Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2019

Supplementary Information

Lewis Acid-Catalyzed Synthesis of Silafluorene Derivatives from Biphenyls and Dihydrosilanes via Double Sila-Friedel-Crafts Reaction

Yafang Dong,^b Yuta Takata,^b Yusuke Yoshigoe,^a Kohei Sekine,^{a,b} Yoichiro Kuninobu^{*a,b}

^aInstitute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan ^bDepartment of Molecular and Material Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan

Contents

1. General	S2
2. Synthesis and Characterization of Substrates	S2
3. General Procedure for Boron-catalyzed Double Sila-Friedel-Crafts Reaction	S13
4. X-ray Structure of Compound 3b	S24
5. NMR Spectra	S34
6. References	S80

1. General

All reactions were carried out using standard Schlenk techniques under an inert atmosphere. All reagents were purchased from commercial sources and used without further purification unless otherwise noted. NMR spectra were recorded on JEOL JNM-ECA600 (600 MHz for ¹H NMR, 150 MHz for ¹³C NMR), JEOL ECZ-400 (400 MHz for ¹H NMR, 100 MHz for ¹³C NMR), JEOL JNM-LA400 (400 MHz for ¹H NMR, 100 MHz for ¹³C NMR), JEOL JNM-LA400 (400 MHz for ¹H NMR, 100 MHz for ¹³C NMR) spectrometers. Proton and carbon chemical shifts are reported relative to tetramethylsilane (TMS, δ 0.00 (¹H NMR, ¹³C NMR)) or the residual solvent (CHCl₃ (δ 7.26 for ¹H NMR or δ 77.16 for ¹³C NMR), CH₂Cl₂ (δ 5.23 for ¹H NMR or δ 53.84 for ¹³C NMR)) used as an internal reference. HRMS were measured on a JEOL JMS-700 spectrometer. Di-*p*-tolylsilane, bis(4-fluorophenyl)silane, bis(4-bromophenyl)silane, di(naphthalen-2-yl)silane, 5*H*-dibenzo[*b*,*d*]silole were prepared according to the literature procedures.^{1b}

2. Synthesis and Characterization of Substrates

Scheme S1. Synthesis of biphenyl 1a

Biphenyl 1a

Compound **1a** was synthesized according to the reported method.² Schlenk flask was charged with 3,3'-dibromobiphenyl (1.87 g, 6.00 mmol, 1.0 equiv), HNEt₂ (878 mg, 12.0 mmol, 2.0

equiv), NaO'Bu (1.73 g, 18.0 mmol, 3.0 equiv), $Pd(dba)_2$ (138 mg, 0.240 mmol, 4.0 mol%), $P'Bu_3$ (39.2 mg, 0.190 mmol, 3.2 mol%), and toluene (12 mL) under N₂. The flask was immersed in an oil bath and heated to 130 °C with stirring overnight. The mixture was cooled to room temperature, filtered over Celite, and concentrated. The crude product was then purified by column chromatography (eluent: ethyl acetate) on silica gel

(pretreated with 1% NEt₃ in hexane) to give **1a** as pale yellow solid (1.78 g, quant). ¹H NMR (400 MHz, CDCl₃) δ 7.26 (t, *J* = 8.1 Hz, 2H), 6.86 -6.83 (m, 4H), 6.67 (dd, *J* = 8.1, 2.3 Hz, 2H), 3.40 (q, *J* = 7.0 Hz, 8H), 1.19 (t, *J* = 7.0 Hz, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 148.0, 144.0, 129.5, 114.9, 111.2, 110.6, 44.6, 12.8; HRMS(EI⁺) Calcd for C₂₀H₂₈N₂ ([M]⁺) 296.2252, Found 296.2253.

Scheme S2. Synthesis of biphenyl 1b

Compound S1

Me₂N He_2N He_2N He

Compound S2⁵

To an oven dried two-necked round bottom flask equipped with a magnetic stir bar and a constant-pressure dropping funnel, activated magnesium turnings (613 mg, 25.2 mmol, 1.05 equiv) was added.

The equipment was sealed with rubber septum, evacuated, and back filled with nitrogen. To the funnel were added 24 drops of 1,2-dibromoethane and 1 M solution of 3-bromide*N*,*N*-dimethylaniline (3.28 g, 16.4 mmol, 1.0 equiv) in THF (16.4 mL) by a syringe at room temperature within 30 min. Upon the addition, the flask was immersed in a preheated oil-bath at 50 °C for 2 h. The prepared 3-(N,N-dimethylamino)phenyl magnesium bromide (1.0 M in THF) was stored in nitrogen atmosphere and used in the next step.

Biphenyl 1b

Compound **1b** was synthesized according to the reported method.⁶ Dried two-necked flask equipped with a magnetic stirrer was charged under nitrogen with THF (32 mL) with a

solution of FeCl₃ (79.8 mg, 0.490 mmol, 3.0 mol%) and 1,2-dichloroethane (974 mg, 9.84 mmol, 0.60 equiv). A solution of the 3-(*N*,*N*-dimethylamino)phenyl magnesium bromide **S2** in THF (1.0 M, 12 mmol) was added via a syringe. The color immediately changed to dark brown and the temperature increased. The resulting mixture was stirred at room temperature for 1 h then quenched with H₂O (30 mL). After extraction with CH₂Cl₂ (3 × 50 mL), the combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography (eluent: hexane/ethyl acetate = 100:0 to 19:1) on silica gel (pretreated with 1% NEt₃ in hexane) to give **1b** as brown oil (2.06 g, 52%). ¹H NMR (400 MHz, CDCl₃) δ 7.30 (t, *J* = 8.0 Hz, 2H), 6.96-6.94 (m, 4H) 6.76-6.73 (m, 2H), 3.00 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 151.0, 143.5, 129.4, 116.3, 112.1, 111.7, 40.9; HRMS(EI⁺) Calcd for C₁₆H₂₀N₂ ([M]⁺) 240.1626, Found 240.1622. The analytical data is in accordance with the previous report.⁷

Scheme S3. Synthesis of biphenyl 1c-1f

Biphenyl 1c

Compound **1c** was synthesized according to the reported method.⁸ A Schlenk flask was charged with 3,3'-dibromobiphenyl (624 mg, 2.00 mmol, 1.0 equiv), pyrrolidine (427 mg, 6.00 mmol, 3.0 equiv), NaO'Bu (577 mg, 6.00 mmol,

3.0 equiv), Pd(dba)₂ (46.0 mg, 0.08 mmol, 4.0 mol%), BINAP (149 mg, 0.240 mmol, 12 mol%), and toluene (4.0 mL) under N₂. The flask was immersed in an oil bath and heated to 80 °C with stirring overnight. The mixture was cooled to room temperature, filtered over Celite, and concentrated. The crude product was then purified by column chromatography (eluent: ethyl acetate) on silica gel (pretreated with 1% NEt₃ in hexane) to give **1c** as white yellow solid (601 mg, quant). ¹H NMR (400 MHz, CDCl₃) δ 7.28 (t, *J* = 7.6 Hz 2H), 6.90 (d, *J* = 7.3 Hz, 2H), 6.79 (s, 2H), 6.57 (d, *J* = 8.2 Hz, 2H), 3.35 (t, *J* = 6.4 Hz, 8H), 2.04-2.01 (m, 8H); ¹³C NMR (100 MHz, CDCl₃) δ 148.3, 143.7, 129.4, 115.1, 111.0, 110.7, 47.9, 25.6; HRMS(EI⁺) Calcd for C₂₀H₂₄N₂ ([M]⁺) 292.1939, Found 292.1938.

