Multifunctional 1,3-diphenylguanidine for carboxylative cyclization of homopropargyl amines with CO₂ under ambient temperature and pressure

Xiao-Tong Gao,^a Shi-Liang Xie,^a Feng Zhou,^{*ab} Hai-Hong Wu,^{*a} Jian Zhou^{*abc}

^a Shanghai Key Laboratory of Green Chemistry and Chemical Process and ^bShanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, 3663N Zhongshan Road, Shanghai 200062, China.

^c State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, China.

E-mail: fzhou@chem.ecnu.edu.cn; hhwu@chem.ecnu.edu.cn; jzhou@chem.ecnu.edu.cn

Contents	Page
1. General information	2
2. Preparation of homopropargyl amines	3-9
3. Reaction condition optimization	10-12
4. General procedure for the carboxylative cyclization reaction	12-19
5. Mechanistic studies	20-27
6. Single-crystal X-ray analysis of bicarbonate salt [DPGH][HCO3]	28-33
7. Single-crystal X-ray analysis of complex formed from DPG and AgSbF ₆	34-41
8. NMR and HPLC spectra	42-136
9. References	137

1. General information

Reactions were monitored by thin layer chromatography using UV light, I_2 or KMnO₄ to visualize the course of reaction. Purification of reaction products was carried out by flash chromatography on silica gel. Chemical yields refer to pure isolated substances. Infrared (IR) spectra were obtained using a Bruker tensor 27 infrared spectrometer. Chiral HPLC analysis was performed on a LC-20AD instrument using Daicel Chiracel columns at 25 °C and a mixture of HPLC-grade hexane and isopropanol as eluent. Optical rotation was measured using a (JASCO) P-1030 polarimeter equipped with a sodium vapor lamp at 589 nm. ¹H NMR, ¹³C NMR and ³¹P NMR spectra were obtained using Bruker DPX-300, 400 and 500 MHz Spectrometer. ¹H-¹H NOESY spectra were obtained using Bruker DPX-500 MHz Spectrometer. Chemical shifts were reported in ppm with TMS as the internal standard. The following abbreviations were used to designate chemical shift multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, h = heptet, m = multiplet, br = broad.

AgSbF₆ (99%) was purchased from Alfa, 1,3-diphenylguanidine was purchased from J&K Scientific. Dichloroethane was purchased from J&K Scientific and used without further purification. The homopropargyl amines **1a-i** and **1l-m** were synthesized according to the literature method.¹

Entry	Chemical name	Abbreviation
1	1,3-Diphenylguanidine	DPG
2	1,2,3-Triphenylguanidine	TPG
3	1,1,3,3-Tetramethylguanidine	TMG
4	1,8-Diazabicyclo[5.4.0]undec-7-ene	DBU
5	1,5,7-Triazabicyclo[4.4.0]dec-5-ene	TBD
6	Petroleum ether	PE
7	Diethyl ether	Et ₂ O
8	N, N-Dimethyl formamide	DMF
9	Ethyl acetate	EtOAc
10	Dichloroethane	DCE

List of abbreviation:

2. Preparation of homopropargyl amines

2.1. Synthesis of homopropargyl amines 1j and 1k.¹⁻²

Di-tert-butyldicarbonate (12.0 mmol) was slowly added to a solution of homopropargyl amines (10.0 mmol), DMAP (1.2 mmol, 10 mol%) and Et₃N (12 mmol) in 20 mL CH₂Cl₂ at 0 °C and the resulting mixture was stirred at ambient temperature for 24 h. Standard extractive work-up followed by silica column chromatography (PE/EtOAc 15:1 to 10:1, v/v) provided tert-butyl benzyl(but-3-yn-1-yl)carbamate **S1** as a pale yellow syrup in 85% yield.

^{*n*}BuLi (1.2 equivs, 2.0 M in hexane) was slowly added at -78 °C to a solution of the compound **S1** obtained above (5.0 mmol) in 15 mL Et₂O. After the mixture had been stirred for 30 min at that temperature, isopropyl carbonochloridate or diethyl phosphorochloridate (6.0 mmol, 1.2 equivs) was introduced, and stirring was continued for another 15 min at -78 °C before the mixture was allowed to reach ambient temperature. After one hour, the reaction was quenched with saturated ammonium chloride aqueous solution, the aqueous layer was extracted with EtOAc, and the combined organic phases were dried over Na₂SO₄. Evaporation of the solvent followed by column chromatography of the residue (PE/EtOAc 10:1 to 4:1, v/v) gave the title compound **1j** or **1k**.

Compound **1j** was prepared in 78% yield according to the general procedure as yellow solid (m.p. 80-82 °C). ¹H NMR (400 MHz, CDCl₃): δ 7.35-7.32 (m, 3H), 7.28-7.26 (m, 2H), 5.12-5.03 (m, 1H), 3.82 (s, 2H), 2.86

(t, J = 6.4 Hz, 2H), 2.54 (t, J = 6.4 Hz, 2H), 1.63 (s, br, 1H), 1.29 (s, 3H), 1.28 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 153.17, 139.84, 128.42, 128.04, 127.04, 86.64, 74.45, 69.72, 53.24, 46.45, 21.64, 19.96; IR (ATR) v 2977.0, 2932.8, 2236.8, 1704.7, 1495.2, 1417.8, 1369.9, 1256.9, 1225.6, 910.6 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₅H₂₀NO₂ [M+H]⁺: 246.1489, found: 246.1494.

Compound 1k was prepared in 56% yield according to the general procedure as yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.34-7.27 (m, 5H), 4.17-4.09 (m, 4H), 3.81 (s, 2H), 2.86 (t, *J* = 6.8 Hz, 2H), 2.57-2.53 (m, 2H), 1.60 (s, br, 1H), 1.35 (t, *J* = 7.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 139.76, 128.42, 128.00, 127.07, 100.75 (d, *J* = 52.5 Hz), 71.71 (d, *J* = 299.5 Hz), 62.93 (d, *J* = 5.4 Hz), 53.26, 46.39 (d, *J* = 2,4 Hz), 20.56 (d, *J* = 4.4 Hz), 16.05 (d, *J* = 7.0 Hz); ³¹P NMR (122 MHz, CDCl₃): δ 6.55 (m); IR (ATR) v 2982.4, 2203.8, 1716.1, 1568.8, 1453.5, 1367.8, 1251.4, 1163.6, 1099.3, 741.4 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₅H₂₃NO₃P [M+H]⁺: 296.1410, found: 296.1404.

2.2. Synthesis of compounds 3a-3h.³

To a solution of (*R*)-tert-butanesulfinamide (10.0 mmol) in 20 mL CH_2Cl_2 was added anhydrous $CuSO_4$ (22.0 mmol) followed by aldehyde (11.0 mmol). The mixture was stirred at room temperature for 12 h. The reaction mixture was filtered through a pad of Celite, and the filter cake was washed well with CH_2Cl_2 . The combined organic layers were dried over Na_2SO_4 and concentrated give sulfinimine **S3** in almost quantative yield.

To a solution of the sulfinimine **S3** (10.0 mmol) in 50 mL CH₂Cl₂ was added propargyl magnesium bromide ether solution (20.0 mmol) at -50 °C. The mixture was stirred at -50 °C for 2 h and then was allowed to warm to room temperature and stirred overnight. The reaction mixture was quenched with saturated ammonium chloride aqueous solution and the aqueous layer was extracted with CH₂Cl₂. The combined organic layers were dried over Na₂SO₄ and concentrated. The residue was purified through silica column chromatography (PE/EtOAc 6/1 to 4/1, v/v) to give sulfinamide **S4** in 75-83% yield.

The above sulfinamide **S4** (5.0 mmol) was dissolved in 50 mL MeOH and the solution was cooled to 0 °C. Concentrated hydrochloric acid (11.0 mmol, 2.2 equivs) was added, and the reaction mixture was stirred at 0 °C for 30 minutes. The solvent was evaporated, water was added and acid base work up to give pure amine **S5** in more than 90% yield.

To a mixture of benzaldehydes (4.0 mmol) in 10 mL methanol, the amine **S5** (4.0 mmol) was added. The reaction mixture was stirred at room temperature for 3-4 h, and then sodium cyanoborohydride (3.0 mmol, 0.75 equiv) was added in batches and the mixture was further stirred for another period of 6 h. The reaction was then quenched by the addition of water, and washed with diethyl ether (5 mL× 3). The combined organic phases were washed with saturated aqueous NaCl (10 mL), dried over Na₂SO₄, and filtered. Evaporation of the filtrate followed by flash chromatography of the residue (PE/EtOAc 10:1 to 4:1, v/v) gave compounds **3a-3h** successfully.

Compound **3a** was prepared in 80% yield according to the general procedure as yellow oil. HPLC analysis (Chiralcel OJ-H, ^{*i*}PrOH/hexane = 10/90, 1.0 mL/min, 230 nm; t_r (major) = 10.65 min, t_r (minor) = 13.41 min) gave the isomeric composition of the product: 96% ee; $[\alpha]_D^{25} = -39.9$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.41-7.39 (m, 2H), 7.38-7.34 (m, 2H), 7.32-7.31 (m, 4H), 7.29-7.26 (m, 2H), 3.87 (t, *J* = 6.8 Hz, 1H), 3.72, 3.59 (AB, *J* = 13.2 Hz, 2H), 2.56-2.54 (m, 2H), 2.03-2.01 (m, 1H), 1.88 (s, br, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 142.33, 140.15, 128.39, 128.26, 127.98, 127.44, 127.07, 126.80, 81.44, 70.48, 60.58, 51.25, 28.08; IR (ATR) v 3290.3, 3061.6, 3026.4, 2918.4, 1602.4, 1493.5, 1355.5, 1201.3, 1073.5, 911.4 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₇H₁₈N [M+H]⁺: 236.1434, found: 236.1445.

Compound **3b** was prepared in 80% yield according to the general procedure as yellow oil. HPLC analysis (Chiralcel OJ-H, ^{*i*}PrOH/hexane = 10/90, 1.0 mL/min, 230 nm; t_r (major) = 9.37 min, t_r (minor) = 10.37 min) gave the isomeric composition of the product: 98% ee; $[\alpha]_D^{25}$ = -97.5 (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.38-7.32 (m, 4H), 7.31-7.29 (m, 2H), 7.27-7.22 (m, 3H), 3.83 (t, *J* = 6.4 Hz, 1H), 3.68, 3.55 (AB, *J* = 13.6 Hz, 2H), 2.51-2.48 (m, 2H), 2.02-2.00 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 140.95, 140.00, 133.12, 128.64, 128.55, 128.39, 128.01, 126.98, 81.08, 70.74, 60.03, 51.30, 28.13; IR (ATR) v 3297.6, 3026.5, 2909.6, 2834.2, 2117.7, 1598.1, 1453.7, 1327.7, 1295.3, 1027.1 cm⁻¹; HRMS (ESI): Exact mass calcd for $C_{17}H_{17}CIN [M+H]^+$: 270.1044, found: 270.1032.

Compound **3c** was prepared in 76% yield according to the general procedure as yellow oil. HPLC analysis (Chiralcel AD-H, ^{*i*}PrOH/hexane = 1/99, 0.8 mL/min, 230 nm; t_r (major) = 9.89 min, t_r (minor) = 11.15 min) gave the isomeric composition of the product: 98% ee; $[\alpha]_D^{25} = -75.6$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.31-7.28 (m, 4H), 7.26-7.25 (m, 2H), 7.23-7.20 (m, 1H), 7.16-7.13 (m, 2H), 3.82 (t, *J* = 6.4 Hz, 1H), 3.69, 3.55 (AB, *J* = 13.2 Hz, 2H), 2.52-2.49 (m, 2H), 2.33 (s, 3H), 2.04 (s, br, 1H), 1.99-1.97 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 140.31, 139.40, 137.02, 129.12, 128.28, 128.02, 127.00, 126.80, 81.63, 70.38, 60.35, 51.28, 28.20, 21.07; IR (ATR) v 3290.0, 3025.3, 2920.1, 1602.7, 1495.1, 1453.3, 1304.9, 1201.0, 1020.2, 908.3 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₈H₂₀N [M+H]⁺: 250.1590, found: 250.1594.

Clock Bn Compound **3d** was prepared in 73% yield according to the general procedure as yellow oil. HPLC analysis (Chiralcel AD-H, 'PrOH/hexane = 1/99, 0.5 mL/min, 230 nm; t_r (major) = 16.78 min, t_r (minor) = 18.23 min) gave the isomeric composition of the product: 98% ee; $[\alpha]_D^{25} = -44.1$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.42 (s, 1H), 7.35-7.31 (m, 2H), 7.30 (s, 2H), 7.28-7.26 (m, 4H), 3.84 (t, *J* = 6.8 Hz, 1H), 3.71, 3.58 (AB, *J* = 13.2 Hz, 2H), 2.58-2.46 (m, 2H), 2.09-1.97 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 144.68, 139.94, 134.37, 129.72, 128.39, 128.01, 127.70, 127.27, 126.98, 125.39, 80.96, 70.82, 60.27, 51.36, 28.06; IR (ATR) v 3290.0, 3025.3, 2920.1, 1602.7, 1495.1, 1453.3, 1304.9, 1201.0, 1020.2, 908.3 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₇H₁₇ClN [M+H]⁺: 270.1044, found: 270.1039.

Compound **3e** was prepared in 66% yield according to the general procedure as yellow oil. HPLC analysis (Chiralcel OJ-H, ^{*i*}PrOH/hexane = 10/90, 1.0 mL/min, 230 nm; t_r (major) = 7.29 min, t_r (minor) = 9.29 min) gave the isomeric composition of the product: 97% ee; $[\alpha]_D^{25} = -5.7$ (c = 0.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.34-7.28 (m, 4H), 7.24-7.22 (m, 2H), 7.20-7.17 (m, 2H), 7.10 (d, *J* = 7.2 Hz, 1H), 3.83 (t, *J* = 6.4 Hz, 1H), 3.71, 3.58 (AB, *J* = 13.2 Hz, 2H), 2.54-2.52 (m, 2H), 2.36 (s, 3H), 2.02-2.01 (m, 1H), 1.90 (s, br, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 142.31, 140.21, 137.86, 128.23, 128.21, 128.16, 127.93, 127.64, 126.74, 124.12, 81.53, 70.39, 60.59, 51.27, 28.06, 21.37; IR (ATR) v 3291.0, 2928.2, 2836.7, 1606.1, 1488.9, 1323.8, 1269.9, 1155.2, 1027.5, 882.7 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₈H₂₀N [M+H]⁺: 250.1590, found: 250.1582.

Compound **3f** was prepared in 77% yield according to the general procedure as yellow oil. HPLC analysis (Chiralcel AD-H, ^{*i*}PrOH/hexane = 1/99, 0.8 mL/min, 230 nm; t_r (major) = 11.18 min, t_r (minor) = 16.02 min) gave the isomeric composition of the product: 98% ee; $[\alpha]_D^{25} = -78.0$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.86-7.82 (m, 4H), 7.56 (d, J = 8.4 Hz, 1H), 7.50-7.44 (m, 2H), 7.34-7.30 (m, 3H), 7.28-7.26 (m, 2H), 4.04 (t, J = 6.8 Hz, 1H), 3.74, 3.61 (AB, J = 13.2 Hz, 2H), 2.64-2.61 (m, 2H), 2.03-1.90 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 140.16, 139.82, 133.29, 133.04, 128.30, 128.27, 128.00, 127.77, 127.60, 126.84, 126.21, 125.95, 125.66, 124.88, 81.44, 70.62, 60.74, 51.32, 28.05; IR (ATR) v 3291.1, 3055.8, 3025.2, 2827.3, 1600.7, 1507.1, 1495.0, 1362.1, 1270.4, 1198.9 cm⁻¹; HRMS (ESI): Exact mass calcd for C₂₁H₂₀N [M+H]⁺: 286.1590, found: 286.1585.

