Multifunctional 1,3-diphenylguanidine for carboxylative cyclization of homopropargyl amines with CO_{2} under ambient temperature and pressure

Xiao-Tong Gao, ${ }^{a}$ Shi-Liang Xie, ${ }^{\text {a }}$ Feng Zhou, ${ }^{\text {ab }}$ Hai-Hong Wu, *a Jian Zhou*abc
${ }^{\text {a }}$ Shanghai Key Laboratory of Green Chemistry and Chemical Process and ${ }^{\text {b }}$ Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, 3663N Zhongshan Road, Shanghai 200062, China.
${ }^{c}$ State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, China.

E-mail: fzhou@chem.ecnu.edu.cn; hhwu@,chem.ecnu.edu.cn; jzhou@chem.ecnu.edu.cn
Contents Page

1. General information 2
2. Preparation of homopropargyl amines 3-9
3. Reaction condition optimization $10-12$
4. General procedure for the carboxylative cyclization reaction 12-19
5. Mechanistic studies 20-27
6. Single-crystal X-ray analysis of bicarbonate salt $[\mathrm{DPGH}]\left[\mathrm{HCO}_{3}\right]$ 28-33
7. Single-crystal X-ray analysis of complex formed from DPG and AgSbF_{6} 34-41
8. NMR and HPLC spectra 42-136
9. References 137

1. General information

Reactions were monitored by thin layer chromatography using UV light, I_{2} or KMnO_{4} to visualize the course of reaction. Purification of reaction products was carried out by flash chromatography on silica gel. Chemical yields refer to pure isolated substances. Infrared (IR) spectra were obtained using a Bruker tensor 27 infrared spectrometer. Chiral HPLC analysis was performed on a LC-20AD instrument using Daicel Chiracel columns at $25^{\circ} \mathrm{C}$ and a mixture of HPLC-grade hexane and isopropanol as eluent. Optical rotation was measured using a (JASCO) P-1030 polarimeter equipped with a sodium vapor lamp at 589 nm . ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{31} \mathrm{P}$ NMR spectra were obtained using Bruker DPX-300, 400 and 500 MHz Spectrometer. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY spectra were obtained using Bruker DPX-500 MHz Spectrometer. Chemical shifts were reported in ppm with TMS as the internal standard. The following abbreviations were used to designate chemical shift multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{h}=$ heptet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad.
AgSbF_{6} (99\%) was purchased from Alfa, 1,3-diphenylguanidine was purchased from J\&K Scientific. Dichloroethane was purchased from J\&K Scientific and used without further purification. The homopropargyl amines $\mathbf{1 a} \mathbf{- i}$ and $\mathbf{1 1} \mathbf{- m}$ were synthesized according to the literature method. ${ }^{1}$

List of abbreviation:

Entry	Chemical name	Abbreviation
1	1,3 -Diphenylguanidine	DPG
2	$1,2,3$-Triphenylguanidine	TPG
3	$1,1,3,3$-Tetramethylguanidine	TMG
4	1,8 -Diazabicyclo[5.4.0]undec-7-ene	DBU
5	$1,5,7$-Triazabicyclo[4.4.0]dec-5-ene	TBD
6	Petroleum ether	PE
7	Diethyl ether	Et 2 O
8	N, N-Dimethyl formamide	DMF
9	Ethyl acetate	EtOAc
10	Dichloroethane	DCE

2. Preparation of homopropargyl amines

2.1. Synthesis of homopropargyl amines $\mathbf{1 j}$ and $\mathbf{1 k} .^{1-2}$

Di-tert-butyldicarbonate (12.0 mmol) was slowly added to a solution of homopropargyl amines (10.0 mmol), DMAP ($1.2 \mathrm{mmol}, 10 \mathrm{~mol} \%$) and $\mathrm{Et}_{3} \mathrm{~N}(12 \mathrm{mmol})$ in $20 \mathrm{mLCH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$ and the resulting mixture was stirred at ambient temperature for 24 h . Standard extractive work-up followed by silica column chromatography (PE/EtOAc 15:1 to 10:1, v/v) provided tert-butyl benzyl(but-3-yn-1-yl)carbamate $\mathbf{S 1}$ as a pale yellow syrup in 85% yield.
${ }^{n} \mathrm{BuLi}$ (1.2 equivs, 2.0 M in hexane) was slowly added at $-78^{\circ} \mathrm{C}$ to a solution of the compound $\mathbf{S} 1$ obtained above (5.0 mmol) in $15 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$. After the mixture had been stirred for 30 min at that temperature, isopropyl carbonochloridate or diethyl phosphorochloridate ($6.0 \mathrm{mmol}, 1.2$ equivs) was introduced, and stirring was continued for another 15 min at $-78^{\circ} \mathrm{C}$ before the mixture was allowed to reach ambient temperature. After one hour, the reaction was quenched with saturated ammonium chloride aqueous solution, the aqueous layer was extracted with EtOAc, and the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent followed by column chromatography of the residue ($\mathrm{PE} / \mathrm{EtOAc} 10: 1$ to $4: 1, \mathrm{v} / \mathrm{v}$) gave the title compound $\mathbf{1 j}$ or $\mathbf{1 k}$.

1 j

Compound $\mathbf{1 j}$ was prepared in 78% yield according to the general procedure as yellow solid (m.p. $80-82{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 7.35-7.32 (m, 3H), 7.28-7.26 (m, 2H), 5.12-5.03 (m, 1H), 3.82 (s, 2H), 2.86 $(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.54(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.63(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 153.17,139.84,128.42,128.04,127.04,86.64,74.45,69.72,53.24,46.45$, 21.64, 19.96; IR (ATR) v 2977.0, 2932.8, 2236.8, 1704.7, 1495.2, 1417.8, 1369.9, 1256.9, 1225.6, $910.6 \mathrm{~cm}^{-1} ;$ HRMS (ESI): Exact mass calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 246.1489$, found: 246.1494.

Compound $1 \mathbf{k}$ was prepared in 56% yield according to the general
 procedure as yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.34-7.27(\mathrm{~m}, 5 \mathrm{H})$, 4.17-4.09 (m, 4H), $3.81(\mathrm{~s}, 2 \mathrm{H}), 2.86(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.57-2.53(\mathrm{~m}$, $2 \mathrm{H}), 1.60(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 1.35(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 139.76,128.42$, 128.00, 127.07, 100.75 (d, $J=52.5 \mathrm{~Hz}$), 71.71 (d, $J=299.5 \mathrm{~Hz}$), 62.93 (d, $J=5.4 \mathrm{~Hz}$), $53.26,46.39$ (d, $J=2,4 \mathrm{~Hz}), 20.56(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 16.05(\mathrm{~d}, J=7.0 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR ($122 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.55$ (m); IR (ATR) v 2982.4, 2203.8, 1716.1, 1568.8, 1453.5, 1367.8, 1251.4, 1163.6, 1099.3, $741.4 \mathrm{~cm}^{-}$ ${ }^{1}$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}: 296.1410$, found: 296.1404.

2.2. Synthesis of compounds $3 \mathrm{a}-3 \mathrm{~h}$. 3

To a solution of (R)-tert-butanesulfinamide $(10.0 \mathrm{mmol})$ in $20 \mathrm{mLCH}_{2} \mathrm{Cl}_{2}$ was added anhydrous $\mathrm{CuSO}_{4}(22.0 \mathrm{mmol})$ followed by aldehyde $(11.0 \mathrm{mmol})$. The mixture was stirred at room temperature for 12 h . The reaction mixture was filtered through a pad of Celite, and the filter cake was washed well with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated give sulfinimine $\mathbf{S 3}$ in almost quantative yield.

To a solution of the sulfinimine $\mathbf{S 3}(10.0 \mathrm{mmol})$ in $50 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ was added propargyl magnesium bromide ether solution (20.0 mmol) at $-50^{\circ} \mathrm{C}$. The mixture was stirred at $-50^{\circ} \mathrm{C}$ for 2 h and then was allowed to warm to room temperature and stirred overnight. The reaction mixture was quenched with saturated ammonium chloride aqueous solution and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified through silica column chromatography (PE/EtOAc $6 / 1$ to $4 / 1$, v/v) to give sulfinamide S4 in 75-83\% yield.

The above sulfinamide $\mathbf{S 4}(5.0 \mathrm{mmol})$ was dissolved in 50 mL MeOH and the solution was cooled to $0^{\circ} \mathrm{C}$. Concentrated hydrochloric acid (11.0 mmol , 2.2 equivs) was added, and the reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 minutes. The solvent was evaporated, water was added and acid base work up to give pure amine $\mathbf{S 5}$ in more than 90% yield.

To a mixture of benzaldehydes (4.0 mmol) in 10 mL methanol, the amine $\mathbf{S 5}(4.0 \mathrm{mmol})$ was added. The reaction mixture was stirred at room temperature for $3-4 \mathrm{~h}$, and then sodium cyanoborohydride ($3.0 \mathrm{mmol}, 0.75$ equiv) was added in batches and the mixture was further stirred for another period of 6 h . The reaction was then quenched by the addition of water, and washed with diethyl ether $(5 \mathrm{~mL} \times 3)$. The combined organic phases were washed with saturated aqueous NaCl $(10 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. Evaporation of the filtrate followed by flash chromatography of the residue ($\mathrm{PE} / \mathrm{EtOAc} 10: 1$ to $4: 1, \mathrm{v} / \mathrm{v}$) gave compounds $\mathbf{3 a - 3 h}$ successfully.

Compound 3a was prepared in 80% yield according to the general procedure as yellow oil. HPLC analysis (Chiralcel OJ-H, ${ }^{i}$ PrOH/hexane $=10 / 90,1.0 \mathrm{~mL} / \mathrm{min}$, $230 \mathrm{~nm} ; \mathrm{t}_{\mathrm{r}}$ (major) $=10.65 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $\left.)=13.41 \mathrm{~min}\right)$ gave the isomeric composition of the product: 96% ee; $[\alpha]_{\mathrm{D}}{ }^{25}=-39.9\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.41-7.39 (m, 2H), 7.38-7.34 (m, 2H), 7.32-7.31 (m, 4H), 7.29-7.26 (m, 2H), 3.87 (t, J=6.8 Hz, $1 \mathrm{H}), 3.72,3.59(\mathrm{AB}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.56-2.54(\mathrm{~m}, 2 \mathrm{H}), 2.03-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.88(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 142.33,140.15,128.39,128.26,127.98,127.44,127.07,126.80,81.44$, $70.48,60.58,51.25,28.08$; IR (ATR) v 3290.3, 3061.6, 3026.4, 2918.4, 1602.4, 1493.5, 1355.5, 1201.3, 1073.5, $911.4 \mathrm{~cm}^{-1}$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 236.1434$, found: 236.1445.

Compound $\mathbf{3 b}$ was prepared in 80% yield according to the general procedure as yellow oil. HPLC analysis (Chiralcel OJ-H, ${ }^{i} \mathrm{PrOH} /$ hexane $=10 / 90,1.0$ $\mathrm{mL} / \mathrm{min}, 230 \mathrm{~nm} ; \mathrm{t}_{\mathrm{r}}($ major $)=9.37 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $\left.)=10.37 \mathrm{~min}\right)$ gave the isomeric composition of the product: $98 \% \mathrm{ee} ;[\alpha]_{\mathrm{D}}{ }^{25}=-97.5\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, CDCl_{3}): $\delta 7.38-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 3 \mathrm{H}), 3.83(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.68$, $3.55(\mathrm{AB}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.51-2.48(\mathrm{~m}, 2 \mathrm{H}), 2.02-2.00(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ
$140.95,140.00,133.12,128.64,128.55,128.39,128.01,126.98,81.08,70.74,60.03,51.30,28.13$; IR (ATR) v 3297.6, 3026.5, 2909.6, 2834.2, 2117.7, 1598.1, 1453.7, 1327.7, 1295.3, $1027.1 \mathrm{~cm}^{-1}$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClN}[\mathrm{M}+\mathrm{H}]^{+}: 270.1044$, found: 270.1032.

Compound 3c was prepared in 76% yield according to the general procedure as yellow oil. HPLC analysis (Chiralcel AD-H, ${ }^{i} \mathrm{PrOH} /$ hexane $=1 / 99,0.8$ $\mathrm{mL} / \mathrm{min}, 230 \mathrm{~nm} ; \mathrm{t}_{\mathrm{r}}($ major $)=9.89 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $\left.)=11.15 \mathrm{~min}\right)$ gave the isomeric composition of the product: 98% ee; $[\alpha]_{D}{ }^{25}=-75.6\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): ~ \delta 7.31-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.13(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{t}, J=$ $6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.69,3.55(\mathrm{AB}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.52-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H})$, 1.99-1.97 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 140.31,139.40,137.02,129.12,128.28,128.02$, $127.00,126.80,81.63,70.38,60.35,51.28,28.20,21.07$; IR (ATR) v 3290.0, 3025.3, 2920.1, 1602.7, 1495.1, 1453.3, 1304.9, 1201.0, 1020.2, $908.3 \mathrm{~cm}^{-1}$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}$ $[\mathrm{M}+\mathrm{H}]^{+}: 250.1590$, found: 250.1594 .

Compound 3d was prepared in 73% yield according to the general procedure as yellow oil. HPLC analysis (Chiralcel AD-H, ${ }^{i} \mathrm{PrOH} /$ hexane $=1 / 99,0.5 \mathrm{~mL} / \mathrm{min}$, $230 \mathrm{~nm} ; \mathrm{t}_{\mathrm{r}}($ major $)=16.78 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $\left.)=18.23 \mathrm{~min}\right)$ gave the isomeric composition of the product: 98% ee; $[\alpha]_{\mathrm{D}}{ }^{25}=-44.1\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 7.42(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{~s}, 2 \mathrm{H}), 7.28-7.26(\mathrm{~m}, 4 \mathrm{H}), 3.84(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.71$, 3.58 (AB, $J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.58-2.46(\mathrm{~m}, 2 \mathrm{H}), 2.09-1.97(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 144.68, 139.94, 134.37, 129.72, 128.39, 128.01, 127.70, 127.27, 126.98, 125.39, 80.96, 70.82, 60.27, 51.36, 28.06; IR (ATR) v 3290.0, 3025.3, 2920.1, 1602.7, 1495.1, 1453.3, 1304.9, 1201.0, 1020.2, $908.3 \mathrm{~cm}^{-1}$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClN}[\mathrm{M}+\mathrm{H}]^{+}: 270.1044$, found: 270.1039.

Compound $\mathbf{3 e}$ was prepared in 66% yield according to the general procedure as yellow oil. HPLC analysis (Chiralcel OJ-H, ${ }^{i} \mathrm{PrOH} /$ hexane $=10 / 90,1.0$ $\mathrm{mL} / \mathrm{min}, 230 \mathrm{~nm} ; \mathrm{t}_{\mathrm{r}}($ major $)=7.29 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $\left.)=9.29 \mathrm{~min}\right)$ gave the
isomeric composition of the product: 97% ee; $[\alpha]_{\mathrm{D}}{ }^{25}=-5.7\left(\mathrm{c}=0.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}): $\delta 7.34-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.83$ ($\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}$), $3.71,3.58(\mathrm{AB}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.54-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.02-2.01(\mathrm{~m}$, 1H), 1.90 ($\mathrm{s}, \mathrm{br}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 142.31,140.21,137.86,128.23,128.21,128.16$, $127.93,127.64,126.74,124.12,81.53,70.39,60.59,51.27,28.06,21.37$; IR (ATR) v 3291.0, 2928.2, 2836.7, 1606.1, 1488.9, 1323.8, 1269.9, 1155.2, 1027.5, $882.7 \mathrm{~cm}^{-1}$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 250.1590$, found: 250.1582 .

Compound $\mathbf{3 f}$ was prepared in 77% yield according to the general procedure as yellow oil. HPLC analysis (Chiralcel AD-H, ${ }^{i} \operatorname{PrOH} /$ hexane $=1 / 99,0.8$ $\mathrm{mL} / \mathrm{min}, 230 \mathrm{~nm} ; \mathrm{t}_{\mathrm{r}}($ major $)=11.18 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $\left.)=16.02 \mathrm{~min}\right)$ gave the isomeric composition of the product: $98 \% \mathrm{ee} ;[\alpha]_{\mathrm{D}}{ }^{25}=-78.0\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}): $\delta 7.86-7.82(\mathrm{~m}, 4 \mathrm{H}), 7.56(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.28-$ $7.26(\mathrm{~m}, 2 \mathrm{H}), 4.04(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.74,3.61(\mathrm{AB}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.64-2.61(\mathrm{~m}, 2 \mathrm{H}), 2.03-$ 1.90 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 140.16,139.82,133.29,133.04,128.30,128.27$, 128.00, 127.77, 127.60, 126.84, 126.21, 125.95, 125.66, 124.88, 81.44, 70.62, 60.74, 51.32, 28.05; IR (ATR) v 3291.1, 3055.8, 3025.2, 2827.3, 1600.7, 1507.1, 1495.0, 1362.1, $1270.4,1198.9 \mathrm{~cm}^{-1}$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 286.1590$, found: 286.1585 .