Biphenyl 1d

The same method as **1c**. 3,3'-Dibromobiphenyl (624 mg, 2.00 mmol, 1.0 equiv), piperidine (427 mg, 6.00 mmol, 3.0 equiv), NaO'Bu (577 mg, 6.00 mmol, 3.0 equiv), Pd(dba)₂ (46.0 mg, 0.0800 mmol, 4.0 mol%), BINAP (149 mg, 0.240 mmol, 12

mol%), and toluene (4.0 mL). **1d** was obtained as yellow solid (682 mg, quant). ¹H NMR (400 MHz, CDCl₃) δ 7.29 (t, *J* = 8.1 Hz, 2H), 7.13 (t, *J* = 2.0 Hz, 2H), 7.03 (dd, *J* = 6.4, 1.4 Hz, 2H), 6.92 (dd, *J* = 8.1, 2.0 Hz, 2H), 3.21 (t, *J* = 5.7 Hz, 8H), 1.74 (quint, 5.7 Hz, 8H), 1.60 (quint, *J* = 5.7 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 152.7, 143.1, 129.3, 118.7, 116.0, 115.5, 51.0, 26.1, 24.5; HRMS(EI⁺) Calcd for C₂₂H₂₈N₂ ([M]⁺) 320.2252, Found 320.2251.

Biphenyl 1e

(149 mg, 0.240 mmol, 12 mol%), and toluene (4.0 mL). The crude product was then purified by column chromatography (eluent: hexane/ethyl acetate = 9:1) on silica gel (pretreated with 1% NEt₃ in hexane) to give **1e** as pale yellow solid (289 mg, 46%). ¹H NMR (400 MHz, CDCl₃) δ 7.27 (t, *J* = 7.5 Hz, 2H), 6.89-6.87 (m, 4H), 6.68 (dd, *J* = 8.5, 2.5 Hz, 2H), 3.35 (t, *J* = 7.5 Hz, 4H), 2.97 (s, 6H), 1.61-1.55 (m, 4H), 1.36 (q, *J* = 7.5 Hz, 4H), 0.94 (t, *J* = 7.3 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 149.7, 143.7, 129.4, 115.4, 111.5, 111.0, 52.8, 38.6, 29.1, 20.6, 14.2; HRMS(EI⁺) Calcd for C₂₂H₃₂N₂ ([M]⁺) 324.2565, Found 324.2564.

Biphenyl 1f

The same method as **1c**. 3,3'-Dibromobiphenyl (624 mg, 2.00 mmol, 1.0 equiv), *N*-metylbenzylamine (582 mg, 4.80 mmol, 2.4 equiv), NaO'Bu (577 mg, 6.00 mmol, 3.0 equiv), Pd(dba)₂ (46.0 mg, 0.0800 mmol, 4.0 mol%), BINAP (149 mg, 0.240

mmol, 12 mol%), and toluene (4.0 mL). The crude product was then purified further by column chromatography (eluent: hexane/ethyl acetate = 19:1) on silica gel (pretreated with 1% NEt₃ in hexane) to give **1f** as pale yellow oil (740 mg, 94%). ¹H NMR (400 MHz, CDCl₃) δ 7.36-7.27 (m, 4H), 7.27-7.15 (m, 8H), 6.91-6.89 (m, 4H), 6.74-6.71 (m, 2H), 4.55 (s, 4H), 3.04 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 150.0, 143.4, 139.1, 129.4, 128.6, 126.9, 126.9, 116.0, 111.7, 111.4, 56.9, 38.7; HRMS(EI⁺) Calcd for C₂₀H₂₈N₂ ([M]⁺) 392.2252, Found 392.2251.

Biphenyl 1g

The same method as **1c**. 3,3'-Dibromobiphenyl (624 mg, 2.00 mmol 1.0 equiv), *N*-methyl-*p*-toluidine (582 mg, 4.80 mmol, 2.4 equiv), NaO'Bu (577 mg, 6.00 mmol, 3.0 equiv), Pd(dba)₂ (46.0 mg, 0.0800 mmol, 4.0 mol%), BINAP (149 mg, 0.240 mmol, 12 mol%), and toluene (4.0 mL). The crude product

was then purified by column chromatography (eluent: hexane/ethyl acetate = 19:1) on silica gel (pretreated with 1% NEt₃ in hexane) to give **1g** as a white solid (665 mg, 85%). ¹H NMR (400 MHz, CDCl₃) δ 7.26-7.22 (t, *J* = 7.6 Hz, 2H), 7.11-7.07 (m, 6H), 7.03-7.00 (m, 6H), 6.86-6.84 (ddd, *J* = 0.8, 2.8, 8.4 Hz, 2H), 3.31 (s, 6H), 2.31 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 150.0, 143.4, 139.1, 129.4, 128.6, 126.9, 126.9, 116.0, 111.7, 111.4, 56.9, 38.7; HRMS(EI⁺) Calcd for C₂₈H₂₈N₂ ([M]⁺) 392.2252, Found 392.2252.

Scheme S4. Synthesis of biphenyl 1h-1l

5-Bromo-N,N,2-trimethylaniline

 Me_2N

Me

To a solution of 5-bromo-2-methylaniline (1.12 g, 6.00 mmol, 1.0 equiv) in dry DMF (30 mL) were added MeI (4.26 g, 30.0 mmol, 5.0 equiv) and NaH (720 mg, 18.0 mmol, 3.0 equiv; 60 wt% in mineral

oil). After 1 h, the reaction was quenched with water (5 mL). Brine (25 mL) and Et₂O (25 mL) were added. The organic layer was separated, washed with brine (2 × 25 mL), dried over anhydrous MgSO₄, filtered and concentrated. The crude product was then purified by column chromatography (eluent: hexane/ethyl acetate = 19:1) on silica gel to give 5-bromo-*N*,*N*,2-trimethylaniline as colorless oil (964 mg, 75%). ¹H NMR (400 MHz, CDCl₃) δ 7.11 (d, *J* = 1.8 Hz, 1H), 7.06 (dd, *J* = 8.2, 1.8 Hz, 1H), 7.00 (d, *J* = 8.2 Hz, 1H), 2.68 (s, 6H), 2.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 154.2, 132.5, 130.9, 125.3, 121.8, 119.7, 44.1, 18.2; HRMS(EI⁺) Calcd for C₉H₁₂BrN ([M]⁺) 213.0153, Found 213.0152.

Biphenyl 1h

Me

A mixture of (3-(dimethylamino)phenyl)boronic acid (330 mg, NMe₂ Me₂N 2.00 mmol, 1.0 equiv), 5-bromo-N,N,2-trimethylaniline (428 mg, 2.00 mmol, 1.0 equiv), Na₂CO₃ (424 mg, 4.00 mmol, 2.0

equiv) and Pd(PPh₃)₄ (57.8 mg, 0.0500 mmol, 2.5 mol%) in a mixture of toluene (25 mL), water (4 mL) and ethanol (8 mL) was heated to 80 °C under nitrogen. After completion of the reaction monitored by TLC, the mixture was cooled to room temperature then diluted with water and EtOAc. The aqueous layer was extracted with EtOAc (3 x 30 mL). The combined organic phase was dried over MgSO₄ and concentrated under reduced pressure. The crude product was then purified by column chromatography (eluent: hexane/ethyl acetate 20:1) on silica gel to give **1h** (208 mg, 60%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.30 (t, J = 7.8 Hz, 1H), 7.25-7.19 (m, 3H), 6.93 (d, J = 7.8 Hz, 2H), 6.75-6.73 (m, 1H), 3.00 (s, 6H), 2.77 (s, 6H), 2.38 (s, 3H); ¹³C NMR (100 MHz, $CDCl_3$) δ 153.0, 151.1, 142.8, 140.9, 131.5, 131.1, 129.4, 121.6, 117.7, 116.0, 111.8, 111.6, 44.4, 40.9, 18.3; HRMS(EI⁺) Calcd for C₁₇H₂₂N₂ ([M]⁺) 254.1783, Found 254.1783.

