)#6	70.99(19)
N(1)#5-Yb(1)-N(1)#6	180.0(3)
N(1)-Yb(1)-N(1)#7	70.99(19)
N(1)#1-Yb(1)-N(1)#7	109.01(19)
N(1)#2-Yb(1)-N(1)#7	180.0(4)
N(1)#3-Yb(1)-N(1)#7	70.99(19)
N(1)#4-Yb(1)-N(1)#7	109.01(19)
N(1)#5-Yb(1)-N(1)#7	110.4(4)

N(3)-C(6)

C(6)-C(8)

C(6)-C(6)#7

C(6)-C(6)#5

C(6)-C(7)

1.533(11)

1.640(14)

1.74(2)

1.74(2)

1.836(12)

N(1)#6-Yb(1)-N(1)#7	69.6(4)
N(1)-C(1)-S(1)	178.3(7)
C(1)-N(1)-Yb(1)	177.5(7)
C(2)#4-N(2)-C(2)#8	180.0(9)
C(2)#4-N(2)-C(2)#9	75.5(14)
C(2)#8-N(2)-C(2)#9	104.5(14)
C(2)#4-N(2)-C(2)	104.5(14)
C(2)#8-N(2)-C(2)	75.5(14)
C(2)#9-N(2)-C(2)	180.0
C(2)#4-N(2)-C(4)	67.3(6)
C(2)#8-N(2)-C(4)	112.7(6)
C(2)#9-N(2)-C(4)	112.7(6)
C(2)-N(2)-C(4)	67.3(6)
C(2)#4-N(2)-C(4)#10	112.7(6)
C(2)#8-N(2)-C(4)#10	67.3(6)
C(2)#9-N(2)-C(4)#10	67.3(6)
C(2)-N(2)-C(4)#10	112.7(6)
C(4)-N(2)-C(4)#10	78.3(15)
C(2)#4-N(2)-C(4)#11	67.3(6)
C(2)#8-N(2)-C(4)#11	112.7(6)
C(2)#9-N(2)-C(4)#11	112.7(6)
C(2)-N(2)-C(4)#11	67.3(6)
C(4)-N(2)-C(4)#11	101.7(15)
C(4)#10-N(2)-C(4)#11	180.0(8)
C(2)#4-N(2)-C(4)#9	112.7(6)
C(2)#8-N(2)-C(4)#9	67.3(5)
C(2)#9-N(2)-C(4)#9	67.3(5)
C(2)-N(2)-C(4)#9	112.7(6)
C(4)-N(2)-C(4)#9	180.0
C(4)#10-N(2)-C(4)#9	101.7(15)
C(4)#11-N(2)-C(4)#9	78.3(15)
N(2)-C(2)-C(3)	107.8(11)
N(2)-C(2)-C(4)	56.6(5)
C(3)-C(2)-C(4)	126.7(9)
N(2)-C(2)-C(4)#11	56.6(5)
C(3)-C(2)-C(4)#11	126.7(9)

C(4)-C(2)-C(4)#11	89.1(11)
N(2)-C(2)-C(2)#8	52.3(7)
C(3)-C(2)-C(2)#8	55.5(5)
C(4)-C(2)-C(2)#8	91.1(7)
C(4)#11-C(2)-C(2)#8	91.1(7)
C(2)-C(3)-C(2)#8	69.0(11)
N(2)-C(4)-C(5)	104.8(12)
N(2)-C(4)-C(2)#4	56.2(6)
C(5)-C(4)-C(2)#4	123.7(10)
N(2)-C(4)-C(2)	56.2(6)
C(5)-C(4)-C(2)	123.7(10)
C(2)#4-C(4)-C(2)	90.8(11)
N(2)-C(4)-C(4)#10	50.9(7)
C(5)-C(4)-C(4)#10	53.9(7)
C(2)#4-C(4)-C(4)#10	88.9(7)
C(2)-C(4)-C(4)#10	88.9(7)
C(4)#10-C(5)-C(4)	72.2(14)
C(7)#5-N(3)-C(7)#7	104.7(10)
C(7)#5-N(3)-C(7)#3	68.1(5)
C(7)#7-N(3)-C(7)#3	68.1(5)
C(7)#5-N(3)-C(7)	68.1(5)
C(7)#7-N(3)-C(7)	68.1(5)
C(7)#3-N(3)-C(7)	104.7(10)
C(7)#5-N(3)-C(6)#3	111.3(3)
C(7)#7-N(3)-C(6)#3	111.3(3)
C(7)#3-N(3)-C(6)#3	74.0(6)
C(7)-N(3)-C(6)#3	178.8(10)
C(7)#5-N(3)-C(6)#7	178.8(10)
C(7)#7-N(3)-C(6)#7	74.0(6)
C(7)#3-N(3)-C(6)#7	111.3(3)
C(7)-N(3)-C(6)#7	111.3(3)
C(6)#3-N(3)-C(6)#7	69.4(7)
C(7)#5-N(3)-C(6)#5	74.0(6)
C(7)#7-N(3)-C(6)#5	178.8(10)
C(7)#3-N(3)-C(6)#5	111.3(3)
C(7)-N(3)-C(6)#5	111.3(3)

C(6)#3-N(3)-C(6)#5	69.4(7)
C(6)#7-N(3)-C(6)#5	107.2(13)
C(7)#5-N(3)-C(6)	111.3(3)
C(7)#7-N(3)-C(6)	111.3(3)
C(7)#3-N(3)-C(6)	178.8(10)
C(7)-N(3)-C(6)	74.0(6)
C(6)#3-N(3)-C(6)	107.2(13)
C(6)#7-N(3)-C(6)	69.4(7)
C(6)#5-N(3)-C(6)	69.4(7)
N(3)-C(6)-C(8)	108.2(7)
N(3)-C(6)-C(6)#7	55.3(3)
C(8)-C(6)-C(6)#7	125.2(2)
N(3)-C(6)-C(6)#5	55.3(3)
C(8)-C(6)-C(6)#5	125.2(2)
C(6)#7-C(6)-C(6)#5	90.000(1)
N(3)-C(6)-C(7)	52.6(5)
C(8)-C(6)-C(7)	55.7(5)
C(6)#7-C(6)-C(7)	89.3(4)
C(6)#5-C(6)-C(7)	89.3(4)
N(3)-C(7)-C(8)	109.5(6)
N(3)-C(7)-C(7)#7	55.9(3)
C(8)-C(7)-C(7)#7	126.4(2)
N(3)-C(7)-C(7)#5	55.9(3)
C(8)-C(7)-C(7)#5	126.4(2)
C(7)#7-C(7)-C(7)#5	90.000(1)
N(3)-C(7)-C(6)	53.4(5)
C(8)-C(7)-C(6)	56.1(5)
C(7)#7-C(7)-C(6)	90.7(4)
C(7)#5-C(7)-C(6)	90.7(4)
C(7)-C(8)-C(6)	68.3(5)

Symmetry transformations used to generate equivalent atoms:

#1 -x,-y,-z #2 -y,x,-z #3 -x,-y,z #4 x,y,-z

#5 -y,x,z #6 y,-x,-z #7 y,-x,z #8 -x,-y+1,z

#9 -x,-y+1,-z #10 x,-y+1,z #11 -x,y,-z

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²
Yb(1)	24(1)	24(1)	29(1)	0	0	0
S(1)	76(1)	76(1)	50(1)	-5(1)	-5(1)	-35(1)
C(1)	52(2)	52(2)	59(3)	-7(2)	-7(2)	-13(2)
N(1)	60(2)	60(2)	94(5)	-17(2)	-17(2)	-13(3)
N(2)	154(11)	29(3)	52(3)	0	0	0
C(2)	190(20)	49(6)	128(12)	44(8)	0	0
C(3)	200(20)	200(20)	87(7)	0	0	0
C(4)	190(20)	49(6)	128(12)	44(8)	0	0
C(5)	200(20)	200(20)	87(7)	0	0	0
N(3)	154(11)	29(3)	52(3)	0	0	0
C(6)	132(13)	42(5)	54(5)	0	47(7)	0
C(7)	40(4)	53(4)	38(3)	0	-6(3)	0
C(8)	57(4)	68(4)	127(6)	0	16(5)	0