Compound $\mathbf{3 g}$ was prepared in 80% yield according to the general procedure as yellow oil. HPLC analysis (Chiralcel AD-H, ${ }^{i} \mathrm{PrOH} /$ hexane $=3 / 97,0.8 \mathrm{~mL} / \mathrm{min}$, $230 \mathrm{~nm} ; \mathrm{t}_{\mathrm{r}}($ major $)=5.44 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $\left.)=10.84 \mathrm{~min}\right)$ gave the isomeric composition of the product: 98% ee; $[\alpha]_{\mathrm{D}}{ }^{25}=+58.2\left(\mathrm{c}=0.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.36-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 1 \mathrm{H}), 3.88,3.72(\mathrm{AB}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.52-$ $2.43(\mathrm{~m}, 2 \mathrm{H}), 2.35-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.03-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.73-1.64(\mathrm{~m}, 3 \mathrm{H})$, 1.59-1.50 (m, 2H), 1.34-1.11 (m, 4H), 1.06-0.93 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 140.78$, 128.26, 128.12, 126.78, 82.23, 69.89, 60.21, 51.49, 40.76, 29.39, 29.29, 26.62, 26.45, 20.49; IR (ATR) v 3306.8, 3026.8, 2921.0, 2850.1, 2115.2, 1494.8, 1345.4, 1240.3, 1115.7, $1073.8 \mathrm{~cm}^{-1}$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 242.1903$, found: 242.1894 .

3h

Compound $\mathbf{3 h}$ was prepared in 80% yield according to the general procedure as yellow oil. HPLC analysis (Chiralcel AD-H, ${ }^{i} \mathrm{PrOH} / \mathrm{hexane}=20 / 80,0.7 \mathrm{~mL} / \mathrm{min}$, $230 \mathrm{~nm} ; \mathrm{t}_{\mathrm{r}}$ (major) $=6.26 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $\left.)=8.75 \mathrm{~min}\right)$ gave the isomeric composition of the product: $98 \% \mathrm{ee} ;[\alpha]_{\mathrm{D}}{ }^{25}=+21.2\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 7.38-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.17(\mathrm{~m}, 3 \mathrm{H}), 3.86,3.74(\mathrm{AB}, J=12.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.82-$ $2.76(\mathrm{~m}, 1 \mathrm{H}), 2.73-2.69(\mathrm{~m}, 2 \mathrm{H}), 2.55-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.02-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.94-$ $1.80(\mathrm{~m}, 2 \mathrm{H}), 1.58(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 142.09,140.44,128.34,128.30$, $128.11,126.88,125.72,81.25,70.42,54.57,50.73,35.70,32.13,23.31$; IR (ATR) v 3292.2, 3025.4, 2922.9, 1602.1, 1494.7, 1453.2, 1116.1, 1071.2, 1028.2, $908.4 \mathrm{~cm}^{-1}$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 264.1747$, found: 264.1739 .

2.3. Preparation of compounds $\mathbf{3 i}$ and $\mathbf{3 j}$.

3-Butyn-1-ol (5.0 mmol) was dissolved with in 70 mL dichloromethane, followed by the addition of triethylamine $(7.5 \mathrm{mmol})$ and methanesulfonyl chloride $(6.0 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to stir at $0^{\circ} \mathrm{C}$ for 1 hour and then quenched with 1 N aqueous $\mathrm{HCl}(25 \mathrm{~mL})$. The phases were separated and the aqueous layer extracted with dichloromethane ($3 \times 15 \mathrm{~mL}$). The organic layers were then washed with brine, dried on $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure to give the crude mesylate, which was further dissolved in 10 mL DMSO. Then (R)-1-aminotetralinand or (R)-1-phenylethylamine (10 mmol) and sodium iodide (1.0 mmol) were added, and the reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 16 hours. The solution was then cooled to room temperature and diluted with saturated aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and ethyl acetate $(50 \mathrm{~mL})$ The phases were separated, and the aqueous layer extracted with ethyl acetate ($3 \times 20 \mathrm{~mL}$), dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was subjected to column chromatography using $\operatorname{PE} / \operatorname{EtOAc}(10: 1$ to $4: 1, \mathrm{v} / \mathrm{v}$) as the elution to afford the desired $\mathbf{3 i}$ and $\mathbf{3 j}$.
 Compound $\mathbf{3 i}$ was prepared in 80% yield according to the general procedure as yellow oil. HPLC analysis (Chiralcel AD-H, ${ }^{i} \mathrm{PrOH} /$ hexane $=5 / 95,0.5$ $\mathrm{mL} / \mathrm{min}, 230 \mathrm{~nm} ; \mathrm{t}_{\mathrm{r}}($ major $)=10.68 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $\left.)=9.66 \mathrm{~min}\right)$ gave the isomeric composition of the product: $98 \% \mathrm{ee} ;[\alpha]_{\mathrm{D}}{ }^{25}=-9.8\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}$, CDCl_{3}): $\delta 7.38-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.07(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.95-$ $2.79(\mathrm{~m}, 3 \mathrm{H}), 2.76-2.69(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.36(\mathrm{~m}, 2 \mathrm{H}), 2.03-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.78-$ $1.69(\mathrm{~m}, 1 \mathrm{H}), 1.58(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 138.90, 137.30, 128.96, 128.61, $126.59,125.65,82.65,69.40,54.86,45.34,29.25,28.28,19.89,18.89$; IR (ATR) v 3292.0, 2930.6, $2855.3,1488.2,1320.3,1271.0,1197.4,1035.1,945.1,883.2 \mathrm{~cm}^{-1}$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 200.1434$, found: 200.1429 .

3j

Compound $\mathbf{3} \mathbf{j}$ was prepared in 87% yield according to the general procedure as yellow oil. HPLC analysis (Chiralcel OJ-H, ${ }^{i}$ PrOH/hexane $=0.5 / 99.5,0.8 \mathrm{~mL} / \mathrm{min}$, $230 \mathrm{~nm} ; \mathrm{t}_{\mathrm{r}}($ major $)=12.77 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $\left.)=16.34 \mathrm{~min}\right)$ gave the isomeric composition of the product: 97% ee; $[\alpha]_{\mathrm{D}}{ }^{25}=+43.4\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: δ 7.34-7.31 (m, 4H), 7.25-7.22 (m, 1H), $3.80(\mathrm{q}, ~ J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.69-2.57(\mathrm{~m}, 2 \mathrm{H}), 2.36-2.32(\mathrm{~m}$, $2 \mathrm{H}), 1.98-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.66(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 1.36(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 145.37, 128.41, 126.91, 126.54, 82.53, 69.43, 57.68, 45.68, 24.38, 19.59; IR (ATR) v 3293.5, 2961.0, 2923.7, 2842.5, 1602.3, 1492.3, 1369.6, 1283.6, 1198.8, $1079.7 \mathrm{~cm}^{-1}$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 174.1277$, found: 174.1266.

3. Reaction condition optimization

Table S1. Carboxylative Cyclization Reaction.

${ }^{[a]}$ Determined by GC-MS with decane as internal standard.

The reaction of N -benzyl amine 1a and CO_{2} was undertaken for the evaluation. The reactions were run at $25^{\circ} \mathrm{C}$ in 1,2-dichloroethane (DCE), with CO_{2} held within a balloon. To our delight, under the catalysis of $5 \mathrm{~mol} \% \mathrm{AgOBz}$ and $50 \mathrm{~mol} \% \mathrm{DPG}$, the reaction worked well to give the desired 2-oxazinone $\mathbf{2 a}$ in 69% yield (entry 1, Table S1). Next, the performance of other types of organic bases was studied. The use of analogous 1,2,3-triphenylguanidine (TPG) and 1,1,3,3tetramethylguanidine (TMG) resulted in a greatly diminished 35% and 37% yield for $\mathbf{2 a}$,
respectively (entries 2-3). The commonly used base, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) and 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD), showed inferior 46% and 40% yield respectively (entry $4-5$). The performance of GBIG^{4} (entry 6) was also studied, but no reaction occurred. Considering the metal counterions are of critical importance in impacting the catalytic activity, different silver salts with the combination of DPG was evaluated and AgSbF_{6} was found to be the most efficient one, giving $\mathbf{2 a}$ in 91% yield (entries $7-11$). Further screening of solvents, including $\mathrm{CH}_{3} \mathrm{CN}, \mathrm{DMF}$, acetone and toluene, failed to improve the result (entries 12-15). In the apsence of silver salt or DPG, no reaction occurred at all (entries 16-17).

Table S2. The influence of CO_{2} pressure and reaction temperature.

$\underbrace{N_{i}^{-B n}}_{1 \mathrm{a}(0.1 \mathrm{mmol})}$	$+\quad \underset{(1 \mathrm{~atm})}{\mathrm{co}_{2}}$			
Entry	$\mathrm{CO}_{2}(\mathrm{MPa})$	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Time (h)	Isolated yield (\%)
1	0.1	25	6	47
2	1.0	25	6	59
3	0.1	50	6	62
4	1.0	50	6	91
5	0.1	25	12	91

The influence of CO_{2} pressure or reaction temperature was studied. It was found that if the reaction was carried out under higher $50^{\circ} \mathrm{C}$ or 10 atm of CO_{2}, instead of ambient temperature and pressure, for 6 hours, the reaction yield increased from 47% to 59% and 62% respectively (entries $2-3$ vs 1 , Table S2). In addition, 91% yield could be obtained under $50^{\circ} \mathrm{C}$ and 10 atm of CO_{2} simultaneously (entry 4). However, the same result could also be achieved by prolong the reaction time to 12 hours under ambient temperature and pressure (entry 5). These results indicated that, indeed, the higher temperature and pressure could improve the efficiency of carboxylative cyclization to some extent, but the reaction performed under such conditions should be net CO_{2} emitter rather than consumer, since the rising of CO_{2} pressure and temperature would result indirect production of additional CO_{2}. In this context, we prefer to develop the carboxylative cyclization of CO_{2} at ambient temperature and pressure, and obviously, under such situation DPG has a distinct advantage than other ones.

4. General procedure for the carboxylative cyclization reaction.

To a 5.0 mL vial were added $\mathrm{AgSbF}_{6}(5.1 \mathrm{mg}, 0.015 \mathrm{mmol})$, $\mathrm{DPG}(31.7 \mathrm{mg}, 0.15 \mathrm{mmol}), \mathbf{1}$ or $3(0.3 \mathrm{mmol})$ and 1.5 mL of DCE, then the resulting solution was stirred under CO_{2} atmosphere (1 atm) at $25^{\circ} \mathrm{C}$ till full consumption of $\mathbf{1}$ or $\mathbf{3}$ by TLC analysis. The residue was directly subjected to column chromatography by using $\mathrm{PE} / \mathrm{EtOAc}$ (from $4 / 1$ to $2 / 1$, v / v) as the eluent, affording the desired products $\mathbf{2}$ or $\mathbf{4}$. The reaction of homopropargyl amine 21 was performed under $10 \mathrm{~atm} \mathrm{CO}_{2}$ at $50^{\circ} \mathrm{C}$, and $\mathrm{IPrAuCl}(10 \mathrm{~mol} \%)$ was used instead of $\mathrm{AgSbF}_{6}(5 \mathrm{~mol} \%)$.

2a

Product $2 \mathbf{a}^{5}$ was obtained in 89% yield as light yellow solid (m.p. $70-72{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.37-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 3 \mathrm{H}), 4.66(\mathrm{~d}, J=1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}), 4.23(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{t}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.54(\mathrm{t}, J$ $=2.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 152.58,151.05,135.96,128.62,127.87,127.72$, 92.67, 52.52, 43.00, 25.97.

2b

Product $\mathbf{2} \mathbf{b}^{5}$ was obtained in 89% yield as light yellow oil; ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.24-7.22(\mathrm{~m}, 2 \mathrm{H}), 6.89-6.86(\mathrm{~m}, 2 \mathrm{H}), 4.65(\mathrm{~d}, J=1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 4.22(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{t}, J=$ $6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.52(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.26,152.68,151.07,129.50$, 128.14, 114.07, 92.69, 55.25, 52.07, 42.82, 26.12.

Product $\mathbf{2 c}{ }^{5}$ was obtained in 92% yield as light yellow solid (m.p. $65-67^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.48-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.17(\mathrm{~m}, 2 \mathrm{H}), 4.68$ (d, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H}), 4.25(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{t}, J=6.0$ $\mathrm{Hz}, 2 \mathrm{H}), 2.55(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.40,150.99,135.11,131.77$, 129.65, 121.72, 92.98, 52.02, 43.17, 25.99.

2d

Product $\mathbf{2 d}$ was obtained in 90% yield as light yellow solid (m.p. 77-79 ${ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.20-7.18$ (m, 2H), 7.16-7.14 (m, 2H), 4.65 $(\mathrm{d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~s}, 2 \mathrm{H}), 4.22(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{t}, J=6.0$ $\mathrm{Hz}, 2 \mathrm{H}$), $2.52(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.67,151.04$, 137.49, 132.96, 129.32, 127.99, 92.58, 52.29, 42.87, 26.05, 21.00; IR (ATR) v 2920.0, 1712.3, 1662.3, 1514.7, 1483.4, 1357.0, 1313.4, 1253.7, 1097.3, $999.0 \mathrm{~cm}^{-1}$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 240.0995$, found: 240.0989 .

2e

Product $\mathbf{2 e}$ was obtained in 91% yield as light yellow solid (m.p. $71-73^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.25-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.07(\mathrm{~m}, 3 \mathrm{H}), 4.66$ (d, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~s}, 2 \mathrm{H}), 4.23(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{t}, J=6.4$ $\mathrm{Hz}, 2 \mathrm{H}), 2.54(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.66,151.05,138.39,135.92,128.65,128.50,125.00,92.61,52.53,42.97,26.03,21.25 ;$ IR $(A T R) ~ v ~ 2919.0, ~ 1711.3,1607.9,1483.6,1354.7,1298.7,1254.3,1107.5,1053.7,955.8 \mathrm{~cm}^{-1} ;$ HRMS (ESI): Exact mass calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 240.0995$, found: 240.0990 .

$2 f$

Product 2 f was obtained in 86% yield as light yellow solid (m.p. $80-83{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.23-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.17-7.14(\mathrm{~m}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J$ $=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~s}, 2 \mathrm{H}), 4.24(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H})$, $2.55(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 152.56, $150.79,136.56,133.43,130.60,128.12,127.78,126.04,92.62,50.41,42.77,26.00,19.00 ;$ IR (ATR) v 2925.8, 1707.8, 1666.6, 1484.3, 1380.3, 1329.6, 1246.8, 1177.0, 1095.1, $993.1 \mathrm{~cm}^{-1}$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 240.0995$, found: 240.0988 .

$2 g$

Product $\mathbf{2 g}^{5}$ was obtained in 66% yield as light yellow oil; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 4.59(\mathrm{~s}, 1 \mathrm{H}), 4.19(\mathrm{~s}, 1 \mathrm{H}), 3.33(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.27(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H})$, $2.56(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.57-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.26(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{t}, J=7.6 \mathrm{~Hz}$, 3 H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 152.78,150.57,92.26,49.37,43.87,29.17$, 26.20, 19.79, 13.70.

Product 2h was obtained in 74% yield as light yellow oil; ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 7.30-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 3 \mathrm{H}), 4.62(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.22$ (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.25(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.65(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.53(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.96-1.89(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.64$, $150.59,141.13,128.33,128.12,125.89,92.37,49.28,43.87,32.85,28.59,26.07$; IR (ATR) v 3025.8, 2925.8, 1712.8, 1602.5, 1484.2, 1344.3, 1255.4, 1174.2, 1081.0, $981.4 \mathrm{~cm}^{-1}$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 254.1151$, found: 254.1146.

Product 2i was obtained in 40% yield as light yellow oil; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 4.61(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.19-4.11(\mathrm{~m}, 2 \mathrm{H}), 3.22(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, $2.54(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.82-1.76(\mathrm{~m}, 4 \mathrm{H}), 1.68-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.34(\mathrm{~m}, 4 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.60,150.48$, $91.72,55.73,38.25,29.63,26.51,25.46,25.37$; IR (ATR) v 2927.3, 2854.7, 1707.8, 1658.6, 1481.0, 1373.6, 1347.0, 1254.6, 1092.8, $986.5 \mathrm{~cm}^{-1} ;$ HRMS (ESI): Exact mass calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 218.1151$, found: 218.1145 .