> The same method as 5-bromo-N,N,2-trimethylaniline. 5-Bromo-2chloroaniline (1.03 g, 5.00 mmol, 1.0 equiv), MeI (1.55 mL, 25.0 mmol, 5.0 equiv) and NaH (600 mg, 15.0 mmol, 3.0 equiv; 60 wt% in mineral

oil) were used. The crude product was then purified by column chromatography (eluent: hexane/ethyl acetate = 19:1) on silica gel to give the desired compound as colorless oil (1.022 g, 87%). ¹H NMR (400 MHz, CDCl₃) δ 7.19 (d, J = 8.2 Hz, 1H), 7.15 (d, J = 2.3Hz, 1H), 7.05 (dd, J = 8.2, 2.3 Hz, 1H), 2.81 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 151.7, 131.9, 127.1, 126.0, 123.4, 120.9, 43.7; HRMS(EI⁺) Calcd for C₈H₉BrClN ([M]⁺) 232.9607, Found 232.9609.

Biphenyl 1i

Me₂N

CI

method as 1h. А mixture of (3-The same (dimethylamino)phenyl)boronic acid (248 mg, 1.50 mmol, 1.0 equiv), 5-bromo-2-chloro-N,N-dimethylaniline (352 mg, 1.50

mmol, 1.0 equiv), Na₂CO₃ (318 mg, 3.00 mmol, 2.0 equiv) and Pd(PPh₃)₄ (43.3 mg,

0.0375 mmol, 2.5 mol%) in a mixture of toluene (20 mL), water (2 mL) and ethanol (4 mL) was heated to 80 °C under nitrogen. After completion of the reaction monitored by TLC, the mixture was cooled to room temperature then diluted with water and EtOAc. The aqueous layer was extracted with EtOAc (3 × 30 mL). The combined organic phase was dried over MgSO₄ and concentrated under reduced pressure. The crude product was then purified by column chromatography (eluent: hexane/ethyl acetate = 15:1) on silica gel to give **1i** (323 mg, 78%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, *J* = 8.2 Hz, 1H), 7.31 (t, *J* = 7.8 Hz, 1H), 7.27 (s, 1H), 7.16 (dd, *J* = 8.0, 2.1 Hz, 1H), 6.91-6.86 (m, 2H), 6.76 (dd, *J* = 8.2, 1.8 Hz, 1H), 3.01 (s, 6H), 2.87 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 151.1, 150.5, 142.0, 141.8, 130.9, 129.6, 127.3, 122.2, 119.2, 115.8, 112.0, 111.5, 44.0, 40.8; HRMS(EI⁺) Calcd for C₁₆H₁₉ClN₂ ([M]⁺) 274.1237, Found 274.1236.

The same method as 5-bromo-*N*,*N*,2-trimethylaniline. 5-Bromo-2-Br fluoroaniline (1.52 g, 8.00 mmol, 1.0 equiv), MeI (5.68 g, 40.0 mmol, 5.0 equiv) and NaH (960 mg, 24.0 mmol, 3.0 equiv; 60 wt% in mineral

oil) were used. The crude product was then purified by column chromatography (eluent: hexane/ethyl acetate = 19:1) on silica gel to give the desired compound as colorless oil (1.30 g, 74%). ¹H NMR (400 MHz, CDCl₃) δ 6.98-6.84 (m, 3H), 2.84 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 154.0 (J_{C-F} = 243.4 Hz), 142.1 (J_{C-F} = 9.6 Hz), 123.2 (J_{C-F} = 7.7 Hz), 121.1 (J_{C-F} = 2.9 Hz), 117.5 (J_{C-F} = 22.0 Hz), 116.8, 42.6 (J_{C-F} = 4.8 Hz); HRMS(EI⁺) Calcd for C₈H₉BrFN ([M]⁺) 216.9902, Found 216.9903.

Biphenyl 1j.

Me₂N

The same method as **1h**. A mixture of (3-(dimethylamino)phenyl)boronic acid (330 mg, 2.00 mmol, 1.0 equiv), 5-bromo-2-fluoro-*N*,*N*-dimethylaniline (436 mg,

2.00 mmol, 1.0 equiv), Na₂CO₃ (424 mg, 4.00 mmol, 2.0 equiv) and Pd(PPh₃)₄ (57.8 mg, 0.0500 mmol, 2.5 mol%) in a mixture of toluene (25 mL), water (4 mL) and ethanol (8 mL) was heated to 80 °C under nitrogen. After completion of the reaction monitored by TLC, the mixture was cooled to room temperature, then diluted with water and EtOAc. The aqueous layer was extracted with EtOAc (3 \times 30 mL). The combined organic phase

was dried over MgSO₄ and concentrated under reduced pressure. The crude product was then purified by column chromatography (eluent: hexane/ethyl acetate = 10:1) on silica gel to give **1j** (421 mg, 81%) as a colorless oil. ¹H-NMR (400 MHz, CDCl₃) δ 7.30 (t, *J* = 7.8 Hz, 1H), 7.11-7.05 (m, 3H), 6.90-6.86 (m, 2H), 6.74 (dd, *J* = 8.2, 2.7 Hz, 1H), 3.01 (s, 6H), 2.90 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 154.9 (*J*_{C-F} = 244.4 Hz), 151.0, 142.2, 140.8 (*J*_{C-F} = 9.6 Hz), 138.90, 138.87, 129.5, 120.1 (*J*_{C-F} = 6.7 Hz), 117.7, 116.3 (*J*_{C-F} = 22.0 Hz), 116.0, 111.7, 43.0, 40.9; HRMS(EI⁺) Calcd for C₁₆H₁₉FN₂ ([M]⁺) 258.1532, Found 258.1531.

The same method as 5-bromo-N,N,2-trimethylaniline. 3-Bromo-5methylaniline (1.12 g, 6.00 mmol, 1.0 equiv), K₂CO₃ (7.50 g, 54.0 mmol, 9.0 equiv), MeI (4.26 g, 30.0 mmol, 5.0 equiv) and DMF (15 mL). The crude product was then purified by column chromatography (eluent:

hexane/ethyl acetate = 9:1) on silica gel to give the desired compound as a colorless oil (1.00 g, 78%). ¹H NMR (400 MHz, CDCl₃) δ 6.67-6.65 (m, 2H), 6.43 (s, 1H), 2.92 (s, 6H), 2.27 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 151.7, 140.5, 123.3, 120.2, 112.6, 111.9, 40.6, 21.8; HRMS(EI⁺) Calcd for C₉H₁₂BrN ([M]⁺) 213.0153, Found 213.0154.