Table 52. Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for YbSCN. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 \ a^{*2}U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12}]$

5			
Identification code	i4mmm		
Empirical formula	C39 H0 Lu N11 O0 S7		
Formula weight	1021.89		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Tetragonal		
Space group	I4/mmm		
Unit cell dimensions	a = 11.3929(17) Å	α= 90°.	
	b = 11.3929(17) Å	β= 90°.	
	c = 22.386(3) Å	$\gamma = 90^{\circ}$.	
Volume	2905.7(10) Å ³		
Z	2		
Density (calculated)	1.168 Mg/m ³		
Absorption coefficient	1.982 mm ⁻¹		
F(000)	988		
Crystal size	0.154 x 0.081 x 0.038 mm ³		
Theta range for data collection	1.819 to 30.501°.		
Index ranges	-15<=h<=16, -16<=k<=15, -30<=l<=30		
Reflections collected	20870		
Independent reflections	1296 [R(int) = 0.0212]		
Completeness to theta = 25.242°	100.0 %		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	1296 / 12 / 59		
Goodness-of-fit on F ²	1.141		
Final R indices [I>2sigma(I)]	R1 = 0.0374, wR2 = 0.1088		
R indices (all data)	R1 = 0.0374, wR2 = 0.1088		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.978 and -0.801 e.Å ⁻³		

Table 53. Crystal data and structure refinement for LuSCN.

	Х	у	Z	U(eq)
Lu(1)	0	0	0	28(1)
S(1)	2552(1)	2552(1)	1314(1)	73(1)
C(1)	1759(4)	1759(4)	905(3)	64(2)
N(1)	1195(4)	1195(4)	598(4)	83(2)
N(2)	0	5000	0	106(6)
C(2)	0	5806(13)	-530(7)	132(7)
C(3)	0	5000	-1137(8)	152(6)
C(4)	-1039(16)	5817(13)	0	132(7)
C(5)	-2220(20)	5000	0	152(6)
N(3)	0	0	2543(4)	55(2)
C(6)	1069(13)	0	2134(5)	84(5)
C(7)	1057(8)	0	2956(4)	54(2)
C(8)	2255(7)	0	2553(5)	94(2)

Table 54. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for LuSCN. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Lu(1)-N(1)#1	2.345(6)
Lu(1)-N(1)#2	2.345(6)
Lu(1)-N(1)#3	2.345(6)
Lu(1)-N(1)#4	2.345(6)
Lu(1)-N(1)#5	2.345(6)
Lu(1)-N(1)#6	2.345(6)
Lu(1)-N(1)#7	2.345(6)
Lu(1)-N(1)	2.345(6)
S(1)-C(1)	1.572(7)
C(1)-N(1)	1.140(9)
N(2)-C(2)#2	1.500(12)
N(2)-C(2)#8	1.500(12)
N(2)-C(2)#9	1.500(12)
N(2)-C(2)	1.500(12)
N(2)-C(4)#10	1.506(14)
N(2)-C(4)#11	1.506(14)
N(2)-C(4)#9	1.506(14)
N(2)-C(4)	1.506(14)
C(2)-C(3)	1.640(16)
C(2)-C(4)#11	1.676(19)
C(2)-C(4)	1.676(19)
C(2)-C(2)#8	1.84(3)
C(3)-C(2)#8	1.640(16)
C(4)-C(5)	1.636(16)
C(4)-C(2)#2	1.676(19)
C(4)-C(4)#10	1.86(3)
C(5)-C(4)#10	1.636(16)
N(3)-C(7)#6	1.519(9)
N(3)-C(7)#5	1.519(9)
N(3)-C(7)#3	1.519(9)
N(3)-C(7)	1.519(9)
N(3)-C(6)#3	1.523(11)
N(3)-C(6)#5	1.523(11)
N(3)-C(6)#6	1.523(11)

Table 55. Bond lengths [Å] and angles [°] for LuSCN.

1.72(2)
1.841(14)
1.637(11)
1.703(13)
1.703(13)
110.3(4)
69.7(4)
180.0(4)
71.0(2)
71.0(2)
109.0(2)
109.0(2)
109.0(2)
71.0(2)
180.0(4)
109.0(2)
109.0(2)
71.0(2)
69.7(4)
110.3(4)
71.0(2)
71.0(2)
109.0(2)
110.3(4)
69.7(4)
180.0(3)
180.0
69.7(4)
110.3(4)
109.0(2)
71.0(2)
71.0(2)

N(3)-C(6)

C(6)-C(8)

C(6)-C(6)#5

1.523(11)

1.645(14)

1.72(2)

N(1)#7-Lu(1)-N(1)	109.0(2)
N(1)-C(1)-S(1)	178.6(8)
C(1)-N(1)-Lu(1)	177.8(7)
C(2)#2-N(2)-C(2)#8	180.0(9)
C(2)#2-N(2)-C(2)#9	75.5(14)
C(2)#8-N(2)-C(2)#9	104.5(14)
C(2)#2-N(2)-C(2)	104.5(14)
C(2)#8-N(2)-C(2)	75.5(14)
C(2)#9-N(2)-C(2)	180.0
C(2)#2-N(2)-C(4)#10	112.2(5)
C(2)#8-N(2)-C(4)#10	67.8(5)
C(2)#9-N(2)-C(4)#10	67.8(5)
C(2)-N(2)-C(4)#10	112.2(5)
C(2)#2-N(2)-C(4)#11	67.8(5)
C(2)#8-N(2)-C(4)#11	112.2(5)
C(2)#9-N(2)-C(4)#11	112.2(5)
C(2)-N(2)-C(4)#11	67.8(5)
C(4)#10-N(2)-C(4)#11	180.0(9)
C(2)#2-N(2)-C(4)#9	112.2(5)
C(2)#8-N(2)-C(4)#9	67.8(5)
C(2)#9-N(2)-C(4)#9	67.8(5)
C(2)-N(2)-C(4)#9	112.2(5)
C(4)#10-N(2)-C(4)#9	103.7(14)
C(4)#11-N(2)-C(4)#9	76.3(14)
C(2)#2-N(2)-C(4)	67.8(5)
C(2)#8-N(2)-C(4)	112.2(5)
C(2)#9-N(2)-C(4)	112.2(5)
C(2)-N(2)-C(4)	67.8(5)
C(4)#10-N(2)-C(4)	76.3(14)
C(4)#11-N(2)-C(4)	103.7(14)
C(4)#9-N(2)-C(4)	180.0
N(2)-C(2)-C(3)	108.2(11)
N(2)-C(2)-C(4)#11	56.3(5)
C(3)-C(2)-C(4)#11	126.2(9)
N(2)-C(2)-C(4)	56.3(5)
C(3)-C(2)-C(4)	126.2(9)

C(4)#11-C(2)-C(4)	89.9(11)
N(2)-C(2)-C(2)#8	52.2(7)
C(3)-C(2)-C(2)#8	55.9(5)
C(4)#11-C(2)-C(2)#8	90.4(7)
C(4)-C(2)-C(2)#8	90.4(7)
C(2)#8-C(3)-C(2)	68.1(11)
N(2)-C(4)-C(5)	107.2(12)
N(2)-C(4)-C(2)#2	55.9(6)
C(5)-C(4)-C(2)#2	125.2(10)
N(2)-C(4)-C(2)	55.9(6)
C(5)-C(4)-C(2)	125.2(10)
C(2)#2-C(4)-C(2)	90.1(11)
N(2)-C(4)-C(4)#10	51.8(7)
C(5)-C(4)-C(4)#10	55.3(7)
C(2)#2-C(4)-C(4)#10	89.6(7)
C(2)-C(4)-C(4)#10	89.6(7)
C(4)#10-C(5)-C(4)	69.3(13)
C(7)#6-N(3)-C(7)#5	104.8(9)
C(7)#6-N(3)-C(7)#3	68.2(5)
C(7)#5-N(3)-C(7)#3	68.2(5)
C(7)#6-N(3)-C(7)	68.2(5)
C(7)#5-N(3)-C(7)	68.2(5)
C(7)#3-N(3)-C(7)	104.8(9)
C(7)#6-N(3)-C(6)#3	111.5(3)
C(7)#5-N(3)-C(6)#3	111.5(3)
C(7)#3-N(3)-C(6)#3	74.5(6)
C(7)-N(3)-C(6)#3	179.3(9)
C(7)#6-N(3)-C(6)#5	179.3(9)
C(7)#5-N(3)-C(6)#5	74.5(6)
C(7)#3-N(3)-C(6)#5	111.5(3)
C(7)-N(3)-C(6)#5	111.5(3)
C(6)#3-N(3)-C(6)#5	68.8(6)
C(7)#6-N(3)-C(6)#6	74.5(6)
C(7)#5-N(3)-C(6)#6	179.3(9)
C(7)#3-N(3)-C(6)#6	111.5(3)
C(7)-N(3)-C(6)#6	111.5(3)