Product $\mathbf{2 j}$ was obtained in 54% yield as light yellow oil; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.37-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 3 \mathrm{H}), 5.11-5.03(\mathrm{~m}, 1 \mathrm{H})$, $5.00(\mathrm{~s}, 1 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H}), 3.25(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.57-2.54(\mathrm{~m}, 2 \mathrm{H}), 1.26$ (d, $J=6.4 \mathrm{~Hz}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 162.95,157.65,149.10,135.54,128.76,128.11$, 128.00, 99.20, 67.38, 52.88, 41.89, 30.81, 27.31, 21.77; IR (ATR) v 2981.2, 2929.9, 1728.3, 1715.5, 1652.2, 1540.0, 1485.7, 1371.1, 1275.1, $1143.9 \mathrm{~cm}^{-1}$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 312.1206$, found: 312.1203. Based on NOE analysis, the Z diastereomer was obtained, for detail see the attached NOE spectrum.

Product 2k was obtained in 74% yield as light yellow oil; ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.38-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 2 \mathrm{H}), 4.82(\mathrm{~d}, J=9.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.57$ ($\mathrm{s}, 2 \mathrm{H}$), 4.24-4.15 (m, 4H), 3.26-3.23 (m, 2H), 2.61-2.58 $(\mathrm{m}, 2 \mathrm{H}), 1.36(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.62(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 148.90$, 135.47, 128.76, 128.02, 95.80, 93.89, 62.04 (d, $J=6.0 \mathrm{~Hz}$), 52.76, 41.85, 27.76 (d, $J=15.0 \mathrm{~Hz}$), $16.24(\mathrm{~d}, J=7.0 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR ($122 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.58$ (m); IR (ATR) v 2981.2, 1727.4, 1651.2,
1482.1, 1391.8, 1349.9, 1238.5, 1185.4, 1095.4, $886.1 \mathrm{~cm}^{-1}$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NNaO}_{5} \mathrm{P}[\mathrm{M}+\mathrm{Na}]^{+}: 362.1128$, found: 362.1121. Based on NOE analysis, the Z diastereomer was obtained, for detail see the attached NOE spectrum.

21

Product 21 was obtained in 25% yield as light yellow oil; ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 7.37-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 3 \mathrm{H}), 4.60-4.55(\mathrm{~m}, 3 \mathrm{H}), 3.18(\mathrm{t}, J=$ $6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.48-2.45(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.66(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 151.62,145.54,136.35,128.73,128.07,127.78,103.01,52.79,43.74,26.54$, 9.53; IR (ATR) v 2920.4, 2854.0, 1718.0, 1693.4, 1484.0, 1444.2, 1361.0, 1269.8, 1206.3, 1075.9 cm^{-1}; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 240.0995$, found: 240.0992. Based on NOE analysis, the Z diastereomer was obtained, for detail see the attached NOE spectrum.
 4a

Product 4a was obtained in 75% yield as light yellow solid (m.p. $65-67^{\circ} \mathrm{C}$); HPLC analysis $\left(\right.$ Chiralcel AD-H, ${ }^{i} \mathrm{PrOH} /$ hexane $=15 / 85,1.0 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm} ; \mathrm{t}_{\mathrm{r}}($ major $)=$ $9.95 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $\left.)=11.66 \mathrm{~min}\right)$ gave the isomeric composition of the product: 96% ee; $[\alpha]_{\mathrm{D}}{ }^{25}=+15.8\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.40-7.35(\mathrm{~m}, 3 \mathrm{H})$, 7.33-7.29 (m, 3H), 7.26-7.22(m, 2H), 7.17-7.15 (m, 2H), 5.30, 3.68 (AB, $J=15.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.42$ (dd, $J=6.4 \mathrm{~Hz}, 2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, \mathrm{~J}=262.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.88-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.49(\mathrm{dd}, J=14.4 \mathrm{~Hz}, 2.8$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 151.38,149.96,138.58,136.11,128.78,128.66,128.23$, 128.07, 127.76, 126.23, 94.86, 55.94, 50.49, 34.19; IR (ATR) v 2925.8, 1694.0, 1495.1, 1444.6, 1367.5, 1281.5, 1108.4, 1031.6, $932.2,852.8 \mathrm{~cm}^{-1}$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 302.1151$, found: 302.1144.

Product 4b was obtained in 75% yield as white solid (m.p. 77-79 ${ }^{\circ} \mathrm{C}$); HPLC analysis (Chiralcel AD-H, ${ }^{i}$ PrOH/hexane $=15 / 85,0.8 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm} ; \mathrm{t}_{\mathrm{r}}$ $($ major $)=11.27 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $\left.)=12.18 \mathrm{~min}\right)$ gave the isomeric composition of the product: 98% ee; $[\alpha]_{\mathrm{D}}{ }^{25}=-25.9\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}): $\delta 7.34-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.22-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.27,3.67(\mathrm{AB}, J=15.2$ $\mathrm{Hz}, 2 \mathrm{H}), 4.40(\mathrm{dd}, J=6.0 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=260.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.88-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.44$ (dd, $J=14.0 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 151.20,149.64,137.20,135.89,134.13$,
$129.03,128.75,128.11,127.91,127.66,95.22,55.47,50.65,34.15$; IR (ATR) v 2920.9, 1712.8, 1661.3, 1490.0, 1425.6, 1358.2, 1299.7, 1269.8, 1147.7, $1029.0 \mathrm{~cm}^{-1}$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{ClNNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 336.0762$, found: 336.0762 .

Product $\mathbf{4 c}$ was obtained in 74% yield as light yellow oil; HPLC analysis $\left(\right.$ Chiralcel AD-H, ${ }^{i} \mathrm{PrOH} /$ hexane $=5 / 95,1.0 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm} ; \mathrm{t}_{\mathrm{r}}($ major $)=$ $22.30 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $\left.)=29.02 \mathrm{~min}\right)$ gave the isomeric composition of the product: $98 \% \mathrm{ee} ;[\alpha]_{\mathrm{D}}{ }^{25}=+2.5\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 7.35-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.24(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $5.30,3.66(\mathrm{AB}, J=14.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.38(\mathrm{dd}, J=6.4 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=261.2 \mathrm{~Hz}, 2 \mathrm{H})$, 2.88-2.82 (m, 1H), 2.47 (dd, $J=14.4 \mathrm{~Hz}, 2.8 \mathrm{~Hz}, 1 \mathrm{H}$), $2.36(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 151.46,150.19,138.10,136.28,135.64,129.52,128.70,128.13,127.78,126.24,94.79,55.76$, 50.44, 34.34, 21.04; IR (ATR) v 3028.2, 2916.9, 1713.1, 1663.6, 1514.0, 1495.4, 1427.0, 1359.3, 1261.0, $1074.8 \mathrm{~cm}^{-1}$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 316.1308$, found: 316.1301.

Product 4d was obtained in 73% yield as white solid (m.p. 85-87 ${ }^{\circ} \mathrm{C}$); HPLC analysis (Chiralcel AD-H, ${ }^{i} \mathrm{PrOH} / \mathrm{hexane}=15 / 85,0.8 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm} ; \mathrm{t}_{\mathrm{r}}$ $($ major $)=13.01 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $\left.)=15.73 \mathrm{~min}\right)$ gave the isomeric composition of the product: 97% ee; $[\alpha]_{\mathrm{D}}{ }^{25}=+8.0\left(\mathrm{c}=0.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}): $\delta 7.37-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.24-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 7.07-7.03(\mathrm{~m}, 1 \mathrm{H}), 5.31,3.68(\mathrm{AB}, J$ $=15.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.41(\mathrm{~d}, J=264.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.40(\mathrm{dd}, J=6.4 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.90-2.84(\mathrm{~m}, 1 \mathrm{H})$, $2.46(\mathrm{dd}, J=14.4 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 151.17,149.51,140.82,135.87$, 134.82, 130.15, 128.76, 128.51, 128.12, 127.94, 126.47, 124.38, 95.32, 55.60, 50.76, 34.08; IR $(A T R) ~ v ~ 2921.0,1714.8,1664.9,1596.5,1495.0,1445.2,1340.5,1028.4,971.8,803.2 \mathrm{~cm}^{-1} ;$ HRMS (ESI): Exact mass calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{ClNNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 336.0762$, found: 336.0761.

Product $\mathbf{4 e}$ was obtained in 81% yield as light yellow solid (m.p. $90-92{ }^{\circ} \mathrm{C}$); HPLC analysis (Chiralcel AD-H, ${ }^{i}$ PrOH/hexane $=10 / 90,0.8 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}$; $\mathrm{t}_{\mathrm{r}}($ major $\left.)=14.49 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}(\mathrm{minor})=17.88 \mathrm{~min}\right)$ gave the isomeric composition of the product: 97% ee; $[\alpha]_{\mathrm{D}}{ }^{25}=+33.0\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}): $\delta 7.36-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.14(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-6.95(\mathrm{~m}, 2 \mathrm{H}), 5.32$, $3.68(\mathrm{AB}, J=15.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.38(\mathrm{~d}, J=262.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.38(\mathrm{dd}, J=6.4 \mathrm{~Hz}, 2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.88-2.82$ $(\mathrm{m}, 1 \mathrm{H}), 2.48(\mathrm{dd}, J=14.0 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 151.48$, $150.11,138.60,136.27,129.03,128.70,128.68,128.11,127.77,126.88,123.38,94.79,56.01,50.56$, 34.27, 21.39; IR (ATR) v 2950.1, 1709.0, 1692.9, 1657.1, 1453.0, 1435.3, 1104.8, 1076.2, 811.4, $707.9 \mathrm{~cm}^{-1} ;$ HRMS (ESI): Exact mass calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 316.1308$, found: 316.1303.

Product $\mathbf{4 f}$ was obtained in 77% yield as light yellow oil; HPLC analysis $\left(\right.$ Chiralcel AD-H, ${ }^{i} \operatorname{PrOH} /$ hexane $=5 / 95,1.0 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm} ; \mathrm{t}_{\mathrm{r}}($ major $)=$ $32.72 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $\left.)=38.07 \mathrm{~min}\right)$ gave the isomeric composition of the product: $98 \% \mathrm{ee} ;[\alpha]_{\mathrm{D}}{ }^{25}=-15.1\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: δ 7.88-7.83 (m, 3H), 7.61 ($\mathrm{s}, 1 \mathrm{H}$), 7.55-7.50 (m, 2H), 7.36-7.29 (m, 3H), 7.27-7.24 (m, 3H), 4.60$4.58(\mathrm{~m}, 1 \mathrm{H}), 5.38,3.73(\mathrm{AB}, J=15.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.37(\mathrm{~d}, J=274.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.94(\mathrm{dd}, J=14.4 \mathrm{~Hz}$, $6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.62-2.57(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 151.56,150.00,136.21,135.97$, 133.11, 133.09, 128.95, 128.76, 128.16, 127.91, 127.87, 127.68, 126.61, 126.41, 125.34, 123.89, 95.06, 56.18, 50.67, 34.26; IR (ATR) v 3028.1, 2919.3, 1712.3, 1601.0, 1508.4, 1445.8, 1367.2, 1269.9, 1206.1, $1074.9 \mathrm{~cm}^{-1}$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 352.1308$, found: 352.1311.

Product $\mathbf{4 g}$ was obtained in 75% yield as light yellow solid (m.p. $67-69^{\circ} \mathrm{C}$); HPLC analysis $\left(\right.$ Chiralcel AD-H, ${ }^{i} \operatorname{PrOH} /$ hexane $=5 / 95,1.0 \mathrm{~mL} / \mathrm{min}, 205 \mathrm{~nm} ; \mathrm{t}_{\mathrm{r}}($ major $)=$ $\left.22.04 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}(\mathrm{minor})=29.46 \mathrm{~min}\right)$ gave the isomeric composition of the product: 97% ee; $[\alpha]_{\mathrm{D}}{ }^{25}=+30.4\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.35-7.32$ $(\mathrm{m}, 2 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 3 \mathrm{H}), 5.34,3.94(\mathrm{AB}, J=15.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.41(\mathrm{~d}, J=194.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.98(\mathrm{t}, J$ $=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{dd}, J=14.8 \mathrm{~Hz}, 4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{~d}, J=10.8 \mathrm{~Hz}$, $2 \mathrm{H}), 1.75-1.62(\mathrm{~m}, 4 \mathrm{H}), 1.22-1.16(\mathrm{~m}, 2 \mathrm{H}), 1.13-0.92(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ
$152.23,151.48,136.52,128.67,127.94,127.73,92.75,56.81,52.55,40.72,30.19,28.97,28.90$, 26.01, 25.91; IR (ATR) v 2934.7, 2852.7, 1704.7, 1659.6, 1424.9, 1339.2, 1208.1, 1135.1, 1073.7, $1028.0 \mathrm{~cm}^{-1}$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 308.1621$, found: 308.1622 .

Product 4h was obtained in 71% yield as light yellow oil; HPLC analysis $\left(\right.$ Chiralcel AD-H, ${ }^{i}$ PrOH/hexane $=10 / 90,0.8 \mathrm{~mL} / \mathrm{min}, 205 \mathrm{~nm} ; \mathrm{tr}_{\mathrm{r}}($ major $)=21.78$ $\left.\min , \mathrm{t}_{\mathrm{r}}(\operatorname{minor})=19.08 \mathrm{~min}\right)$ gave the isomeric composition of the product: 98% ee; $[\alpha]_{\mathrm{D}}{ }^{25}=-13.8\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.32-7.28(\mathrm{~m}$, $3 \mathrm{H}), 7.27-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.14-7.10(\mathrm{~m}, 4 \mathrm{H}), 5.07,3.94(\mathrm{AB}, J=14.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.49(\mathrm{~d}, J=208.8 \mathrm{~Hz}$, $2 \mathrm{H}), 3.23-3.18(\mathrm{~m}, 1 \mathrm{H}), 2.71-2.64(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.45(\mathrm{~m}, 3 \mathrm{H}), 1.93-1.86(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 151.06,150.96,140.20,136.42,128.63,128.58,128.17,128.07,127.73,126.28$, 94.14, 51.15, 50.79, 32.89, 31.87, 29.91; IR (ATR) v 3026.6, 2925.1, 1712.5, 1661.3, 1602.6, 1495.3, $1351.5,1282.2,1227.8,1028.9 \mathrm{~cm}^{-1}$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 330.1464, found: 330.1466 .

$4 i$

Product 4i was obtained in 82% yield as light yellow solid (m.p. $89-90{ }^{\circ} \mathrm{C}$); HPLC analysis (Chiralcel OJ-H, ${ }^{i} \mathrm{PrOH} / \mathrm{hexane}=15 / 85,0.8 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}$; t_{r}
$($ major $)=12.43 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $\left.)=11.62 \mathrm{~min}\right)$ gave the isomeric composition of the product: 98% ee; $[\alpha]_{\mathrm{D}}{ }^{25}=-34.9\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): ~ \delta 7.18-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.12-7.10(\mathrm{~m}, 1 \mathrm{H}), 5.68-5.64(\mathrm{~m}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-$ $4.21(\mathrm{~m}, 1 \mathrm{H}), 3.12-3.05(\mathrm{~m}, 1 \mathrm{H}), 2.97-2.91(\mathrm{~m}, 1 \mathrm{H}), 2.83-2.73(\mathrm{~m}, 2 \mathrm{H}), 2.49(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H})$, 2.16-2.10 (m, 1H), 2.01-1.94 (m, 1H), 1.86-1.72 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.84$, $151.42,138.68,133.81,129.36,127.13,126.86,126.24,92.03,55.48,39.14,29.31,27.16,26.39$, 21.57; IR (ATR) v 2942.0, 1715.8, 1652.2, 1475.5, 1361.1, 1337.2, 1257.8, 1230.9, 1083.6, 957.1 cm^{-1}; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 266.1151$, found: 266.1144 .

Product $\mathbf{4} \mathbf{j}$ was obtained in 56% yield as light yellow oil; HPLC analysis (Chiralcel $\mathrm{OJ}-\mathrm{H},{ }^{i} \mathrm{PrOH} /$ hexane $=15 / 85,0.8 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm} ; \mathrm{t}_{\mathrm{r}}($ major $)=15.89 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $)$

4j
$=13.95 \mathrm{~min}$) gave the isomeric composition of the product: $97 \% \mathrm{ee} ;[\alpha]_{\mathrm{D}}{ }^{25}=+68.5$
$\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.30-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 2 \mathrm{H}), 5.68(\mathrm{q}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=176.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.08-3.02(\mathrm{~m}, 1 \mathrm{H}), 2.79-2.73(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.37(\mathrm{~m}, 1 \mathrm{H})$, 2.34-2.27 (m, 1H), $1.48(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.60,150.91,139.23$, $128.52,127.67,127.14,92.06,53.59,37.88,26.20,15.36$; IR (ATR) v 2976.4, 1707.4, 1480.7, 1378.8, 1357.6, 1258.2, 1231.5, 1126.3, 1039.2, $983.7 \mathrm{~cm}^{-1}$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 240.0995$, found: 240.0987 .

Notably, the synthesis of chiral 2-oxazinones from optically active homopropargyl amines is not as trivial as it first appears. If the reaction was run under previous reported condition of high temperature and pressure, ${ }^{6}$ the desired chiral 2-oxazinones might be obtained in diminished ee values, as exemplified by the synthesis of $\mathbf{4} \mathbf{j}$ from chiral amine $\mathbf{3} \mathbf{j}$.