Biphenyl 1k

The same method as **1h**. A mixture of (3-(dimethylamino)phenyl)boronic acid (330 mg, 2.00 mmol, 1.0 equiv), 3-bromo-N,N,5-trimethylaniline (428 mg, 2.00 mmol, 1.0 equiv), Na₂CO₃ (424 mg, 4.00 mmol, 2.0 equiv) and

Pd(PPh₃)₄ (57.8 mg, 0.0500 mmol, 2.5 mol%) in a mixture of toluene (25 mL), water (4 mL) and ethanol (8 mL) was heated to 80 °C under nitrogen. After completion of the reaction monitored by TLC, the mixture was cooled to room temperature then diluted with water and EtOAc. The aqueous layer was extracted with EtOAc (3 × 30 mL). The combined organic phase was dried over MgSO₄ and concentrated under reduced pressure. The crude product was then purified by column chromatography (eluent: hexane/ethyl acetate = 25:1) on silica gel to give **1k** (399 mg, 78%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.29 (t, *J* = 8.0 Hz, 1H), 6.95-6.93 (m, 2H), 6.78-6.73 (m, 3H), 6.57 (s, 1H), 3.00 (s, 6H), 2.99 (s, 6H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 151.1, 151.0,

143.6, 143.5, 139.0, 129.3, 117.4, 116.3, 112.6, 112.1, 111.7, 109.5, 41.0, 40.9, 22.1; HRMS(EI⁺) Calcd for C₁₇H₂₂N₂ ([M]⁺) 254.1783, Found 254.1779.

Biphenyl 11

The same method as **1h**. A mixture of (3-(dimethylamino)-5methylphenyl)boronic acid (269 mg, 1.50 mmol, 1.0 equiv), 3bromo-*N*,*N*,5-trimethylaniline (321 mg, 1.50 mmol, 1.0 equiv), Na₂CO₃ (318 mg, 3.00 mmol, 2.0 equiv) and PdCl₂(PPh₃)₂

(26.3 mg, 0.0380 mmol, 2.5 mol%) in a mixture of toluene (15 mL), water (2 mL) and ethanol (4 mL) was heated to 80 °C under nitrogen. After completion of the reaction monitored by TLC, the mixture was cooled to room temperature then diluted with water and EtOAc. The aqueous layer was extracted with EtOAc (3 × 30 mL). The combined organic phase was dried over MgSO₄ and concentrated under reduced pressure. The crude product was then purified by column chromatography (eluent: hexane/ethyl acetate = 30:1) on silica gel to give **11** (295 mg, 73%) as white solid. ¹H NMR (400 MHz, CDCl₃) δ 6.77-6.75 (m, 4H), 6.56 (s, 2H), 2.98 (s, 12H), 2.38 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 151.1, 143.6, 138.9, 117.4, 112.5, 109.6, 41.0, 22.1; HRMS(EI⁺) Calcd for C₁₈H₂₄N₂ ([M]⁺) 268.1939, Found 268.1939.

Biphenyl 1m

A mixture of 3-(*N*,*N*-dimethylamino)phenylboronic acid (330 mg, 2.00 mmol, 1.0 equiv), *p*-bromotoluene (342 mg, 2.00 mmol, 1.0 equiv), K₂CO₃ (829 mg, 6.00 mmol, 3.0 equiv) and Pd(PPh₃)₄

(57.8 mg, 0.0500 mmol, 2.5 mol%) in a mixture of water (1.4 mL) and dimethoxyethane (0.7 mL) was heated to 80 °C under nitrogen overnight. After cooled to room temperature, the mixture was diluted with water and EtOAc. The aqueous layer was extracted with EtOAc (3 × 30 mL). The combined organic phase was dried over Na₂SO₄ and concentrated under reduced pressure. The residue was dissolved in ethanol. Water was added and the mixture was evaporated to dryness. The crude product was then purified by column chromatography (eluent: hexane/ethyl acetate = 9:1) on silica gel (pretreated with 1% NEt₃ in hexane) to give **11** (419 mg, 99%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.51 (dt, *J* = 8.3, 1.9 Hz, 2H), 7.31 (t, *J* = 8.1 Hz, 1H), 7.25 (d, *J* = 8.3 Hz, 2H),

6.97-6.89 (m, 2H), 6.74 (dd, J = 8.1, 2.7 Hz, 1H), 3.01 (s, 6H), 2.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 151.0, 142.3, 139.5, 137.0, 129.5, 129.5, 127.3, 115.8, 111.6, 111.5, 40.9, 21.3; HRMS(MALDI⁺) Calcd for C₂₂H₂₄N₂ ([M]⁺) 316.1939, Found 316.1936.

Biphenyl 1n

The same method as **1m**. ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, J = 0.7 Hz, 1H), 7.91-7.85 (m, 3H), 7.75 (dd, J = 8.2, 1.8 Hz, 1H), 7.52-7.45 (m, 2H), 7.33 (t, J = 8.0 Hz, 1H), 6.99-6.98

(m, 2H), 6.74-6.71 (m, 1H), 3.44 (q, J = 7.0 Hz, 4H), 1.23 (t, J = 6.9 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 148.3, 142.5, 140.0, 135.7, 133.7, 132.7, 129.8, 128.3, 128.0, 127.7, 126.2, 126.1, 125.9, 125.8, 115.0, 111.1, 44.6, 12.8; HRMS(EI⁺) Calcd for C₂₀H₂₁N ([M]⁺) 275.1674, Found 275.1676.

*N*³,*N*³,*N*³",*N*³"-tetramethyl-[1,1':3',1''-terphenyl]-3,3''-diamine 6

The same method as **1h**. A mixture of (3-(dimethylamino)phenyl)boronic acid (545 mg, 3.30 mmol, 2.2 equiv), 1,3-dibromobenzene (354 mg, 1.50 mmol, 1.0 equiv), Na₂CO₃ (795 mg, 7.50 mmol, 5.0 equiv) and Pd(PPh₃)₄ (87.0 mg,

0.0750 mmol, 5.0 mol%) in a mixture of toluene (15 mL), water (2 mL) and ethanol (4 mL) was heated to 80 °C under nitrogen. After completion of the reaction monitored by TLC, the mixture was cooled to room temperature, then diluted with water and EtOAc. The aqueous layer is extracted with EtOAc (3 × 30 mL). The combined organic phases are dried over MgSO₄ and concentrated under reduced pressure. The crude product was then purified further by column chromatography (eluent: hexane/ethyl acetate = 20:1) on silica gel to give **6** (354 mg, 75%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.81 (t, *J* = 1.6 Hz, 1H), 7.58-7.55 (m, 2H), 7.48 (dd, *J* = 8.6, 7.0 Hz, 1H), 7.33 (t, *J* = 8.0 Hz, 2H), 7.01-6.97 (m, 4H), 6.77 (dd, *J* = 8.2, 2.3 Hz, 2H), 3.01 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 151.1, 142.8, 142.5, 129.6, 129.0, 126.7, 126.3, 116.1, 111.9, 40.9 (one carbon is missing); HRMS(EI⁺) Calcd for C₂₂H₂₄N₂ ([M]⁺) 316.1939, Found 316.1940.