Compound **3g** was prepared in 80% yield according to the general procedure as yellow oil. HPLC analysis (Chiralcel AD-H, ^{*i*}PrOH/hexane = 3/97, 0.8 mL/min, **3g** 230 nm; t_r (major) = 5.44 min, t_r (minor) = 10.84 min) gave the isomeric composition of the product: 98% ee; $[\alpha]_D^{25} = +58.2$ (c = 0.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.36-7.35 (m, 2H), 7.33-7.29 (m, 2H), 7.24-7.21 (m, 1H), 3.88, 3.72 (AB, *J* = 13.2 Hz, 2H), 2.52-2.43 (m, 2H), 2.35-2.30 (m, 1H), 2.03-1.97 (m, 1H), 1.90 (d, *J* = 12.8 Hz, 1H), 1.73-1.64 (m, 3H), 1.59-1.50 (m, 2H), 1.34-1.11 (m, 4H), 1.06-0.93 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 140.78, 128.26, 128.12, 126.78, 82.23, 69.89, 60.21, 51.49, 40.76, 29.39, 29.29, 26.62, 26.45, 20.49; IR (ATR) v 3306.8, 3026.8, 2921.0, 2850.1, 2115.2, 1494.8, 1345.4, 1240.3, 1115.7, 1073.8 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₇H₂₄N [M+H]⁺: 242.1903, found: 242.1894. Compound **3h** was prepared in 80% yield according to the general procedure as yellow oil. HPLC analysis (Chiralcel AD-H, ^{*i*}PrOH/hexane = 20/80, 0.7 mL/min, 230 nm; t_r (major) = 6.26 min, t_r (minor) = 8.75 min) gave the isomeric composition of the product: 98% ee; $[\alpha]_D^{25} = +21.2$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.38-7.31 (m, 4H), 7.29-7.27 (m, 3H), 7.19-7.17 (m, 3H), 3.86, 3.74 (AB, *J* = 12.8 Hz, 2H), 2.82-2.76 (m, 1H), 2.73-2.69 (m, 2H), 2.55-2.48 (m, 1H), 2.40-2.33 (m, 1H), 2.02-2.00 (m, 1H), 1.94-1.80 (m, 2H), 1.58 (s, br, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 142.09, 140.44, 128.34, 128.30, 128.11, 126.88, 125.72, 81.25, 70.42, 54.57, 50.73, 35.70, 32.13, 23.31; IR (ATR) v 3292.2, 3025.4, 2922.9, 1602.1, 1494.7, 1453.2, 1116.1, 1071.2, 1028.2, 908.4 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₉H₂₂N [M+H]⁺: 264.1747, found: 264.1739.

2.3. Preparation of compounds 3i and 3j.

3-Butyn-1-ol (5.0 mmol) was dissolved with in 70 mL dichloromethane, followed by the addition of triethylamine (7.5 mmol) and methanesulfonyl chloride (6.0 mmol) at 0°C. The reaction mixture was allowed to stir at 0°C for 1 hour and then quenched with 1N aqueous HCl (25 mL). The phases were separated and the aqueous layer extracted with dichloromethane (3 x 15 mL). The organic layers were then washed with brine, dried on Na₂SO₄ and the solvent was removed under reduced pressure to give the crude mesylate, which was further dissolved in 10 mL DMSO. Then (*R*)-1-aminotetralinand or (*R*)-1-phenylethylamine (10 mmol) and sodium iodide (1.0 mmol) were added, and the reaction mixture was stirred at 50°C for 16 hours. The solution was then cooled to room temperature and diluted with saturated aqueous NaHCO₃ (50 mL) and ethyl acetate (50 mL) The phases were separated, and the aqueous layer extracted with ethyl acetate (3 x 20 mL), dried with Na₂SO₄, and concentrated under reduced pressure. The residue was subjected to column chromatography using PE/EtOAc (10:1 to 4:1, v/v) as the elution to afford the desired **3i** and **3j**.

Compound **3i** was prepared in 80% yield according to the general procedure as yellow oil. HPLC analysis (Chiralcel AD-H, ^{*i*}PrOH/hexane = 5/95, 0.5 mL/min, 230 nm; t_r (major) = 10.68 min, t_r (minor) = 9.66 min) gave the isomeric composition of the product: 98% ee; $[\alpha]_D^{25} = -9.8$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.38-7.36 (m, 1H), 7.18-7.14 (m, 2H), 7.09-7.07 (m, 1H), 3.81 (t, *J* = 5.2 Hz, 1H), 2.95-2.79 (m, 3H), 2.76-2.69 (m, 1H), 2.50-2.36 (m, 2H), 2.03-1.91 (m, 2H), 1.89-1.83 (m, 2H), 1.78-1.69 (m, 1H), 1.58 (s, br, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 138.90, 137.30, 128.96, 128.61, 126.59, 125.65, 82.65, 69.40, 54.86, 45.34, 29.25, 28.28, 19.89, 18.89; IR (ATR) v 3292.0, 2930.6, 2855.3, 1488.2, 1320.3, 1271.0, 1197.4, 1035.1, 945.1, 883.2 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₄H₁₈N [M+H]⁺: 200.1434, found: 200.1429.

Compound **3j** was prepared in 87% yield according to the general procedure as yellow oil. HPLC analysis (Chiralcel OJ-H, 'PrOH/hexane = 0.5/99.5, 0.8 mL/min, 230 nm; t_r (major) = 12.77 min, t_r (minor) = 16.34 min) gave the isomeric composition of the product: 97% ee; $[\alpha]_D^{25} = +43.4$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.34-7.31 (m, 4H), 7.25-7.22 (m, 1H), 3.80 (q, *J* = 6.4 Hz, 1H), 2.69-2.57 (m, 2H), 2.36-2.32 (m, 2H), 1.98-1.97 (m, 1H), 1.66 (s, br, 1H), 1.36 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 145.37, 128.41, 126.91, 126.54, 82.53, 69.43, 57.68, 45.68, 24.38, 19.59; IR (ATR) v 3293.5, 2961.0, 2923.7, 2842.5, 1602.3, 1492.3, 1369.6, 1283.6, 1198.8, 1079.7 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₂H₁₆N [M+H]⁺: 174.1277, found: 174.1266.

3. Reaction condition optimization

 Table S1. Carboxylative Cyclization Reaction.

1a (0	∕∕N ^{∕Bn} + H D.1 mmol)	CO ₂	[Ag] (5 mol%) Base (50 mol%) Solvent (0.2 M), 25 °C, 12 h	Bn _N O 2a
Bases screened:	Ph NH N N H H DPG	Ph_N Ph_N_H_H^Ph TPG	NH NNN I TMG DBU	TBD
Entry	[Ag]	Base	Solvent	Yield (%) ^[a]
1	AgOBz	DPG	DCE	69
2	AgOBz	TPG	DCE	35
3	AgOBz	TMG	DCE	37
4	AgOBz	DBU	DCE	46
5	AgOBz	TBD	DCE	40
6	AgOBz	GBIG	DCE	no reaction
7	AgOAc	DPG	DCE	66
8	AgTFA	DPG	DCE	82
9	AgOTf	DPG	DCE	89
10	AgClO ₄ ·H ₂ O	DPG	DCE	80
11	AgSbF ₆	DPG	DCE	91
12	AgSbF ₆	DPG	CH ₃ CN	37
13	AgSbF ₆	DPG	DMF	6
14	AgSbF ₆	DPG	Acetone	45
15	AgSbF ₆	DPG	Toluene	43
16		DPG	DCE	no reaction
17	AgSbF ₆		DCE	no reaction

^[a] Determined by GC-MS with decane as internal standard.

The reaction of *N*-benzyl amine 1a and CO₂ was undertaken for the evaluation. The reactions were run at 25 °C in 1,2-dichloroethane (DCE), with CO₂ held within a balloon. To our delight, under the catalysis of 5 mol% AgOBz and 50 mol% DPG, the reaction worked well to give the desired 2-oxazinone 2a in 69% yield (entry 1, Table S1). Next, the performance of other types of organic bases was studied. The use of analogous 1,2,3-triphenylguanidine (TPG) and 1,1,3,3-tetramethylguanidine (TMG) resulted in a greatly diminished 35% and 37% yield for 2a,

respectively (entries 2-3). The commonly used base, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) and 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD), showed inferior 46% and 40% yield respectively (entry 4-5). The performance of GBIG⁴ (entry 6) was also studied, but no reaction occurred. Considering the metal counterions are of critical importance in impacting the catalytic activity, different silver salts with the combination of DPG was evaluated and AgSbF₆ was found to be the most efficient one, giving **2a** in 91% yield (entries 7-11). Further screening of solvents, including CH₃CN, DMF, acetone and toluene, failed to improve the result (entries 12-15). In the apsence of silver salt or DPG, no reaction occurred at all (entries 16-17).

₩N ^{Bn} H 1a (0.1 mmol)	+ CO ₂ (1 atm)	Ph N N H H AgSbF ₆ (5 r DCE(0.2 M), ter	>	Bn _N 2a
Entry	CO ₂ (MPa)	Temp. (°C)	Time (h)	Isolated yield (%)
1	0.1	25	6	47
2	1.0	25	6	59
3	0.1	50	6	62
4	1.0	50	6	91
5	0.1	25	12	91

ΝН

Table S2. The influence of CO₂ pressure and reaction temperature.

The influence of CO₂ pressure or reaction temperature was studied. It was found that if the reaction was carried out under higher 50 °C or 10 atm of CO₂, instead of ambient temperature and pressure, for 6 hours, the reaction yield increased from 47% to 59% and 62% respectively (entries 2-3 vs 1, Table S2). In addition, 91% yield could be obtained under 50 °C and 10 atm of CO₂ simultaneously (entry 4). However, the same result could also be achieved by prolong the reaction time to 12 hours under ambient temperature and pressure (entry 5). These results indicated that, indeed, the higher temperature and pressure could improve the efficiency of carboxylative cyclization to some extent, but the reaction performed under such conditions should be net CO₂ emitter rather than consumer, since the rising of CO₂ pressure and temperature would result indirect production of additional CO₂. In this context, we prefer to develop the carboxylative cyclization of CO₂ at ambient temperature and pressure, and obviously, under such situation DPG has a distinct advantage than other ones.

4. General procedure for the carboxylative cyclization reaction.

To a 5.0 mL vial were added AgSbF₆ (5.1 mg, 0.015 mmol), DPG (31.7 mg, 0.15 mmol), **1** or **3** (0.3 mmol) and 1.5 mL of DCE, then the resulting solution was stirred under CO₂ atmosphere (1 atm) at 25 °C till full consumption of **1** or **3** by TLC analysis. The residue was directly subjected to column chromatography by using PE/EtOAc (from 4/1 to 2/1, v/v) as the eluent, affording the desired products **2** or **4**. The reaction of homopropargyl amine **21** was performed under 10 atm CO₂ at 50 °C, and IPrAuCl (10 mol%) was used instead of AgSbF₆ (5 mol%).

Ph N O $Product 2a^5$ was obtained in 89% yield as light yellow solid (m.p. 70-72 °C); ¹H NMR (400 MHz, CDCl₃): δ 7.37-7.33 (m, 2H), 7.31-7.28 (m, 3H), 4.66 (d, J = 1.6 Hz, 1H), 4.58 (s, 2H), 4.23 (d, J = 1.6 Hz, 1H), 3.21 (t, J = 2.0 Hz, 2H), 2.54 (t, J = 2.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 152.58, 151.05, 135.96, 128.62, 127.87, 127.72, 92.67, 52.52, 43.00, 25.97.

Product $2b^5$ was obtained in 89% yield as light yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 7.24-7.22 (m, 2H), 6.89-6.86 (m, 2H), 4.65 (d, J = 1.6 Hz, 1H), 4.51 (s, 2H), 4.22 (d, J = 1.6 Hz, 1H), 3.80 (s, 3H), 3.19 (t, J = 6.0 Hz, 2H), 2.52 (t, J = 6.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 159.26, 152.68, 151.07, 129.50, 128.14, 114.07, 92.69, 55.25, 52.07, 42.82, 26.12.

Me 2d

Product **2d** was obtained in 90% yield as light yellow solid (m.p. 77-79 °C); ¹H NMR (400 MHz, CDCl₃): δ 7.20-7.18 (m, 2H), 7.16-7.14 (m, 2H), 4.65 (d, *J* = 1.6 Hz, 1H), 4.54 (s, 2H), 4.22 (d, *J* = 1.6 Hz, 1H), 3.19 (t, *J* = 6.0

Hz, 2H), 2.52 (t, J = 6.0 Hz, 2H), 2.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 152.67, 151.04, 137.49, 132.96, 129.32, 127.99, 92.58, 52.29, 42.87, 26.05, 21.00; IR (ATR) v 2920.0, 1712.3, 1662.3, 1514.7, 1483.4, 1357.0, 1313.4, 1253.7, 1097.3, 999.0 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₃H₁₅NNaO₂ [M+Na]⁺: 240.0995, found: 240.0989.

Product **2e** was obtained in 91% yield as light yellow solid (m.p. 71-73 °C); ¹H NMR (400 MHz, CDCl₃): δ 7.25-7.21 (m, 1H), 7.12-7.07 (m, 3H), 4.66 (d, *J* = 1.6 Hz, 1H), 4.54 (s, 2H), 4.23 (d, *J* = 1.6 Hz, 1H), 3.21 (t, *J* = 6.4 Hz, 2H), 2.54 (t, *J* = 6.4 Hz, 2H), 2.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃):

δ 152.66, 151.05, 138.39, 135.92, 128.65, 128.50, 125.00, 92.61, 52.53, 42.97, 26.03, 21.25; IR (ATR) v 2919.0, 1711.3, 1607.9, 1483.6, 1354.7, 1298.7, 1254.3, 1107.5, 1053.7, 955.8 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₃H₁₅NNaO₂ [M+Na]⁺: 240.0995, found: 240.0990.

Product **2f** was obtained in 86% yield as light yellow solid (m.p. 80-83 °C); ¹H NMR (400 MHz, CDCl₃): δ 7.23-7.18 (m, 3H), 7.17-7.14 (m, 1H), 4.67 (d, *J* = 1.6 Hz, 1H), 4.62 (s, 2H), 4.24 (d, *J* = 1.6 Hz, 1H), 3.14 (t, *J* = 6.0 Hz, 2H), 2.55 (t, *J* = 6.0 Hz, 2H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 152.56,

150.79, 136.56, 133.43, 130.60, 128.12, 127.78, 126.04, 92.62, 50.41, 42.77, 26.00, 19.00; IR (ATR) v 2925.8, 1707.8, 1666.6, 1484.3, 1380.3, 1329.6, 1246.8, 1177.0, 1095.1, 993.1 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₃H₁₅NNaO₂ [M+Na]⁺: 240.0995, found: 240.0988.

Product $2g^5$ was obtained in 66% yield as light yellow oil; ¹H NMR (400 MHz, ⁿBu N G CDCl₃): δ 4.59 (s, 1H), 4.19 (s, 1H), 3.33 (t, J = 7.2 Hz, 2H), 3.27 (t, J = 6.0 Hz, 2H), 2g 2g 3H); ¹³C NMR (100 MHz, CDCl₃): δ 152.78, 150.57, 92.26, 49.37, 43.87, 29.17,

26.20, 19.79, 13.70.

Product **2h** was obtained in 74% yield as light yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 7.30-7.26 (m, 2H), 7.22-7.18 (m, 3H), 4.62 (d, *J* = 1.6 Hz, 1H), 4.22 (d, *J* = 2.0 Hz, 1H), 3.41 (t, *J* = 7.6 Hz, 2H), 3.25 (t, *J* = 6.4 Hz, 2H), 2.65 (t,

J = 7.6 Hz, 2H), 2.53 (t, J = 6.0 Hz, 2H), 1.96-1.89 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 152.64, 150.59, 141.13, 128.33, 128.12, 125.89, 92.37, 49.28, 43.87, 32.85, 28.59, 26.07; IR (ATR) v 3025.8, 2925.8, 1712.8, 1602.5, 1484.2, 1344.3, 1255.4, 1174.2, 1081.0, 981.4 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₄H₁₇NNaO₂ [M+Na]⁺: 254.1151, found: 254.1146.

Product **2i** was obtained in 40% yield as light yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 4.61 (d, J = 1.6 Hz, 1H), 4.19-4.11 (m, 2H), 3.22 (t, J = 6.4 Hz, 2H), **2i** 2.54 (t, J = 6.0 Hz, 2H), 1.82-1.76 (m, 4H), 1.68-1.61 (m, 2H), 1.44-1.34 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 152.60, 150.48, 91.72, 55.73, 38.25, 29.63, 26.51, 25.46, 25.37; IR (ATR) v 2927.3, 2854.7, 1707.8, 1658.6, 1481.0, 1373.6, 1347.0, 1254.6, 1092.8, 986.5 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₁H₁₇NNaO₂ [M+Na]⁺: 218.1151, found: 218.1145.