5. Mechanistic studies

The superiority that DPG exhibited in the $\mathrm{Ag}(\mathrm{I})$-catalyzed carboxylative cyclization of both N aryl propargylanilines and N-alkyl homopropargyl amines is very intriguing. To gain more insight into the role of DPG, a variety of experiments including ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, HRMS as well as Xray analysis were conducted.

5.1. The study of interaction between DPG and CO_{2}.

Initially, the detail for the trapping and releasing of CO_{2} by DPG was studied. As far as we know, the corresponding reaction between DPG and CO_{2} has never been documented. ${ }^{4}$ A general procedure for the capture of CO_{2} was as follows: DPG ($633 \mathrm{mg}, 3 \mathrm{mmol}$) was stirred in DCE (10 mL) under a continuous stream of $\mathrm{CO}_{2}(15 \mathrm{~mL} / \mathrm{min})$ for 2 h at $0^{\circ} \mathrm{C}$. Then, deposited solid was quickly filtered off and washed with cold DCE $(3 \times 5 \mathrm{~mL})$ to give the complex as a white powder ($600 \mathrm{mg}, 78 \%$) with high purity. Notably, the carboxylation process was reversible. As shown in Figure S 1 , although the precipitate formed in $0^{\circ} \mathrm{C}$ could be isolated via a quick filtration, it would be gradually disappeared with the release of CO_{2} bubbles if raising the solution temperature above $25^{\circ} \mathrm{C}$.

Figure S1. The capture and release of CO_{2}. (Note, in order to give a clearer phenomenon, the CO_{2} release process was performed under around $40^{\circ} \mathrm{C}$.)

Then, the structure of the thus obtained complex was analyzed. Initially, NMR studies were performed, but we tried in vain to characterize its structure in common organic deuterated solvents, such as $\mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{CDCl}_{3}, \mathrm{CD}_{3} \mathrm{CN}$, DMSO- d_{6}, THF- d_{8}, and only spectra assigned to the DPG structure was obtained due to the release of CO_{2}. Fortunately, in $\mathrm{D}_{2} \mathrm{O}$ the complex could be successfully
characterized, with the data shown below: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta 7.53-7.50(\mathrm{~m}, 4 \mathrm{H}), 7.44-$ $7.40(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.37(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta 160.35,155.04,134.32$, 129.97, $128.00,127.98,125.93$; IR (ATR) v 1645, 1582, 1544, 1495, 1385, 1242, 750, $689 \mathrm{~cm}^{-1}$.

Figure S2. NMR spectrum comparison.
Then, the NMR data of the thus obtained complex in $\mathrm{D}_{2} \mathrm{O}$ with that of protonated DPG, [DPGH] $\left[\mathrm{CF}_{3} \mathrm{CO}_{2}\right.$], was compared with the results shown in Figure S2. Obviously, the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data were consistent with the DPG portion of the complex being simply protonated DPG. And the new peak at 160.35 ppm in the ${ }^{13} \mathrm{C}$ NMR spectrum of the complex was consistent with bicarbonate anion. These results revealed that a bicarbonate salt $[\mathrm{DPGH}]\left[\mathrm{HCO}_{3}\right]$ might be formed.
In order to figure out the exact structure of the complex, CO_{2} was diffused into the solvent of DPG in $\mathrm{THF} / \mathrm{Et}_{2} \mathrm{O}(1 / 1, \mathrm{v} / \mathrm{v})$ under $-20{ }^{\circ} \mathrm{C}$, and finally a single crystal of the bicarbonate adduct $[\mathrm{DPGH}]\left[\mathrm{HCO}_{3}\right]$ was obtained (CCDC-1907983). X-ray crystallography shows that a centrosymmetric dimer was formed by the "anti-electrostatic" hydrogen-bonding between oxygen atoms of the bicarbonate anion $\left[\mathrm{HCO}_{3}\right]^{\prime}$, with $\mathrm{H} \cdots \mathrm{O}$ contact distances of $1.78 \AA$. In each monomer, the bicarbonate anion associated with the cation $[\mathrm{DPGH}]^{+}$through three hydrogen bonds between the oxygen and nitrogen atoms, with $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ contact distances of $1.82,1.90$ and $1.97 \AA$ (Figure S3, left). In addition, the cationic stacks flank the anionic cluster in a close-packed arrangement (right).

Figure S3. The X-Ray crystal structure of bicarbonate salt $[\mathrm{DPGH}]\left[\mathrm{HCO}_{3}\right]$.
Then the reaction of homopropargyl amine with the bicarbonate adduct was performed. The treatment of homopropargyl amine 1a with bicarbonate salt $[\mathrm{DPGH}]\left[\mathrm{HCO}_{3}\right]$ in the presence of 5 $\mathbf{m o l} \%$ of AgSbF_{6} under N_{2} atmosphere at room temperature gave the desired 2-oxazinone $\mathbf{2 a}$ in $\mathbf{7 4 \%}$ and 89% yield respectively, by using 1.0 or 2.0 equivlent of bicarbonate salt. These results further demonstrated that $[\mathrm{DPGH}]\left[\mathrm{HCO}_{3}\right]$ could release CO_{2} effectively during the raction.

5.2 The study of interaction between DPG and AgSbF6

At first the interaction of DPG with AgSbF_{6} was studied by NMR analysis, which was conducted in air using CDCl_{3} as the solvent. The general procedure was as follows: to a NMR tube were added the DPG $(0.1 \mathrm{mmol})$ and $\mathrm{CDCl}_{3}(0.5 \mathrm{~mL})$, followed by the addition of $\mathrm{AgSbF}_{6}(10 \mathrm{~mol} \%$ to 100 $\mathrm{mol} \%)$. Then the tube was shaken vigorously and quickly subjected to NMR analysis at $25^{\circ} \mathrm{C}$.

Obvious changes were immediately observed when AgSbF_{6} was added to the solution of DPG in $\mathrm{CDCl}_{3} .{ }^{1} \mathrm{H}$ NMR showed that, with the amount of AgSbF_{6} increased from 0.1 equiv to 1.0 equiv, the characteristic peaks corresponding to the proton at C5 position of DPG, changed gradually from 7.03 ppm to 7.06 and 7.12 ppm . Meanwhile, the signal of proton on the nitrogen atom changed from 5.08 ppm to 5.41 and 5.62 ppm gradually. Obvious changes could also be observed for the ${ }^{13} \mathrm{C}$ NMR analysis (Figure S4). When 0.1 equiv of AgSbF_{6} was added, the characteristic peaks of $\mathrm{C} 1, \mathrm{C} 2$ and C5 changed from $149.63,143.94$ and 123.23 ppm to $151.23,142.49$ and 124.06 ppm respectively. Further increase the amount of AgSbF_{6} to 1.0 equiv, the characteristic peak of C 5 shifted to 125.42 ppm and the signals of C 1 and C 2 might be too weak to be detected. These observations indicated that DPG might coordinate to AgSbF_{6}.

Figure S4. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of DPG with 0.1 and 1.0 equiv of AgSbF_{6}.
To get more information about the possible binding interaction, HRMS analysis of the DPG$\mathrm{Ag}(\mathrm{I})$ complex with different molecular ratio $\left(\mathrm{AgSbF}_{6}: \mathrm{DPG}=1: 1,1: 2\right.$ and $\left.1: 10\right)$ was conducted respectively, and in all cases a signal at m/z 529.1274 was observed as shown in Figure S5, consistent with the $1 / 2$ complex cation, $\left[(\mathrm{DPG})_{2}+\mathrm{Ag}\right]^{+}$.

$\#$	\mathbf{m} / \mathbf{z}	Res.	\mathbf{S} / \mathbf{N}	\mathbf{I}	$\mathbf{I} \%$	FWHM				
1	529.1274	38362	2655.1	207020	100.0	0.0138				
2	530.1302	32495	468.6	36568	17.7	0.0163				
3	531.1272	36859	2407.8	188056	90.8	0.0144				
4	532.1306	28685	374.4	29234	14.1	0.0186				
Meas. \mathbf{m} / \mathbf{z}	$\#$	lon Formula	m / \mathbf{z}	err [ppm]	mSigma	Score	rdb	e^{-}Conf	N-Rule	
529.1274	1	C26H26AgN6	529.1264	-1.8	86.3	4	10.60	16.5	even	ok

Figure S5. HRMS analysis of the DPG-Ag(I) complex.

Fortunately, we obtained a single crystal of the complex derived from DPG and AgSbF_{6} upon crystallization of the $1 / 2$ mixture of AgSbF_{6} and DPG from $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (CCDC-1894496). X-ray diffraction study revealed that the DPG served as neutral monodentate ligand and bound to the silver center via a head-to-head fashion (Figure S6). These results in combination with HRMS analysis, further cast light on the coordination fashion of DPG to AgSbF_{6}.

Figure S6. the single crystal of DPG-Ag(I) complex.

5.3. NMR study of the reaction process.

To get more information about the reaction course and to understand the role of DPG during the reaction, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR studies of the reaction process were carried out based on the reaction of homopropargyl amine 1a under 1 atm of CO_{2} at $25^{\circ} \mathrm{C}$ in CDCl_{3}, in the presence of $10 \mathrm{~mol} \% \mathrm{AgSbF}_{6}$ and $100 \mathrm{~mol} \%$ DPG.

As shown in Figure S7, when 1a was added to the mixture of AgSbF_{6} and DPG , the characteristic peaks assigned to $\mathrm{H} 1, \mathrm{H} 3, \mathrm{H} 4$ and H 5 of 1a upfield shifted from 1.99, 2.41, 2.80, 3.82 ppm to $1.98,2.39,2.78$ and 3.80 pm respectively (c vs a). Meanwhile, ${ }^{13} \mathrm{C}$ NMR spectrum revealed the signals assigned to C3, C4 and C5 shifted from 19.54, 47.30 and 53.35 ppm to 19.49, 47.24 and 53.29 ppm respectively. A slightly upfield shift of the signals assigned to C 1 and C 2 of the $\mathrm{C}-\mathrm{C}$ triple bond was also observed ($\mathrm{C} v s \mathrm{~A}$). These observations indicated that both the alkyne and amine moiety of 1a might interact with the DPG-Ag(I) complex, which was helpful for suppressing the side intramolecular hydroamination reaction. ${ }^{7}$

1. ${ }^{1} \mathrm{H}$ NMR analysis

Figure S7. ${ }^{\mathbf{1}} \mathbf{H}$ and ${ }^{13} \mathbf{C}$ NMR study in $\mathbf{C D C l}_{3}$. (a, A) $\mathbf{1 a}(0.1 \mathrm{mmol})$. (b, B) DPG (0.1 mmol). (c, C)
$\mathrm{AgSbF}_{6}(0.01 \mathrm{mmol})$, $\mathrm{DPG}(0.1 \mathrm{mmol})$ and $\mathbf{1 a}(0.1 \mathrm{mmol})$. (d-f, D-F) Under CO_{2} atmosphere 0.5 , 6.0 and 12 h respectively. ($\mathrm{g}, \mathrm{G}) \mathbf{2 a}(0.1 \mathrm{mmol})$.

Subsequently, the above reaction mixture was subjected to CO_{2} atmosphere with the reaction process monitored over time and notable changes were observed (Figure S7, d-f \& D-F). Within half an hour, apart from the detection of 2-oxazinone 2a, some new signals appeared at both ${ }^{1} \mathrm{H}$ NMR (δ $=4.57,3.40,2.41$ and 1.87 ppm$)$ and ${ }^{13} \mathrm{C}$ NMR ($\delta=164.09,83.12,68.80,50.72,45.60$ and 18.28 ppm) spectrum ($\mathrm{d} v \mathrm{c}$; D vs C , outside the dashed boxes part), which might be attributed to the carbamate formed via the reaction of $\mathbf{1 a}$ with CO_{2}. After 6 hours, the signals attribute to $\mathbf{1 a}$ and carbamic intermediate became weak gradually and the full conversion of 1a to 2a was observed within 12 hours (e-f; E-F). Notably, during the reaction course, the character peaks belong to DPG also shifted distinctly (the dashed boxes part). In the first half an hour, the characteristic signals of ${ }^{1} \mathrm{H}$ NMR shifed from 7.07 and 7.02 ppm to 7.15 and 7.09 pm respectively, meanwhile the signals of ${ }^{13} \mathrm{C}$ NMR also shifted from $143.23,123.40$ and 123.01 ppm to $141.32,124.29$ and 123.47 ppm obviously ($\mathrm{d} v s \mathrm{c} ; \mathrm{D} v s \mathrm{C}$). Then, as the reaction proceeded, the character peaks of DPG shifted back to its original state gradually (d-f $v s$ c; D-F vs C), which indicated that there should be interactions between DPG and the carbamate intermediate.

5.4. HRMS analysis of the complex derived from $\mathrm{DPG}^{\prime} \mathrm{AgSbF}_{6}$ and 1 a .

In order to get more information of the interactions among $\mathrm{AgSbF}_{6}, \mathrm{DPG}$ and homopropargyl amine 1a, the HRMS analysis was conducted (Figure S8). When a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of 1:10:10 mixture of $\mathrm{AgSbF}_{6}, \mathrm{DPG}$ and $\mathbf{1 a}$ was subjected to the HRMS analysis, the signals of $[\mathbf{1 a}+\mathrm{Ag}]^{+}$at 266.0087, $\left[(\mathrm{DPG})_{2}+\mathrm{Ag}\right]^{+}$at $\mathrm{m} / \mathrm{z} 529.1257$, as well as $[\mathrm{DPG}+1 \mathrm{a}+\mathrm{Ag}]^{+}$at $\mathrm{m} / \mathrm{z} 477.1199$ could be detected respectively. This information further confirmed the interactions between AgSbF_{6} with DPG and 1a, and also suggested the formation of $1 / 1 / 1$ complex of $\mathrm{AgSbF}_{6}, \mathrm{DPG}$ and 1a.

Figure S8. HRMS analysis.

6. Single-crystal X-ray analysis of bicarbonate salt [DPGH][HCO_{3}].

Table S3. Crystal data and structure refinement for CCDC-1907983.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

CCDC-1907983
$\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}$
273.29

193(2) K
0.71073 Å

Trigonal
R -3 :H
$a=34.5947(14) \AA \quad a=90^{\circ}$.
$b=34.5947(14) \AA \quad b=90^{\circ}$.
$\mathrm{c}=10.7422(5) \AA \quad \mathrm{g}=120^{\circ}$.
$11133.8(10) \AA^{3}$
18
$0.734 \mathrm{Mg} / \mathrm{m}^{3}$
$0.053 \mathrm{~mm}^{-1}$
2592
$0.160 \times 0.140 \times 0.110 \mathrm{~mm}^{3}$
2.014 to 25.000°.
$-41<=\mathrm{h}<=31,-32<=\mathrm{k}<=41,-12<=1<=12$
12749
$3789[\mathrm{R}(\mathrm{int})=0.0794]$
84.4 \%

Semi-empirical from equivalents
0.7456 and 0.5782

Full-matrix least-squares on F2
3789 / 0 / 183
1.015
$\mathrm{R} 1=0.0784, \mathrm{wR} 2=0.1955$
$\mathrm{R} 1=0.1169, \mathrm{wR} 2=0.2122$
0.0017(4)
0.198 and -0.167 e. \AA^{-3}

Table S4. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters ($\AA^{2} \times 10^{3}$) for d 8 v 19290 . $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U ij tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{O}(1)$	$4446(1)$	$4055(1)$	$1381(2)$	$53(1)$
$\mathrm{O}(2)$	$4998(1)$	$4464(1)$	$96(2)$	$59(1)$
$\mathrm{O}(3)$	$4650(1)$	$4768(1)$	$1071(2)$	$58(1)$
$\mathrm{N}(1)$	$3482(1)$	$4340(1)$	$3996(2)$	$59(1)$
$\mathrm{N}(2)$	$4197(1)$	$4694(1)$	$3190(2)$	$54(1)$
$\mathrm{N}(3)$	$3691(1)$	$4013(1)$	$2432(2)$	$51(1)$
$\mathrm{C}(1)$	$3781(1)$	$4346(1)$	$3233(2)$	$48(1)$
$\mathrm{C}(2)$	$4424(1)$	$5020(1)$	$4111(3)$	$51(1)$
$\mathrm{C}(3)$	$4705(1)$	$5458(1)$	$3737(3)$	$67(1)$
$\mathrm{C}(4)$	$4964(1)$	$5779(1)$	$4575(4)$	$77(1)$
$\mathrm{C}(5)$	$4943(1)$	$5673(1)$	$5818(3)$	$72(1)$
$\mathrm{C}(6)$	$4666(1)$	$5245(1)$	$6208(3)$	$69(1)$
$\mathrm{C}(7)$	$4406(1)$	$4917(1)$	$5354(3)$	$59(1)$
$\mathrm{C}(8)$	$3270(1)$	$3645(1)$	$2131(2)$	$53(1)$
$\mathrm{C}(9)$	$3237(1)$	$3224(1)$	$2087(3)$	$68(1)$
$\mathrm{C}(10)$	$2845(2)$	$2867(1)$	$1712(3)$	$85(1)$
$\mathrm{C}(11)$	$2481(1)$	$2903(1)$	$1409(3)$	$83(1)$
$\mathrm{C}(12)$	$2505(1)$	$3314(2)$	$1492(3)$	$82(1)$
$\mathrm{C}(13)$	$2906(1)$	$3690(1)$	$1828(3)$	$64(1)$
$\mathrm{C}(14)$	$4682(1)$	$4428(1)$	$879(2)$	$47(1)$

Table S5. Bond lengths [\AA] and angles $\left[{ }^{\circ}\right]$ for d 8 v 19290.