3. General Procedure for Boron-catalyzed Double Sila-Friedel-Crafts reaction⁹

To a test tube with a screw cap equipped with a magnetic stir bar was charged biphenyl **1a** (74.1 mg, 0.250 mmol, 1.0 equiv) and tris(pentafluorophenyl)borane (B(C₆F₅)₃, 6.4 mg, 0.013 mmol, 5.0 mol%). The test tube was evacuated and filled with nitrogen. Chlorobenzene (0.50 mL) was added via syringe. Diphenylsilane **2a** (0.14 mL, 138 mg, 0.750 mmol, 3.0 equiv) and 2,6-lutidine (2.2 μ L, 2.0 mg, 0.019 mmol, 7.5 mol%) were then added to the mixture. The test tube was closed with a cap. The reaction mixture was stirred at 100 °C (oil bath) for 24 h. After completion of the reaction, the mixture was cooled to room temperature. The resulting mixture was subjected to ¹H NMR spectroscopy. The crude NMR yields were calculated on the basis of 1,1,2,2-tetrachloroethane (26.4 μ L, 42.0 mg, 0.25 mmol, 1.0 equiv). The desired silafluorene **3a** was obtained by column chromatography (eluent: hexane/ethyl acetate) on silica gel (pretreated with 1% NEt₃ in hexane) in 87% isolated yield.

Silafluorene 3a

3a was obtained as white solid (104.1 mg, 87%). ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, J = 7.3 Hz, 4H), 7.57 (d, J = 8.2 Hz, 2H), 7.38-7.28 (m, 6H), 7.16 (s, 2H), 6.64 (d, J = 8.2 Hz, 2H), 3.45 (q, J = 7.1 Hz, 8H), 1.22 (t, J = 7.1 Hz, 12H); ¹³C NMR

 $(100 \text{ MHz}, \text{CDCl}_3) \delta 150.8, 149.9, 135.6, 135.3, 134.8, 129.5, 127.9, 121.4, 111.5, 104.3, 44.6, 12.8; \text{HRMS}(\text{EI}^+) \text{ Calcd for } \text{C}_{32}\text{H}_{36}\text{N}_2\text{Si}([\text{M}]^+) 476.2648, \text{Found } 476.2647.$

Silafluorene 3b

3b was obtained as white solid (1.68 g, 96%). ¹H NMR (400 MHz, CDCl₃) δ 7.67 (dd, J = 8.0, 1.6 Hz, 4H), 7.62 (d, J = 8.1 Hz, 2H), 7.43-7.28 (m, 6H), 7.26 (d, J = 2.4 Hz, 2H), 6.71 (dd, J = 8.1, 2.4 Hz, 2H), 3.08 (s, 12H); ¹³C NMR (100 MHz,

CDCl₃) δ 152.6, 150.5, 135.6, 134.9, 134.6, 129.6, 127.9, 122.7, 112.2, 105.0, 40.7; HRMS(EI⁺) Calcd for C₂₈H₂₈N₂Si ([M]⁺) 420.2022, Found 420.2024.

Silafluorene 3c

3c was obtained as white solid (106.9 mg, 90%). ¹H NMR (400 MHz, CDCl₃) δ 7.65 (dd, J = 7.8, 1.4 Hz, 4H), 7.58 (d, J= 7.8 Hz, 2H), 7.40-7.23 (m, 6H), 7.07 (d, J = 2.3 Hz, 2H), 6.54 (dd, J = 7.8, 2.3 Hz, 2H), 3.42 (t, J = 6.6 Hz, 8H), 2.02

(quint, J = 6.6 Hz, 8H); ¹³C NMR (100 MHz, CDCl₃) δ 150.7, 150.0, 135.7, 134.6, 129.5, 127.9, 121.7, 112.0, 111.7, 104.5, 47.8, 25.6; HRMS(EI⁺) Calcd for C₃₂H₃₂N₂Si ([M]⁺) 472.2335, Found 472.2337.

Silafluorene 3d

3d was obtained as white solid (101 mg, 81%). ¹H NMR (400 MHz, CDCl₃) δ 7.67 (dd, J = 6.4, 1.6 Hz, 4H), 7.64 (d, J = 7.8 Hz, 2H), 7.45 (d, J = 1.8 Hz, 2H), 7.43-7.28 (m, 6H), 6.90 (dd, J = 8.0, 2.1 Hz, 2H), 3.30 (t, J = 5.5 Hz, 8H), 1.79 (quin, J = 5.5 Hz, 8H), 1.63 (quin, J = 5.5 Hz, 4H); ¹³C NMR

 $(100 \text{ MHz}, \text{CDCl}_3) \delta 154.5, 150.4, 135.6, 134.6, 134.5, 129.7, 128.0, 125.7, 115.8, 109.2, 50.5, 26.0, 24.5; \text{HRMS}(\text{EI}^+) \text{ Calcd for } \text{C}_{34}\text{H}_{36}\text{N}_2\text{Si} ([\text{M}]^+) 500.2648, \text{Found } 500.2649.$

Silafluorene 3e

3e was obtained as white solid (105 mg, 82%). ¹H NMR (400 MHz, CDCl₃) δ 7.66-7.64 (m, 4H), 7.58 (d, *J* = 8.2 Hz, 2H), 7.36-7.29 (m, 6H), 7.20 (d, *J* = 1.8 Hz, 2H), 6.66 (dd, *J* = 8.0, 2.1 Hz, 2H), 3.42 (t, *J* = 7.5 Hz, 4H),

3.05 (s, 6H), 1.63 (q, J = 7.5 Hz, 4H), 1.40 (q, J = 7.5 Hz, 4H), 0.99 (t, J = 7.3 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 151.4, 150.7, 135.6, 135.2, 134.6, 129.5, 127.9, 121.8, 111.7, 104.5, 52.6, 38.6, 29.1, 20.5, 14.2; HRMS (EI⁺) Calcd for C₃₄H₄₀N₂Si ([M]⁺) 504.2961, Found 504.2959.

Silafluorene 3f

3f was obtained as white solid (111 mg, 78%). ¹H NMR (400 MHz, CDCl₃) δ 7.64 (dd, J = 7.8, 1.4 Hz, 4H), 7.57 (d, J = 8.2 Hz, 2H), 7.37-7.23 (m, 16H), 7.15 (d, J = 2.5 Hz, 2H), 6.69 (dd, J = 7.8, 2.3 Hz, 2H), 4.59 (s, 4H), 3.11 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 151.9, 150.5, 139.2, 135.6, 135.0,

134.7, 129.6, 128.8, 127.9, 127.1, 126.9, 122.8, 112.2, 105.1, 56.9, 38.9; HRMS(FAB⁺) Calcd for $C_{40}H_{36}N_2Si~([M]^+)$ 572.2648, Found 572.2649.

Silafluorene 3g

3g was obtained as white solid (48.6 mg, 34%). ¹H NMR (400 MHz, CDCl₃) δ 7.67-7.65 (m, 4H), 7.57 (d, *J* = 7.8 Hz, 2H), 7.38-7.30 (m, 8H), 7.13 (d, *J* = 8.2 Hz, 4H), 7.05 (dd, *J* = 6.4, 1.8 Hz, 4H), 6.81 (dd, *J* = 8.0, 2.1 Hz, 2H), 3.35 (s, 6H), 2.34 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 151.6, 150.3, 146.2, 135.6, 134.5, 134.3, 132.8, 130.0, 129.8, 128.0,

126.0, 123.4, 117.3, 110.0, 40.4, 20.9; HRMS(EI⁺) Calcd for C₄₀H₃₆N₂Si ([M]⁺) 572.2648, Found 572.2648.