Product **2j** was obtained in 54% yield as light yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 7.37-7.33 (m, 2H), 7.32-7.28 (m, 3H), 5.11-5.03 (m, 1H), 5.00 (s, 1H), 4.59 (s, 2H), 3.25 (t, J = 6.4 Hz, 2H), 2.57-2.54 (m, 2H), 1.26 (d, J = 6.4 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 162.95, 157.65, 149.10, 135.54, 128.76, 128.11, 128.00, 99.20, 67.38, 52.88, 41.89, 30.81, 27.31, 21.77; IR (ATR) v 2981.2, 2929.9, 1728.3, 1715.5, 1652.2, 1540.0, 1485.7, 1371.1, 1275.1, 1143.9 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₆H₁₉NNaO₄ [M+Na]⁺: 312.1206, found: 312.1203. Based on NOE analysis, the Z diastereomer was obtained, for detail see the attached NOE spectrum.

(m, 2H), 1.36 (t, J = 7.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 159.62 (d, J = 4.0 Hz), 148.90, 135.47, 128.76, 128.02, 95.80, 93.89, 62.04 (d, J = 6.0 Hz), 52.76, 41.85, 27.76 (d, J = 15.0 Hz), 16.24 (d, J = 7.0 Hz); ³¹P NMR (122 MHz, CDCl₃): δ 13.58 (m); IR (ATR) v 2981.2, 1727.4, 1651.2,

1482.1, 1391.8, 1349.9, 1238.5, 1185.4, 1095.4, 886.1 cm⁻¹; HRMS (ESI): Exact mass calcd for $C_{16}H_{22}NNaO_5P [M+Na]^+$: 362.1128, found: 362.1121. Based on NOE analysis, the Z diastereomer was obtained, for detail see the attached NOE spectrum.

Product 21 was obtained in 25% yield as light yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 7.37-7.33 (m, 2H), 7.31-7.28 (m, 3H), 4.60-4.55 (m, 3H), 3.18 (t, J= 6.4 Hz, 2H), 2.48-2.45 (m, 2H), 1.69-1.66 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 151.62, 145.54, 136.35, 128.73, 128.07, 127.78, 103.01, 52.79, 43.74, 26.54, 9.53; IR (ATR) v 2920.4, 2854.0, 1718.0, 1693.4, 1484.0, 1444.2, 1361.0, 1269.8, 1206.3, 1075.9 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₃H₁₅NNaO₂ [M+Na]⁺: 240.0995, found: 240.0992. Based on NOE analysis, the Z diastereomer was obtained, for detail see the attached NOE spectrum.

Product 4a was obtained in 75% yield as light yellow solid (m.p. 65-67 °C); HPLC analysis (Chiralcel AD-H, ⁱPrOH/hexane = 15/85, 1.0 mL/min, 230 nm; t_r (major) = 9.95 min, t_r (minor) = 11.66 min) gave the isomeric composition of the product: 96% ee; $[\alpha]_D^{25} = +15.8$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.40-7.35 (m, 3H), 7.33-7.29 (m, 3H), 7.26-7.22(m, 2H), 7.17-7.15 (m, 2H), 5.30, 3.68 (AB, J = 15.2 Hz, 2H), 4.42 (dd, J = 6.4 Hz, 2.8 Hz, 1H), 4.38 (d, J = 262.4 Hz, 2H), 2.88-2.83 (m, 1H), 2.49 (dd, J = 14.4 Hz, 2.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 151.38, 149.96, 138.58, 136.11, 128.78, 128.66, 128.23, 128.07, 127.76, 126.23, 94.86, 55.94, 50.49, 34.19; IR (ATR) v 2925.8, 1694.0, 1495.1, 1444.6, 1367.5, 1281.5, 1108.4, 1031.6, 932.2, 852.8 cm⁻¹; HRMS (ESI): Exact mass calcd for

C₁₈H₁₇NNaO₂ [M+Na]⁺: 302.1151, found: 302.1144.

Product 4b was obtained in 75% yield as white solid (m.p. 77-79 °C); HPLC analysis (Chiralcel AD-H, ⁱPrOH/hexane = 15/85, 0.8 mL/min, 230 nm; t_r $(major) = 11.27 \text{ min}, t_r (minor) = 12.18 \text{ min})$ gave the isomeric composition of the product: 98% ee; $[\alpha]_D^{25} = -25.9$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz,

CDCl₃): δ 7.34-7.29 (m, 5H), 7.22-7.21 (m, 2H), 7.09 (d, *J* = 8.4 Hz, 2H), 5.27, 3.67 (AB, *J* = 15.2 Hz, 2H), 4.40 (dd, J = 6.0 Hz, 2.4 Hz, 1H), 4.39 (d, J = 260.8 Hz, 2H), 2.88-2.82 (m, 1H), 2.44 (dd, *J* = 14.0 Hz, 2.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 151.20, 149.64, 137.20, 135.89, 134.13, 129.03, 128.75, 128.11, 127.91, 127.66, 95.22, 55.47, 50.65, 34.15; IR (ATR) v 2920.9, 1712.8, 1661.3, 1490.0, 1425.6, 1358.2, 1299.7, 1269.8, 1147.7, 1029.0 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₈H₁₆ClNNaO₂ [M+Na]⁺: 336.0762, found: 336.0762.

Product 4c was obtained in 74% yield as light yellow oil; HPLC analysis

(Chiralcel AD-H, ⁱPrOH/hexane = 5/95, 1.0 mL/min, 230 nm; t_r (major) = 22.30 min, t_r (minor) = 29.02 min) gave the isomeric composition of the product: 98% ee; $[\alpha]_D^{25} = +2.5$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.35-7.28 (m, 3H), 7.24 (d, J = 7.2 Hz, 2H), 7.18 (d, J = 8.0 Hz, 2H), 7.05 (d, J = 7.6 Hz, 2H), 5.30, 3.66 (AB, J = 14.8 Hz, 2H), 4.38 (dd, J = 6.4 Hz, 2.4 Hz, 1H), 4.38 (d, J = 261.2 Hz, 2H), 2.88-2.82 (m, 1H), 2.47 (dd, J = 14.4 Hz, 2.8 Hz, 1H), 2.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 151.46, 150.19, 138.10, 136.28, 135.64, 129.52, 128.70, 128.13, 127.78, 126.24, 94.79, 55.76, 50.44, 34.34, 21.04; IR (ATR) v 3028.2, 2916.9, 1713.1, 1663.6, 1514.0, 1495.4, 1427.0, 1359.3, 1261.0, 1074.8 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₉H₁₉NNaO₂ [M+Na]⁺: 316.1308, found: 316.1301.

CI 4d Product 4d was obtained in 73% yield as white solid (m.p. 85-87 °C); HPLC analysis (Chiralcel AD-H, ⁱPrOH/hexane = 15/85, 0.8 mL/min, 230 nm; t_r $(major) = 13.01 \text{ min}, t_r (minor) = 15.73 \text{ min})$ gave the isomeric composition of the product: 97% ee; $[\alpha]_D^{25} = +8.0$ (c = 0.1, CHCl₃); ¹H NMR (400 MHz,

CDCl₃): δ 7.37-7.29 (m, 5H), 7.24-7.22 (m, 2H), 7.13 (s, 1H), 7.07-7.03 (m, 1H), 5.31, 3.68 (AB, J = 15.2 Hz, 2H), 4.41 (d, J = 264.8 Hz, 2H), 4.40 (dd, J = 6.4 Hz, 2.4 Hz, 1H), 2.90-2.84 (m, 1H), 2.46 (dd, J = 14.4 Hz, 2.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 151.17, 149.51, 140.82, 135.87, 134.82, 130.15, 128.76, 128.51, 128.12, 127.94, 126.47, 124.38, 95.32, 55.60, 50.76, 34.08; IR (ATR) v 2921.0, 1714.8, 1664.9, 1596.5, 1495.0, 1445.2, 1340.5, 1028.4, 971.8, 803.2 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₈H₁₆ClNNaO₂ [M+Na]⁺: 336.0762, found: 336.0761.

Product **4e** was obtained in 81% yield as light yellow solid (m.p. 90-92 °C); HPLC analysis (Chiralcel AD-H, ^{*i*}PrOH/hexane = 10/90, 0.8 mL/min, 230 nm; t_r (major) = 14.49 min, t_r (minor) = 17.88 min) gave the isomeric composition of the product: 97% ee; $[\alpha]_D^{25} = +33.0$ (c = 0.5, CHCl₃); ¹H NMR (400 MHz,

CDCl₃): δ 7.36-7.32 (m, 3H), 7.26-7.23 (m, 3H), 7.14 (d, *J* = 7.6 Hz, 1H), 6.96-6.95 (m, 2H), 5.32, 3.68 (AB, *J* = 15.2 Hz, 2H), 4.38 (d, *J* = 262.4 Hz, 2H), 4.38 (dd, *J* = 6.4 Hz, 2.8 Hz, 1H), 2.88-2.82 (m, 1H), 2.48 (dd, *J* = 14.0 Hz, 2.4 Hz, 1H), 2.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 151.48, 150.11, 138.60, 136.27, 129.03, 128.70, 128.68, 128.11, 127.77, 126.88, 123.38, 94.79, 56.01, 50.56, 34.27, 21.39; IR (ATR) v 2950.1, 1709.0, 1692.9, 1657.1, 1453.0, 1435.3, 1104.8, 1076.2, 811.4, 707.9 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₉H₁₉NNaO₂ [M+Na]⁺: 316.1308, found: 316.1303.

4g

Product **4f** was obtained in 77% yield as light yellow oil; HPLC analysis (Chiralcel AD-H, ^{*i*}PrOH/hexane = 5/95, 1.0 mL/min, 230 nm; t_r (major) = 32.72 min, t_r (minor) = 38.07 min) gave the isomeric composition of the product: 98% ee; $[\alpha]_D^{25}$ = -15.1 (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃):

δ 7.88-7.83 (m, 3H), 7.61 (s, 1H), 7.55-7.50 (m, 2H), 7.36-7.29 (m, 3H), 7.27-7.24 (m, 3H), 4.60-4.58 (m, 1H), 5.38, 3.73 (AB, *J* = 15.2 Hz, 2H), 4.37 (d, *J* = 274.4 Hz, 2H), 2.94 (dd, *J* = 14.4 Hz, 6.4 Hz, 1H), 2.62-2.57 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 151.56, 150.00, 136.21, 135.97, 133.11, 133.09, 128.95, 128.76, 128.16, 127.91, 127.87, 127.68, 126.61, 126.41, 125.34, 123.89, 95.06, 56.18, 50.67, 34.26; IR (ATR) v 3028.1, 2919.3, 1712.3, 1601.0, 1508.4, 1445.8, 1367.2, 1269.9, 1206.1, 1074.9 cm⁻¹; HRMS (ESI): Exact mass calcd for C₂₂H₁₉NNaO₂ [M+Na]⁺: 352.1308, found: 352.1311.

> Product **4g** was obtained in 75% yield as light yellow solid (m.p. 67-69 °C); HPLC analysis (Chiralcel AD-H, ^{*i*}PrOH/hexane = 5/95, 1.0 mL/min, 205 nm; t_r (major) = 22.04 min, t_r (minor) = 29.46 min) gave the isomeric composition of the product: 97% ee; $[\alpha]_D^{25} = +30.4$ (c = 0.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.35-7.32

(m, 2H), 7.30-7.27 (m, 3H), 5.34, 3.94 (AB, J = 15.2 Hz, 2H), 4.41 (d, J = 194.8 Hz, 2H), 2.98 (t, J = 6.4 Hz, 1H), 2.56 (d, J = 15.2 Hz, 1H), 2.31 (dd, J = 14.8 Hz, 4.8 Hz, 1H), 1.80 (d, J = 10.8 Hz, 2H), 1.75-1.62 (m, 4H), 1.22-1.16 (m, 2H), 1.13-0.92 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ

152.23, 151.48, 136.52, 128.67, 127.94, 127.73, 92.75, 56.81, 52.55, 40.72, 30.19, 28.97, 28.90, 26.01, 25.91; IR (ATR) *v* 2934.7, 2852.7, 1704.7, 1659.6, 1424.9, 1339.2, 1208.1, 1135.1, 1073.7, 1028.0 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₈H₂₃NNaO₂ [M+Na]⁺: 308.1621, found: 308.1622.

Product **4h** was obtained in 71% yield as light yellow oil; HPLC analysis (Chiralcel AD-H, ^{*i*}PrOH/hexane = 10/90, 0.8 mL/min, 205 nm; t_r (major) = 21.78 min, t_r (minor) = 19.08 min) gave the isomeric composition of the product: 98% ee; $[\alpha]_D^{25}$ = -13.8 (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.32-7.28 (m,

3H), 7.27-7.21 (m, 3H), 7.14-7.10 (m, 4H), 5.07, 3.94 (AB, J = 14.8 Hz, 2H), 4.49 (d, J = 208.8 Hz, 2H), 3.23-3.18 (m, 1H), 2.71-2.64 (m, 1H), 2.51-2.45 (m, 3H), 1.93-1.86 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 151.06, 150.96, 140.20, 136.42, 128.63, 128.58, 128.17, 128.07, 127.73, 126.28, 94.14, 51.15, 50.79, 32.89, 31.87, 29.91; IR (ATR) *v* 3026.6, 2925.1, 1712.5, 1661.3, 1602.6, 1495.3, 1351.5, 1282.2, 1227.8, 1028.9 cm⁻¹; HRMS (ESI): Exact mass calcd for C₂₀H₂₁NNaO₂ [M+Na]⁺: 330.1464, found: 330.1466.

Product **4i** was obtained in 82% yield as light yellow solid (m.p. 89-90 °C); HPLC analysis (Chiralcel OJ-H, ^{*i*}PrOH/hexane = 15/85, 0.8 mL/min, 230 nm; t_r (major) = 12.43 min, t_r (minor) = 11.62 min) gave the isomeric composition of the product: 98% ee; $[\alpha]_D^{25} = -34.9$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz,

CDCl₃): δ 7.18-7.15 (m, 3H), 7.12-7.10 (m, 1H), 5.68-5.64 (m, 1H), 4.67 (d, J = 1.6 Hz, 1H), 4.22-4.21 (m, 1H), 3.12-3.05 (m, 1H), 2.97-2.91 (m, 1H), 2.83-2.73 (m, 2H), 2.49 (t, J = 6.0 Hz, 2H), 2.16-2.10 (m, 1H), 2.01-1.94 (m, 1H), 1.86-1.72 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 152.84, 151.42, 138.68, 133.81, 129.36, 127.13, 126.86, 126.24, 92.03, 55.48, 39.14, 29.31, 27.16, 26.39, 21.57; IR (ATR) v 2942.0, 1715.8, 1652.2, 1475.5, 1361.1, 1337.2, 1257.8, 1230.9, 1083.6, 957.1 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₅H₁₇NNaO₂ [M+Na]⁺: 266.1151, found: 266.1144.

(c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.30-7.27 (m, 3H), 7.25-7.20 (m, 2H), 5.68 (q, *J* = 7.2 Hz, 1H), 4.33 (d, *J* = 176.0 Hz, 2H), 3.08-3.02 (m, 1H), 2.79-2.73 (m, 1H), 2.43-2.37 (m, 1H), 2.34-2.27 (m, 1H), 1.48 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 152.60, 150.91, 139.23, 128.52, 127.67, 127.14, 92.06, 53.59, 37.88, 26.20, 15.36; IR (ATR) v 2976.4, 1707.4, 1480.7, 1378.8, 1357.6, 1258.2, 1231.5, 1126.3, 1039.2, 983.7 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₃H₁₅NNaO₂ [M+Na]⁺: 240.0995, found: 240.0987.

Notably, the synthesis of chiral 2-oxazinones from optically active homopropargyl amines is not as trivial as it first appears. If the reaction was run under previous reported condition of high temperature and pressure,⁶ the desired chiral 2-oxazinones might be obtained in diminished ee values, as exemplified by the synthesis of **4j** from chiral amine **3j**.