C(6)#3-N(3)-C(6)#6	68.8(6)
C(6)#5-N(3)-C(6)#6	106.1(13)
C(7)#6-N(3)-C(6)	111.5(3)
C(7)#5-N(3)-C(6)	111.5(3)
C(7)#3-N(3)-C(6)	179.3(9)
C(7)-N(3)-C(6)	74.5(6)
C(6)#3-N(3)-C(6)	106.1(13)
C(6)#5-N(3)-C(6)	68.8(6)
C(6)#6-N(3)-C(6)	68.8(6)
N(3)-C(6)-C(8)	108.3(7)
N(3)-C(6)-C(6)#5	55.6(3)
C(8)-C(6)-C(6)#5	125.5(3)
N(3)-C(6)-C(6)#6	55.6(3)
C(8)-C(6)-C(6)#6	125.5(3)
C(6)#5-C(6)-C(6)#6	89.999(1)
N(3)-C(6)-C(7)	52.7(4)
C(8)-C(6)-C(7)	55.7(5)
C(6)#5-C(6)-C(7)	89.7(4)
C(6)#6-C(6)-C(7)	89.7(4)
N(3)-C(7)-C(8)	108.9(6)
N(3)-C(7)-C(7)#5	55.9(2)
C(8)-C(7)-C(7)#5	126.1(2)
N(3)-C(7)-C(7)#6	55.9(2)
C(8)-C(7)-C(7)#6	126.1(2)
C(7)#5-C(7)-C(7)#6	90.000(1)
N(3)-C(7)-C(6)	52.8(5)
C(8)-C(7)-C(6)	56.1(5)
C(7)#5-C(7)-C(6)	90.3(4)
C(7)#6-C(7)-C(6)	90.3(4)
C(7)-C(8)-C(6)	68.3(6)

Symmetry transformations used to generate equivalent atoms:

#1 -x,-y,-z #2 x,y,-z #3 -x,-y,z #4 -y,x,-z #5 y,-x,z #6 -y,x,z #7 y,-x,-z #8 -x,-y+1,z

#9 -x,-y+1,-z #10 x,-y+1,z #11 -x,y,-z

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Lu(1)	27(1)	27(1)	32(1)	0	0	0
S(1)	79(1)	79(1)	63(1)	-6(1)	-6(1)	-33(1)
C(1)	60(2)	60(2)	71(4)	-8(2)	-8(2)	-15(3)
N(1)	71(3)	71(3)	108(5)	-20(3)	-20(3)	-15(3)
N(2)	200(20)	31(4)	88(9)	0	0	0
C(2)	200(20)	60(6)	140(13)	54(9)	0	0
C(3)	179(16)	184(16)	94(7)	0	0	0
C(4)	200(20)	60(6)	140(13)	54(9)	0	0
C(5)	179(16)	184(16)	94(7)	0	0	0
N(3)	58(3)	58(3)	47(4)	0	0	0
C(6)	138(14)	53(6)	61(6)	0	47(8)	0
C(7)	44(4)	68(6)	48(4)	0	-9(4)	0
C(8)	66(4)	81(5)	133(7)	0	18(5)	0

Table 56. Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for LuSCN. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2 \ a^{*2}U^{11} + ... + 2h \ k \ a^* \ b^* \ U^{12}]$

rubie 57. eryblar data and birdetare ren				
Identification code	rew			
Empirical formula	C39 Am N11 S7			
Formula weight	1089.92			
Temperature	100(2) K			
Wavelength	0.71073 Å			
Crystal system	Cubic			
Space group	Pm-3m			
Unit cell dimensions	a = 11.3641(18) Å	<i>α</i> = 90°.		
	b = 11.3641(18) Å	β= 90°.		
	c = 11.3641(18) Å	$\gamma = 90^{\circ}$.		
Volume	1467.6(7) Å ³			
Z	1			
Density (calculated)	1.233 Mg/m ³			
Absorption coefficient	1.587 mm ⁻¹			
F(000)	518			
Crystal size	0.100 x 0.075 x 0.050 mr	n ³		
Theta range for data collection	1.792 to 33.101°.			
Index ranges	-16<=h<=16, -16<=k<=1	6, -17<=l<=17		
Reflections collected	25900			
Independent reflections $609 [R(int) = 0.0633]$				
Completeness to theta = 25.242° 100.0 %				
Refinement method	Full-matrix least-squares	Full-matrix least-squares on F ²		
Data / restraints / parameters609 / 1 / 28				
Goodness-of-fit on F ²	1.224	1.224		
Final R indices [I>2sigma(I)]	R1 = 0.0431, wR2 = 0.11	R1 = 0.0431, $wR2 = 0.1104$		
R indices (all data) $R1 = 0.0442, wR2 = 0.1108$		08		
Extinction coefficient	n/a	n/a		
Largest diff. peak and hole	1.462 and -2.889 e.Å ⁻³	1.462 and -2.889 e.Å ⁻³		

Table 57. Crystal data and structure refinement for AmSCN.

Х	У	Z	U(eq)
0	0	0	26(1)
0	0	5000	145(15)
0	1060(30)	4170(30)	171(10)
5000	5000	5000	40(4)
0	2283(19)	5000	171(10)
4047(15)	4047(15)	5000	64(7)
2909(17)	5000	5000	91(7)
2620(2)	2620(2)	2620(2)	112(2)
1829(7)	1829(7)	1829(7)	73(4)
1262(6)	1262(6)	1262(6)	86(4)
	x 0 0 0 5000 0 4047(15) 2909(17) 2620(2) 1829(7) 1262(6)	x y 0 0 0 0 0 1060(30) 5000 5000 0 2283(19) 4047(15) 4047(15) 2909(17) 5000 2620(2) 2620(2) 1829(7) 1829(7) 1262(6) 1262(6)	x y z 0 0 0 0 0 5000 0 1060(30) 4170(30) 5000 5000 5000 0 2283(19) 5000 0 2283(19) 5000 4047(15) 4047(15) 5000 2909(17) 5000 5000 2620(2) 2620(2) 2620(2) 1829(7) 1829(7) 1829(7) 1262(6) 1262(6) 1262(6)

Table 58. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for AmSCN. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Am(1)-N(1)	2.484(13)
Am(1)-N(1)#1	2.485(13)
Am(1)-N(1)#2	2.485(13)
Am(1)-N(1)#3	2.485(13)
Am(1)-N(1)#4	2.485(13)
Am(1)-N(1)#5	2.485(13)
Am(1)-N(1)#6	2.485(13)
Am(1)-N(1)#7	2.485(13)
Am(1)-C(1)#1	3.601(13)
Am(1)-C(1)#2	3.601(13)
Am(1)-C(1)#7	3.601(13)
Am(1)-C(1)#3	3.601(13)
N(2)-C(2)	1.53(3)
N(2)-C(2)#8	1.53(3)
N(2)-C(2)#9	1.53(3)
N(2)-C(2)#3	1.53(3)
N(2)-C(2)#10	1.53(3)
N(2)-C(2)#11	1.53(3)
N(2)-C(2)#12	1.53(3)
N(2)-C(2)#13	1.53(3)
C(2)-C(2)#8	1.70(4)
C(2)-C(2)#11	1.70(4)
C(2)-C(3)	1.68(4)
C(2)-C(2)#10	1.88(6)
N(3)-C(4)#14	1.53(2)
N(3)-C(4)	1.53(2)
N(3)-C(4)#15	1.53(2)
N(3)-C(4)#16	1.53(2)
N(3)-C(4)#17	1.53(2)
N(3)-C(4)#18	1.53(2)
N(3)-C(4)#19	1.53(2)
N(3)-C(4)#20	1.53(2)
N(3)-C(4)#21	1.53(2)
N(3)-C(4)#22	1.53(2)

Table 59. Bond lengths [Å] and angles [°] for AmSCN.