$\mathrm{O}(1)-\mathrm{C}(14)$	$1.252(3)$
$\mathrm{O}(2)-\mathrm{C}(14)$	$1.335(3)$
$\mathrm{O}(2)-\mathrm{H}(2 \mathrm{~A})$	0.8400
$\mathrm{O}(3)-\mathrm{C}(14)$	$1.252(3)$
$\mathrm{N}(1)-\mathrm{C}(1)$	$1.312(4)$
$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~A})$	0.8800
$\mathrm{~N}(1)-\mathrm{H}(1 \mathrm{~B})$	0.8800
$\mathrm{~N}(2)-\mathrm{C}(1)$	$1.338(4)$
$\mathrm{N}(2)-\mathrm{C}(2)$	$1.408(4)$
$\mathrm{N}(2)-\mathrm{H}(2)$	0.8800
$\mathrm{~N}(3)-\mathrm{C}(1)$	$1.346(3)$
$\mathrm{N}(3)-\mathrm{C}(8)$	$1.411(4)$
$\mathrm{N}(3)-\mathrm{H}(3)$	0.8800
$\mathrm{C}(2)-\mathrm{C}(7)$	$1.375(4)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.389(4)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.361(5)$

$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	0.9500
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.376(5)$
$\mathrm{C}(4)-\mathrm{H}(4)$	0.9500
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.367(5)$
$\mathrm{C}(5)-\mathrm{H}(5)$	0.9500
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.384(4)$
$\mathrm{C}(6)-\mathrm{H}(6)$	0.9500
$\mathrm{C}(7)-\mathrm{H}(7)$	0.9500
$\mathrm{C}(8)-\mathrm{C}(13)$	$1.383(5)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.404(5)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.360(5)$
$\mathrm{C}(9)-\mathrm{H}(9)$	0.9500
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.365(7)$
$\mathrm{C}(10)-\mathrm{H}(10)$	0.9500
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.385(6)$
$\mathrm{C}(11)-\mathrm{H}(11)$	0.9500
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.394(5)$
$\mathrm{C}(12)-\mathrm{H}(12)$	0.9500
$\mathrm{C}(13)-\mathrm{H}(13)$	0.9500
$\mathrm{C}(14)-\mathrm{O}(2)-\mathrm{H}(2 \mathrm{~A})$	109.5
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~A})$	120.0
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~B})$	120.0
$\mathrm{H}(1 \mathrm{~A})-\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~B})$	120.0
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(2)$	$127.9(2)$
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{H}(2)$	116.1
$\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{H}(2)$	116.1
$\mathrm{C}(1)-\mathrm{N}(3)-\mathrm{C}(8)$	$127.7(2)$
$\mathrm{C}(1)-\mathrm{N}(3)-\mathrm{H}(3)$	116.2
$\mathrm{C}(8)-\mathrm{N}(3)-\mathrm{H}(3)$	116.2
$\mathrm{~N}(1)-\mathrm{C}(1)-\mathrm{N}(2)$	$121.5(2)$
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{N}(3)$	$123.0(3)$
$\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{N}(3)$	$115.5(2)$
$\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{C}(3)$	$118.6(3)$
$\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{N}(2)$	$122.8(3)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{N}(2)$	$118.4(2)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	$121.0(3)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	119.5
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	119.5
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$119.9(3)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4)$	120.0
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4)$	120.0
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	$120.1(3)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5)$	120.0
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)$	120.0
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$120.0(3)$

$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6)$	120.0
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6)$	120.0
$\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{C}(6)$	$120.4(3)$
$\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{H}(7)$	119.8
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7)$	119.8
$\mathrm{C}(13)-\mathrm{C}(8)-\mathrm{C}(9)$	$120.2(3)$
$\mathrm{C}(13)-\mathrm{C}(8)-\mathrm{N}(3)$	$122.6(3)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{N}(3)$	$117.1(3)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	$118.6(4)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9)$	120.7
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9)$	120.7
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$122.3(4)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10)$	118.8
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10)$	118.8
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$119.6(3)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11)$	120.2
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11)$	120.2
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$119.7(4)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12)$	120.2
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12)$	120.2
$\mathrm{C}(8)-\mathrm{C}(13)-\mathrm{C}(12)$	$119.5(4)$
$\mathrm{C}(8)-\mathrm{C}(13)-\mathrm{H}(13)$	120.3
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13)$	120.3
$\mathrm{O}(1)-\mathrm{C}(14)-\mathrm{O}(3)$	$125.2(2)$
$\mathrm{O}(1)-\mathrm{C}(14)-\mathrm{O}(2)$	$116.8(2)$
$\mathrm{O}(3)-\mathrm{C}(14)-\mathrm{O}(2)$	$117.9(2)$

Symmetry transformations used to generate equivalent atoms:

Table S6. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for d8v19290. The anisotropic displacement factor exponent takes the form: $\quad-2 p^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{O}(1)$	$56(1)$	$38(1)$	$54(1)$	$1(1)$	$7(1)$	$15(1)$
$\mathrm{O}(2)$	$56(1)$	$47(1)$	$71(1)$	$6(1)$	$20(1)$	$24(1)$
$\mathrm{O}(3)$	$62(1)$	$43(1)$	$59(1)$	$2(1)$	$22(1)$	$18(1)$
$\mathrm{N}(1)$	$45(1)$	$54(2)$	$59(1)$	$-14(1)$	$10(1)$	$10(1)$
$\mathrm{N}(2)$	$49(1)$	$49(1)$	$50(1)$	$-4(1)$	$13(1)$	$13(1)$
$\mathrm{N}(3)$	$44(1)$	$46(1)$	$53(1)$	$-7(1)$	$3(1)$	$14(1)$
$\mathrm{C}(1)$	$49(2)$	$42(2)$	$44(1)$	$-3(1)$	$4(1)$	$17(1)$
$\mathrm{C}(2)$	$42(2)$	$50(2)$	$55(2)$	$-4(1)$	$2(1)$	$18(1)$
$\mathrm{C}(3)$	$63(2)$	$48(2)$	$66(2)$	$6(1)$	$-10(2)$	$10(2)$

$\mathrm{C}(4)$	$66(2)$	$50(2)$	$86(2)$	$2(2)$	$-22(2)$	$8(2)$
$\mathrm{C}(5)$	$60(2)$	$66(2)$	$77(2)$	$-22(2)$	$-20(2)$	$22(2)$
$\mathrm{C}(6)$	$69(2)$	$68(2)$	$55(2)$	$-8(2)$	$-10(2)$	$22(2)$
$\mathrm{C}(7)$	$59(2)$	$47(2)$	$62(2)$	$4(1)$	$2(2)$	$20(2)$
$\mathrm{C}(8)$	$60(2)$	$50(2)$	$38(1)$	$-2(1)$	$6(1)$	$18(1)$
$\mathrm{C}(9)$	$83(2)$	$47(2)$	$58(2)$	$-1(1)$	$-7(2)$	$20(2)$
$\mathrm{C}(10)$	$101(3)$	$48(2)$	$70(2)$	$4(2)$	$-20(2)$	$10(2)$
$\mathrm{C}(11)$	$78(3)$	$62(2)$	$65(2)$	$-6(2)$	$-6(2)$	$1(2)$
$\mathrm{C}(12)$	$64(2)$	$102(3)$	$63(2)$	$-19(2)$	$-10(2)$	$28(2)$
$\mathrm{C}(13)$	$55(2)$	$67(2)$	$61(2)$	$-14(2)$	$-6(2)$	$24(2)$
$\mathrm{C}(14)$	$49(2)$	$42(2)$	$46(1)$	$-6(1)$	$2(1)$	$19(1)$

Table S7. Hydrogen coordinates (x 10^{4}) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{H}(2 \mathrm{~A})$	5110	4711	-274	88
$\mathrm{H}(1 \mathrm{~A})$	3553	4568	4495	71
$\mathrm{H}(1 \mathrm{~B})$	3209	4109	4009	71
$\mathrm{H}(2)$	4347	4722	2502	65
$\mathrm{H}(3)$	3923	4025	2051	62
$\mathrm{H}(3 \mathrm{~A})$	4716	5534	2883	80
$\mathrm{H}(4)$	5160	6075	4302	92
$\mathrm{H}(5)$	5120	5898	6405	86
$\mathrm{H}(6)$	4652	5173	7066	83
$\mathrm{H}(7)$	4215	4620	5629	71
$\mathrm{H}(9)$	3483	3188	2313	82
$\mathrm{H}(10)$	2823	2583	1661	102
$\mathrm{H}(11)$	2213	2648	1142	100
$\mathrm{H}(12)$	2249	3339	1321	98
$\mathrm{H}(13)$	2930	3976	1848	77

Table S8. Torsion angles [${ }^{\circ}$] for d8v19290.

$\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{N}(1)$	$21.2(5)$
$\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{N}(3)$	$-159.8(3)$
$\mathrm{C}(8)-\mathrm{N}(3)-\mathrm{C}(1)-\mathrm{N}(1)$	$10.0(5)$
$\mathrm{C}(8)-\mathrm{N}(3)-\mathrm{C}(1)-\mathrm{N}(2)$	$-168.9(3)$
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(2)-\mathrm{C}(7)$	$42.8(5)$
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(2)-\mathrm{C}(3)$	$-142.2(3)$
$\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$1.3(5)$
$\mathrm{N}(2)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$-173.9(3)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$-1.6(6)$

$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$1.0(6)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$-0.2(6)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{C}(6)$	$-0.5(5)$
$\mathrm{N}(2)-\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{C}(6)$	$174.5(3)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(2)$	$0.0(5)$
$\mathrm{C}(1)-\mathrm{N}(3)-\mathrm{C}(8)-\mathrm{C}(13)$	$48.2(4)$
$\mathrm{C}(1)-\mathrm{N}(3)-\mathrm{C}(8)-\mathrm{C}(9)$	$-135.0(3)$
$\mathrm{C}(13)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$1.5(5)$
$\mathrm{N}(3)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$-175.3(3)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$-1.6(5)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$-0.7(6)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$3.1(6)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(13)-\mathrm{C}(12)$	$0.8(5)$
$\mathrm{N}(3)-\mathrm{C}(8)-\mathrm{C}(13)-\mathrm{C}(12)$	$177.5(3)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(8)$	$-3.1(5)$

Symmetry transformations used to generate equivalent atoms:
Table S9. Hydrogen bonds for d8v19290 [\AA and ${ }^{\circ}$].

$\mathrm{D}-\mathrm{H} \ldots \mathrm{A}$	$\mathrm{d}(\mathrm{D}-\mathrm{H})$	$\mathrm{d}(\mathrm{H} \ldots \mathrm{A})$	$\mathrm{d}(\mathrm{D} \ldots \mathrm{A})$	$<$ (DHA)
$\mathrm{N}(3)-\mathrm{H}(3) \ldots \mathrm{O}(1)$	0.88	1.90	$2.780(3)$	174.5
$\mathrm{~N}(2)-\mathrm{H}(2) \ldots \mathrm{O}(3)$	0.88	1.82	$2.701(3)$	178.8
$\mathrm{~N}(1)-\mathrm{H}(1 \mathrm{~B}) \ldots \mathrm{O}(1) \# 1$	0.88	1.97	$2.789(3)$	155.0
$\mathrm{O}(2)-\mathrm{H}(2 \mathrm{~A}) \ldots \mathrm{O}(3) \# 2$	0.84	1.78	$2.623(3)$	179.4
$\mathrm{~N}(3)-\mathrm{H}(3) \ldots \mathrm{O}(1)$	0.88	1.90	$2.780(3)$	174.5
$\mathrm{~N}(2)-\mathrm{H}(2) \ldots \mathrm{O}(3)$	0.88	1.82	$2.701(3)$	178.8
$\mathrm{~N}(1)-\mathrm{H}(1 \mathrm{~B}) \ldots \mathrm{O}(1) \# 1$	0.88	1.97	$2.789(3)$	155.0
$\mathrm{O}(2)-\mathrm{H}(2 \mathrm{~A}) \ldots \mathrm{O}(3) \# 2$	0.84	1.78	$2.623(3)$	179.4
$\mathrm{O}(2)-\mathrm{H}(2 \mathrm{~A}) \ldots \mathrm{O}(3) \# 2$	0.84	1.78	$2.623(3)$	179.4
$\mathrm{~N}(1)-\mathrm{H}(1 \mathrm{~B}) \ldots \mathrm{O}(1) \# 1$	0.88	1.97	$2.789(3)$	155.0
$\mathrm{~N}(2)-\mathrm{H}(2) \ldots \mathrm{O}(3)$	0.88	1.82	$2.701(3)$	178.8
$\mathrm{~N}(3)-\mathrm{H}(3) \ldots \mathrm{O}(1)$	0.88	1.90	$2.780(3)$	174.5
$\mathrm{O}(2)-\mathrm{H}(2 \mathrm{~A}) \ldots \mathrm{O}(3) \# 2$	0.84	1.78	$2.623(3)$	179.4
$\mathrm{~N}(1)-\mathrm{H}(1 \mathrm{~B}) \ldots \mathrm{O}(1) \# 1$	0.88	1.97	$2.789(3)$	155.0
$\mathrm{~N}(2)-\mathrm{H}(2) \ldots \mathrm{O}(3)$	0.88	1.82	$2.701(3)$	178.8
$\mathrm{~N}(3)-\mathrm{H}(3) \ldots \mathrm{O}(1)$	0.88	1.90	$2.780(3)$	174.5

Symmetry transformations used to generate equivalent atoms:
$\# 1-y+2 / 3, x-y+1 / 3, z+1 / 3 \quad \# 2-x+1,-y+1,-z$

7. Single-crystal X-ray analysis of complex formed from DPG and AgSbF 6 .

Single crystal of $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{AgF}_{6} \mathrm{~N}_{6} \mathrm{Sb}$ was selected on a 'Bruker APEX-II CCD' diffractometer. The crystal was kept at 170.0 K during data collection. Using Olex2, the structure was solved with the ShelXS structure solution program using Direct Methods and refined with the ShelXL refinement package using Least Squares minimisation. Crystal Data for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{AgF}_{6} \mathrm{~N}_{6} \mathrm{Sb}(\mathrm{M}=766.15 \mathrm{~g} / \mathrm{mol})$: orthorhombic, space group Pna21 (no. 33), $\mathrm{a}=14.7369(6) \AA, \mathrm{b}=31.5086(13) \AA, \mathrm{c}=5.9773(2) \AA$, $\mathrm{V}=2775.49(19) \AA 3, \mathrm{Z}=4, \mathrm{~T}=170.0 \mathrm{~K}, \mu(\mathrm{GaK} \alpha)=9.462 \mathrm{~mm}^{-1}, \mathrm{Dcalc}=1.833 \mathrm{~g} / \mathrm{cm}^{3}, 22100$ reflections measured $\left(5.76^{\circ} \leq 2 \Theta \leq 109.906^{\circ}\right), 4443$ unique $\left(\mathrm{R}_{\text {int }}=0.1534, \mathrm{R}_{\text {sigma }}=0.1249\right)$ which were used in all calculations. The final R_{1} was 0.0639 ($\mathrm{I}>2 \sigma(\mathrm{I})$) and wR_{2} was 0.1822 (all data). Number of restraints - 1 , number of constraints - unknown.