Silafluorene 3h

General Procedure using N^3 , N^3 , N^3 , N^3 , A-pentamethyl-[1,1'biphenyl]-3,3'-diamine (63.6 mg, 0.250 mmol) and diphenylsilane (138 mg, 0.750 mmol) at 100 °C for 24 h. The desired compound **3h** was obtained as white powder (91.0 mg,

84%). ¹H NMR (400 MHz, CDCl₃) δ 7.66-7.64 (m, 4H), 7.60 (d, J = 8.2 Hz, 1H), 7.51 (d, J = 3.7 Hz, 2H), 7.37-7.29 (m, 6H), 7.20 (d, J = 1.8 Hz, 1H), 6.68 (dd, J = 7.8, 2.3 Hz, 1H), 3.08 (s, 6H), 2.80 (s, 6H), 2.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 155.1, 152.7, 150.6, 148.1, 136.5, 135.6, 134.7, 134.5, 131.4, 130.2, 129.7, 128.0, 121.5, 111.9, 110.8, 104.8, 44.1, 40.6, 18.8; HRMS (EI⁺) Calcd for C₂₉H₃₀N₂Si ([M]⁺) 434.2178, Found 434.2179.

Silafluorene 3i

General Procedure using 4-chloro- N^3 , N^3 , N^3 ', N^3 '-tetramethyl-[1,1'-biphenyl]-3,3'-diamine (68.7 mg, 0.250 mmol) and diphenylsilane (138 mg, 0.750 mmol) at 100 °C for 24 h. The desired compound **3i** was obtained as a white powder (111

mg, 97%). ¹H NMR (400 MHz, CDCl₃) δ 7.67-7.61 (m, 6H), 7.54 (s, 1H), 7.40-7.32 (m, 6H), 7.17 (d, *J* = 2.3 Hz, 1H), 6.72 (dd, *J* = 8.2, 2.3 Hz, 1H), 3.09 (s, 6H), 2.93 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 152.8, 152.4, 149.5, 148.9, 135.6, 135.5, 134.9, 133.6, 131.9, 130.0, 128.1, 127.8, 121.3, 112.6, 112.4, 105.0, 43.9, 40.6; HRMS (EI⁺) Calcd for C₂₈H₂₇ClN₂Si ([M]⁺) 454.1632, Found 454.1630.

Silafluorene 3j

General Procedure using 4-fluoro- N^3 , N^3 , N^3 ', N^3 '-tetramethyl-[1,1'-biphenyl]-3,3'-diamine (64.6 mg, 0.250 mmol) and diphenylsilane (138 mg, 0.750 mmol) at 100 °C for 24 h. The desired compound **3j** was obtained as white powder (104 mg,

95%). ¹H NMR (400 MHz, CDCl₃) δ 7.65-7.62 (m, 4H), 7.60 (d, *J* = 7.8 Hz, 1H), 7.39-7.31 (m, 8H), 7.14 (d, *J* = 2.3 Hz, 1H), 6.68 (dd, *J* = 8.2, 2.3 Hz, 1H), 3.08 (s, 6H), 2.96 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 155.3 (*J*_{C-F} = 247.6 Hz), 152.8, 149.8, 145.7 (*J*_{C-F} = 1.9 Hz), 142.6 (*J*_{C-F} = 9.6 Hz), 135.6, 134.8, 133.9, 129.9, 129.1 (*J*_{C-F} = 5.8 Hz), 128.1, 121.4, 120.7 (*J*_{C-F} = 20.2 Hz), 111.8, 110.9 (*J*_{C-F} = 2.9 Hz), 104.9, 42.9 (*J*_{C-F} = 3.8 Hz), 40.6; HRMS (EI⁺) Calcd for C₂₈H₂₇FN₂Si ([M]⁺) 438.1928, Found 438.1929.

Silafluorene 3k

General Procedure using N^3 , N^3 , N^3 , N^3 , N^3 , 5-pentamethyl-[1,1'biphenyl]-3,3'-diamine (63.6 mg, 0.250 mmol) and diphenylsilane (138 mg, 0.750 mmol) at 100 °C for 24 h. The desired compound **3k** was obtained as a white powder (96

mg, 88%). ¹H NMR (400 MHz, CDCl₃) δ 7.67-7.65 (m, 4H), 7.50 (d, J = 7.8 Hz, 1H), 7.39-7.29 (m, 6H), 7.23 (d, J = 2.3 Hz, 1H), 7.12 (d, J = 1.8 Hz, 1H), 6.67 (dd, J = 8.0, 2.5 Hz, 1H), 6.49 (d, J = 1.6 Hz, 1H), 3.07 (s, 6H), 3.06 (s, 6H), 2.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 153.3, 152.6, 150.8, 150.6, 144.7, 136.0, 134.4, 129.6, 128.0, 123.3,

122.5, 112.9, 112.3, 105.2, 102.9, 40.7, 24.0 (one carbon is missing); HRMS (EI⁺) Calcd for C₂₉H₃₀N₂Si ([M]⁺) 434.2178, Found 434.2181.

Silafluorene 31

General Procedure using N^3 , N^3 , N^3 , N^3 , N^3 , 5, 5'-hexamethyl-[1,1'biphenyl]-3, 3'-diamine (67.1 mg, 0.25 mmol) and diphenylsilane (138 mg, 0.75 mmol) at 100 °C for 24 h. The desired compound **31** was obtained as a white powder (58.4

mg, 52%). ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 6.4 Hz, 4H), 7.37-7.30 (m, 6H), 7.11 (d, *J* = 1.8 Hz, 2H), 6.46 (d, *J* = 1.6 Hz, 2H), 3.05 (s, 12H), 2.24 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 153.2, 150.9, 144.6, 136.2, 133.6, 129.6, 127.9, 122.8, 112.9, 103.0, 40.8, 23.7; HRMS (EI⁺) Calcd for C₃₀H₃₂N₂Si ([M]⁺) 448.2335, Found 448.2333.

Silafluorene 3m

3m was obtained as white solid (39 mg, 40%). ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 7.8 Hz, 1H), 7.67-7.61 (m, 5H), 7.56 (s, 1H), 7.41-7.31 (m, 6H), 7.27-7.23 (m, 2H), 6.69 (dd, *J* = 7.8, 2.3 Hz, 1H), 3.07 (s, 6H), 2.37 (s, 3H); ¹³C NMR (100 MHz,

CDCl₃) δ 152.8, 150.4, 146.6, 137.6, 137.3, 135.6, 134.9, 134.5, 134.1, 131.2, 129.9, 128.1, 120.8, 111.9, 105.0, 40.6, 21.5 (one carbon is missing); HRMS(EI⁺) Calcd for C₂₇H₂₅NSi ([M]⁺) 391.1756, Found 391.1753.

Silafluorene 3n

General Procedure using *N*,*N*-diethyl-3-(naphthalen-2yl)aniline (68.9 mg, 0.250 mmol) and diphenylsilane (138 mg, 0.750 mmol) at 140 °C. The desired compound **3n** was obtained

as white powder (60.4 mg, 53%). ¹H NMR (600 MHz, CDCl₃) δ 8.08 (d, J = 8.2 Hz, 1H), 8.02 (d, J = 8.9 Hz, 1H), 7.91 (d, J = 7.6 Hz, 1H), 7.88 (d, J = 7.6 Hz, 1H), 7.75 (d, J = 7.6 Hz, 4H), 7.62 (d, J = 7.6 Hz, 1H), 7.38 (dt, J = 35.1, 7.4 Hz, 9H), 6.68 (d, J = 8.2 Hz, 1H), 3.50 (q, J = 6.9 Hz, 4H), 1.28 (t, J = 6.9 Hz, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 150.5, 150.1, 148.8, 137.0, 136.0, 135.5, 134.9, 133.8, 133.3, 131.3, 129.9, 129.6, 128.8, 128.2, 126.8, 125.5, 120.1, 119.9, 111.3, 104.9, 44.5, 12.9; IR (ATR, ν /cm⁻¹) 3058, 2956, 2925, 2859, 2136, 1729, 1593, 1540, 1466, 1428, 1393, 1374, 1357, 1260, 1201, 1115, 1092, 1076, 1035, 998, 837, 817, 806, 780, 749, 739; HRMS (FAB⁺) Calcd for C₃₂H₂₉NSi ([M]⁺) 455.2069, Found 455.2068.