N(3)-C(4)#23	1.53(2)
N(3)-C(4)#24	1.53(2)
C(3)-C(2)#10	1.68(4)
C(4)-C(4)#24	1.53(2)
C(4)-C(4)#21	1.53(2)
C(4)-C(4)#16	1.53(2)
C(4)-C(4)#18	1.53(2)
C(4)-C(5)#18	1.684(15)
C(4)-C(5)	1.688(15)
C(5)-C(4)#24	1.684(15)
C(5)-C(4)#22	1.688(15)
C(5)-C(4)#16	1.684(15)
S(1)-C(1)	1.557(14)
C(1)-N(1)	1.116(18)
N(1)-Am(1)-N(1)#1	180.0(6)
N(1)-Am(1)-N(1)#2	70.5
N(1)#1-Am(1)-N(1)#2	109.5

N(1)-Am(1)-N(1)#1	180.0(6)
N(1)-Am(1)-N(1)#2	70.5
N(1)#1-Am(1)-N(1)#2	109.5
N(1)-Am(1)-N(1)#3	109.5
N(1)#1-Am(1)-N(1)#3	70.5
N(1)#2-Am(1)-N(1)#3	180.0(6)
N(1)-Am(1)-N(1)#4	70.522(1)
N(1)#1-Am(1)-N(1)#4	109.478(1)
N(1)#2-Am(1)-N(1)#4	109.5
N(1)#3-Am(1)-N(1)#4	70.5
N(1)-Am(1)-N(1)#5	109.478(1)
N(1)#1-Am(1)-N(1)#5	70.522(1)
N(1)#2-Am(1)-N(1)#5	70.5
N(1)#3-Am(1)-N(1)#5	109.5
N(1)#4-Am(1)-N(1)#5	180.0
N(1)-Am(1)-N(1)#6	70.5
N(1)#1-Am(1)-N(1)#6	109.5
N(1)#2-Am(1)-N(1)#6	109.5
N(1)#3-Am(1)-N(1)#6	70.5
N(1)#4-Am(1)-N(1)#6	109.5
N(1)#5-Am(1)-N(1)#6	70.5

N(1)-Am(1)-N(1)#7	109.5
N(1)#1-Am(1)-N(1)#7	70.5
N(1)#2-Am(1)-N(1)#7	70.5
N(1)#3-Am(1)-N(1)#7	109.5
N(1)#4-Am(1)-N(1)#7	70.5
N(1)#5-Am(1)-N(1)#7	109.5
N(1)#6-Am(1)-N(1)#7	180.0(3)
N(1)-Am(1)-C(1)#1	180.00(15)
N(1)#1-Am(1)-C(1)#1	0.00(15)
N(1)#2-Am(1)-C(1)#1	109.5
N(1)#3-Am(1)-C(1)#1	70.5
N(1)#4-Am(1)-C(1)#1	109.5
N(1)#5-Am(1)-C(1)#1	70.5
N(1)#6-Am(1)-C(1)#1	109.5
N(1)#7-Am(1)-C(1)#1	70.5
N(1)-Am(1)-C(1)#2	70.5
N(1)#1-Am(1)-C(1)#2	109.5
N(1)#2-Am(1)-C(1)#2	0.00(15)
N(1)#3-Am(1)-C(1)#2	180.00(15)
N(1)#4-Am(1)-C(1)#2	109.5
N(1)#5-Am(1)-C(1)#2	70.5
N(1)#6-Am(1)-C(1)#2	109.5
N(1)#7-Am(1)-C(1)#2	70.5
C(1)#1-Am(1)-C(1)#2	109.5
N(1)-Am(1)-C(1)#7	109.5
N(1)#1-Am(1)-C(1)#7	70.5
N(1)#2-Am(1)-C(1)#7	70.5
N(1)#3-Am(1)-C(1)#7	109.5
N(1)#4-Am(1)-C(1)#7	70.5
N(1)#5-Am(1)-C(1)#7	109.5
N(1)#6-Am(1)-C(1)#7	180.00(15)
N(1)#7-Am(1)-C(1)#7	0.00(15)
C(1)#1-Am(1)-C(1)#7	70.5
C(1)#2-Am(1)-C(1)#7	70.5
N(1)-Am(1)-C(1)#3	109.5
N(1)#1-Am(1)-C(1)#3	70.5

N(1)#2-Am(1)-C(1)#3	180.00(15)
N(1)#3-Am(1)-C(1)#3	0.00(15)
N(1)#4-Am(1)-C(1)#3	70.5
N(1)#5-Am(1)-C(1)#3	109.5
N(1)#6-Am(1)-C(1)#3	70.5
N(1)#7-Am(1)-C(1)#3	109.5
C(1)#1-Am(1)-C(1)#3	70.5
C(1)#2-Am(1)-C(1)#3	180.0(4)
C(1)#7-Am(1)-C(1)#3	109.5
C(2)-N(2)-C(2)#8	67.8(13)
C(2)-N(2)-C(2)#9	112.2(13)
C(2)#8-N(2)-C(2)#9	180.0(17)
C(2)-N(2)-C(2)#3	104(3)
C(2)#8-N(2)-C(2)#3	67.8(13)
C(2)#9-N(2)-C(2)#3	112.2(13)
C(2)-N(2)-C(2)#10	76(3)
C(2)#8-N(2)-C(2)#10	112.2(13)
C(2)#9-N(2)-C(2)#10	67.8(13)
C(2)#3-N(2)-C(2)#10	180.0(17)
C(2)-N(2)-C(2)#11	67.8(13)
C(2)#8-N(2)-C(2)#11	104(3)
C(2)#9-N(2)-C(2)#11	76(3)
C(2)#3-N(2)-C(2)#11	67.8(13)
C(2)#10-N(2)-C(2)#11	112.2(13)
C(2)-N(2)-C(2)#12	180.0
C(2)#8-N(2)-C(2)#12	112.2(13)
C(2)#9-N(2)-C(2)#12	67.8(13)
C(2)#3-N(2)-C(2)#12	76(3)
C(2)#10-N(2)-C(2)#12	104(3)
C(2)#11-N(2)-C(2)#12	112.2(13)
C(2)-N(2)-C(2)#13	112.2(13)
C(2)#8-N(2)-C(2)#13	76(3)
C(2)#9-N(2)-C(2)#13	104(3)
C(2)#3-N(2)-C(2)#13	112.2(13)
C(2)#10-N(2)-C(2)#13	67.8(13)
C(2)#11-N(2)-C(2)#13	180.0