Table S10. Crystal data and structure refinement for CCDC-1894496.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

CCDC-1894496
C26 H26 Ag F6 N6 Sb
766.15
170.0 K
$1.34139 \AA$
Orthorhombic
Pna21

$$
\begin{array}{ll}
a=14.7369(6) \AA & \alpha=90^{\circ} . \\
b=31.5086(13) \AA & \beta=90^{\circ} . \\
c=5.9773(2) \AA & \gamma=90^{\circ} .
\end{array}
$$

Volume	$2775.49(19) \AA^{3}$
Z	4
Density (calculated)	$1.833 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$9.462 \mathrm{~mm}^{-1}$
$\mathrm{~F}(000)$	1504
Crystal size	$0.03 \times 0.02 \times 0.01 \mathrm{~mm}^{3}$
Theta range for data collection	2.880 to 54.953°.
Index ranges	$-15<=\mathrm{h}<=17,-38<=\mathrm{k}<=35,-7<=1<=4$
Reflections collected	22100
Independent reflections	$4443[\mathrm{R}($ int $)=0.1534]$
Completeness to theta = 53.594 ${ }^{\circ}$	99.9%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7508 and 0.4138
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	$4443 / 1 / 361$
Goodness-of-fit on F 2	1.001
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0639$, wR2 $=0.1336$
R indices (all data)	$\mathrm{R} 1=0.1557$, wR2 $=0.1822$
Absolute structure parameter	$0.01(3)$
Extinction coefficient	n / a
Largest diff. peak and hole	0.912 and $-1.434 \mathrm{e} . \AA^{-3}$

Table S11. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters ($\AA^{2} \mathrm{X}$ 10^{3})
for $\mathrm{mj} 19077 _0 \mathrm{~m}$. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x		y	z
$\mathrm{U}(\mathrm{eq})$				
$\mathrm{Sb}(1)$	$-12684(1)$	$-3742(1)$	$8989(2)$	$40(1)$
$\mathrm{F}(1)$	$-13600(9)$	$-3814(4)$	$11130(30)$	$55(4)$
$\mathrm{F}(2)$	$-12860(9)$	$-3157(3)$	$9050(30)$	$71(4)$
$\mathrm{F}(3)$	$-11816(11)$	$-3703(5)$	$11260(40)$	$77(6)$
$\mathrm{F}(4)$	$-11748(10)$	$-3672(5)$	$6930(30)$	$70(5)$
$\mathrm{F}(5)$	$-12537(9)$	$-4327(4)$	$8910(30)$	$70(4)$
$\mathrm{F}(6)$	$-13560(10)$	$-3779(5)$	$6700(40)$	$66(5)$
$\mathrm{Ag}(1)$	$-7678(1)$	$-3756(1)$	$6563(3)$	$45(1)$
$\mathrm{N}(1)$	$-8470(13)$	$-3668(6)$	$9370(40)$	$43(6)$
$\mathrm{N}(2)$	$-6865(14)$	$-3844(6)$	$3740(50)$	$47(6)$
$\mathrm{N}(3)$	$-9860(12)$	$-3926(5)$	$7990(30)$	$41(5)$
$\mathrm{N}(4)$	$-9898(13)$	$-3423(6)$	$10750(30)$	$44(5)$
$\mathrm{N}(5)$	$-5519(12)$	$-3576(5)$	$5020(30)$	$35(5)$
$\mathrm{N}(6)$	$-5465(12)$	$-4079(5)$	$2330(30)$	$39(5)$
$\mathrm{C}(1)$	$-9361(14)$	$-3668(6)$	$9470(30)$	$32(5)$
$\mathrm{C}(2)$	$-9600(14)$	$-3094(6)$	$12220(40)$	$34(6)$
$\mathrm{C}(3)$	$-9991(15)$	$-3046(6)$	$14190(40)$	$42(6)$
$\mathrm{C}(4)$	$-9775(17)$	$-2720(8)$	$15680(40)$	$47(7)$
$\mathrm{C}(5)$	$-9080(20)$	$-2443(7)$	$15080(50)$	$53(8)$
$\mathrm{C}(6)$	$-8683(18)$	$-2486(8)$	$13020(60)$	$50(7)$
$\mathrm{C}(7)$	$-8931(12)$	$-2805(6)$	$11560(40)$	$35(5)$
$\mathrm{C}(8)$	$-9537(15)$	$-4243(6)$	$6540(50)$	$44(6)$
$\mathrm{C}(9)$	$-8782(16)$	$-4505(6)$	$7090(40)$	$45(6)$
$\mathrm{C}(10)$	$-8519(16)$	$-4800(7)$	$5460(50)$	$49(8)$
$\mathrm{C}(11)$	$-8960(17)$	$-4840(7)$	$3440(50)$	$51(7)$
$\mathrm{C}(12)$	$-9691(17)$	$-4587(7)$	$2990(40)$	$49(7)$
$\mathrm{C}(13)$	$-9967(15)$	$-4286(7)$	$4510(40)$	$42(6)$
$\mathrm{C}(14)$	$-5996(15)$	$-3835(6)$	$3700(40)$	$35(5)$
$\mathrm{C}(15)$	$-5835(12)$	$-3272(5)$	$6650(40)$	$28(5)$
$\mathrm{C}(16)$	$-6580(13)$	$-3002(7)$	$6000(40)$	$41(6)$
$\mathrm{C}(17)$	$-6855(16)$	$-2703(7)$	$7510(40)$	$42(6)$

$\mathrm{C}(18)$	$-6458(16)$	$-2675(7)$	$9610(40)$	$44(7)$
$\mathrm{C}(19)$	$-5742(15)$	$-2932(6)$	$10130(40)$	$41(6)$
$\mathrm{C}(20)$	$-5448(14)$	$-3228(6)$	$8630(40)$	$37(5)$
$\mathrm{C}(21)$	$-5765(14)$	$-4400(7)$	$740(40)$	$38(6)$
$\mathrm{C}(22)$	$-5349(14)$	$-4430(6)$	$-1310(40)$	$32(5)$
$\mathrm{C}(23)$	$-5605(15)$	$-4754(6)$	$-2740(40)$	$42(6)$
$\mathrm{C}(24)$	$-6277(16)$	$-5043(7)$	$-2130(50)$	$44(7)$
$\mathrm{C}(25)$	$-6698(17)$	$-5014(7)$	$-140(40)$	$45(7)$
$\mathrm{C}(26)$	$-6433(13)$	$-4699(6)$	$1470(40)$	$40(5)$

Table S12. Bond lengths [\AA] and angles [${ }^{\circ}$] for mj19077_0m.

$\mathrm{Sb}(1)-\mathrm{F}(1)$	$1.874(14)$
$\mathrm{Sb}(1)-\mathrm{F}(2)$	$1.862(11)$
$\mathrm{Sb}(1)-\mathrm{F}(3)$	$1.87(2)$
$\mathrm{Sb}(1)-\mathrm{F}(4)$	$1.862(16)$
$\mathrm{Sb}(1)-\mathrm{F}(5)$	$1.855(12)$
$\mathrm{Sb}(1)-\mathrm{F}(6)$	$1.884(19)$
$\mathrm{Ag}(1)-\mathrm{N}(1)$	$2.06(2)$
$\mathrm{Ag}(1)-\mathrm{N}(2)$	$2.09(3)$
$\mathrm{N}(1)-\mathrm{C}(1)$	$1.31(3)$
$\mathrm{N}(2)-\mathrm{C}(14)$	$1.28(3)$
$\mathrm{N}(3)-\mathrm{C}(1)$	$1.41(3)$
$\mathrm{N}(3)-\mathrm{C}(8)$	$1.41(3)$
$\mathrm{N}(4)-\mathrm{C}(1)$	$1.35(2)$
$\mathrm{N}(4)-\mathrm{C}(2)$	$1.43(3)$
$\mathrm{N}(5)-\mathrm{C}(14)$	$1.34(3)$
$\mathrm{N}(5)-\mathrm{C}(15)$	$1.44(2)$
$\mathrm{N}(6)-\mathrm{C}(14)$	$1.37(3)$
$\mathrm{N}(6)-\mathrm{C}(21)$	$1.46(3)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.32(3)$
$\mathrm{C}(2)-\mathrm{C}(7)$	$1.40(3)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.39(3)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.40(3)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.37(4)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.38(3)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.42(3)$
$\mathrm{C}(8)-\mathrm{C}(13)$	$1.38(3)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.40(3)$

$\mathrm{C}(10)-\mathrm{C}(11)$	$1.38(3)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.37(3)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.38(3)$
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.44(3)$
$\mathrm{C}(15)-\mathrm{C}(20)$	$1.32(3)$
$\mathrm{C}(16)-\mathrm{C}(17)$	$1.37(3)$
$\mathrm{C}(17)-\mathrm{C}(18)$	$1.39(3)$
$\mathrm{C}(18)-\mathrm{C}(19)$	$1.37(3)$
$\mathrm{C}(19)-\mathrm{C}(20)$	$1.36(3)$
$\mathrm{C}(21)-\mathrm{C}(22)$	$1.37(3)$
$\mathrm{C}(21)-\mathrm{C}(26)$	$1.43(3)$
$\mathrm{C}(22)-\mathrm{C}(23)$	$1.38(3)$
$\mathrm{C}(23)-\mathrm{C}(24)$	$1.39(3)$
$\mathrm{C}(24)-\mathrm{C}(25)$	$1.34(3)$
$\mathrm{C}(25)-\mathrm{C}(26)$	$1.44(3)$
$\mathrm{F}(1)-\mathrm{Sb}(1)-\mathrm{F}(6)$	$89.7(6)$
$\mathrm{F}(2)-\mathrm{Sb}(1)-\mathrm{F}(1)$	$90.3(6)$
$\mathrm{F}(2)-\mathrm{Sb}(1)-\mathrm{F}(3)$	$90.9(8)$
$\mathrm{F}(2)-\mathrm{Sb}(1)-\mathrm{F}(6)$	$88.9(7)$
$\mathrm{F}(3)-\mathrm{Sb}(1)-\mathrm{F}(1)$	$90.3(8)$
$\mathrm{F}(3)-\mathrm{Sb}(1)-\mathrm{F}(6)$	$179.8(8)$
$\mathrm{F}(4)-\mathrm{Sb}(1)-\mathrm{F}(1)$	$178.2(7)$
$\mathrm{F}(4)-\mathrm{Sb}(1)-\mathrm{F}(2)$	$89.9(7)$
$\mathrm{F}(4)-\mathrm{Sb}(1)-\mathrm{F}(3)$	$88.0(7)$
$\mathrm{F}(4)-\mathrm{Sb}(1)-\mathrm{F}(6)$	$92.1(8)$
$\mathrm{F}(5)-\mathrm{Sb}(1)-\mathrm{F}(1)$	$89.0(6)$
$\mathrm{F}(5)-\mathrm{Sb}(1)-\mathrm{F}(2)$	$178.7(6)$
$\mathrm{F}(5)-\mathrm{Sb}(1)-\mathrm{F}(3)$	$90.2(7)$
$\mathrm{F}(5)-\mathrm{Sb}(1)-\mathrm{F}(4)$	$90.9(6)$
$\mathrm{F}(5)-\mathrm{Sb}(1)-\mathrm{F}(6)$	$90.1(7)$
$\mathrm{N}(1)-\mathrm{Ag}(1)-\mathrm{N}(2)$	$179.4(9)$
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{Ag}(1)$	$126.8(19)$
$\mathrm{C}(14)-\mathrm{N}(2)-\mathrm{Ag}(1)$	$126(2)$
$\mathrm{C}(1)-\mathrm{N}(3)-\mathrm{C}(8)$	$128.3(18)$
$\mathrm{C}(1)-\mathrm{N}(4)-\mathrm{C}(2)$	$125.8(19)$
$\mathrm{C}(14)-\mathrm{N}(5)-\mathrm{C}(15)$	$129.3(17)$
$\mathrm{C}(14)-\mathrm{N}(6)-\mathrm{C}(21)$	$127.4(18)$
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{N}(3)$	$119.7(19)$
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{N}(4)$	$128(2)$

$\mathrm{N}(4)-\mathrm{C}(1)-\mathrm{N}(3)$	$112.4(18)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{N}(4)$	$120(2)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(7)$	$119(2)$
$\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{N}(4)$	$121(2)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$124(2)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$118(2)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	$119(3)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$122(3)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(2)$	$119(2)$
$\mathrm{N}(3)-\mathrm{C}(8)-\mathrm{C}(9)$	$122(2)$
$\mathrm{C}(13)-\mathrm{C}(8)-\mathrm{N}(3)$	$117(2)$
$\mathrm{C}(13)-\mathrm{C}(8)-\mathrm{C}(9)$	$120(2)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	$116(2)$
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	$123(2)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	$119(2)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$120(3)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(8)$	$121(2)$
$\mathrm{N}(2)-\mathrm{C}(14)-\mathrm{N}(5)$	$122(2)$
$\mathrm{N}(2)-\mathrm{C}(14)-\mathrm{N}(6)$	$125(2)$
$\mathrm{N}(5)-\mathrm{C}(14)-\mathrm{N}(6)$	$113.3(19)$
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{N}(5)$	$117(2)$
$\mathrm{C}(20)-\mathrm{C}(15)-\mathrm{N}(5)$	$122.3(19)$
$\mathrm{C}(20)-\mathrm{C}(15)-\mathrm{C}(16)$	$120(2)$
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(15)$	$117(2)$
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	$121(2)$
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(17)$	$120(2)$
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(18)$	$120(2)$
$\mathrm{C}(15)-\mathrm{C}(20)-\mathrm{C}(19)$	$122(2)$
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{N}(6)$	$120(2)$
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(26)$	$122(2)$
$\mathrm{C}(26)-\mathrm{C}(21)-\mathrm{N}(6)$	$118(2)$
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	$119(2)$
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	$121(2)$
$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{C}(23)$	$121(2)$
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$	$121(2)$
$\mathrm{C}(21)-\mathrm{C}(26)-\mathrm{C}(25)$	$116(2)$

Symmetry transformations used to generate equivalent atoms:

Table S13. Anisotropic displacement parameters ($\left(\AA^{2} \times 10^{3}\right)$ for mj19077_0m. The anisotropic displacement factor exponent takes the form: -2 $2\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

	U 11	U^{22}	U 33	U 23	U 13	U 12
$\mathrm{Sb}(1)$	$33(1)$	$39(1)$	$48(1)$	$4(1)$	$0(1)$	$0(1)$
$\mathrm{F}(1)$	$41(8)$	$78(9)$	$45(10)$	$12(7)$	$6(7)$	$-13(7)$
$\mathrm{F}(2)$	$85(11)$	$37(6)$	$92(12)$	$-3(8)$	$8(11)$	$-11(6)$
$\mathrm{F}(3)$	$44(10)$	$132(15)$	$55(12)$	$1(12)$	$-12(10)$	$-8(9)$
$\mathrm{F}(4)$	$49(10)$	$99(13)$	$62(12)$	$8(9)$	$12(9)$	$2(8)$
$\mathrm{F}(5)$	$78(11)$	$50(7)$	$81(12)$	$-1(8)$	$4(11)$	$24(6)$
$\mathrm{F}(6)$	$44(10)$	$87(10)$	$67(15)$	$2(9)$	$-7(10)$	$-11(8)$
$\mathrm{Ag}(1)$	$34(1)$	$50(1)$	$50(2)$	$-8(1)$	$7(1)$	$-2(1)$
$\mathrm{N}(1)$	$26(11)$	$70(13)$	$34(16)$	$0(10)$	$11(9)$	$-2(9)$
$\mathrm{N}(2)$	$42(13)$	$59(12)$	$41(15)$	$-4(12)$	$-7(12)$	$6(9)$
$\mathrm{N}(3)$	$30(10)$	$43(10)$	$49(13)$	$-17(9)$	$16(9)$	$-9(8)$
$\mathrm{N}(4)$	$45(13)$	$43(11)$	$43(13)$	$-13(9)$	$9(10)$	$-1(9)$
$\mathrm{N}(5)$	$18(10)$	$35(9)$	$50(13)$	$8(9)$	$6(8)$	$-1(8)$
$\mathrm{N}(6)$	$38(12)$	$46(11)$	$34(13)$	$-3(9)$	$8(9)$	$0(9)$
$\mathrm{C}(1)$	$38(13)$	$38(12)$	$18(13)$	$-2(9)$	$10(9)$	$1(9)$
$\mathrm{C}(2)$	$33(13)$	$35(12)$	$33(16)$	$-1(10)$	$-4(10)$	$12(9)$
$\mathrm{C}(3)$	$44(14)$	$46(13)$	$35(18)$	$1(12)$	$8(13)$	$7(10)$
$\mathrm{C}(4)$	$58(18)$	$54(16)$	$31(15)$	$-14(12)$	$0(12)$	$20(13)$
$\mathrm{C}(5)$	$60(20)$	$44(14)$	$60(20)$	$-15(14)$	$-17(14)$	$9(13)$
$\mathrm{C}(6)$	$64(17)$	$31(11)$	$56(19)$	$-7(12)$	$-13(16)$	$24(15)$
$\mathrm{C}(7)$	$20(11)$	$46(12)$	$39(14)$	$-10(12)$	$-7(12)$	$9(9)$
$\mathrm{C}(8)$	$50(15)$	$38(12)$	$45(16)$	$-18(12)$	$18(14)$	$-29(11)$
$\mathrm{C}(9)$	$50(16)$	$46(13)$	$38(17)$	$6(11)$	$2(12)$	$-3(11)$
$\mathrm{C}(10)$	$40(16)$	$34(12)$	$70(20)$	$-15(12)$	$28(14)$	$-2(11)$
$\mathrm{C}(11)$	$50(17)$	$49(14)$	$50(20)$	$-14(13)$	$18(15)$	$-9(13)$
$\mathrm{C}(12)$	$63(19)$	$47(14)$	$38(17)$	$3(12)$	$10(14)$	$-14(12)$
$\mathrm{C}(13)$	$28(12)$	$53(14)$	$47(18)$	$-9(13)$	$-3(11)$	$0(10)$
$\mathrm{C}(14)$	$38(13)$	$33(11)$	$34(14)$	$3(11)$	$-11(12)$	$0(9)$
$\mathrm{C}(15)$	$23(10)$	$29(10)$	$33(13)$	$-10(10)$	$-3(11)$	$-9(8)$
$\mathrm{C}(16)$	$24(12)$	$63(14)$	$37(15)$	$7(12)$	$6(11)$	$-13(10)$
$\mathrm{C}(17)$	$35(14)$	$56(13)$	$35(16)$	$5(12)$	$1(12)$	$18(11)$
$\mathrm{C}(18)$	$42(16)$	$46(13)$	$43(17)$	$1(11)$	$13(12)$	$9(11)$
$\mathrm{C}(19)$	$40(15)$	$33(12)$	$51(17)$	$-17(11)$	$-8(12)$	$-10(10)$
$\mathrm{C}(20)$	$27(12)$	$37(11)$	$47(17)$	$3(11)$	$1(12)$	$-11(9)$
$\mathrm{C}(21)$	$29(14)$	$46(13)$	$39(15)$	$0(11)$	$-2(11)$	$19(10)$