5. Mechanistic studies

The superiority that DPG exhibited in the Ag(I)-catalyzed carboxylative cyclization of both *N*aryl propargylanilines and *N*-alkyl homopropargyl amines is very intriguing. To gain more insight into the role of DPG, a variety of experiments including ¹H NMR, ¹³C NMR, HRMS as well as Xray analysis were conducted.

5.1. The study of interaction between DPG and CO₂.

Initially, the detail for the trapping and releasing of CO_2 by DPG was studied. As far as we know, the corresponding reaction between DPG and CO_2 has never been documented.⁴ A general procedure for the capture of CO_2 was as follows: DPG (633 mg, 3 mmol) was stirred in DCE (10 mL) under a continuous stream of CO_2 (15 mL/min) for 2 h at 0°C. Then, deposited solid was quickly filtered off and washed with cold DCE (3×5 mL) to give the complex as a white powder (600 mg, 78%) with high purity. Notably, the carboxylation process was reversible. As shown in Figure S1, although the precipitate formed in 0 °C could be isolated via a quick filtration, it would be gradually disappeared with the release of CO_2 bubbles if raising the solution temperature above 25 °C.

Figure S1. The capture and release of CO_2 . (*Note, in order to give a clearer phenomenon, the* CO_2 *release process was performed under around* 40 $^{\circ}C$.)

Then, the structure of the thus obtained complex was analyzed. Initially, NMR studies were performed, but we tried in vain to characterize its structure in common organic deuterated solvents, such as CD_2Cl_2 , $CDCl_3$, CD_3CN , $DMSO-d_6$, $THF-d_8$, and only spectra assigned to the DPG structure was obtained due to the release of CO_2 . Fortunately, in D_2O the complex could be successfully

characterized, with the data shown below: ¹H NMR (500 MHz, D₂O): δ 7.53-7.50 (m, 4H), 7.44-7.40 (m, 2H), 7.39-7.37 (m, 4H); ¹³C NMR (125 MHz, D₂O): δ 160.35, 155.04, 134.32, 129.97, 128.00, 127.98, 125.93; IR (ATR) v 1645, 1582, 1544, 1495, 1385, 1242, 750, 689 cm⁻¹.

Figure S2. NMR spectrum comparison.

Then, the NMR data of the thus obtained complex in D_2O with that of protonated DPG, [DPGH][CF₃CO₂], was compared with the results shown in Figure S2. Obviously, the ¹H and ¹³C NMR data were consistent with the DPG portion of the complex being simply protonated DPG. And the new peak at 160.35 ppm in the ¹³C NMR spectrum of the complex was consistent with bicarbonate anion. These results revealed that a bicarbonate salt [DPGH][HCO₃] might be formed.

In order to figure out the exact structure of the complex, CO_2 was diffused into the solvent of DPG in THF/Et₂O (1/1, v/v) under -20 °C, and finally a single crystal of the bicarbonate adduct [DPGH][HCO₃] was obtained (CCDC-1907983). X-ray crystallography shows that a centrosymmetric dimer was formed by the "anti-electrostatic" hydrogen-bonding between oxygen atoms of the bicarbonate anion [HCO₃]⁻, with H···O contact distances of 1.78 Å. In each monomer, the bicarbonate anion associated with the cation [DPGH]⁺ through three hydrogen bonds between the oxygen and nitrogen atoms, with N-H···O contact distances of 1.82, 1.90 and 1.97 Å (Figure S3, left). In addition, the cationic stacks flank the anionic cluster in a close-packed arrangement (right).

Figure S3. The X-Ray crystal structure of bicarbonate salt [DPGH][HCO₃].

Then the reaction of homopropargyl amine with the bicarbonate adduct was performed. The treatment of homopropargyl amine **1a** with bicarbonate salt [DPGH][HCO₃] in the presence of 5 mol% of AgSbF₆ under N₂ atmosphere at room temperature gave the desired 2-oxazinone **2a** in 74% and 89% yield respectively, by using 1.0 or 2.0 equivlent of bicarbonate salt. These results further demonstrated that [DPGH][HCO₃] could release CO₂ effectively during the raction.

5.2 The study of interaction between DPG and AgSbF6

At first the interaction of DPG with $AgSbF_6$ was studied by NMR analysis, which was conducted in air using CDCl₃ as the solvent. The general procedure was as follows: to a NMR tube were added the DPG (0.1 mmol) and CDCl₃ (0.5 mL), followed by the addition of $AgSbF_6$ (10 mol% to 100 mol%). Then the tube was shaken vigorously and quickly subjected to NMR analysis at 25 °C.

Obvious changes were immediately observed when $AgSbF_6$ was added to the solution of DPG in CDCl₃. ¹H NMR showed that, with the amount of $AgSbF_6$ increased from 0.1 equiv to 1.0 equiv, the characteristic peaks corresponding to the proton at C5 position of DPG, changed gradually from 7.03 ppm to 7.06 and 7.12 ppm. Meanwhile, the signal of proton on the nitrogen atom changed from 5.08 ppm to 5.41 and 5.62 ppm gradually. Obvious changes could also be observed for the ¹³C NMR analysis (Figure S4). When 0.1 equiv of $AgSbF_6$ was added, the characteristic peaks of C1, C2 and C5 changed from 149.63, 143.94 and 123.23 ppm to 151.23, 142.49 and 124.06 ppm respectively. Further increase the amount of $AgSbF_6$ to 1.0 equiv, the characteristic peak of C5 shifted to 125.42 ppm and the signals of C1 and C2 might be too weak to be detected. These observations indicated that DPG might coordinate to $AgSbF_6$.

Figure S4. ¹H NMR and ¹³C NMR spectra of DPG with 0.1 and 1.0 equiv of AgSbF₆.

To get more information about the possible binding interaction, HRMS analysis of the DPG-Ag(I) complex with different molecular ratio (AgSbF₆: DPG = 1:1, 1:2 and 1:10) was conducted respectively, and in all cases a signal at m/z 529.1274 was observed as shown in Figure S5, consistent with the 1/2 complex cation, $[(DPG)_2 + Ag]^+$.

Figure S5. HRMS analysis of the DPG-Ag(I) complex.

Fortunately, we obtained a single crystal of the complex derived from DPG and AgSbF₆ upon crystallization of the 1/2 mixture of AgSbF₆ and DPG from CD₂Cl₂ (CCDC-1894496). X-ray diffraction study revealed that the DPG served as neutral monodentate ligand and bound to the silver center via a head-to-head fashion (Figure S6). These results in combination with HRMS analysis, further cast light on the coordination fashion of DPG to AgSbF₆.

Figure S6. the single crystal of DPG-Ag(I) complex.

5.3. NMR study of the reaction process.

To get more information about the reaction course and to understand the role of DPG during the reaction, ¹H and ¹³C NMR studies of the reaction process were carried out based on the reaction of homopropargyl amine **1a** under 1 atm of CO₂ at 25 °C in CDCl₃, in the presence of 10 mol% AgSbF₆ and 100 mol% DPG.

As shown in Figure S7, when **1a** was added to the mixture of AgSbF₆ and DPG, the characteristic peaks assigned to H1, H3, H4 and H5 of **1a** upfield shifted from 1.99, 2.41, 2.80, 3.82 ppm to 1.98, 2.39, 2.78 and 3.80 pm respectively (c *vs* a). Meanwhile, ¹³C NMR spectrum revealed the signals assigned to C3, C4 and C5 shifted from 19.54, 47.30 and 53.35 ppm to 19.49, 47.24 and 53.29 ppm respectively. A slightly upfield shift of the signals assigned to C1 and C2 of the C-C triple bond was also observed (C *vs* A). These observations indicated that both the alkyne and amine moiety of **1a** might interact with the DPG-Ag(I) complex, which was helpful for suppressing the side intramolecular hydroamination reaction.⁷

Figure S7. ¹**H and** ¹³**C NMR study in CDCl₃.** (a, A) **1a** (0.1 mmol). (b, B) DPG (0.1 mmol). (c, C) AgSbF₆ (0.01 mmol), DPG (0.1 mmol) and **1a** (0.1 mmol). (d-f, D-F) Under CO₂ atmosphere 0.5, 6.0 and 12 h respectively. (g, G) **2a** (0.1 mmol).

Subsequently, the above reaction mixture was subjected to CO₂ atmosphere with the reaction process monitored over time and notable changes were observed (Figure S7, d-f & D-F). Within half an hour, apart from the detection of 2-oxazinone **2a**, some new signals appeared at both ¹H NMR (δ = 4.57, 3.40, 2.41 and 1.87 ppm) and ¹³C NMR (δ = 164.09, 83.12, 68.80, 50.72, 45.60 and 18.28 ppm) spectrum (d *vs* c; D *vs* C, outside the dashed boxes part), which might be attributed to the carbamate formed via the reaction of **1a** with CO₂. After 6 hours, the signals attribute to **1a** and carbamic intermediate became weak gradually and the full conversion of **1a** to **2a** was observed within 12 hours (e-f; E-F). Notably, during the reaction course, the character peaks belong to DPG also shifted distinctly (the dashed boxes part). In the first half an hour, the characteristic signals of ¹⁴C NMR also shifted from 143.23, 123.40 and 123.01 ppm to 141.32, 124.29 and 123.47 ppm obviously (d *vs* c; D *vs* C). Then, as the reaction proceeded, the character peaks of DPG shifted back to its original state gradually (d-f *vs* c; D-F *vs* C), which indicated that there should be interactions between DPG and the carbamate intermediate.

5.4. HRMS analysis of the complex derived from DPG, AgSbF₆ and 1a.

In order to get more information of the interactions among $AgSbF_6$, DPG and homopropargyl amine **1a**, the HRMS analysis was conducted (Figure S8). When a CH₂Cl₂ solution of 1:10:10 mixture of AgSbF₆, DPG and **1a** was subjected to the HRMS analysis, the signals of [**1a**+Ag]⁺ at 266.0087, [(DPG)₂+Ag]⁺ at m/z 529.1257, as well as [DPG+**1a**+Ag]⁺ at m/z 477.1199 could be detected respectively. This information further confirmed the interactions between AgSbF₆ with DPG and **1a**, and also suggested the formation of 1/1/1 complex of AgSbF₆, DPG and **1a**.

Figure S8. HRMS analysis.

6. Single-crystal X-ray analysis of bicarbonate salt [DPGH][HCO3].

Table S3. Crystal data and structure refinement for CCDC-1907983. Identification code CCDC-1907983 Empirical formula C₁₄H₁₅N₃O₃ Formula weight 273.29 Temperature 193(2) K 0.71073 Å Wavelength Crystal system Trigonal Space group R -3 :H Unit cell dimensions a= 90°. a = 34.5947(14) Åb = 34.5947(14) Å $b = 90^{\circ}$. c = 10.7422(5) Å $g = 120^{\circ}$. 11133.8(10) Å³ Volume Ζ 18 0.734 Mg/m^3 Density (calculated) Absorption coefficient 0.053 mm⁻¹ 2592 F(000) Crystal size 0.160 x 0.140 x 0.110 mm³ Theta range for data collection 2.014 to 25.000°. -41<=h<=31, -32<=k<=41, -12<=l<=12 Index ranges Reflections collected 12749 Independent reflections 3789 [R(int) = 0.0794]Completeness to theta = 25.242° 84.4 % Absorption correction Semi-empirical from equivalents Max. and min. transmission 0.7456 and 0.5782 Refinement method Full-matrix least-squares on F2 Data / restraints / parameters 3789 / 0 / 183 Goodness-of-fit on F2 1.015 Final R indices [I>2sigma(I)] R1 = 0.0784, wR2 = 0.1955 R indices (all data) R1 = 0.1169, wR2 = 0.2122Extinction coefficient 0.0017(4) 0.198 and -0.167 e.Å⁻³ Largest diff. peak and hole

	х	У	Ζ	U(eq)	
O(1)	4446(1)	4055(1)	1381(2)	53(1)	
O(2)	4998(1)	4464(1)	96(2)	59(1)	
O(3)	4650(1)	4768(1)	1071(2)	58(1)	
N(1)	3482(1)	4340(1)	3996(2)	59(1)	
N(2)	4197(1)	4694(1)	3190(2)	54(1)	
N(3)	3691(1)	4013(1)	2432(2)	51(1)	
C(1)	3781(1)	4346(1)	3233(2)	48(1)	
C(2)	4424(1)	5020(1)	4111(3)	51(1)	
C(3)	4705(1)	5458(1)	3737(3)	67(1)	
C(4)	4964(1)	5779(1)	4575(4)	77(1)	
C(5)	4943(1)	5673(1)	5818(3)	72(1)	
C(6)	4666(1)	5245(1)	6208(3)	69(1)	
C(7)	4406(1)	4917(1)	5354(3)	59(1)	
C(8)	3270(1)	3645(1)	2131(2)	53(1)	
C(9)	3237(1)	3224(1)	2087(3)	68(1)	
C(10)	2845(2)	2867(1)	1712(3)	85(1)	
C(11)	2481(1)	2903(1)	1409(3)	83(1)	
C(12)	2505(1)	3314(2)	1492(3)	82(1)	
C(13)	2906(1)	3690(1)	1828(3)	64(1)	
C(14)	4682(1)	4428(1)	879(2)	47(1)	

Table S4. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3) for d8v19290. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Table S5.	Bond lengths [A	A] and angles [°] for	d8v19290.
-----------	-----------------	-----------------------	-----------

O(1)-C(14)	1.252(3)
O(2)-C(14)	1.335(3)
O(2)-H(2A)	0.8400
O(3)-C(14)	1.252(3)
N(1)-C(1)	1.312(4)
N(1)-H(1A)	0.8800
N(1)-H(1B)	0.8800
N(2)-C(1)	1.338(4)
N(2)-C(2)	1.408(4)
N(2)-H(2)	0.8800
N(3)-C(1)	1.346(3)
N(3)-C(8)	1.411(4)
N(3)-H(3)	0.8800
C(2)-C(7)	1.375(4)
C(2)-C(3)	1.389(4)
C(3)-C(4)	1.361(5)

C(3)-H(3A)	0.9500
C(4)-C(5)	1.376(5)
C(4)-H(4)	0.9500
C(5)-C(6)	1.367(5)
C(5)-H(5)	0.9500
C(6)-C(7)	1.384(4)
C(6)-H(6)	0.9500
С(7)-Н(7)	0.9500
C(8)-C(13)	1.383(5)
C(8)-C(9)	1.404(5)
C(9)-C(10)	1.360(5)
C(9)-H(9)	0.9500
C(10)-C(11)	1.365(7)
С(10)-Н(10)	0.9500
C(11)-C(12)	1.385(6)
C(11)-H(11)	0.9500
C(12)-C(13)	1.394(5)
C(12)-H(12)	0.9500
С(13)-Н(13)	0.9500
C(14)-O(2)-H(2A)	109.5
C(1)-N(1)-H(1A)	120.0
C(1)-N(1)-H(1B)	120.0
H(1A)-N(1)-H(1B)	120.0
C(1)-N(2)-C(2)	127.9(2)
C(1)-N(2)-H(2)	116.1
C(2)-N(2)-H(2)	116.1
C(1)-N(3)-C(8)	127.7(2)
C(1)-N(3)-H(3)	116.2
C(8)-N(3)-H(3)	116.2
N(1)-C(1)-N(2)	121.5(2)
N(1)-C(1)-N(3)	123.0(3)
N(2)-C(1)-N(3)	115.5(2)
C(7)-C(2)-C(3)	118.6(3)
C(7)-C(2)-N(2)	122.8(3)
C(3)-C(2)-N(2)	118.4(2)
C(4)-C(3)-C(2)	121.0(3)
C(4)-C(3)-H(3A)	119.5
C(2)-C(3)-H(3A)	119.5
C(3)-C(4)-C(5)	119.9(3)
C(3)-C(4)-H(4)	120.0
C(5)-C(4)-H(4)	120.0
C(6)-C(5)-C(4)	120.1(3)
C(6)-C(5)-H(5)	120.0
C(4)-C(5)-H(5)	120.0
C(5)-C(6)-C(7)	120.0(3)