C(2)#12-N(2)-C(2)#13	67.8(13)
N(2)-C(2)-C(2)#8	56.1(7)
N(2)-C(2)-C(2)#11	56.1(7)
C(2)#8-C(2)-C(2)#11	90.000(1)
N(2)-C(2)-C(3)	108.0(19)
C(2)#8-C(2)-C(3)	125.9(6)
C(2)#11-C(2)-C(3)	125.9(6)
N(2)-C(2)-C(2)#10	52.1(13)
C(2)#8-C(2)-C(2)#10	90.000(3)
C(2)#11-C(2)-C(2)#10	90.000(1)
C(3)-C(2)-C(2)#10	55.9(12)
C(4)#14-N(3)-C(4)	120.000(2)
C(4)#14-N(3)-C(4)#15	60.000(2)
C(4)-N(3)-C(4)#15	180.0
C(4)#14-N(3)-C(4)#16	180.0
C(4)-N(3)-C(4)#16	60.000(2)
C(4)#15-N(3)-C(4)#16	120.0
C(4)#14-N(3)-C(4)#17	60.000(1)
C(4)-N(3)-C(4)#17	120.000(1)
C(4)#15-N(3)-C(4)#17	60.0
C(4)#16-N(3)-C(4)#17	120.0
C(4)#14-N(3)-C(4)#18	120.000(2)
C(4)-N(3)-C(4)#18	60.000(1)
C(4)#15-N(3)-C(4)#18	120.000(2)
C(4)#16-N(3)-C(4)#18	60.000(2)
C(4)#17-N(3)-C(4)#18	180.0
C(4)#14-N(3)-C(4)#19	89.852(5)
C(4)-N(3)-C(4)#19	120.0
C(4)#15-N(3)-C(4)#19	60.000(1)
C(4)#16-N(3)-C(4)#19	90.148(1)
C(4)#17-N(3)-C(4)#19	120.000(2)
C(4)#18-N(3)-C(4)#19	60.000(1)
C(4)#14-N(3)-C(4)#20	120.000(1)
C(4)-N(3)-C(4)#20	120.000(2)
C(4)#15-N(3)-C(4)#20	60.0
C(4)#16-N(3)-C(4)#20	60.0

C(4)#17-N(3)-C(4)#20	90.1
C(4)#18-N(3)-C(4)#20	89.852(3)
C(4)#19-N(3)-C(4)#20	60.000(1)
C(4)#14-N(3)-C(4)#21	60.0
C(4)-N(3)-C(4)#21	60.0
C(4)#15-N(3)-C(4)#21	120.000(1)
C(4)#16-N(3)-C(4)#21	120.000(1)
C(4)#17-N(3)-C(4)#21	89.852(1)
C(4)#18-N(3)-C(4)#21	90.148(5)
C(4)#19-N(3)-C(4)#21	120.000(1)
C(4)#20-N(3)-C(4)#21	180.0
C(4)#14-N(3)-C(4)#22	120.000(1)
C(4)-N(3)-C(4)#22	90.148(5)
C(4)#15-N(3)-C(4)#22	89.852(3)
C(4)#16-N(3)-C(4)#22	60.000(1)
C(4)#17-N(3)-C(4)#22	60.000(1)
C(4)#18-N(3)-C(4)#22	120.000(1)
C(4)#19-N(3)-C(4)#22	120.000(1)
C(4)#20-N(3)-C(4)#22	60.000(1)
C(4)#21-N(3)-C(4)#22	120.000(1)
C(4)#14-N(3)-C(4)#23	60.000(1)
C(4)-N(3)-C(4)#23	89.852(2)
C(4)#15-N(3)-C(4)#23	90.1
C(4)#16-N(3)-C(4)#23	120.000(1)
C(4)#17-N(3)-C(4)#23	120.000(2)
C(4)#18-N(3)-C(4)#23	60.000(1)
C(4)#19-N(3)-C(4)#23	60.000(1)
C(4)#20-N(3)-C(4)#23	120.000(2)
C(4)#21-N(3)-C(4)#23	60.000(1)
C(4)#22-N(3)-C(4)#23	180.0
C(4)#14-N(3)-C(4)#24	90.148(3)
C(4)-N(3)-C(4)#24	60.000(2)
C(4)#15-N(3)-C(4)#24	120.0
C(4)#16-N(3)-C(4)#24	89.9
C(4)#17-N(3)-C(4)#24	60.000(1)
C(4)#18-N(3)-C(4)#24	120.000(2)

C(4)#19-N(3)-C(4)#24	180.0
C(4)#20-N(3)-C(4)#24	120.000(2)
C(4)#21-N(3)-C(4)#24	60.000(2)
C(4)#22-N(3)-C(4)#24	60.000(2)
C(4)#23-N(3)-C(4)#24	120.000(2)
C(2)-C(3)-C(2)#10	68(2)
C(4)#24-C(4)-N(3)	60.000(4)
C(4)#24-C(4)-C(4)#21	60.000(1)
N(3)-C(4)-C(4)#21	60.000(3)
C(4)#24-C(4)-C(4)#16	89.852(4)
N(3)-C(4)-C(4)#16	60.000(2)
C(4)#21-C(4)-C(4)#16	120.000(12)
C(4)#24-C(4)-C(4)#18	120.000(13)
N(3)-C(4)-C(4)#18	60.000(3)
C(4)#21-C(4)-C(4)#18	90.148(5)
C(4)#16-C(4)-C(4)#18	60.0
C(4)#24-C(4)-C(5)#18	122.9(5)
N(3)-C(4)-C(5)#18	95.1(9)
C(4)#21-C(4)-C(5)#18	63.1(6)
C(4)#16-C(4)-C(5)#18	122.9(5)
C(4)#18-C(4)-C(5)#18	63.1(6)
C(4)#24-C(4)-C(5)	62.8(6)
N(3)-C(4)-C(5)	94.9(9)
C(4)#21-C(4)-C(5)	122.7(5)
C(4)#16-C(4)-C(5)	62.8(6)
C(4)#18-C(4)-C(5)	122.7(5)
C(5)#18-C(4)-C(5)	170.1(18)
C(4)#24-C(5)-C(4)#22	54.1(11)
C(4)#24-C(5)-C(4)	54.1(11)
C(4)#22-C(5)-C(4)	80.1(18)
C(4)#24-C(5)-C(4)#16	80.0(18)
C(4)#22-C(5)-C(4)#16	54.1(11)
C(4)-C(5)-C(4)#16	54.1(11)
N(1)-C(1)-S(1)	180.0(6)
N(1)-C(1)-Am(1)	0.0(3)
S(1)-C(1)-Am(1)	180.0(3)

Symmetry transformations used to generate equivalent atoms: #1 -x,-y,-z #2 x,y,-z #3 -x,-y,z #4 -x,y,z #5 x,-y,-z #6 x,-y,z #7 -x,y,-z #8 -y,-x,z #9 y,x,-z+1 #10 x,y,-z+1 #11 y,x,z #12 -x,-y,-z+1 #13 -y,-x,-z+1 #14 -y+1,-z+1,-x+1 #15 -x+1,-y+1,-z+1 #16 y,z,x #17 -z+1,-x+1,-y+1 #18 z,x,y #19 -y+1,z,x #20 -z+1,-x+1,y #21 z,x,-y+1 #22 x,-y+1,z #23 -x+1,y,-z+1 #24 y,-z+1,-x+1

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Am(1)	26(1)	26(1)	26(1)	0	0	0
N(2)	190(20)	190(20)	52(12)	0	0	0
C(2)	144(13)	230(30)	136(18)	99(19)	0	0
N(3)	40(4)	40(4)	40(4)	0	0	0
C(3)	144(13)	230(30)	136(18)	99(19)	0	0
C(4)	78(12)	78(12)	38(9)	0	0	-33(14)
C(5)	79(14)	97(12)	97(12)	0	0	0
S(1)	112(2)	112(2)	112(2)	-36(1)	-36(1)	-36(1)
C(1)	73(4)	73(4)	73(4)	-16(3)	-16(3)	-16(3)
N(1)	86(4)	86(4)	86(4)	-20(4)	-20(4)	-20(4)

Table 60. Anisotropic displacement parameters (Å²x 10³) for AmSCN. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

Identification code	rew	
Empirical formula	C39 H0 Cm N11 O3 S7	
Formula weight	1142.92	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Cubic	
Space group	Pm-3m	
Unit cell dimensions	a = 11.3752(11) Å	α=90°.
	b = 11.3752(11) Å	β= 90°.
	c = 11.3752(11) Å	$\gamma = 90^{\circ}$.
Volume	1471.9(4) Å ³	
Z	1	
Density (calculated)	1.289 Mg/m ³	
Absorption coefficient	1.670 mm ⁻¹	
F(000)	543	
Crystal size	0.350 x 0.175 x 0.125 mm ³	
Theta range for data collection	1.790 to 30.631°.	
Index ranges	-15<=h<=15, -16<=k<=16, -15<=l<=15	
Reflections collected	19756	
Independent reflections	513 [R(int) = 0.0554]	
Completeness to theta = 25.242°	100.0 %	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	513 / 20 / 33	
Goodness-of-fit on F ²	1.476	
Final R indices [I>2sigma(I)]	R1 = 0.0435, $wR2 = 0.1500$	
R indices (all data)	R1 = 0.0435, $wR2 = 0.1500$	
Extinction coefficient	n/a	
Largest diff. peak and hole	1.960 and -1.735 e.Å ⁻³	

Table 61. Crystal data and structure refinement for CmSCN.