$\mathrm{C}(22)$	$46(14)$	$36(11)$	$15(13)$	$10(10)$	$4(11)$	$-3(9)$
$\mathrm{C}(23)$	$45(14)$	$34(12)$	$46(17)$	$7(11)$	$10(12)$	$16(11)$
$\mathrm{C}(24)$	$27(15)$	$48(14)$	$60(20)$	$-20(13)$	$4(12)$	$-1(11)$
$\mathrm{C}(25)$	$47(17)$	$42(13)$	$46(18)$	$-3(12)$	$-6(13)$	$3(11)$
$\mathrm{C}(26)$	$34(13)$	$49(13)$	$38(14)$	$12(12)$	$18(13)$	$-4(10)$

Table S14. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters ($\left(\AA^{2} \times 10^{3}\right.$)

	x		y	z
		$\mathrm{U}(\mathrm{eq})$		
$\mathrm{H}(1)$	-8180	-3627	10643	52
$\mathrm{H}(2)$	-7144	-3892	2462	57
$\mathrm{H}(3)$	-10327	-4030	8725	49
$\mathrm{H}(4)$	-10486	-3469	10673	52
$\mathrm{H}(5 \mathrm{~A})$	-4926	-3594	4881	41
$\mathrm{H}(6 \mathrm{~A})$	-4876	-4039	2429	47
$\mathrm{H}(3 \mathrm{~A})$	-10444	-3244	14624	50
$\mathrm{H}(4 \mathrm{~A})$	-10092	-2688	17057	57
$\mathrm{H}(5)$	-8877	-2228	16086	64
$\mathrm{H}(6)$	-8225	-2291	12584	60
$\mathrm{H}(7)$	-8653	-2828	10132	42
$\mathrm{H}(9)$	-8474	-4480	8475	54
$\mathrm{H}(10)$	-8016	-4980	5765	58
$\mathrm{H}(11)$	-8758	-5042	2370	61
$\mathrm{H}(12)$	-10010	-4620	1616	59
$\mathrm{H}(13)$	-10461	-4105	4151	51
$\mathrm{H}(16)$	-6866	-3030	4586	49
$\mathrm{H}(17)$	-7326	-2511	7121	51
$\mathrm{H}(18)$	-6682	-2478	10683	52
$\mathrm{H}(19)$	-5447	-2905	11538	50
$\mathrm{H}(20)$	-4954	-3407	9020	45
$\mathrm{H}(22)$	-4893	-4233	-1735	39
$\mathrm{H}(23)$	-5318	-4780	-4153	50
$\mathrm{H}(24)$	-6439	-5264	-3137	52
$\mathrm{H}(25)$	-7178	-5204	198	54
$\mathrm{H}(26)$	-6685	-4691	2936	48

gxt-ge-140 H

DPG- CO_{2} complex in $\mathrm{D}_{2} \mathrm{O}$

NNNNN
Nㅡㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ凪
 $\stackrel{\text { © }}{\stackrel{\circ}{-}} \stackrel{\text { Non }}{\stackrel{N}{N}}$
gxt-ge-67 H

gxt-ge-67 C

gxt－ge－54 H

 （
 「「「

gxt－ge－54 C
$\stackrel{\infty}{\stackrel{\infty}{n}}$
$16+001=$
$910^{\circ} 101$

No
ベべஸ
ill

－

150	140	130	120	110	100	90		70	60	50	40	30	20	10	
							（ppm）								

 -

gxt-ge-54 P


```
N心N心N
```

gxt-gd-108 H

gxt-gd-108 C

$$
\begin{aligned}
& \bar{\infty} \\
& \stackrel{\infty}{\circ} \\
& \stackrel{1}{\mid}
\end{aligned}
$$

70	160	150	140	130	120	110	100			70	60	50	40	30	20	10

へへ八へNへへ八
gxt－gd－124 H

gxt-gd-124 C

1	1	,		T			1	1	1	1	1	1	T	1	1	1
170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10
								f1 (

gxt-ge-47 H
gxt-ge-47C

gxt-gd-128 C

70	160	150	140	130	120	110	100	90		70	60	50	40	30	20	10

gxt-gd-125 H

gxt-gd-125 C

$$
\begin{aligned}
& \stackrel{\infty}{\infty}
\end{aligned}
$$

	1	1	1	1	1	1	1	,	1	1	1	1	1	1	,	1
70	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

gxt-ge-63 H

gxt-ge-63 C

gxt-ge-20 H
gxt-ge-20 C

へivinjurivij
gxt-ge-21 H

gxt-ge-21 C

160	150	140	130	120	110	100	90	$\begin{gathered} 80 \\ \text { f1 (ppm) } \end{gathered}$	70	60	50	40	30	20	10

gxt-ge-25 H

gxt-ge-25 C

gxt-gd-136 C

70	160	150	140	130	120	110	100			70	60	50	40	30	20	10

gxt-gc-144 C

$\begin{aligned} & \stackrel{0}{n} \\ & \stackrel{\sim}{n} \\ & \underset{\mid}{1} \end{aligned}$			$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{j}{⿺} \\ & \stackrel{1}{i} \end{aligned}$	$\begin{aligned} & \ddot{\circ} \\ & \underset{\sim}{\circ} \\ & \stackrel{\sim}{\circ} \end{aligned}$			$\begin{aligned} & \bar{\infty} \\ & \underset{\sim}{j} \\ & \dot{j} \end{aligned}$
gxt-gc-145 C							

70	160	150	140	130	120	110	100			70	60	50	40	30	20	10

70	160	150	140	130	120	110	100			70	60	50	40	30	20	10

gxt-gd-36 H

gxt-gd-36 C

gxt-gd-36 C

呙

辟

'0	160	150	140	130	120	110	100	90		70	60	50	40	30	20	
																10


```
    N水分分
```

gxt-gd-37 H

gxt－gd－37 H

gxt-gd-37 C

OOOUN M N N N
ボーボ ポ

gxt－gd－38 H

-50.408
-42.772
-25.997
-18.997

，

gxt-gd-17 C

70	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	0

 NNNN八N

 丬ে サ্

gxt－gd－19 H

N্ত্ণ ন্তু	గ్లִָ ָ̣ Nָ Nָ	© 	すむすলুふুপ
๗ֹm	ฑ゙		「「「「

gxt-gd-19 C

gxt-gd-27 H

gxt-ge-81 H

	$\begin{array}{r}\text { ¢ } \\ \text { ¢ } \\ \text { ¢ } \\ \hline 1\end{array}$	N N \sim \sim

gxt-ge-80 C

ị -

170	160	150	140	130	120	110	100		80	70	60	50	40	30	20	10
								(ppm)								

gxt-ge-80 P

.

gxt-gd-26 H

gxt-gd-26 C

gxt-gd-49 H

N
$\begin{array}{ll}\infty & 0 \\ 0 & 10 \\ i & 0 \\ 10 & 0 \\ 1 & 1\end{array}$
N
gxt-gd-49 C

70	160	150	140	130	120	110	100			70	60	50	40	30	20	10

gxt-ge-52 H

gxt-ge-52 C

170	160	150	140	130	120	110	100		80	70	60	50	40	30	20	10
								(ppm)								

gxt-gd-57 H

8	N
6	
10	
1	
1	1

N
-
I
I
gxt-gd-131 C

gxt-gd-56 H

gxt-ge-68 H

-
gxt-ge-31 H

gxt-ge-31 C

4 g

NへN入NべN
gxt－ge－35 H

$4 i$

-55.478

1
-39.143
$\stackrel{\circ}{i}$

Now oroceron
 へi人ijiv

gxt-gd-18-final H

gxt-gd-18-final C

```
1
```

©

+

 -37.878 $-26.203$$\overline{0}$
$\stackrel{\omega}{1}$
$\stackrel{\omega}{1}$

70	160	150	140	130	120	110	100			70	60	50	40	30	20	10

shimadzu
 LabSolutions Analysis Report

<Sample Information>

Sample Name	gxt-gd-22-rac-ojh-90-10-1.0-		
Data Filename Method Filename	gxt-gd-22-rac-ojh-90-10-1.0-4. Icd gxt-20170531. Icm		
Vial\#	1-1	Sample Type	: Unknown
Injection Volume Date Acquired	20 uL		
Date Processed	2018/6/10 17:57:40	Acrocessed by	System Administrator

<Chromatogram>

mV

<Peak Table>

Detector A Channel 2230 nm				
1	10.903	2229255	124118	49.819
2	13.195	2245429	87402	50.181

Labmanolutions Analysis Report

<Sample Information>
Sample Name $\quad:$ gxt-gd-22-asy-jjh-90-10-1.0

Vialch Filename
Vial \#
Injection Volume
:
Injection Volume
Date Acquired
Date Processed
l-1
20 UL
2018/6/10 17:59:27
$2018 / 6 / 10$ Sample Type : Unknown Acquired by $\begin{aligned} & \text { System Administrator } \\ & \text { Processed by } \\ & \text { System Administrator }\end{aligned}$

<Chromatogram>

mV

<Peak Table>

<Peak Table>
Detector A Channel 2230 nm Peak\# Ret. Time Area Height 1 10.650 9762775 429955 2 13.407 18260 88.163 Totall 9945435 437999$\quad 1.837$

Labsolutions Analysis Report

```
<Sample Information>
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Sample Name Sample ID Data Filename} & \multicolumn{3}{|l|}{gxt-gd-44-rac-ojh-90-10-1.0-} \\
\hline & gxt-gd-44-rac-ojh-90-10-1.0-1.1cd & & \\
\hline Method Filename & gxt-20170531.lcm & & \\
\hline Vial \# & 1-1 & Sample Type & : Unknown \\
\hline Injection Volume & 20 uL & & \\
\hline Date Processed & 2018/6/10 18:28:58 & Processed by & System Administrator \\
\hline
\end{tabular}
```


<Chromatogram>

mV

<Peak Table>

Peak\#	俍.	Area	Height	con
	9.399	4623457	308332	
2	10.292	4589612	254918	49.
Total		9213069	563250	

Labsolutions Analysis Report
<Sample Information>

Sample Name Sample ID Data Filename Match Filename	xt-gd-44-asy-ojh-90-10-1.0-		
	gxt-gd-44-asy-ojh-90-10-1.0-3.lcd gxt-20170531. Icm		
	1-1	Sample Type	: Unknown
Injection Volume			
Date Acquired	2018/6/10 19:00:01	Acquired by	System Administrator
Date Processed	2018/6/10 19:11:59	Processed by	System Administrator

<Chromatogram>

mV

<Peak Table>

Pe	Ret. Time	Area	Height	Conc
1	9.366	10163952	640057	99.0
2	10.368	94836	5856	0.92
Total		10258788	5913	

Labsolutions Analysis Report

```
Sample Information>
Sample Name :gxt-ge-47-asy-adh-99-1-0.8-
lol
Mlol
loll
```


<Chromatogram>

<Peak Table>

Lutmansolutions Analysis Report

Sample Information>
Sample Name Sampe 10
gxt-ge-47-rac-adh-99-1-0.8-
Data Filename :gxt-ge-47-rac-adh-99-1-0.8-1/lcd
$\begin{array}{l:lll}\text { Data Filename } & \text { gxt-ge-47-rac-adh-99-1-0.8-1.1cd } & & \\ \text { Method Filename } & \text { gxt-20170531.Icm } & & \\ \text { Batcc Filename } & 1-1 & \text { Sample Type } & \text { : Unknown }\end{array}$

<Chromatogram>
mV

<Peak Table>

eak\#		Area	Height	Conc
1	9.887	10620679	575942	99.24
2	11.148	81056	5080	0.75
		0701736	581022	

Lhtmanzoutions Analysis Report

```
Sample Information>
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Sample Name Sample ID Data Filename} & \multicolumn{3}{|l|}{gxt-gd-53-rac-adh-99-1-0.5-} \\
\hline & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{gxt-gd-53-rac-adh-99-1-0.5-1.lcd gxt-20170531.Icm}} \\
\hline Method Filename & & & \\
\hline Vial \# & 1-1 & Sample Type & Unknown \\
\hline Injection Volume & 20 uL & & \\
\hline Date Acquired & 2018/6/11 18:19:13 & Acquire & ystem \\
\hline Date Processed & 2018/6/11 18:41:03 & Processed by & System A \\
\hline
\end{tabular}
```


<Chromatogram>

<Peak Table>

Lutmansolutions Analysis Report

Sample Information>
Sample Name Sampe 10
gxt-gd-53-asy-adjh-99-1-0.5
Data Filename
Method Filene
$\begin{array}{l:l}\text { Method Filename } & \text { gxt-gd-53-asy-adij-99-1-0.5-1. } \mathrm{lcd} \\ \text { gat-20170531. } \mathrm{ldm}\end{array}$
Batch Filename
Vial If
In
Injection Volume
Date Acquired
Date Processed
$1-1$
20 uL
20
18/6/11 17:56:11
Sample Type : Unknown

<Chromatogram>

mV

<Peak Table>
Detector A Channel 2230 nm

Peak\#	Time	Area	Height	Conc.
1	16.776	8051327	307443	98.79
2	18.227	97965	4651	1.20
otal		8149292	312	

Labsolutions Analysis Report

```
Sample Information>
Sample Name :gxt-gd-52-rac-ojh-90-10-1.0-
Sample ID N
Method Filename :gxt-20170531.Icm 
loll
```


<Chromatogram>

mV

<Peak Table>

Labsolutions Analysis Report

<Sample Information>

Sample Name Sample ID Data Filename Method Filename Batch Filename	gxt-gd-52-asy-jjh-90-10-1.0-		
	gxt-gd-52-asy-ojh-90-10-1.0-1.lcd gxt-20170531.lcm		
	1-1	Sample Type	Unknown
Injection Volume Date Acquired	2018/6/11 14:51:44		
Date Processed	2018/7/15 17:32:22	Processed by	System Administrator

<Chromatogram>

mV

<Peak Table>

Peak	et. Time	Area		Conc
	7.286	3891120	350426	
2	9.289	59699	3341	1.5
Total		3950819	353766	

```
L_mmasoutions Analysis Report
```

```
Sample Information>
\begin{tabular}{|c|c|c|c|}
\hline Sample Name & gxt-ge-63-rac-adh-99-1-0.8- & & \\
\hline Data Filename & gxt-ge-63-rac-adh-99-1-0.8-4.1cd & & \\
\hline Method Filename & gxt-20170531.1cm & & \\
\hline Vial \# & \(1-1\) & Sample Type & : Unknown \\
\hline Injection Volume & & & \\
\hline Date Acquired & 2018/7/15 16:51:56 & Acquired by & : System Administrator \\
\hline Date Processed & 2018/7/15 17:11:29 & Processed by & : System Administrator \\
\hline
\end{tabular}
```


<Chromatogram>

<Peak Table>

	Ret. Time	Area	Height	Co
	10.971	6212166	334440	
	15.759	6176124	265984	49.8
Total		12388290	600423	

Labsolutions Analysis Report

Sample Information

Sample Name Sample ID Data Filename Method Filename Batch Filename	gxt-ge-63-asy-adh-99-1-0.8-		
	gxt-ge-63-asy-adh-99-1-0.8-4.Icd gxt-20170531.Icm		
	1-1	Sample Type	Unknown
Injection Volume	15 16-27:34		
Date Processed	2018/7/15 17:15:16	Acquired by Processed by	System Administrator System Administrator

<Chromatogram>

mV

<Peak Table>

Detector A Channel 2 230nm				
PeatसR Ret. Time	Area	Height	Conc.	
1	11.184	9387683	509846	99.063
2	16.020	88827	4894	0.937
Total		9476430	514740	