C(5)-C(6)-H(6)	120.0
C(7)-C(6)-H(6)	120.0
C(2)-C(7)-C(6)	120.4(3)
C(2)-C(7)-H(7)	119.8
C(6)-C(7)-H(7)	119.8
C(13)-C(8)-C(9)	120.2(3)
C(13)-C(8)-N(3)	122.6(3)
C(9)-C(8)-N(3)	117.1(3)
C(10)-C(9)-C(8)	118.6(4)
C(10)-C(9)-H(9)	120.7
C(8)-C(9)-H(9)	120.7
C(9)-C(10)-C(11)	122.3(4)
C(9)-C(10)-H(10)	118.8
C(11)-C(10)-H(10)	118.8
C(10)-C(11)-C(12)	119.6(3)
C(10)-C(11)-H(11)	120.2
C(12)-C(11)-H(11)	120.2
C(11)-C(12)-C(13)	119.7(4)
C(11)-C(12)-H(12)	120.2
C(13)-C(12)-H(12)	120.2
C(8)-C(13)-C(12)	119.5(4)
C(8)-C(13)-H(13)	120.3
C(12)-C(13)-H(13)	120.3
O(1)-C(14)-O(3)	125.2(2)
O(1)-C(14)-O(2)	116.8(2)
O(3)-C(14)-O(2)	117.9(2)

Symmetry transformations used to generate equivalent atoms:

Table S6.	Anisotropic displacement parame	eters	$(Å^2 x \ 10^3)$ for d8v	v19290.	The anisotropic
displacemer	nt factor exponent takes the form:	-2p ²	$2[h^2 a^{*2}U^{11} +$	+ 2 h k	a* b* U ¹²]

	U11	U ²²	U33	U ²³	U13	U12	
O(1)	56(1)	38(1)	54(1)	1(1)	7(1)	15(1)	
O(2)	56(1)	47(1)	71(1)	6(1)	20(1)	24(1)	
O(3)	62(1)	43(1)	59(1)	2(1)	22(1)	18(1)	
N(1)	45(1)	54(2)	59(1)	-14(1)	10(1)	10(1)	
N(2)	49(1)	49(1)	50(1)	-4(1)	13(1)	13(1)	
N(3)	44(1)	46(1)	53(1)	-7(1)	3(1)	14(1)	
C(1)	49(2)	42(2)	44(1)	-3(1)	4(1)	17(1)	
C(2)	42(2)	50(2)	55(2)	-4(1)	2(1)	18(1)	
C(3)	63(2)	48(2)	66(2)	6(1)	-10(2)	10(2)	

C(4)	66(2)	50(2)	86(2)	2(2)	-22(2)	8(2)
C(5)	60(2)	66(2)	77(2)	-22(2)	-20(2)	22(2)
C(6)	69(2)	68(2)	55(2)	-8(2)	-10(2)	22(2)
C(7)	59(2)	47(2)	62(2)	4(1)	2(2)	20(2)
C(8)	60(2)	50(2)	38(1)	-2(1)	6(1)	18(1)
C(9)	83(2)	47(2)	58(2)	-1(1)	-7(2)	20(2)
C(10)	101(3)	48(2)	70(2)	4(2)	-20(2)	10(2)
C(11)	78(3)	62(2)	65(2)	-6(2)	-6(2)	1(2)
C(12)	64(2)	102(3)	63(2)	-19(2)	-10(2)	28(2)
C(13)	55(2)	67(2)	61(2)	-14(2)	-6(2)	24(2)
C(14)	49(2)	42(2)	46(1)	-6(1)	2(1)	19(1)

Table S7. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³)

	Х	У	Z	U(eq)
H(2A)	5110	4711	-274	88
H(1A)	3553	4568	4495	71
H(1B)	3209	4109	4009	71
H(2)	4347	4722	2502	65
H(3)	3923	4025	2051	62
H(3A)	4716	5534	2883	80
H(4)	5160	6075	4302	92
H(5)	5120	5898	6405	86
H(6)	4652	5173	7066	83
H(7)	4215	4620	5629	71
H(9)	3483	3188	2313	82
H(10)	2823	2583	1661	102
H(11)	2213	2648	1142	100
H(12)	2249	3339	1321	98
H(13)	2930	3976	1848	77

Table S8.Torsion angles [°] for d8v19290.

C(2)-N(2)-C(1)-N(1)	21.2(5)	
C(2)-N(2)-C(1)-N(3)	-159.8(3)	
C(8)-N(3)-C(1)-N(1)	10.0(5)	
C(8)-N(3)-C(1)-N(2)	-168.9(3)	
C(1)-N(2)-C(2)-C(7)	42.8(5)	
C(1)-N(2)-C(2)-C(3)	-142.2(3)	
C(7)-C(2)-C(3)-C(4)	1.3(5)	
N(2)-C(2)-C(3)-C(4)	-173.9(3)	
C(2)-C(3)-C(4)-C(5)	-1.6(6)	

C(3)-C(4)-C(5)-C(6)	1.0(6)
C(4)-C(5)-C(6)-C(7)	-0.2(6)
C(3)-C(2)-C(7)-C(6)	-0.5(5)
N(2)-C(2)-C(7)-C(6)	174.5(3)
C(5)-C(6)-C(7)-C(2)	0.0(5)
C(1)-N(3)-C(8)-C(13)	48.2(4)
C(1)-N(3)-C(8)-C(9)	-135.0(3)
C(13)-C(8)-C(9)-C(10)	1.5(5)
N(3)-C(8)-C(9)-C(10)	-175.3(3)
C(8)-C(9)-C(10)-C(11)	-1.6(5)
C(9)-C(10)-C(11)-C(12)	-0.7(6)
C(10)-C(11)-C(12)-C(13)	3.1(6)
C(9)-C(8)-C(13)-C(12)	0.8(5)
N(3)-C(8)-C(13)-C(12)	177.5(3)
C(11)-C(12)-C(13)-C(8)	-3.1(5)

Symmetry transformations used to generate equivalent atoms:

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	
N(3)-H(3)O(1)	0.88	1.90	2.780(3)	174.5	
N(2)-H(2)O(3)	0.88	1.82	2.701(3)	178.8	
N(1)-H(1B)O(1)#1	0.88	1.97	2.789(3)	155.0	
O(2)-H(2A)O(3)#2	0.84	1.78	2.623(3)	179.4	
N(3)-H(3)O(1)	0.88	1.90	2.780(3)	174.5	
N(2)-H(2)O(3)	0.88	1.82	2.701(3)	178.8	
N(1)-H(1B)O(1)#1	0.88	1.97	2.789(3)	155.0	
O(2)-H(2A)O(3)#2	0.84	1.78	2.623(3)	179.4	
O(2)-H(2A)O(3)#2	0.84	1.78	2.623(3)	179.4	
N(1)-H(1B)O(1)#1	0.88	1.97	2.789(3)	155.0	
N(2)-H(2)O(3)	0.88	1.82	2.701(3)	178.8	
N(3)-H(3)O(1)	0.88	1.90	2.780(3)	174.5	
O(2)-H(2A)O(3)#2	0.84	1.78	2.623(3)	179.4	
N(1)-H(1B)O(1)#1	0.88	1.97	2.789(3)	155.0	
N(2)-H(2)O(3)	0.88	1.82	2.701(3)	178.8	
N(3)-H(3)O(1)	0.88	1.90	2.780(3)	174.5	

Table S9. Hydrogen bonds for d8v19290 [Å and °].

Symmetry transformations used to generate equivalent atoms:

#1 -y+2/3,x-y+1/3,z+1/3 #2 -x+1,-y+1,-z

7. Single-crystal X-ray analysis of complex formed from DPG and AgSbF₆.

Single crystal of C₂₆H₂₆AgF₆N₆Sb was selected on a 'Bruker APEX-II CCD' diffractometer. The crystal was kept at 170.0 K during data collection. Using Olex2, the structure was solved with the ShelXS structure solution program using Direct Methods and refined with the ShelXL refinement package using Least Squares minimisation. Crystal Data for C₂₆H₂₆AgF₆N₆Sb (M =766.15 g/mol): orthorhombic, space group Pna21 (no. 33), a = 14.7369(6) Å, b = 31.5086(13) Å, c = 5.9773(2) Å, V = 2775.49(19) Å3, Z = 4, T = 170.0 K, μ (GaK α) = 9.462 mm⁻¹, Dcalc = 1.833 g/cm³, 22100 reflections measured (5.76° ≤ 2 Θ ≤ 109.906°), 4443 unique (R_{int} = 0.1534, R_{sigma} = 0.1249) which were used in all calculations. The final R₁ was 0.0639 (I > 2 σ (I)) and wR₂ was 0.1822 (all data). Number of restraints - 1, number of constraints - unknown.

Table S10.	Crystal data and	structure refinement	for	CCDC-1894496.
------------	------------------	----------------------	-----	---------------

Identification code	CCDC-1894496	
Empirical formula	C26 H26 Ag F6 N6 Sb	
Formula weight	766.15	
Temperature	170.0 K	
Wavelength	1.34139 Å	
Crystal system	Orthorhombic	
Crystal system Space group	Orthorhombic Pna21	
		α= 90°.
Space group	Pna21	α= 90°. β= 90°.

Volume	2775.49(19) Å ³
Z	4
Density (calculated)	1.833 Mg/m ³
Absorption coefficient	9.462 mm ⁻¹
F(000)	1504
Crystal size	0.03 x 0.02 x 0.01 mm ³
Theta range for data collection	2.880 to 54.953°.
Index ranges	-15<=h<=17, -38<=k<=35, -7<=l<=4
Reflections collected	22100
Independent reflections	4443 [R(int) = 0.1534]
Completeness to theta = 53.594°	99.9 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7508 and 0.4138
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4443 / 1 / 361
Goodness-of-fit on F ²	1.001
Final R indices [I>2sigma(I)]	R1 = 0.0639, wR2 = 0.1336
R indices (all data)	R1 = 0.1557, wR2 = 0.1822
Absolute structure parameter	0.01(3)
Extinction coefficient	n/a
Largest diff. peak and hole	0.912 and -1.434 e.Å ⁻³

Table S11. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x

10³)

	Х	У	Z	U(eq)
Sb(1)	-12684(1)	-3742(1)	8989(2)	40(1)
F(1)	-13600(9)	-3814(4)	11130(30)	55(4)
F(2)	-12860(9)	-3157(3)	9050(30)	71(4)
F(3)	-11816(11)	-3703(5)	11260(40)	77(6)
F(4)	-11748(10)	-3672(5)	6930(30)	70(5)
F(5)	-12537(9)	-4327(4)	8910(30)	70(4)
F(6)	-13560(10)	-3779(5)	6700(40)	66(5)
Ag(1)	-7678(1)	-3756(1)	6563(3)	45(1)
N(1)	-8470(13)	-3668(6)	9370(40)	43(6)
N(2)	-6865(14)	-3844(6)	3740(50)	47(6)
N(3)	-9860(12)	-3926(5)	7990(30)	41(5)
N(4)	-9898(13)	-3423(6)	10750(30)	44(5)
N(5)	-5519(12)	-3576(5)	5020(30)	35(5)
N(6)	-5465(12)	-4079(5)	2330(30)	39(5)
C(1)	-9361(14)	-3668(6)	9470(30)	32(5)
C(2)	-9600(14)	-3094(6)	12220(40)	34(6)
C(3)	-9991(15)	-3046(6)	14190(40)	42(6)
C(4)	-9775(17)	-2720(8)	15680(40)	47(7)
C(5)	-9080(20)	-2443(7)	15080(50)	53(8)
C(6)	-8683(18)	-2486(8)	13020(60)	50(7)
C(7)	-8931(12)	-2805(6)	11560(40)	35(5)
C(8)	-9537(15)	-4243(6)	6540(50)	44(6)
C(9)	-8782(16)	-4505(6)	7090(40)	45(6)
C(10)	-8519(16)	-4800(7)	5460(50)	49(8)
C(11)	-8960(17)	-4840(7)	3440(50)	51(7)
C(12)	-9691(17)	-4587(7)	2990(40)	49(7)
C(13)	-9967(15)	-4286(7)	4510(40)	42(6)
C(14)	-5996(15)	-3835(6)	3700(40)	35(5)
C(15)	-5835(12)	-3272(5)	6650(40)	28(5)
C(16)	-6580(13)	-3002(7)	6000(40)	41(6)
C(17)	-6855(16)	-2703(7)	7510(40)	42(6)

for mj19077_0m. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(18)	-6458(16)	-2675(7)	9610(40)	44(7)
C(19)	-5742(15)	-2932(6)	10130(40)	41(6)
C(20)	-5448(14)	-3228(6)	8630(40)	37(5)
C(21)	-5765(14)	-4400(7)	740(40)	38(6)
C(22)	-5349(14)	-4430(6)	-1310(40)	32(5)
C(23)	-5605(15)	-4754(6)	-2740(40)	42(6)
C(24)	-6277(16)	-5043(7)	-2130(50)	44(7)
C(25)	-6698(17)	-5014(7)	-140(40)	45(7)
C(26)	-6433(13)	-4699(6)	1470(40)	40(5)

Table S12.	Bond lengths [Å] and angles [°] for	mj19077_0m.
Table S12.	Bond lengths [Å] and angles [°] for	mj19077_0m.

Sb(1)-F(1)	1.874(14)	
Sb(1)-F(2)	1.862(11)	
Sb(1)-F(3)	1.87(2)	
Sb(1)-F(4)	1.862(16)	
Sb(1)-F(5)	1.855(12)	
Sb(1)-F(6)	1.884(19)	
Ag(1)-N(1)	2.06(2)	
Ag(1)-N(2)	2.09(3)	
N(1)-C(1)	1.31(3)	
N(2)-C(14)	1.28(3)	
N(3)-C(1)	1.41(3)	
N(3)-C(8)	1.41(3)	
N(4)-C(1)	1.35(2)	
N(4)-C(2)	1.43(3)	
N(5)-C(14)	1.34(3)	
N(5)-C(15)	1.44(2)	
N(6)-C(14)	1.37(3)	
N(6)-C(21)	1.46(3)	
C(2)-C(3)	1.32(3)	
C(2)-C(7)	1.40(3)	
C(3)-C(4)	1.39(3)	
C(4)-C(5)	1.40(3)	
C(5)-C(6)	1.37(4)	
C(6)-C(7)	1.38(3)	
C(8)-C(9)	1.42(3)	
C(8)-C(13)	1.38(3)	
C(9)-C(10)	1.40(3)	

C(10)-C(11)	1.38(3)
C(11)-C(12)	1.37(3)
C(12)-C(13)	1.38(3)
C(15)-C(16)	1.44(3)
C(15)-C(20)	1.32(3)
C(16)-C(17)	1.37(3)
C(17)-C(18)	1.39(3)
C(18)-C(19)	1.37(3)
C(19)-C(20)	1.36(3)
C(21)-C(22)	1.37(3)
C(21)-C(26)	1.43(3)
C(22)-C(23)	1.38(3)
C(23)-C(24)	1.39(3)
C(24)-C(25)	1.34(3)
C(25)-C(26)	1.44(3)
F(1)-Sb(1)-F(6)	89.7(6)
F(2)-Sb(1)-F(1)	90.3(6)
F(2)-Sb(1)-F(3)	90.9(8)
F(2)-Sb(1)-F(6)	88.9(7)
F(3)-Sb(1)-F(1)	90.3(8)
F(3)-Sb(1)-F(6)	179.8(8)
F(4)-Sb(1)-F(1)	178.2(7)
F(4)-Sb(1)-F(2)	89.9(7)
F(4)-Sb(1)-F(3)	88.0(7)
F(4)-Sb(1)-F(6)	92.1(8)
F(5)-Sb(1)-F(1)	89.0(6)
F(5)-Sb(1)-F(2)	178.7(6)
F(5)-Sb(1)-F(3)	90.2(7)
F(5)-Sb(1)-F(4)	90.9(6)
F(5)-Sb(1)-F(6)	90.1(7)
N(1)-Ag(1)-N(2)	179.4(9)
C(1)-N(1)-Ag(1)	126.8(19)
C(14)-N(2)-Ag(1)	126(2)
C(1)-N(3)-C(8)	128.3(18)
C(1)-N(4)-C(2)	125.8(19)
C(14)-N(5)-C(15)	129.3(17)
C(14)-N(6)-C(21)	127.4(18)
N(1)-C(1)-N(3)	119.7(19)
N(1)-C(1)-N(4)	128(2)