0 2610(3) 1256(10) 1822(11)	0 2610(3) 1256(10)	0 2610(3) 1256(10)	16(1) 90(3) 78(7)
2610(3) 1256(10) 1822(11)	2610(3) 1256(10)	2610(3) 1256(10)	90(3) 78(7)
1256(10) 1822(11)	1256(10)	1256(10)	78(7)
1822(11)			
	1822(11)	1822(11)	70(7)
5000	5000	5000	26(5)
4090(20)	5000	4090(20)	43(8)
5000	5000	2760(20)	60(8)
5000	5000	0	72(8)
0	0	5000	119(13)
798(15)	0	4019(14)	132(13)
1730(30)	0	5000	182(14)
	5000 4090(20) 5000 5000 0 798(15) 1730(30)	1022(11) $1022(11)$ 5000 5000 $4090(20)$ 5000 5000 5000 5000 5000 0 0 $798(15)$ 0 $1730(30)$ 0	1022(11) $1022(11)$ $1022(11)$ 5000 5000 5000 $4090(20)$ 5000 $4090(20)$ 5000 5000 $2760(20)$ 5000 5000 0 0 0 5000 $798(15)$ 0 $4019(14)$ $1730(30)$ 0 5000

Table 62. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for CmSCN. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Cm(1)-N(1)#1	2.475(19)
Cm(1)-N(1)#2	2.475(19)
Cm(1)-N(1)#3	2.475(19)
Cm(1)-N(1)#4	2.475(19)
Cm(1)-N(1)#5	2.475(19)
Cm(1)-N(1)#6	2.475(19)
Cm(1)-N(1)#7	2.475(19)
Cm(1)-N(1)	2.475(19)
Cm(1)-C(1)	3.59(2)
Cm(1)-C(1)#1	3.59(2)
Cm(1)-C(1)#2	3.59(2)
Cm(1)-C(1)#3	3.59(2)
S(1)-C(1)	1.55(2)
N(1)-C(1)	1.12(3)
N(2)-C(2)	1.46(3)
N(2)-C(2)#8	1.46(3)
N(2)-C(2)#9	1.46(3)
N(2)-C(2)#10	1.46(3)
N(2)-C(2)#11	1.46(3)
N(2)-C(2)#12	1.46(3)
N(2)-C(2)#13	1.46(3)
N(2)-C(2)#14	1.46(3)
N(2)-C(2)#15	1.46(3)
N(2)-C(2)#16	1.46(3)
N(2)-C(2)#17	1.46(3)
N(2)-C(2)#18	1.46(3)
C(2)-C(2)#17	1.46(3)
C(2)-C(2)#13	1.46(3)
C(2)-C(2)#10	1.46(3)
C(2)-C(2)#12	1.46(3)
C(2)-C(3)	1.84(2)
C(2)-C(3)#19	1.84(2)
C(3)-C(2)#17	1.84(2)
C(3)-C(2)#14	1.84(2)

Table 63. Bond lengths [Å] and angles [°] for CmSCN.

C(3)-C(2)#10	1.84(2)
N(3)-C(4)	1.439(10)
N(3)-C(4)#20	1.439(10)
N(3)-C(4)#16	1.439(10)
N(3)-C(4)#21	1.439(10)
N(3)-C(4)#4	1.439(10)
N(3)-C(4)#22	1.439(10)
N(3)-C(4)#23	1.439(10)
N(3)-C(4)#24	1.439(10)
C(4)-C(4)#20	1.28(2)
C(4)-C(4)#22	1.28(2)
C(4)-C(5)	1.543(10)
C(4)-C(4)#4	1.82(3)
C(5)-C(4)#21	1.543(10)
N(1)#1-Cm(1)-N(1)#2	70.5
N(1)#1-Cm(1)-N(1)#3	109.5
N(1)#2-Cm(1)-N(1)#3	180.0(8)
N(1)#1-Cm(1)-N(1)#4	109.5
N(1)#2-Cm(1)-N(1)#4	70.5
N(1)#3-Cm(1)-N(1)#4	109.5
N(1)#1-Cm(1)-N(1)#5	109.5
N(1)#2-Cm(1)-N(1)#5	70.529(1)
N(1)#3-Cm(1)-N(1)#5	109.471(1)
N(1)#4-Cm(1)-N(1)#5	109.5
N(1)#1-Cm(1)-N(1)#6	70.5
N(1)#2-Cm(1)-N(1)#6	109.471(1)
N(1)#3-Cm(1)-N(1)#6	70.529(1)
N(1)#4-Cm(1)-N(1)#6	70.5
N(1)#5-Cm(1)-N(1)#6	180.0(4)
N(1)#1-Cm(1)-N(1)#7	70.5
N(1)#2-Cm(1)-N(1)#7	109.5
N(1)#3-Cm(1)-N(1)#7	70.5
N(1)#4-Cm(1)-N(1)#7	180.0(4)
N(1)#5-Cm(1)-N(1)#7	70.5
N(1)#6-Cm(1)-N(1)#7	109.5

N(1)#1-Cm(1)-N(1)	180.0(8)
N(1)#2-Cm(1)-N(1)	109.5
N(1)#3-Cm(1)-N(1)	70.5
N(1)#4-Cm(1)-N(1)	70.5
N(1)#5-Cm(1)-N(1)	70.5
N(1)#6-Cm(1)-N(1)	109.5
N(1)#7-Cm(1)-N(1)	109.5
N(1)#1-Cm(1)-C(1)	180.0(8)
N(1)#2-Cm(1)-C(1)	109.5
N(1)#3-Cm(1)-C(1)	70.5
N(1)#4-Cm(1)-C(1)	70.5
N(1)#5-Cm(1)-C(1)	70.5
N(1)#6-Cm(1)-C(1)	109.5
N(1)#7-Cm(1)-C(1)	109.5
N(1)-Cm(1)-C(1)	0.0(2)
N(1)#1-Cm(1)-C(1)#1	0.0(8)
N(1)#2-Cm(1)-C(1)#1	70.5
N(1)#3-Cm(1)-C(1)#1	109.5
N(1)#4-Cm(1)-C(1)#1	109.5
N(1)#5-Cm(1)-C(1)#1	109.5
N(1)#6-Cm(1)-C(1)#1	70.5
N(1)#7-Cm(1)-C(1)#1	70.5
N(1)-Cm(1)-C(1)#1	180.0(5)
C(1)-Cm(1)-C(1)#1	180.0(6)
N(1)#1-Cm(1)-C(1)#2	70.5
N(1)#2-Cm(1)-C(1)#2	0.0(7)
N(1)#3-Cm(1)-C(1)#2	180.0(5)
N(1)#4-Cm(1)-C(1)#2	70.529(1)
N(1)#5-Cm(1)-C(1)#2	70.5
N(1)#6-Cm(1)-C(1)#2	109.5
N(1)#7-Cm(1)-C(1)#2	109.471(1)
N(1)-Cm(1)-C(1)#2	109.5
C(1)-Cm(1)-C(1)#2	109.471(1)
C(1)#1-Cm(1)-C(1)#2	70.5
N(1)#1-Cm(1)-C(1)#3	109.5
N(1)#2-Cm(1)-C(1)#3	180.0(5)