Labsolutions Analysis Report

```
Sample Information>
Sample Name : gxt-ge-20-rac-adh-97-3-0.8-
#ata, iilename (%)
Matalen
lull
```


<Chromatogram>

mV

<Peak Table>

Labsolutions Analysis Report

<Sample Information>
Sample Name
Sample 10 gxt-ge-20-asy-adh-97-3-0.8-

Data Filename Method Filename	gxt-ge-20-asy-adh-97-3-0.8-1.Icd gxt-20170531.lcm		
$\xrightarrow{\text { Batch Filename }}$	1-1	Sample Type	Unknown
Injection Volume Date Acquired	20 uL	Acquired by	System Administrator
Date Processed	2018/6/8 20:38:07	Processed by	System Administrator

<Chromatogram>

mV

<Peak Table>

Peak\#	Time	Area	Height	Conc
1	5.438	4994617	513707	
2	10.838	47243	3401	0.93
		041861	51710	

Labsolutions Analysis Report

```
<Sample Information>
\begin{tabular}{|c|c|c|c|}
\hline Sample Name & \multicolumn{3}{|l|}{gxt-ge-21-rac-adh-80-20-0.7} \\
\hline Data Filename & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{gxt-ge-21-rac-adh-80-20-0.8.Icd gxt-20170531.Icm}} \\
\hline Method Filename & & & \\
\hline Batch Filename
Vial & 1-1 & Sample Type & : Unknown \\
\hline Injection Volume & 20 uL & & \\
\hline Date Acquired & 2018/6/8 15:57:24 & & \\
\hline Date Processed & 2018/6/8 16:23:48 & Processed by & System Administrator \\
\hline
\end{tabular}
```


<Chromatogram>

<Peak Table>

Labsolutions Analysis Report
<Sample Information>

Sample Name Sample ID Data Filename Method FilenameBatch Filename	gxt-ge-21-asy-adh-80-20-0.7-second		
	gxt-ge-21-asy-adh-80-20-0.7-second1.Icd gxt-20170531. Icm		
Vial \#	1-1	Sample Type	Unknown
Injection Volume Date Acquired Date Processed	20 uL 2018/6/8 16:31:45 2018/6/8 16:45:25	Acquired by Processed by	System Administrator System Administrator

<Chromatogram>

mV

<Peak Table>

Peak	me	Area	Height	Conc
1	6.260	2795856	292020	98.71
2	8.750	36318	3291	1.28
Total		832174	95311	

LabSolutions Analysis Report

```
Sample Information>
Sample Name :gxt-ge-25-rac-adh-95-5-0.5-third
lol
MMethod Filename :gxt-20170531.lcm 
lol
```


<Chromatogram>

mV

<Peak Table>

Peak\#	T Time	Area	Height	Conc
1	9.610	1099207	56163	50.097
2	10.777	1094941	49649	49.903
otal		2194149	105812	

Labsolutions Analysis Report
Sample Information>

Sample Name Sample ID Data Filename Method Filename Batch Filename	gxt-ge-25-asy-adh-95-5-0.5-third-		
	gxt-ge-25-asy-adh-95-5-0.5-third-1.Icd gxt-20170531.lcm		
	$1-1$	Sample Type	: Unknown
Injection Volume Date Acquired Date Processed	20 uL 2018/6/9 10:34:33 2018/6/9 11:00:03	Acquired by Processed by	: System Administrator System Administrator

<Chromatogram>

mV

<Peak Table>

Peak\#	et. Time	Area	Height	Con
1	9.665	75121	5226	
2	10.685	9174318	476109	99.18
tal		9249439	48133	

LabsSolutions Analysis Report

```
Sample Information>
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Sample Name Sample ID Data Filename} & \multicolumn{3}{|l|}{gxt-gd-136-rac-ojh-99.5-0.5-0.8-} \\
\hline & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{gxt-gd-136-rac-ojh-99.5-0.5-0.}} \\
\hline Method Filename & & & \\
\hline Vial \# & 1-1 & Sample Type & : Unknown \\
\hline Injection Volume & & & \\
\hline Date Acquired & 2018/6/9 16:51:31 & Acquired by & System Administrator \\
\hline Date Processed & 2018/6/9 17:08:17 & Processed by & System Administrator \\
\hline
\end{tabular}
```


<Chromatogram>

mV

<Peak Table>

Labsolutions Analysis Report

Sample Information>

Sample Name Sample ID Data Filename Method Filename Batch Filename	gxt-gd-136-asy-ojh-99.5-0.5-0.8-		
	gxt-gd-136-asy-ojh-99.5-0.5-0.8-2.Icd gxt-20170531.lcm		
	$1-1$	Sample Type	: Unknown
Injection Volume Date Acquired Date Processed	$\begin{aligned} & 20 \mathrm{uL} \\ & 2018 / 616: 31: 01 \\ & 2018 / 6 / 17 \end{aligned}$ 2018/6/9 17:03:19	Acquired by Processed by	: System Administrator System Administrator

<Chromatogram>

mV

Peak\#	Ret. Time	Area	Height	Conc
1	12.772	3143226	91929	98.567
2	16.344	45704	2456	1.433
Total		3188929	94386	

Labsolutions Analysis Report

```
<Sample Information>
Sample Name : gxt-gd-109-rac-adh-85-15-1.0
\ample ID (Dame \gt-gd-109-rac-adh-85-15-1.0.1c
lallol
lol
```


<Chromatogram>

mv

<Peak Table>

Labsolutions Analysis Report
<Sample Information>

Sample Name Sample ID Data Filename Match Filename	gxt-gd-109-asy-adh-85-15-1.0		
	gxt-gd-109-asy-adh-85-15-1.0.Icd gxt-20170531.lcm		
	-1	Sample Type	: Unknown
Injection Volume			
Date Acquired	2018/5/18 15:03:06	Acquired by	: System Administra

<Chromatogram>
mV

<Peak Table>
Detector A Channel 2230 nm

Peak\#	t. Time	Area	Height	Conc.
1	9.954	2317992	156613	98.254
2	11.660	41183	2431	746
dal		2359174	159044	

Lhtmanzoutions Analysis Report

```
Sample Information>
\begin{tabular}{|c|c|c|c|}
\hline Sample Name & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{gxt-gd-129-rac-adh-85-15-1.0-3}} \\
\hline Data Filename & & & \\
\hline Method Filename & gxt-20170531.Icm & & \\
\hline Batch Filename & 1-1 & Sample Type & Unknown \\
\hline Injection Volume & 20 uL & & \\
\hline Date Acquired & 2018/5/19 15:28:28 & Acquired by & System Administrator \\
\hline Date Processed & 2018/5/19 15:45:30 & Processed by & System Administrator \\
\hline
\end{tabular}
```


<Chromatogram>

mv

<Peak Table>

Detecto	Chann	230nm	Hei	Conc
1	11.123	7166656	436051	49.782
2	11.986	7229294	405070	50.218
		14395950		

1 Ltumanozutions Analysis Report
<Sample Information>

Sample Name Sample ID Data Filename Method Filename Batch Filename	gxt-gd-129-asy-adh-85-15-0.8-1		
	gxt-gd-129-asy-adh-85-15-0.8-1.Icd gxt-20170531.lcm		
		Sample Type	: Unknown
Injection Volume	20 uL		
Date Acquired Date Processed	2018/5/19 9:37:01	Acquired by Processed by	System Administrator

<Chromatogram>

mV

<Peak Table>
Detector A Channel 2230 nm

eak\# Ret. Time		Area	Height	Conc
		2273484	140763	
2	12.179	23003	1467	1.002
tal		2296487	1422	

Labsolutions Analysis Report

```
<Sample Information>
Sample Name : gxt-ge-53-chanwu-rac-adh-95-5-1.0
lol
Match Filename :Mx-1
loll
```


<Chromatogram>

mV

<Peak Table>

1 Lumansolutions Analysis Report
<Sample Information>
Sample Name \quad gxt-ge-53-chanwu-asy-adh-95-5-1.0-
sample ID
Sample ID
Data Filename
Method Filen gxt-ge-53-chanwu-asy-adh-95-5-1.0-1 Icd

Method Filename	gxt-20170531.Icm		
Vial\#	1-1	Sample Type	: Unknown
Injection Volume	20		
Date Acquired	2018/7/11 14:20:06	Acc	Sys
Date Processed	2018/7/1 14:57:04	Processed by	System Administrator

<Chromatogram>

<Peak Table>

Labsolutions Analysis Report

```
Sample Information>
Sample Name :gxt-gd-131-rac-adh-85-15-0.8
\ample ID N
\allol
lol
```


<Chromatogram>

<Peak Table>

Peakt	Time	Area	Height	Conc
	13.009	2909273	159564	
2	15.632	2954066	129187	50.3
			288751	

1 Ltamasolutions Analysis Report

Sample Information>

Sample Name Sample ID ata Filename Method FilenameBatch Filename	gxt-gd-131-asy-adh-85-15-0.8- gxt-gd-131-asy-adh-85-15-0.8-2.lcd gxt-20170531.lcm		
	1-1	Sample Type	: Unknown
Injection			
Date Acquired	2018/6/11 20:10:58	Acquired by	
Date Processed	2018/6/11 20:30:53	Processed by	System Administrator

<Chromatogram>

mv

<Peak Table>

Peak\#	Time	Area	Height	Conc.
1	13.006	3661449	194900	98.53
2	15.734	54344	3003	1.46
tal		771579	197904	

Labsolutions Analysis Report

<Chromatogram>

<Peak Table>

Labsolutions Analysis Report

<Sample Information>

Sample Name Sample ID Data Filename Method Filename	gxt-gd-56-asy-adh-90-10-0.8-		
	gxt-gd-56-asy-adh-90-10-0.8-1.Icd : gxt-20170531.Icm		
Vial \#	1-1	Sample Type	: Unknown
Injection Volume Date Acquired	$20 u l$		
Date Processed	2018/7/15 19:19:33	Processed by	System Administrator

<Chromatogram>

mV

<Peak Table>

| |
| ---: | ---: | ---: | ---: | ---: |

Lhtmanzoutions Analysis Report

```
Sample Information>
\begin{tabular}{|c|c|c|c|}
\hline Sample Name & \multicolumn{3}{|l|}{gxt-ge-68-chanwu-rac-adh-95-5-1.0-} \\
\hline Data Filename & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{gxt-ge-68-chanwu-rac-adh-95-5-1.0-1.Icd gxt-20170531.Icm}} \\
\hline Method Filename & & & \\
\hline \({ }_{\text {Vial \# }}\) & 1-1 & Sample Type & : Unknown \\
\hline Injection Volume & & & \\
\hline Date Acquired & 2018/7/11 11:31:29 & & \\
\hline Date Processe & 2018/7/1 12:12:53 & & \\
\hline
\end{tabular}
```


<Chromatogram>

<Peak Table>

$\begin{array}{l}\text { Detector A Channel } 2 \text { 230nm } \\ \text { Peakt } \\ \text { Pet. Time }\end{array}$	Area	Height	Conc.	
1	32.996	1169008	233313	50.661
2	38.247	11364673	192854	49.339
Total		23033681	426567	

Labmanolutions Analysis Report

Sample Information>
Sample Name \quad Sampl-ge-68-chanwu-asy-adh-95-5-1.0
Data Filename gxt-ge-68-chanwu-asy-adh-95-5-1.0-1 lcd

<Chromatogram>

mv

<Peak Table>
Detector A Channel 2230 nm

	ne	Area	Height	Conc
	32.723	45615020	816287	98.99
2	38.073	462150	8982	1.00
Total		46077169	25269	

Labsolutions Analysis Report

```
Sample Information>
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{Sample Name Sample ID Dath Filename Method Filename} & \multicolumn{3}{|l|}{gxt-ge-31-chanwu-rac-adh-95-5} \\
\hline & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{gxt-ge-31-chanwu-rac-adh-95-5-1.0-1.Icd gxt-20170531.lcm}} \\
\hline & & & \\
\hline Vial \# & 1-1 & Sample Type & Unknown \\
\hline linjection Volume & 2018/7/11 15:45:31 & & System Administrator \\
\hline Date Processed & 2018/7/14 15:22:54 & Processed by & System Administrator \\
\hline
\end{tabular}
```


<Chromatogram>

<Peak Table>

Labsolutions Analysis Report

<Sample Information>

Sample Name	gxt-ge-31-chanwu-asy-adh-95-5-1.0-		
Data Filename Method Filename	gxt-ge-31-chanwu-asy-adh-95-5-1.0-1.Icd gxt-20170531.Icm		
${ }_{\text {Bial \# }}^{\text {Batchename }}$	1-1	Sample Type	: Unknown
Injection Volume Date Acquired	20 uL		
Date Processed	2018/7/14 15:25:31	Processed by	: System Administrator

<Chromatogram>

mV

<Peak Table>

1	22.042	36766813	1139500	98.545
2	29.456	542713	15557	1.455
Total		37309526	1155056	

```
<Sample Information>
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Sample Name Sample ID Data Filename Method Filename Batch Filename} & \multicolumn{3}{|l|}{gxt-ge-34-rac-adh-90-10-0.8-} \\
\hline & gxt-ge-34-rac-adh-90-10-0.8-2.Icd gxt-20170531. Icm & & \\
\hline Vial \# & 1-1 & Sample Type & : Unknown \\
\hline Injection Volume
Date Acquired & 20 uL & & \\
\hline Date Processed & 2018/7/15 20:42:03 & Processed by & System \\
\hline
\end{tabular}
```


<Chromatogram>

mV

<Peak Table>

Labsolutions Analysis Report
<Sample Information>

Sample Name Sample ID Data Filename Method Filename	t-ge-34-asy-adh-90-10-0.8-		
	gxt-ge-34-asy-adh-90-10-0.8-2.Icd gxt-20170531.Icm		
Batch Filename	1-1	Sample Type	: Unknown
Injection Volume			
Date Acquired Date Processed	2018/7/15 20:43:34 2018/7/15 21:09:33	Acquired by Processed by	System Administrator System Administrator

<Chromatogram>

mV

<Peak Table>

$\begin{aligned} & \text { Deted } \\ & \text { Peak } \end{aligned}$		Area	Height	Conc
1	19.078	79563	3436	
2	21.777	8069762	265384	9.02
		8149325		

<Chromatogram>
mv

<Peak Table>

Shimadzu
LabSolutions Analysis Report
<Sample Information
Sample Name : gxt-ge-35-asy-ojh-85-15-0.8-

Batch Filename	-1		
Vial \#	1-1	Sample Type	: Unknown
Injection Volume Date Acquired	$: \begin{aligned} & 20 \mathrm{uL} \\ & 2018 / 7 / 15 \\ & 22: 44: 13 \end{aligned}$	Acquired by	rator
Date Processed	: 2018/7/15 23:00:08	Processed by	: System Administrator

<Chromatogram>

<Peak Table>

Lhimadzu LabSolutions Analysis Report

<Sample Information>

<Peak Table>

Detector A Channel 2230 nm				
1	13.766	817478	38339	49.831
2	16.086	823029	34288	50.169
tal		1640507	72627	

<Sample Information>

<Peak Table>

8. References

[1] P. Quinodoz, A. Quelhas, K. Wright, B. Drouillat, J. Marrot and F. Couty, Eur. J. Org. Chem., 2017, 2621-2626.
[2] (a) A. Fürstner, O. Guth, A. Düffels, G. Seidel, M. Liebl, B. Gabor and R. Mynott, Chem. Eur. J., 2001, 7, 4811-4820; (b) Y. Hirai, T. Terada, T. Yamazaki and T. Momose, J. Chem. Soc., Perkin Trans. 1, 1992, 0, 509-516.
[3] (a) L. Cui, C. Li, L. Zhang, Angew. Chem., Int. Ed., 2010, 49, 9178-9181; (b) Z. Sang, K. Wang, H. Wang, L. Yu, H. Wang, Q. Ma, M. Ye, X. Han and W. Liu, Bioorg. Med. Chem. Lett., 2017, 27, 5053-5059.
[4] N. J. Williams, C. A. Seipp, F. M. Brethomé, Y.-Z. Ma, A. S. Ivanov, V. S. Bryantsev, M. K. Kidder, H. J. Martin, E. Holguin, K. A. Garrabrant and R. Custelcean, Chem, 2019, 5, 719-730.
[5] R. Robles-Machín, J. Adrio and J. C. Carretero, J. Org. Chem., 2006, 71, 5023-5026.
[6] (a) T. Ishida, S. Kikuchi, T. Tsubo and T. Yamada, Org. Lett., 2013, 15, 848-851; (b) W. Wang, Y. Fu, Y. Li, T. Yao, L. Liu, W. Chang and J. Li, Org. Chem. Front., 2018, 5, 3331-3335.
[7] (a) S. Tong, C. Piemontesi, Q. Wang, M.-X. Wang and J. Zhu, Angew. Chem., Int. Ed., 2017, 56, 7958-7962; (b) G. A. Molander, Heterocycles, 2004, 64, 467-474.