N(4)-C(1)-N(3)	112.4(18)
C(3)-C(2)-N(4)	120(2)
C(3)-C(2)-C(7)	119(2)
C(7)-C(2)-N(4)	121(2)
C(2)-C(3)-C(4)	124(2)
C(3)-C(4)-C(5)	118(2)
C(6)-C(5)-C(4)	119(3)
C(5)-C(6)-C(7)	122(3)
C(6)-C(7)-C(2)	119(2)
N(3)-C(8)-C(9)	122(2)
C(13)-C(8)-N(3)	117(2)
C(13)-C(8)-C(9)	120(2)
C(10)-C(9)-C(8)	116(2)
C(11)-C(10)-C(9)	123(2)
C(12)-C(11)-C(10)	119(2)
C(11)-C(12)-C(13)	120(3)
C(12)-C(13)-C(8)	121(2)
N(2)-C(14)-N(5)	122(2)
N(2)-C(14)-N(6)	125(2)
N(5)-C(14)-N(6)	113.3(19)
C(16)-C(15)-N(5)	117(2)
C(20)-C(15)-N(5)	122.3(19)
C(20)-C(15)-C(16)	120(2)
C(17)-C(16)-C(15)	117(2)
C(16)-C(17)-C(18)	121(2)
C(19)-C(18)-C(17)	120(2)
C(20)-C(19)-C(18)	120(2)
C(15)-C(20)-C(19)	122(2)
C(22)-C(21)-N(6)	120(2)
C(22)-C(21)-C(26)	122(2)
C(26)-C(21)-N(6)	118(2)
C(21)-C(22)-C(23)	119(2)
C(22)-C(23)-C(24)	121(2)
C(25)-C(24)-C(23)	121(2)
C(24)-C(25)-C(26)	121(2)
C(21)-C(26)-C(25)	116(2)

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U13	U12
Sb(1)	33(1)	39(1)	48(1)	4(1)	0(1)	0(1)
F(1)	41(8)	78(9)	45(10)	12(7)	6(7)	-13(7)
F(2)	85(11)	37(6)	92(12)	-3(8)	8(11)	-11(6)
F(3)	44(10)	132(15)	55(12)	1(12)	-12(10)	-8(9)
F(4)	49(10)	99(13)	62(12)	8(9)	12(9)	2(8)
F(5)	78(11)	50(7)	81(12)	-1(8)	4(11)	24(6)
F(6)	44(10)	87(10)	67(15)	2(9)	-7(10)	-11(8)
Ag(1)	34(1)	50(1)	50(2)	-8(1)	7(1)	-2(1)
N(1)	26(11)	70(13)	34(16)	0(10)	11(9)	-2(9)
N(2)	42(13)	59(12)	41(15)	-4(12)	-7(12)	6(9)
N(3)	30(10)	43(10)	49(13)	-17(9)	16(9)	-9(8)
N(4)	45(13)	43(11)	43(13)	-13(9)	9(10)	-1(9)
N(5)	18(10)	35(9)	50(13)	8(9)	6(8)	-1(8)
N(6)	38(12)	46(11)	34(13)	-3(9)	8(9)	0(9)
C(1)	38(13)	38(12)	18(13)	-2(9)	10(9)	1(9)
C(2)	33(13)	35(12)	33(16)	-1(10)	-4(10)	12(9)
C(3)	44(14)	46(13)	35(18)	1(12)	8(13)	7(10)
C(4)	58(18)	54(16)	31(15)	-14(12)	0(12)	20(13)
C(5)	60(20)	44(14)	60(20)	-15(14)	-17(14)	9(13)
C(6)	64(17)	31(11)	56(19)	-7(12)	-13(16)	24(15)
C(7)	20(11)	46(12)	39(14)	-10(12)	-7(12)	9(9)
C(8)	50(15)	38(12)	45(16)	-18(12)	18(14)	-29(11)
C(9)	50(16)	46(13)	38(17)	6(11)	2(12)	-3(11)
C(10)	40(16)	34(12)	70(20)	-15(12)	28(14)	-2(11)
C(11)	50(17)	49(14)	50(20)	-14(13)	18(15)	-9(13)
C(12)	63(19)	47(14)	38(17)	3(12)	10(14)	-14(12)
C(13)	28(12)	53(14)	47(18)	-9(13)	-3(11)	0(10)
C(14)	38(13)	33(11)	34(14)	3(11)	-11(12)	0(9)
C(15)	23(10)	29(10)	33(13)	-10(10)	-3(11)	-9(8)
C(16)	24(12)	63(14)	37(15)	7(12)	6(11)	-13(10)
C(17)	35(14)	56(13)	35(16)	5(12)	1(12)	18(11)
C(18)	42(16)	46(13)	43(17)	1(11)	13(12)	9(11)
C(19)	40(15)	33(12)	51(17)	-17(11)	-8(12)	-10(10)
C(20)	27(12)	37(11)	47(17)	3(11)	1(12)	-11(9)
C(21)	29(14)	46(13)	39(15)	0(11)	-2(11)	19(10)

Table S13. Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for mj19077_0m. The anisotropic displacement factor exponent takes the form: -2 2 [h² a*²U¹¹ + ... + 2 h k a* b* U¹²]

C(22)	46(14)	36(11)	15(13)	10(10)	4(11)	-3(9)
C(23)	45(14)	34(12)	46(17)	7(11)	10(12)	16(11)
C(24)	27(15)	48(14)	60(20)	-20(13)	4(12)	-1(11)
C(25)	47(17)	42(13)	46(18)	-3(12)	-6(13)	3(11)
C(26)	34(13)	49(13)	38(14)	12(12)	18(13)	-4(10)

Table S14. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3)

	Х	У	Z	U(eq)	
H(1)	-8180	-3627	10643	52	
H(2)	-7144	-3892	2462	57	
H(3)	-10327	-4030	8725	49	
H(4)	-10486	-3469	10673	52	
H(5A)	-4926	-3594	4881	41	
H(6A)	-4876	-4039	2429	47	
H(3A)	-10444	-3244	14624	50	
H(4A)	-10092	-2688	17057	57	
H(5)	-8877	-2228	16086	64	
H(6)	-8225	-2291	12584	60	
H(7)	-8653	-2828	10132	42	
H(9)	-8474	-4480	8475	54	
H(10)	-8016	-4980	5765	58	
H(11)	-8758	-5042	2370	61	
H(12)	-10010	-4620	1616	59	
H(13)	-10461	-4105	4151	51	
H(16)	-6866	-3030	4586	49	
H(17)	-7326	-2511	7121	51	
H(18)	-6682	-2478	10683	52	
H(19)	-5447	-2905	11538	50	
H(20)	-4954	-3407	9020	45	
H(22)	-4893	-4233	-1735	39	
H(23)	-5318	-4780	-4153	50	
H(24)	-6439	-5264	-3137	52	
H(25)	-7178	-5204	198	54	
H(26)	-6685	-4691	2936	48	

gxt-ge-140 H

gxt-ge-54 H

7.345 7.327 7.327 7.312 7.306 7.306 7.267

167 148 112 0094 809	881 864 574 558 542 542 530	604 364 347 329
4.4.4.4.4.		

5.450 5.450 5.517 6.552 6.586 6.621 6.653

gxt-ge-54 P

gxt-gd-108 H

-00	ဘယ	4 N	306 291	>
		55		

889 873 856 733 733 700 604 571	562 556 547 543 543 028 028 028 028 020

gxt-gd-124 H

gxt-ge-47 H

3310 2259 2259 2222 2222 2222 2222 2222 222	831 831 798 673 570 537 537	517 511 511 500 329 041 987 974 974	

--0.000

gxt-gd-125 H

		542 537 529 529 521 525 521 521 521 017 0012 0012 901
	3333333	
THE VICE OF	חון ור רר	

gxt-ge-63 H

7.863 7.842 7.822 7.7555 7.7555 7.7555 7.7555 7.7555 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.7256 7.7256 7.7256 7.7256 7.7256

4.055 3.757 3.757 3.538 3.598	2.637 2.631 2.631 2.614 2.031 2.019 1.898 1.898

gxt-ge-20 H

7.245 7.2328 7.231 7.231 7.231 7.213	
---	--

gxt-ge-21 H

7.380 7.361 7.367 7.327 7.327 7.327 7.327 7.327 7.307 7.707 7.307 7.7077 7.707 7.707 7.707 7.707 7.707 7.707 7.707 7.707 7.707 7.707	3.878 3.845 3.755 3.755 3.755 3.755 3.845 3.755 2.8015 2.8015 2.8015 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.771 2.757 2.771 2.757 2.771 2.757 2.771 2.757 2.7556 2.7575 2.75755 2.7575 2.7575 2.7575 2.7575 2.7575 2.7575 2.7575 2.7575 2.7575 2.75755 2.7575 2.7575 2.7575 2.75755 2.75755 2.75755 2.7575	-0.007
		1

gxt-ge-25 H

gxt-gd-136 H

7.343 7.324 7.313 7.254 7.254 7.233 3.8243.8243.7513.7513.7512.86591.26591.9851.9851.9851.9851.9851.9851.9851.9851.9731.9731.9731.9731.9731.9731.373 -0.001

2.553 2.537 2.522 2.340

7.275 7.226 7.213 7.115 7.071 7.092 7.071 7.071 7.071 7.071 7.071 7.071 7.071 7.071 7.071 7.071 7.071 7.071 7.032 7.032 7.032 7.032 7.032 7.032 7.071

gxt-gd-19 H

						77.318 77.000 76.682			29.626 26.506 25.461 25.370	
gxt-gd-xx C										
		\frown	0							
		N.								
		2i	\checkmark							
							I			
**************************************	ан на админија и радини и ради	######################################	******		ang dag da	4494649964949494949494 ⁴ "Angelegenerations	**************************************	****	adalahan Adapat Tegeska fud ² untuk disebuah sebagai seba	n,-1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
170 160	150	140 130	120	110	100 90 f1 (p	80 70 om)	60 50	40	30 20	10 (

gxt-ge-81 H

				<1.270 <1.254
--	--	--	--	------------------

13.680 13.613 13.551 13.486

gxt-ge-80 P

Bn

Ph

4a

gxt-gd-49 H

68 06 1225 06 06 06 00 00 00 00 00 00 00 00 00 00 0	2.883 2.847 2.883 2.8847 2.8847 2.8847 2.8847 2.8848 2.8843 2.8848 2.8848 2.8848 2.8823 2.8823 2.8823 2.8823 2.8823 2.8823 2.8823 2.8823 2.8823 2.8823 2.8823 2.8823 2.8823 2.8823 2.8823 2.8847 2.2847 2.284
--	--

----0.005

gxt-ge-52 H

-0.002

gxt-gd-57 H

7.366 7.3359 7.3359 7.3353 7.3353 7.337 7.337 7.337 7.235 7.7255 7.7255 7.7255 7.7255 7.7255 7.7255 7.7255 7.7255 7.70557 7.70557 7.70557 7.70557 7.70557 7.70557 7.70577 7.70577 7.705777 7.7057777777777	~5.325 ~5.287	-4.739 4.406 4.400 4.330 -4.334	 3.702 3.645 3.6564 3.6564 3.8564 2.8994 2.875 2.875
--	------------------	---	---

gxt-gd-56 H

-0.004

Ô

4f

Bn N

gxt-ge-68 H

-0.003

gxt-ge-31 H

7.352 7.333 7.317 7.299 7.290 7.290 ~5.357 ~5.319 ~5.319 ~5.319 ~5.319 ~5.319 ~5.319 ~5.319 ~5.319 ~5.319 ~5.319 ~5.319

gxt-ge-35 H

7.260 7.184 7.184 7.168 7.168 7.168 7.154 7.154 7.109 7.100	5,555 5,556 5,5666 5,5666 5,5666 5,5666 5,56666 5,56666 5,566666666

7.302 7.282 7.266 7.256 7.256 7.235 7.235 7.235 7.235 7.235	-5.712 -5.694 -5.658	-4.551 -4.111 -4.111 -3.076 -3.056 -3.056	

gxt-gd-18-final H

Sample Name Sample ID	gxt-gd-22-rac-ojh-90-10-1.0-		
Data Filename Method Filename Batch Filename	gxt-gd-22-rac-ojh-90-10-1.0-4.lcd gxt-20170531.lcm		
Vial # Injection Volume	: 1-1 : 20 uL	Sample Type	: Unknown
Date Acquired Date Processed	: 2018/6/10 17:42:02 : 2018/6/10 17:57:40	Acquired by Processed by	: System Administrator : System Administrator

<Chromatogram>

<Peak Table>

	Detector A Channel 2 230nm						
Peak#	Ret. Time	Area	Height	Conc.			
1	10.903	2229255	124118	49.819			
2	13.195	2245429	87402	50.181			
Total		4474685	211521				

LabSolutions Analysis Report

<Sample Information>

Sample Name Sample ID	: gxt-gd-22-asy-ojh-90-10-1.0-		
Data Filename Method Filename	gxt-gd-22-asy-ojh-90-10-1.0-1.lcd gxt-20170531.lcm		
Batch Filename Vial #	1-1	Sample Type	: Unknown
Injection Volume Date Acquired	: 20 uL : 2018/6/10 17:59:27	Acquired by	: System Administrator
Date Processed	: 2018/6/10 18:14:58	Processed by	: System Administrator

<Chromatogram>

<Peak Table>

		el 2 230nm		
Peak#	Ret. Time	Area	Height	Conc.
1	10.650	9762775	429955	98.163
2	13.407	182660	8039	1.837
Total		9945435	437994	

D:\Data\GXT\20180518\gxt-gd-22-asy-ojh-90-10-1.0-1.lcd

D:\Data\GXT\20180518\gxt-gd-22-rac-ojh-90-10-1.0-4.lcd

Sample Name Sample ID Data Filename Method Filename	: gxt-gd-44-rac-ojh-90-10-1.0- : gxt-gd-44-rac-ojh-90-10-1.0-1.lcd : gxt-20170531.lcm		
Batch Filename Vial #	1-1	Sample Type	: Unknown
Injection Volume Date Acquired Date Processed	: 20 uL : 2018/6/10 18:16:18 : 2018/6/10 18:28:58	Acquired by Processed by	: System Administrator : System Administrator

<Chromatogram>

<Peak Table>

	Detector A Channel 2 230nm						
Peak#	Ret. Time	Area	Height	Conc.			
1	9.399	4623457	308332	50.184			
2	10.292	4589612	254918	49.816			
Total		9213069	563250				

<Sample Information>

gxt-gd-44-asy-ojh-90-10-1.0-		
gxt-gd-44-asy-ojh-90-10-1.0-3.lcd gxt-20170531.lcm		
: 1-1 : 20 ul	Sample Type	: Unknown
: 2018/6/10 19:00:01 : 2018/6/10 19:11:59	Acquired by Processed by	: System Administrator : System Administrator
	gxt-gd-44-asy-ojh-90-10-1.0-3.lcd gxt-20170531.lcm 1-1 20 uL 2018/6/10 19:00:01	gxt-gd-44-asy-ojh-90-10-1.0-3.lcd gxt-20170531.lcm 1-1 Sample Type 20 uL 2018/6/10 19:00:01 Acquired by

<Chromatogram>

<Peak Table>

		el 2 230nm		
Peak#	Ret. Time	Area	Height	Conc.
1	9.366	10163952	640057	99.076
2	10.368	94836	5856	0.924
Total		10258788	645913	

D:\Data\GXT\20180518\gxt-gd-44-asy-ojh-90-10-1.0-3.lcd

D:\Data\GXT\20180518\gxt-gd-44-rac-ojh-90-10-1.0-1.lcd

<Sample Information>

Sample Name Sample ID	: gxt-ge-47-asy-adh-99-1-0.8-		
Data Filename Method Filename Batch Filename	gxt-ge-47-asy-adh-99-1-0.8-1.lcd gxt-20170531.lcm		
Vial # Injection Volume	: 1-1 :20 uL	Sample Type	: Unknown
Date Acquired Date Processed	: 2018/7/14 16:04:18 : 2018/7/14 16:17:53	Acquired by Processed by	: System Administrator : System Administrator

<Chromatogram>

<Peak Table>

Detect	Detector A Channel 2 230nm					
Peak#	Ret. Time	Area	Height	Conc.		
1	9.866	4464318	260757	50.499		
2	11.031	4376114	243543	49.501		
Total		8840432	504301			