Silafluorene 30

General Procedure using *N*,*N*,*N'*,*N'*-tetramethyl-1,1'biphenyl-3,3'-diamine (**1b**) (60.1 mg, 0.250 mmol) and di-*p*tolylsilane (159 mg, 0.750 mmol) at 140 °C. The desired compound **30** was obtained as yellowish white powder (81.9 mg, 73%). ¹H NMR (600 MHz, CDCl₃) δ 7.59 (d, *J* = 8.4 Hz,

2H), 7.55 (d, J = 7.8 Hz, 4H), 7.25 (d, J = 1.2 Hz, 2H), 7.15 (d, J = 5.2 Hz, 4H), 6.70 (dd, J = 4.8, 1.2 Hz, 2H), 3.08 (s, 12H), 2.34 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 152.5, 150.5, 139.5, 135.7, 134.5, 131.3, 128.8, 123.3, 112.3, 105.1, 40.8, 21.7; IR (ATR, v / cm^{-1}); 2924, 2804, 1596, 1544, 1503, 1440, 1426, 1366, 1351, 1309, 1264, 1225, 1184, 1152, 1103, 1057, 1022, 1013, 975, 950, 831, 797, 772, 721; HRMS (FAB⁺) Calcd for C₃₀H₃₂N₂Si ([M]⁺) 448.2335, Found 448.2334.

Silafluorene 3p

General Procedure using *N*,*N*,*N*',*N*'-tetramethyl-1,1'-biphenyl-3,3'-diamine **1b** (60.1 mg, 0.250 mmol) and di-*p*fluorophenylsilane (165 mg, 0.750 mmol) at 140 °C. The desired compound **3p** was obtained as a yellowish white powder (99.3 mg, 87%). ¹H NMR (400 MHz, CDCl₃) δ 7.69-

7.58 (m, 6H), 7.30 (d, J = 2.2 Hz, 2H), 7.04 (dd, J = 8.4, 8.2 Hz, 4H), 6.72 (dd, J = 8.2, 2.2, 2H), 3.09 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 164.3 (¹ $J_{C-F} = 247$ Hz), 152.7, 150.5, 137.5 (³ $J_{C-F} = 6.8$ Hz), 134.4, 130.2 (⁴ $J_{C-F} = 3.9$ Hz), 122.0, 115.2 (² $J_{C-F} = 20.2$ Hz), 112.2, 105.0, 40.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -110.82 – -110.20 (m); IR (ATR, v / cm^{-1}) 1739, 1583, 1542, 1495, 1427, 1359, 1267, 1220, 1158, 1124, 1100, 1055, 1013, 950, 823, 796, 772, 720; HRMS (FAB⁺) Calcd for C₂₈H₂₆F₂N₂Si ([M]⁺) 456.1833, Found 456.1834.

Silafluorene 3q

General Procedure using *N*,*N*,*N*',*N*'-tetramethyl-1,1'-biphenyl-3,3'-diamine **1b** (60.1 mg, 0.250 mmol) and di-*p*bromophenylsilane (257 mg, 0.750 mmol) at 140 °C. The desired compound **3q** was obtained as white powder (131 mg, 91%). ¹H NMR (600 MHz, CDCl₃) δ 7.58 (d, *J* = 8.2 Hz, 2H),

7.52-7.47 (m, 8H), 7.26 (d, J = 2.4 Hz, 2H), 6.72 (dd, J = 8.2, 2.4 Hz, 2H), 3.10 (s, 12H); ¹³C NMR (150 MHz, CDCl₃) δ 152.8, 150.6, 137.1, 134.4, 133.4, 131.2, 124.8, 121.2, 112.2, 105.0, 40.6; IR (ATR, v / cm^{-1}) 2801, 1594, 1545, 1476, 1427, 1369, 1223, 1181, 1106, 1064, 948, 907, 830, 808, 798, 773; HRMS (FAB⁺) Calcd for C₂₈H₂₆Br₂N₂Si ([M]⁺) 576.0232, Found 576.0233.

Silafluorene 3r

General Procedure using *N*,*N*,*N*',*N*'-tetramethyl-1,1'-biphenyl-3,3'-diamine **1b** (60.1 mg, 0.250 mmol) and di(naphthalen-2yl)silane (213 mg, 0.750 mmol) with higher temperature at 140 °C. The desired compound **3r** was obtained as a colorless crystal (105 mg, 81%). ¹H NMR (600 MHz, CDCl₃) δ 8.21 (s,

2H), 7.81-7.71 (m, 10H), 7.49-7.41 (m, 4H), 7.29 (d, J = 2.3 Hz, 2H), 6.74 (dd, J = 8.2, 2.3 Hz, 2H), 3.09 (s, 12H); ¹³C NMR (150 MHz, CDCl₃) δ 152.7, 150.7, 136.7, 134.7, 134.2, 133.1, 132.4, 131.6, 128.4, 127.8, 127.2, 126.6, 125.9, 122.6, 112.3, 105.1, 40.7; IR (ATR, v / cm^{-1}) 2922, 2855, 1729, 1592, 1543, 1497, 1443, 1360, 1270, 1224, 1184, 1156, 1085, 1057, 1012, 950, 900, 855, 847, 837, 822, 805, 773, 744, 719; HRMS (FAB⁺) Calcd for C₃₆H₃₂N₂Si ([M]⁺) 520.2335, Found 520.2336.

Silafluorene 3s

3s was obtained as white solid (71.7 mg, 80%). ¹H NMR (600 MHz, CDCl₃) δ 7.57 (dd, J = 7.5, 1.6 Hz, 2H), 7.50 (d, J = 8.2 Hz, 2H), 7.32-7.26 (m, 3H), 7.23 (d, J = 2.3 Hz, 2H), 6.69 (dd, J = 8.2, 2.3 Hz, 2H), 3.07 (s, 12H), 0.67 (s, 3H); ¹³C NMR

 $(100 \text{ MHz}, \text{CDCl}_3) \delta$ 152.5, 150.2, 137.0, 134.6, 134.0, 129.4, 127.9, 124.4, 112.2, 105.0, 40.8, -4.3; HRMS (EI⁺) Calcd for C₂₃H₂₆N₂Si ([M]⁺) 358.1865, Found 358.1863.

Silafluorene 3t

3t was obtained as white solid (70.0 mg, 84%). ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, *J* = 8.2 Hz, 2H), 7.22 (d, *J* = 2.3 Hz, 2H), 6.69 (dd, *J* = 8.2, 2.3 Hz, 2H), 3.07 (s, 12H), 1.02-0.98 (m, 6H), 0.91-0.87 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ

152.2, 150.3, 133.8, 124.4, 111.8, 105.0, 40.8, 7.9, 4.6; HRMS(EI⁺) Calcd for $C_{20}H_{28}N_2Si$ ([M]⁺) 324.2022, Found 324.2020.