N(1)#3-Cm(1)-C(1)#3	0.0(3)
N(1)#4-Cm(1)-C(1)#3	109.471(1)
N(1)#5-Cm(1)-C(1)#3	109.5
N(1)#6-Cm(1)-C(1)#3	70.5
N(1)#7-Cm(1)-C(1)#3	70.529(1)
N(1)-Cm(1)-C(1)#3	70.5
C(1)-Cm(1)-C(1)#3	70.5
C(1)#1-Cm(1)-C(1)#3	109.471(1)
C(1)#2-Cm(1)-C(1)#3	180.0(6)
C(1)-N(1)-Cm(1)	180(2)
N(1)-C(1)-S(1)	180(3)
N(1)-C(1)-Cm(1)	0.0(17)
S(1)-C(1)-Cm(1)	180.0(16)
C(2)-N(2)-C(2)#8	120.000(1)
C(2)-N(2)-C(2)#9	180.0
C(2)#8-N(2)-C(2)#9	60.000(2)
C(2)-N(2)-C(2)#10	60.000(2)
C(2)#8-N(2)-C(2)#10	180.0
C(2)#9-N(2)-C(2)#10	120.000(2)
C(2)-N(2)-C(2)#11	120.000(2)
C(2)#8-N(2)-C(2)#11	60.000(2)
C(2)#9-N(2)-C(2)#11	60.000(2)
C(2)#10-N(2)-C(2)#11	120.000(2)
C(2)-N(2)-C(2)#12	60.000(2)
C(2)#8-N(2)-C(2)#12	120.000(2)
C(2)#9-N(2)-C(2)#12	120.000(2)
C(2)#10-N(2)-C(2)#12	60.000(2)
C(2)#11-N(2)-C(2)#12	180.0
C(2)-N(2)-C(2)#13	60.000(2)
C(2)#8-N(2)-C(2)#13	60.000(2)
C(2)#9-N(2)-C(2)#13	120.000(2)
C(2)#10-N(2)-C(2)#13	120.000(2)
C(2)#11-N(2)-C(2)#13	90.000(1)
C(2)#12-N(2)-C(2)#13	90.000(3)
C(2)-N(2)-C(2)#14	90.000(2)
C(2)#8-N(2)-C(2)#14	120.000(2)
C(2)#9-N(2)-C(2)#14	90.000(4)
----------------------	------------
C(2)#10-N(2)-C(2)#14	60.000(2)
C(2)#11-N(2)-C(2)#14	60.000(2)
C(2)#12-N(2)-C(2)#14	120.0
C(2)#13-N(2)-C(2)#14	120.000(2)
C(2)-N(2)-C(2)#15	90.000(3)
C(2)#8-N(2)-C(2)#15	60.000(2)
C(2)#9-N(2)-C(2)#15	90.000(2)
C(2)#10-N(2)-C(2)#15	120.000(2)
C(2)#11-N(2)-C(2)#15	120.0
C(2)#12-N(2)-C(2)#15	60.000(2)
C(2)#13-N(2)-C(2)#15	60.000(2)
C(2)#14-N(2)-C(2)#15	180.0
C(2)-N(2)-C(2)#16	120.000(2)
C(2)#8-N(2)-C(2)#16	90.000(2)
C(2)#9-N(2)-C(2)#16	60.0
C(2)#10-N(2)-C(2)#16	90.000(3)
C(2)#11-N(2)-C(2)#16	120.000(2)
C(2)#12-N(2)-C(2)#16	60.0
C(2)#13-N(2)-C(2)#16	120.000(2)
C(2)#14-N(2)-C(2)#16	120.000(2)
C(2)#15-N(2)-C(2)#16	60.000(2)
C(2)-N(2)-C(2)#17	60.0
C(2)#8-N(2)-C(2)#17	90.000(4)
C(2)#9-N(2)-C(2)#17	120.000(2)
C(2)#10-N(2)-C(2)#17	90.000(2)
C(2)#11-N(2)-C(2)#17	60.0
C(2)#12-N(2)-C(2)#17	120.000(2)
C(2)#13-N(2)-C(2)#17	60.000(1)
C(2)#14-N(2)-C(2)#17	60.000(1)
C(2)#15-N(2)-C(2)#17	120.000(1)
C(2)#16-N(2)-C(2)#17	180.0
C(2)-N(2)-C(2)#18	120.000(1)
C(2)#8-N(2)-C(2)#18	120.000(2)
C(2)#9-N(2)-C(2)#18	60.000(1)
C(2)#10-N(2)-C(2)#18	60.000(1)

C(2)#11-N(2)-C(2)#18	90.000(4)
C(2)#12-N(2)-C(2)#18	90.0
C(2)#13-N(2)-C(2)#18	180.0
C(2)#14-N(2)-C(2)#18	60.000(1)
C(2)#15-N(2)-C(2)#18	120.000(1)
C(2)#16-N(2)-C(2)#18	60.000(1)
C(2)#17-N(2)-C(2)#18	120.000(2)
N(2)-C(2)-C(2)#17	60.000(4)
N(2)-C(2)-C(2)#13	60.000(2)
C(2)#17-C(2)-C(2)#13	60.000(2)
N(2)-C(2)-C(2)#10	60.000(2)
C(2)#17-C(2)-C(2)#10	90.000(13)
C(2)#13-C(2)-C(2)#10	120.000(12)
N(2)-C(2)-C(2)#12	60.000(1)
C(2)#17-C(2)-C(2)#12	120.000(8)
C(2)#13-C(2)-C(2)#12	90.000(2)
C(2)#10-C(2)-C(2)#12	60.000(3)
N(2)-C(2)-C(3)	100.8(11)
C(2)#17-C(2)-C(3)	66.6(7)
C(2)#13-C(2)-C(3)	125.8(5)
C(2)#10-C(2)-C(3)	66.6(7)
C(2)#12-C(2)-C(3)	125.8(5)
N(2)-C(2)-C(3)#19	100.8(11)
C(2)#17-C(2)-C(3)#19	125.8(5)
C(2)#13-C(2)-C(3)#19	66.6(7)
C(2)#10-C(2)-C(3)#19	125.8(5)
C(2)#12-C(2)-C(3)#19	66.6(7)
C(3)-C(2)-C(3)#19	158(2)
C(2)#17-C(3)-C(2)#14	46.9(14)
C(2)#17-C(3)-C(2)#10	68(2)
C(2)#14-C(3)-C(2)#10	46.9(14)
C(2)#17-C(3)-C(2)	46.9(14)
C(2)#14-C(3)-C(2)	68(2)
C(2)#10-C(3)-C(2)	46.9(14)
C(4)-N(3)-C(4)#20	53.0(10)
C(4)-N(3)-C(4)#16	127.0(10)

C(4)#20-N(3)-C(4)#16	180.0
C(4)-N(3)-C(4)#21	101.8(17)
C(4)#20-N(3)-C(4)#21	127.0(10)
C(4)#16-N(3)-C(4)#21	53.0(10)
C(4)-N(3)-C(4)#4	78.2(17)
C(4)#20-N(3)-C(4)#4	53.0(10)
C(4)#16-N(3)-C(4)#4	127.0(10)
C(4)#21-N(3)-C(4)#4	180.0
C(4)-N(3)-C(4)#22	53.0(10)
C(4)#20-N(3)-C(4)#22	78.2(17)
C(4)#16-N(3)-C(4)#22	101.8(17)
C(4)#21-N(3)-C(4)#22	127.0(10)
C(4)#4-N(3)-C(4)#22	53.0(10)
C(4)-N(3)-C(4)#23	180.0
C(4)#20-N(3)-C(4)#23	127.0(10)
C(4)#16-N(3)-C(4)#23	53.0(10)
C(4)#21-N(3)-C(4)#23	78.2(17)
C(4)#4-N(3)-C(4)#23	101.8(17)
C(4)#22-N(3)-C(4)#23	127.0(10)
C(4)-N(3)-C(4)#24	127.0(10)
C(4)#20-N(3)-C(4)#24	101.8(17)
C(4)#16-N(3)-C(4)#24	78.2(17)
C(4)#21-N(3)-C(4)#24	53.0(10)
C(4)#4-N(3)-C(4)#24	127.0(10)
C(4)#22-N(3)-C(4)#24	180.0
C(4)#23-N(3)-C(4)#24	53.0(10)
C(4)#20-C(4)-C(4)#22	90.0
C(4)#20-C(4)-N(3)	63.5(5)
C(4)#22-C(4)-N(3)	63.5(5)
C(4)#20-C(4)-C(5)	119.2(5)
C(4)#22-C(4)-C(5)	119.2(5)
N(3)-C(4)-C(5)	82.8(16)
C(4)#20-C(4)-C(4)#4	45.000(1)
C(4)#22-C(4)-C(4)#4	45.000(2)
N(3)-C(4)-C(4)#4	50.9(8)
C(5)-C(4)-C(4)#4	133.7(8)