LabSolutions Analysis Report

<Sample Information>

Sample Name Sample ID Data Filename Method Filename Batch Filename Vial # Injection Volume Date Acquired Date Processed	gxt-ge-47-rac-adh-99-1-0.8- gxt-ge-47-rac-adh-99-1-0.8-1.lcd gxt-20170531.lcm 1-1 20 uL 2018/7/14 15:48:30 2018/7/14 15:02:38	Sample Type Acquired by Processed by	: Unknown : System Administrator : System Administrator
Date Flucesseu	. 2010/1/14 10:02:30	FIOLESSED by	. System Administrator

<Chromatogram>

Detector A Channel 2 230nm					
Peak#	Ret. Time	Area	Height	Conc.	
1	9.887	10620679	575942	99.243	
2	11.148	81056	5080	0.757	
Total		10701736	581022		

D:\Data\GXT\20180518\gxt-ge-47-rac-adh-99-1-0.8-1.Icd

D:\Data\GXT\20180518\gxt-ge-47-asy-adh-99-1-0.8-1.lcd

<Sample Information>

Sample Name Sample ID	: gxt-gd-53-rac-adh-99-1-0.5-		
Data Filename Method Filename Batch Filename	: gxt-gd-53-rac-adh-99-1-0.5-1.lcd : gxt-20170531.lcm		
Vial # Injection Volume	: 1-1 20 uL	Sample Type	: Unknown
Date Acquired Date Processed	2018/6/11 18:19:13 2018/6/11 18:41:03	Acquired by Processed by	: System Administrator : System Administrator

<Chromatogram>

<Peak Table>

Detect	Detector A Channel 2 230nm					
Peak#	Ret. Time	Area	Height	Conc.		
1	16.611	15708599	545195	50.099		
2	18.040	15646773	542532	49.901		
Total		31355373	1087727			

LabSolutions Analysis Report

<Sample Information>

Sample Name Sample ID Data Filename Method Filename Batch Filename Vial # Injection Volume Date Acquired	gxt-gd-53-asy-adjh-99-1-0.5- gxt-gd-53-asy-adjh-99-1-0.5-1.lcd gxt-20170531.lcm 1-1 20 uL 2018/6/11 17:56:11 2018/6/14 19:32-32	Sample Type	: Unknown : System Administrator
Date Processed	: 2018/6/11 18:23:38	Processed by	: System Administrator

<Chromatogram>

Detector A Channel 2 230nm					
Peak#	Ret. Time	Area	Height	Conc.	
1	16.776	8051327	307443	98.798	
2	18.227	97965	4651	1.202	
Total		8149292	312094		

D:\Data\GXT\20180518\gxt-gd-53-rac-adh-99-1-0.5-1.lcd

D:\Data\GXT\20180518\gxt-gd-53-asy-adjh-99-1-0.5-1.lcd

<Sample Information>

Sample Name Sample ID	gxt-gd-52-rac-ojh-90-10-1.0-		
Data Filename Method Filename Batch Filename	gxt-gd-52-rac-ojh-90-10-1.0-3.lcd gxt-20170531.lcm		
Vial # Injection Volume	: 1-1 : 20 uL	Sample Type	: Unknown
Date Acquired Date Processed	: 2018/6/11 14:34:00 : 2018/6/11 14:54:53	Acquired by Processed by	: System Administrator : System Administrator

<Chromatogram>

Detector A Channel 2 230nm						
Peak#	Ret. Time	Area	Height	Conc.		
1	7.347	792799	85846	50.349		
2	9.316	781813	42548	49.651		
Total		1574611	128393			

<Sample Information>

Sample Name Sample ID Data Filename Method Filename Batch Filename Vial # Injection Volume Date Acquired Date Processed	gxt-gd-52-asy-ojh-90-10-1.0- gxt-gd-52-asy-ojh-90-10-1.0-1.lcd gxt-20170531.lcm 1-1 20 L 2018/6/11 14:51:44 2018/7/15 17:32:22	Sample Type Acquired by Processed by	: Unknown : System Administrator : System Administrator

<Chromatogram>

Detector A Channel 2 230nm					
Peak#	Ret. Time	Area	Height	Conc.	
1	7.286	3891120	350426	98.489	
2	9.289	59699	3341	1.511	
Total		3950819	353766		

D:\Data\GXT\20180518\gxt-gd-52-rac-ojh-90-10-1.0-3.lcd

D:\Data\GXT\20180518\gxt-gd-52-asy-ojh-90-10-1.0-1.lcd

<Sample Information>

Sample Name Sample ID Data Filename	: gxt-ge-63-rac-adh-99-1-0.8- : : gxt-ge-63-rac-adh-99-1-0.8-4.lcd		
Method Filename Batch Filename	: gxt-20170531.lcm		
Vial # Injection Volume	: 1-1 : 20 uL	Sample Type	: Unknown
Date Acquired Date Processed	: 2018/7/15 16:51:56 : 2018/7/15 17:11:29	Acquired by Processed by	: System Administrator : System Administrator

<Chromatogram>

Detect	or A Chann	el 2 230nm		
Peak#	Ret. Time	Area	Height	Conc.
1	10.971	6212166	334440	50.145
2	15.759	6176124	265984	49.855
Total		12388290	600423	

<Sample Information>

Sample Name Sample ID Data Filename Method Filename Batch Filename Vial # Injection Volume Date Acquired Date Processed	gxt-ge-63-asy-adh-99-1-0.8- gxt-ge-63-asy-adh-99-1-0.8-4.lcd gxt-20170531.lcm 1-1 20 L 2018/7/15 16:27:34 2018/7/15 17:15:16	Sample Type Acquired by Processed by	: Unknown : System Administrator : System Administrator

<Chromatogram>

	or A Chann			
Peak#	Ret. Time	Area	Height	Conc.
1	11.184	9387603	509846	99.063
2	16.020	88827	4894	0.937
Total		9476430	514740	

D:\Data\GXT\20180518\gxt-ge-63-rac-adh-99-1-0.8-4.Icd

D:\Data\GXT\20180518\gxt-ge-63-asy-adh-99-1-0.8-4.lcd

<Sample Information>

Sample Name Sample ID Data Filename Method Filename Batch Filename	: gxt-ge-20-rac-adh-97-3-0.8- gxt-ge-20-rac-adh-97-3-0.8-1.lcd gxt-20170531.lcm		
Vial #	1-1	Sample Type	: Unknown
Injection Volume Date Acquired Date Processed	: 20 uL : 2018/6/8 20:06:17 : 2018/6/8 20:23:45	Acquired by Processed by	: System Administrator : System Administrator

<Chromatogram>

<Peak Table>

Detect	Detector A Channel 2 230nm					
Peak#	Ret. Time	Area	Height	Conc.		
1	5.449	1167688	119250	50.490		
2	10.854	1145007	79499	49.510		
Total		2312696	198748			

LabSolutions Analysis Report

<Sample Information>

Sample Name Sample ID Data Filename Method Filename	: gxt-ge-20-asy-adh-97-3-0.8- : : gxt-ge-20-asy-adh-97-3-0.8-1.lcd : gxt-20170531.lcm		
Batch Filename Vial # Iniection Volume	: 0 : 1-1 : 20 uL	Sample Type	: Unknown
Date Acquired Date Processed	: 2018/6/8 20:21:14 : 2018/6/8 20:38:07	Acquired by Processed by	: System Administrator : System Administrator

<Chromatogram>

<Peak Table>

Detector A Channel 2 230nm					
Peak#	Ret. Time	Area	Height	Conc.	
1	5.438	4994617	513707	99.063	
2	10.838	47243	3401	0.937	
Total		5041861	517109		

D:\Data\GXT\20180518\gxt-ge-20-rac-adh-97-3-0.8-1.Icd

D:\Data\GXT\20180518\gxt-ge-20-asy-adh-97-3-0.8-1.lcd

<Sample Information>

Sample Name Sample ID	gxt-ge-21-rac-adh-80-20-0.7		
Data Filename Method Filename	: gxt-ge-21-rac-adh-80-20-0.8.lcd : gxt-20170531.lcm		
Batch Filename Vial # Injection Volume	: 1-1 20 uL	Sample Type	: Unknown
Date Acquired Date Processed	: 2018/6/8 15:57:24 : 2018/6/8 16:23:48	Acquired by Processed by	: System Administrator : System Administrator

<Chromatogram>

<Peak Table>

	Detector A Channel 2 230nm					
Peak#	Ret. Time	Area	Height	Conc.		
1	6.263	2750170	293399	50.155		
2	8.821	2733141	225926	49.845		
Total		5483312	519325			

LabSolutions Analysis Report

<Sample Information>

Sample Name Sample ID	gxt-ge-21-asy-adh-80-20-0.7-second				
Data Filename	ata Filename : gxt-ge-21-asy-adh-80-20-0.7-second1.lcd				
Method Filename	lethod Filename : gxt-20170531.lcm				
Batch Filename Vial # Injection Volume	1-1 20 uL	Sample Type	: Unknown		
Date Acquired	: 2018/6/8 16:31:45	Acquired by	: System Administrator		
Date Processed	: 2018/6/8 16:45:25	Processed by	: System Administrator		

<Chromatogram>

Detect	or A Chann	el 2 230nm		
Peak#	Ret. Time	Area	Height	Conc.
1	6.260	2795856	292020	98.718
2	8.750	36318	3291	1.282
Total		2832174	295311	

D:\Data\GXT\20180518\gxt-ge-21-rac-adh-80-20-0.8.lcd

D:\Data\GXT\20180518\gxt-ge-21-asy-adh-80-20-0.7-second1.lcd

Sample Name Sample ID Data Filename	: gxt-ge-25-rac-adh-95-5-0.5-third- : : gxt-ge-25-rac-adh-95-5-0.5-third-1.	lcd	
Method Filename Batch Filename	: gxt-20170531.lcm		
Vial # Injection Volume	: 1-1 : 20 uL	Sample Type	: Unknown
Date Acquired Date Processed	: 2018/6/9 10:18:43 : 2018/6/9 10:36:32	Acquired by Processed by	: System Administrator : System Administrator

<Chromatogram>

<Peak Table>

	Detector A Channel 2 230nm					
Peak#	Ret. Time	Area	Height	Conc.		
1	9.610	1099207	56163	50.097		
2	10.777	1094941	49649	49.903		
Total		2194149	105812			

<Sample Information>

Sample Name Sample ID Data Filename Method Filename Batch Filename Vial # Injection Volume	gxt-ge-25-asy-adh-95-5-0.5-third- gxt-ge-25-asy-adh-95-5-0.5-third-1. gxt-20170531.lcm 1-1 20 uL	Sample Type	: Unknown
Date Acquired	: 2018/6/9 10:34:33	Acquired by	: System Administrator
Date Processed	: 2018/6/9 11:00:03	Processed by	: System Administrator

<Chromatogram>

De	tect	or A Chann	el 2 230nm		
Pe	ak#	Ret. Time	Area	Height	Conc.
	1	9.665	75121	5226	0.812
	2	10.685	9174318	476109	99.188
T	otal		9249439	481334	

D:\Data\GXT\20180518\gxt-ge-25-rac-adh-95-5-0.5-third-1.lcd

D:\Data\GXT\20180518\gxt-ge-25-asy-adh-95-5-0.5-third-1.lcd

Sample Name Sample ID	gxt-gd-136-rac-ojh-99.5-0.5-0.8-		
Data Filename Method Filename Batch Filename	gxt-gd-136-rac-ojh-99.5-0.5-0.8-1.lcd gxt-20170531.lcm	d	
Vial # Injection Volume	1-1 20 uL	Sample Type	: Unknown
Date Acquired Date Processed	2018/6/9 16:51:31 2018/6/9 17:08:17	Acquired by Processed by	: System Administrator : System Administrator

<Chromatogram>

<Peak Table>

Detect	Detector A Channel 2 230nm						
Peak#	Ret. Time	Area	Height	Conc.			
1	12.684	3004552	92785	50.568			
2	14.113	2937019	99409	49.432			
Total		5941571	192194				

LabSolutions Analysis Report

<Sample Information>

Sample Name Sample ID Data Filename Method Filename	: gxt-gd-136-asy-ojh-99.5-0.5-0.8- : gxt-gd-136-asy-ojh-99.5-0.5-0.8-2.lc : gxt-20170531.lcm	d	
Batch Filename Vial # Iniection Volume	: 1-1 : 20 uL	Sample Type	: Unknown
Date Acquired Date Processed	: 2018/6/9 16:31:01 : 2018/6/9 17:03:19	Acquired by Processed by	: System Administrator : System Administrator

<Chromatogram>

Detect	or A Chann	el 2 230nm		
Peak#	Ret. Time	Area	Height	Conc.
1	12.772	3143226	91929	98.567
2	16.344	45704	2456	1.433
Total		3188929	94386	

D:\Data\GXT\20180518\gxt-gd-136-asy-ojh-99.5-0.5-0.8-2.lcd

D:\Data\GXT\20180518\gxt-gd-136-rac-ojh-99.5-0.5-0.8-1.lcd

<Sample Information>

Sample Name Sample ID	: gxt-gd-109-rac-adh-85-15-1.0		
Data Filename Method Filename Batch Filename	gxt-gd-109-rac-adh-85-15-1.0.lcd gxt-20170531.lcm		
Vial # Injection Volume	: 1-1 : 20 uL	Sample Type	: Unknown
Date Acquired Date Processed	: 2018/5/18 14:46:16 : 2018/5/18 16:29:53	Acquired by Processed by	: System Administrator : System Administrator

<Chromatogram>

<Peak Table>

Detector A Channel 2 230nm					
Peak#	Ret. Time	Area	Height	Conc.	
1	9.952	2175245	149744	50.001	
2	11.606	2175126	127011	49.999	
Total		4350371	276755		

<Sample Information>

Sample Name Sample ID Data Filename Method Filename Batch Filename Vial # Injection Volume Date Acquired Date Processed	gxt-gd-109-asy-adh-85-15-1.0 gxt-gd-109-asy-adh-85-15-1.0.lcd gxt-20170531.lcm 1-1 20 uL 2018/5/18 15:03:06 2018/5/18 16:21:36	Sample Type Acquired by Processed by	: Unknown : System Administrator : System Administrator
Date Processed	: 2018/5/18 16:21:36	Processed by	: System Administrator

<Chromatogram>

<Peak Table>

		el 2 230nm		
Peak#	Ret. Time	Area	Height	Conc.
1	9.954	2317992	156613	98.254
2	11.660	41183	2431	1.746
Tota		2359174	159044	

D:\Data\GXT\20180518\gxt-gd-109-asy-adh-85-15-1.0.lcd

D:\Data\GXT\20180518\gxt-gd-109-rac-adh-85-15-1.0.lcd

<Sample Information>

Sample Name Sample ID	: gxt-gd-129-rac-adh-85-15-1.0-3		
Data Filename Method Filename Batch Filename	gxt-gd-129-rac-adh-85-15-1.0-3.lcd gxt-20170531.lcm		
Vial # Injection Volume	: 1-1 : 20 ul	Sample Type	: Unknown
Date Acquired Date Processed	: 2018/5/19 15:28:28 : 2018/5/19 15:45:30	Acquired by Processed by	: System Administrator : System Administrator

<Chromatogram>

<Peak Table>

Detect	Detector A Channel 2 230nm					
Peak#	Ret. Time	Area	Height	Conc.		
1	11.123	7166656	436051	49.782		
2	11.986	7229294	405070	50.218		
Total		14395950	841121			

<Sample Information>

Sample Name Sample ID Data Filename Method Filename Batch Filename Vial # Injection Volume Date Acquired Date Processed	gxt-gd-129-asy-adh-85-15-0.8-1 gxt-gd-129-asy-adh-85-15-0.8-1.lcd gxt-20170531.lcm 1-1 20 uL 2018/5/19 9:37:01 2018/5/19 9:57:17	Sample Type Acquired by Processed by	: Unknown : System Administrator : System Administrator
Date Processed	: 2018/5/19 9:57:17	Processed by	: System Administrator

<Chromatogram>

Detector A Channel 2 230nm						
Peak#	Ret. Time	Area	Height	Conc.		
1	11.271	2273484	140763	98.998		
2	12.179	23003	1467	1.002		
Total		2296487	142230			

D:\Data\GXT\20180518\gxt-gd-129-asy-adh-85-15-0.8-1.lcd

D:\Data\GXT\20180518\gxt-gd-129-rac-adh-85-15-1.0-3.lcd

Sample Name Sample ID	: gxt-ge-53-chanwu-rac-adh-95-5-1.0)-		
Data Filename Method Filename	hod Filename : gxt-20170531.lcm			
Batch Filename Vial # Injection Volume	: 1-1 : 20 uL	Sample Type	: Unknown	
Date Acquired Date Processed	2018/7/1 13:37:14 2018/7/1 14:19:00	Acquired by Processed by	: System Administrator : System Administrator	

<Chromatogram>

<Peak Table>

	Detector A Channel 2 230nm					
Peak#	Ret. Time	Area	Height	Conc.		
1	22.354	983950	32312	50.442		
2	29.156	966697	23656	49.558		
Total		1950647	55968			

LabSolutions Analysis Report

<Sample Information>

Sample Name	: gxt-ge-53-chanwu-asy-adh-95-5-1.0-			
Sample ID	;			
Data Filename	; gxt-ge-53-chanwu-asy-adh-95-5-1.0-1.lcd			
Method Filename	; gxt-20170531.lcm			
Batch Filename Vial # Injection Volume	: 1-1 20 uL	Sample Type	: Unknown	
Date Acquired	: 2018/7/1 14:20:06	Acquired by	: System Administrator	
Date Processed	: 2018/7/1 14:57:04	Processed by	: System Administrator	

<Chromatogram>

<Peak Table>

	Detector A Channel 2 230nm					
Peak#	Ret. Time	Area	Height	Conc.		
1	22.296	5736455	171183	98.952		
2	29.018	60754	1703	1.048		
Total		5797208	172886			

D:\Data\GXT\20180518\gxt-ge-53-chanwu-rac-adh-95-5-1.0-2.lcd

D:\Data\GXT\20180518\gxt-ge-53-chanwu-asy-adh-95-5-1.0-1.lcd

Sample Name Sample ID	gxt-gd-131-rac-adh-85-15-0.8-		
Data Filename Method Filename Batch Filename	gxt-gd-131-rac-adh-85-15-0.8-1.lcd gxt-20170531.lcm		
Vial # Injection Volume	: 1-1 : 20 uL	Sample Type	: Unknown
Date Acquired Date Processed	: 2018/6/11 19:51:52 : 2018/6/11 20:09:29	Acquired by Processed by	: System Administrator : System Administrator

<Chromatogram>

<Peak Table>

	Detector A Channel 2 230nm						
Peak#	Ret. Time	Area	Height	Conc.			
1	13.009	2909273	159564	49.618			
2	15.632	2954066	129187	50.382			
Total		5863339	288751				

LabSolutions Analysis Report

<Sample Information>

Sample Name Sample ID Data Filename Method Filename Batch Filename Vial # Injection Volume	gxt-gd-131-asy-adh-85-15-0.8- gxt-gd-131-asy-adh-85-15-0.8-2.lcd gxt-20170531.lcm 1-1 20 uL	Sample Type	: Unknown
Injection Volume Date Acquired Date Processed	: 20 uL : 2018/6/11 20:10:58 : 2018/6/11 20:30:53	Acquired by Processed by	: System Administrator : System Administrator

<Chromatogram>

<Peak Table>

-1	K TUDICF			
Detect	or A Chann	el 2 230nm		
Peak#	Ret. Time	Area	Height	Conc.
1	13.006	3661449	194900	98.537
2	15.734	54344	3003	1.463
Total		3715793	197904	

D:\Data\GXT\20180518\gxt-gd-131-rac-adh-85-15-0.8-1.lcd

D:\Data\GXT\20180518\gxt-gd-131-asy-adh-85-15-0.8-2.Icd

Sample Name Sample ID	: gxt-gd-56-rac-adh-90-10-0.8-		
Data Filename Method Filename	: gxt-gd-56-rac-adh-90-10-0.8-1.lcd : gxt-20170531.lcm		
Batch Filename Vial # Iniection Volume	: 1-1 : 20 uL	Sample Type	: Unknown
Date Acquired Date Processed	2018/7/15 18:22:07 2018/7/15 18:48:07	Acquired by Processed by	: System Administrator : System Administrator

<Chromatogram>

<Peak Table>

	Detector A Channel 2 230nm						
Peak#	Ret. Time	Area	Height	Conc.			
1	14.489	722771	37139	50.004			
2	17.834	722651	30118	49.996			
Total		1445422	67257				

<Sample Information>

Sample Name Sample ID Data Filename Method Filename Batch Filename Vial #	2 gxt-gd-56-asy-adh-90-10-0.8- gxt-gd-56-asy-adh-90-10-0.8-1.lcd gxt-20170531.lcm	Sample Type	: Unknown
Injection Volume Date Acquired Date Processed	20 uL 2018/7/15 18:49:32 2018/7/15 19:19:33	Acquired by Processed by	: System Administrator : System Administrator

<Chromatogram>

Detect	or A Chann	el 2 230nm		
Peak#	Ret. Time	Area	Height	Conc.
1	14.490	2002005	99648	98.499
2	17.875	30510	1408	1.501
Total		2032515	101056	

D:\Data\GXT\20180518\gxt-gd-56-rac-adh-90-10-0.8-1.lcd

D:\Data\GXT\20180518\gxt-gd-56-asy-adh-90-10-0.8-1.lcd

Sample Name Sample ID	gxt-ge-68-chanwu-rac-adh-95-5-1.0-					
Data Filename Method Filename Batch Filename	gxt-ge-68-chanwu-rac-adh-95-5-1.0 gxt-20170531.lcm	-1.lcd				
Vial # Injection Volume	: 1-1 : 20 uL	Sample Type	: Unknown			
Date Acquired Date Processed	: 2018/7/1 11:31:29 : 2018/7/1 12:12:53	Acquired by Processed by	: System Administrator : System Administrator			

<Chromatogram>

<Peak Table>

	Detector A Channel 2 230nm					
Peak#	Ret. Time	Area	Height	Conc.		
1	32.996	11669008	233713	50.661		
2	38.247	11364673	192854	49.339		
Total		23033681	426567			

LabSolutions Analysis Report

<Sample Information>

Sample Name Sample ID Data Filename Method Filename	: gxt-ge-68-chanwu-asy-adh-95-5-1.0- ; ; gxt-ge-68-chanwu-asy-adh-95-5-1.0-1.lcd ; gxt-20170531.lcm			
Batch Filename Vial #	1-1 20l	Sample Type	: Unknown	
Injection Volume Date Acquired Date Processed	: 20 uL : 2018/7/1 12:14:08 : 2018/7/1 13:01:13	Acquired by Processed by	: System Administrator : System Administrator	

<Chromatogram>

Detect	or A Chann	el 2 230nm		
Peak#	Ret. Time	Area	Height	Conc.
1	32.723	45615020	816287	98.997
2	38.073	462150	8982	1.003
Total		46077169	825269	

D:\Data\GXT\20180518\gxt-ge-68-chanwu-rac-adh-95-5-1.0-1.lcd

D:\Data\GXT\20180518\gxt-ge-68-chanwu-asy-adh-95-5-1.0-1.lcd

Sample Name Sample ID	gxt-ge-31-chanwu-rac-adh-95-5-1.0-					
Data Filename	: gxt-ge-31-chanwu-rac-adh-95-5-1.0-1.lcd					
Method Filename	gxt-20170531.lcm					
Batch Filename Vial # Iniection Volume	1-1 20 uL	Sample Type	: Unknown			
Date Acquired	: 2018/7/1 15:45:31	Acquired by	: System Administrator			
Date Processed	: 2018/7/14 15:22:54	Processed by	: System Administrator			

<Chromatogram>

<Peak Table>

	Detector A Channel 1 205nm						
Peak#	Ret. Time	Area	Height	Conc.			
1	22.173	17318551	561344	50.421			
2	29.501	17029373	398078	49.579			
Total		34347925	959422				

LabSolutions Analysis Report

<Sample Information>

Sample Name Sample ID Data Filename Method Filename	: gxt-ge-31-chanwu-asy-adh-95-5-1.0 : : gxt-ge-31-chanwu-asy-adh-95-5-1.0 : gxt-20170531.lcm		
Batch Filename Vial # Injection Volume	1-1 20 uL	Sample Type	: Unknown
Date Acquired Date Processed	: 2018/7/1 16:22:53 : 2018/7/14 15:25:31	Acquired by Processed by	: System Administrator : System Administrator

<Chromatogram>

<Peak Table>

Detect	or A Chann	el 1 205nm		
Peak#	Ret. Time	Area	Height	Conc.
1	22.042	36766813	1139500	98.545
2	29.456	542713	15557	1.455
Total		37309526	1155056	

D:\Data\GXT\20180518\gxt-ge-31-chanwu-rac-adh-95-5-1.0-1.lcd

D:\Data\GXT\20180518\gxt-ge-31-chanwu-asy-adh-95-5-1.0-1.lcd

Sample Name Sample ID	gxt-ge-34-rac-adh-90-10-0.8-		
Data Filename Method Filename	gxt-ge-34-rac-adh-90-10-0.8-2.lcd gxt-20170531.lcm		
Batch Filename Vial # Iniection Volume	1-1 20 uL	Sample Type	: Unknown
Date Acquired Date Processed	: 2018/7/15 20:17:23 : 2018/7/15 20:42:03	Acquired by Processed by	: System Administrator : System Administrator

<Chromatogram>

<Peak Table>

	Detector A Channel 1 205nm					
Peak#	Ret. Time	Area	Height	Conc.		
1	19.011	5571414	197753	49.943		
2	21.777	5584072	194267	50.057		
Total		11155486	392020			

<Sample Information>

Sample Name Sample ID Data Filename Method Filename Batch Filename Vial # Injection Volume Date Acquired Date Processed	gxt-ge-34-asy-adh-90-10-0.8- gxt-ge-34-asy-adh-90-10-0.8-2.lcd gxt-20170531.lcm 1-1 20 uL 2018/7/15 21:09:33	Sample Type Acquired by Processed by	: Unknown : System Administrator : System Administrator
Duic Frocessed	. 2010/1/10 21:03:00	Troccoscu by	. Oysicin Administrator

<Chromatogram>

Detector A Channel 1 205nm						
Peak#	Ret. Time	Area	Height	Conc.		
1	19.078	79563	3436	0.976		
2	21.777	8069762	265384	99.024		
Total		8149325	268820			

D:\Data\GXT\20180518\gxt-ge-34-asy-adh-90-10-0.8-2.Icd

D:\Data\GXT\20180518\gxt-ge-34-rac-adh-90-10-0.8-2.Icd

2018/7/15 23:02:39 Page 1 / 1

<Sample Information>

Sample Name Sample ID	: gxt-ge-35-rac-ojh-85-15-0.8-		
Data Filename Method Filename Batch Filename	gxt-ge-35-rac-ojh-85-15-0.8-1.lcd gxt-20170531.lcm		
Vial # Injection Volume	: 1-1 : 20 uL	Sample Type	: Unknown
Date Acquired Date Processed	: 2018/7/15 22:28:39 : 2018/7/15 22:42:40	Acquired by Processed by	: System Administrator : System Administrator

<Chromatogram>

<Peak Table>

	Detector A Channel 2 230nm						
Peak#	Ret. Time	Area	Height	Conc.			
1	11.409	1286051	62105	49.876			
2	12.271	1292456	54032	50.124			
Total		2578507	116136				

<Sample Information>

soumple inform	nation		
Sample Name Sample ID Data Filename Method Filename Batch Filename	: gxt-ge-35-asy-ojh-85-15-0.8- ; gxt-ge-35-asy-ojh-85-15-0.8-1.lcd ; gxt-20170531.lcm		
Vial # Injection Volume	: 1-1 : 20 uL	Sample Type	: Unknown
Date Acquired Date Processed	: 2018/7/15 22:44:13 : 2018/7/15 23:00:08	Acquired by Processed by	: System Administrator : System Administrator

<Chromatogram>

<Peak Table>

Detec	Detector A Channel 2 230nm						
Peak	# Ret. Time	Area	Height	Conc.			
1	11.617	11883	637	0.786			
2	2 12.433	1499239	60894	99.214			
Tota	al	1511122	61531				

D:\Data\GXT\20180518\gxt-ge-35-asy-ojh-85-15-0.8-1.lcd

D:\Data\GXT\20180518\gxt-ge-35-rac-ojh-85-15-0.8-1.lcd

2018/6/11 22:04:20 Page 1 / 1

LabSolutions Analysis Report

<Sample Information>

Sample Name Sample ID Data Filename Method Filename	: gxt-gd-141-rac-ojh-85-15-0.8- : : gxt-gd-141-rac-ojh-85-15-0.8-1.lcd : gxt-20170531.lcm		
Batch Filename Vial # Iniection Volume	: : 1-1 : 20 uL	Sample Type	: Unknown
Date Acquired Date Processed	: 2018/6/11 21:22:10 : 2018/6/11 21:40:37	Acquired by Processed by	: System Administrator : System Administrator

<Chromatogram>

<Peak Table>

Detector A Channel 2 230nm						
Peak#	Ret. Time	Area	Height	Conc.		
1	13.766	817478	38339	49.831		
2	16.086	823029	34288	50.169		
Total		1640507	72627			

LabSolutions Analysis Report

<Sample Information>

Sample Name Sample ID Data Filename Method Filename	gxt-gd-141-asy-ojh-85-15-0.8- gxt-gd-141-asy-ojh-85-15-0.8-1.lcd gxt-20170531.lcm		
Batch Filename Vial # Iniection Volume	1-1 20 uL	Sample Type	: Unknown
Date Acquired Date Processed	: 2018/6/11 21:42:28 : 2018/6/11 22:00:23	Acquired by Processed by	: System Administrator : System Administrator

<Chromatogram>

D	Detector A Channel 2 230nm					
P	^o eak#	Ret. Time	Area	Height	Conc.	
	1	13.952	40699	2495	1.520	
Г	2	15.889	2636145	89529	98.480	
Г	Total		2676844	92024		

D:\Data\GXT\20180518\gxt-gd-141-rac-ojh-85-15-0.8-1.lcd

D:\Data\GXT\20180518\gxt-gd-141-asy-ojh-85-15-0.8-1.lcd

8. References

[1] P. Quinodoz, A. Quelhas, K. Wright, B. Drouillat, J. Marrot and F. Couty, *Eur. J. Org. Chem.*, 2017, 2621–2626.

- [2] (a) A. Fürstner, O. Guth, A. Düffels, G. Seidel, M. Liebl, B. Gabor and R. Mynott, *Chem. Eur. J.*, 2001, 7, 4811–4820; (b) Y. Hirai, T. Terada, T. Yamazaki and T. Momose, *J. Chem. Soc., Perkin Trans. 1*, 1992, 0, 509–516.
- [3] (a) L. Cui, C. Li, L. Zhang, Angew. Chem., Int. Ed., 2010, 49, 9178–9181; (b) Z. Sang, K. Wang, H. Wang, L. Yu, H. Wang, Q. Ma, M. Ye, X. Han and W. Liu, Bioorg. Med. Chem. Lett., 2017, 27, 5053–5059.
- [4] N. J. Williams, C. A. Seipp, F. M. Brethomé, Y.-Z. Ma, A. S. Ivanov, V. S. Bryantsev, M. K. Kidder, H. J. Martin, E. Holguin, K. A. Garrabrant and R. Custelcean, *Chem*, 2019, 5, 719–730.
- [5] R. Robles-Machín, J. Adrio and J. C. Carretero, J. Org. Chem., 2006, 71, 5023-5026.
- [6] (a) T. Ishida, S. Kikuchi, T. Tsubo and T. Yamada, Org. Lett., 2013, 15, 848–851; (b) W. Wang, Y. Fu, Y. Li, T. Yao, L. Liu, W. Chang and J. Li, Org. Chem. Front., 2018, 5, 3331–3335.
- [7] (a) S. Tong, C. Piemontesi, Q. Wang, M.-X. Wang and J. Zhu, *Angew. Chem., Int. Ed.*, 2017, 56, 7958–7962;
 (b) G. A. Molander, *Heterocycles*, 2004, 64, 467–474.