Symmetry transformations used to generate equivalent atoms: #1 -x,-y,-z #2 -x,-z,y #3 x,z,-y #4 -x,y,z #5 x,-z,y #6 -x,z,-y #7 x,-y,-z #8 -y+1,-z+1,-x+1 #9 -x+1,-y+1,-z+1 #10 y,z,x #11 -x+1,-z+1,y #12 x,z,-y+1 #13 x,-z+1,y #14 -x+1,y,z #15 x,-y+1,-z+1 #16 y,x,-z+1 #17 -y+1,-x+1,z #18 -x+1,z,-y+1 #19 z,y,-x+1 #20 -y,-x,z #21 x,-y,-z+1 #22 y,x,z #23 -x,-y,-z+1 #24 -y,-x,-z+1

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²
Cm(1)	16(1)	16(1)	16(1)	0	0	0
S(1)	90(3)	90(3)	90(3)	-30(2)	-30(2)	-30(2)
N(1)	78(7)	78(7)	78(7)	-23(6)	-23(6)	-23(6)
C(1)	70(7)	70(7)	70(7)	-23(6)	-23(6)	-23(6)
N(2)	26(5)	26(5)	26(5)	0	0	0
C(2)	45(11)	40(16)	45(11)	0	-19(14)	0
C(3)	78(14)	78(14)	23(10)	0	0	0
O(1)	61(9)	61(9)	90(20)	0	0	0
N(3)	150(20)	150(20)	50(16)	0	0	0
C(4)	180(30)	140(20)	81(18)	0	-31(19)	0
C(5)	240(30)	150(20)	160(20)	0	0	0

Table 64. Anisotropic displacement parameters (Å²x 10³) for CmSCN. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

Raman Spectroscopy

Figure 1. Representative full Raman spectrum of La-NCS.

Figure 2. Raman spectrum of La-NCS in the low frequency region.

Figure 3. Raman spectrum of La-NCS in the C=N stretching region.

Figure 4. Raman spectrum of Pr-NCS in the low frequency region.

Figure 5. Raman spectrum of Pr-NCS in the C=N stretching region.

Figure 6. Raman spectrum of Nd-NCS in the low frequency region.

Figure 7. Raman spectrum of Nd-NCS in the C=N stretching region.

Figure 8. Raman spectrum of Sm-NCS in the low frequency region.

Figure 9. Raman spectrum of Sm-NCS in the C=N stretching region.

Figure 10. Raman spectrum of Eu-NCS in the low frequency region.

Figure 11 Raman spectrum of Eu-NCS in the C=N stretching region.

Figure 12. Raman spectrum of Gd-NCS in the low frequency region.

Figure 13. Raman spectrum of Gd-NCS in the C=N stretching region.

Figure 14. Raman spectrum of Tb-NCS in the low frequency region.

Figure 15. Raman spectrum of Tb-NCS in the C=N stretching region.

Figure16. Raman spectrum of Dy-NCS in the low frequency region.

Figure 17. Raman spectrum of **Dy-NCS** in the C=N stretching region.

Figure 18. Raman spectrum of Ho-NCS in the low frequency region.

Figure 19. Raman spectrum of Ho-NCS in the C=N stretching region.

Figure 20. Raman spectrum of Er-NCS in the low frequency region.

Figure 21. Raman spectrum of Er-NCS in the C=N stretching region.

Figure 22. Raman spectrum of Tm-NCS in the low frequency region.

Figure 23. Raman spectrum of Tm-NCS in the C=N stretching region.

Figure 24. Raman spectrum of Yb-NCS in the low frequency region.

Figure 25. Raman spectrum of Yb-NCS in the C=N stretching region.

Figure 26 Raman spectrum of Lu-NCS in the low frequency region.

Figure 27 Raman spectrum of Lu-NCS in the C=N stretching region.

Figure 28. FT-IR of [Et₄N]₄La(NCS)₇

Figure 29. FT-IR of [Et₄N]₄Ce(NCS)₇

Figure 30. FT-IR of [Et₄N]₄Pr(NCS)₇

Figure 31. FT-IR of [Et₄N]₄Nd(NCS)₇

Figure 32. FT-IR of [Et₄N]₄Sm(NCS)₇

Figure 33. FT-IR of [Et₄N]₄Eu(NCS)₇

Figure 34. FT-IR of [Et₄N]₄Gd(NCS)₇

Figure 35. FT-IR of [Et₄N]₄Tb(NCS)₇

Figure 36. FT-IR of [Et₄N]₄Dy(NCS)₇

Figure 37. FT-IR of [Et₄N]₄Ho(NCS)₇

Figure 38. FT-IR of [Et₄N]₄Er(NCS)₇

Figure 39. FT-IR of [Et₄N]₄Tm(NCS)₇

Figure 40. FT-IR of [Et₄N]₄Yb(NCS)₇

Figure 41. FT-IR of [Et₄N]₄Lu(NCS)₇

Figure 42. EDS of La-NCS, a small contaminant of AI and some residual chloride is noted. All other peaks consistent with the reported composition.

Figure 43: EDS of Ce-NCS. a small contaminant of AI is noted in the spectrum. All other peaks are consistent with the reported composition.

Figure 44. EDS of La-NCS, a small contaminant of AI and some residual chloride is noted. All other peaks consistent with the reported composition.

Figure 45. EDS of Sm-NCS. All peaks are consistent with the reported composition.

Figure 47. EDS of Gd-NCS

Figure 48. EDS of Tb-NCS

Figure 50. EDS of Ho-NCS

Figure 51. EDS of Er-NCS

Figure 54. EDS of Lu-NCS. A small contaminant from chlorine is present in the spectrum. All of the remaining peaks are consistent with the reported composition.

(Et ₄ N) ₄ Ln(NCS) ₇	expected C, H, N	result C, H, N
La	43.92, 7.56, 14.45	43.30, 8.89, 11.58
Се	43.87, 7.55, 13.12	44.84, 8.92, 11.77
Pr	43.87, 7.55, 13.12	42.22, 8.31, 11.92
Nd	43.7, 7.52, 14.38	43.11, 7.27, 10.18
Sm	43.45, 7.48, 14.29	42.6, 8.34, 11.81
Eu	43.39, 7.47, 14.27	43.70, 8.48, 11.06
Gd	43.18, 7.43, 14.20	43.19, 8.35, 11.36
Tb	43.11, 7.42, 14.18	44.96, 8.71, 12.53
Dy	42.97, 7.4, 14.13	43.46, 8.66, 11.76
Но	42.88, 7.38, 14.10	43.97, 8.38, 12.86
Er	42.78, 7.36, 14.07	42.19, 6.21, 12.10
Tm	42.72, 7.35, 14.05	40.59, 7.99, 10.26
Yb	42.56, 7.33, 14.00	44.27, 8.76, 11.70
Lu	42.48, 7.31, 13.97	41.22, 8.06, 10.82

Table 65. C	HN Analysis o	of the bulk	as synthesized	salts.
-------------	---------------	-------------	----------------	--------

- 1. T. Yoshikuni, K. Yasumitsu, S. Yasuo and O. Akira, *Bull. Chem. Soc. Jpn.*, 1988, **61**, 2805-2810.
- 2. G. Sheldrick, *University of Göttingen, Germany*, 1996.
- 3. G. Sheldrick, *Acta Crystallographica Section A: Foundations of Crystallography*, 2008, **64**, 112-122.
- 4. T. J. Carter and R. E. Wilson, *Chem. Eur. J.*, 2015, **21**, 15575-15582.