Spirosilabifluorene 5

The spirosilabifluorene **5** was synthesized according to the general procedure using 3,3'-di(piperidin-1-yl)-1,1'-biphenyl **1d** (60.1 mg, 0.250 mmol) and 5*H*-dibenzo[*b*,*d*]silole (137 mg, 0.750 mmol) at 100 °C. The desired compound **5** was obtained as white solid (52.0 mg, 42%). ¹H NMR (400 MHz,

CDCl₃) δ 7.89 (d, J = 7.8 Hz, 2H), 7.47-7.39 (m, 6H), 7.25-7.16 (m, 4H), 6.76 (dd, J = 8.0, 2.1 Hz, 2H), 3.30 (t, J = 5.5 Hz, 8H), 1.77-1.56 (m, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 154.8, 151.6, 149.8, 134.9, 134.5, 134.4, 130.9, 127.7, 121.7, 120.8, 115.6, 108.8, 50.3, 26.0, 24.5; HRMS(EI⁺) Calcd for C₃₄H₃₄N₂Si ([M]⁺) 498.2491, Found 498.2489.

Scheme S5. Synthesis of the silicon-bridged terphenyl compound 7

The silicon-bridged terphenyl compound **7** was synthesized according to General Procedure using N^3 , $N^$

added. The reaction mixture was heated to 140 °C, and stirred for 24 h. The siliconbridged terphenyl compound **7** was obtained as white solid (47.0 mg, 28%). ¹H NMR (400 MHz, CDCl₃) δ 8.30 (s, 1H), 8.15 (s, 1H), 7.68-7.64 (m, 10H), 7.42-7.29 (m, 14H), 6.76 (dd, *J* = 8.2, 2.3 Hz, 2H), 3.12 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 152.9, 151.8, 150.3, 139.3, 136.8, 135.8, 134.9, 134.1, 129.9, 128.1, 122.0, 113.2, 112.7, 105.5, 40.76; HRMS(EI⁺) Calcd for C₄₆H₄₀N₂Si₂ ([M]⁺) 676.2730, Found 676.2733.

Silafluorene 8

To a dry round bottom flask equipped with a magnetic stir bar was charged **3b** (1.09 g, 2.60 mmol, 1.0 equiv) and CH_2Cl_2 (17 mL). To the resultant stirring solution was added dropwise MeOTf (939 mg, 5.70 mmol, 2.2 equiv) at room temperature. The solution was stirred at room temperature for 2 h. The

reaction mixture was concentrated to remove CH₂Cl₂ and the residue was treated with Et₂O (20 mL). The resultant solid was filtered, washed with Et₂O and hexane, and dried under vacuum to give **8** as white solid (1.89 g, 97%). ¹H NMR (400 MHz, Acetone-d₆) δ 8.96 (d, J = 2.5 Hz, 2H), 8.28 (d, J = 8.2 Hz, 2H), 8.13 (dd, J = 8.2, 2.5 Hz, 2H), 7.71 (dd, J = 7.6, 1.4 Hz, 4H), 7.57-7.49 (m, 2H), 7.45 (t, J = 7.6 Hz, 4H), 3.98 (s, 18H); ¹³C NMR (100 MHz, Acetone-d₆) δ 151.4, 150.3, 139.9, 136.5, 136.1, 135.1, 131.8, 130.9, 129.3, 122.0 (q, J = 8.2, 321.1 Hz), 121.1, 115.7, 57.8; HRMS(FAB⁺) Calcd for C₃₁H₃₄F₃N₂O₃SSi⁺ ([M-OTf]⁺) 599.2006, Found 599.2012.

Silafluorene 9

Compound **9** was synthesized according to the reported method. To a dry Schlenk flask equipped with a magnetic stir bar was added the compound **8** (150 mg, 0.200 mmol, 1.0 equiv) and $PdCl_2(PPh_3)_2$ (2.8 mg, 0.0040 mmol, 2.0 mol%). The flask was sealed with a

rubber septum, and evacuated/filled with nitrogen. THF (0.4 mL) was added via syringe, and the resultant slurry was stirred for 5 min. Then phenylmagnesium bromide (0.5 M solution in THF, 0.88 mL, 0.44 mmol, 2.2 equiv) was added dropwise at room temperature. After 1 h, the reaction mixture was quenched with water (1 mL) and 6N HCl

(3 mL), and extracted with Et₂O. The organic extract was dried over Na₂SO₄, filtered, and concentrated. The crude product was purified by chromatography on silica gel (eluent: hexane/ethyl acetate = 100:0 to 19:1) to give the compound **9** as white solid (93.2 mg, 96% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.22 (s, 2H), 7.92 (d, *J* = 7.3 Hz, 2H), 7.80-7.71 (m, 8H), 7.61 (d, *J* = 7.3 Hz, 2H), 7.57-7.37 (m, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 149.4, 144.0, 141.5, 135.7, 135.1, 134.5, 132.7, 130.3, 129.0, 128.3, 127.8, 127.5, 127.2, 120.3; HRMS(EI⁺) Calcd for C₃₆H₂₆Si ([M]⁺) 486.1804, Found 486.1804.

Silafluorene 10

The same method as **9**. The reaction was carried out using 0.15 mmol of **8**. (4-methoxyphenyl)magnesium bromide 1.0 M solutio n in THF, 0.33 mL, 0.33 mmol, 2.2 equiv) were used. The crude product was purified by

chromatography on silica gel (eluent: hexane/dichloromethane = 5:1 to 2:1) to give the compound **10** as white solid (43.2 mg, 53% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, *J* = 1.4 Hz, 2H), 7.84 (d, *J* = 7.3 Hz, 2H), 7.72-7.70 (m, 4H), 7.63 (dt, *J* = 9.3, 2.5 Hz, 4H), 7.52 (dd, *J* = 7.3, 1.4 Hz, 2H), 7.45-7.35 (m, 6H), 7.02 (dt, *J* = 9.6, 2.5 Hz, 4H), 3.88 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 159.6, 149.5, 143.6, 135.7, 134.5, 134.0, 133.0, 130.3, 128.5, 128.3, 126.8, 119.8, 114.4, 55.5 (one carbon is missing); HRMS(EI⁺) Calcd for C₃₈H₃₀O₂Si ([M]⁺) 546.2015, Found 546.2012.

Silafluorene 11

The same method as **9**. The reaction was carried out using 0.15 mmol of **8**. (4-Fluorophenyl)magnesium bromide (0.5 M solution in THF, 1.2 mL, 0.60 mmol, 4.0 equiv) were used. The crude product was purified by chromatography on silica gel (eluent:

hexane/dichloromethane = 5:1) to give the compound **11** as white solid as white solid (55.3 mg, 71% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, *J* = 1.1 Hz, 2H), 7.86 (d, *J* = 7.8 Hz, 2H), 7.70 (dd, *J* = 7.8, 1.4 Hz, 4H), 7.66-7.63 (m, 4H), 7.51 (dd, *J* = 7.5, 1.6 Hz, 2H), 7.44-7.36 (m, 6H), 7.20-7.15 (m, 4H); ¹³C NMR (150 MHz, CDCl₃) δ 162.8 (¹*J*_{C-F} = 245.6 Hz), 149.3, 143.1, 137.6 (⁴*J*_{C-F} = 2.9 Hz), 135.7, 135.3, 134.6, 132.6, 130.4,

129.1 (${}^{3}J_{C-F} = 8.6 \text{ Hz}$), 128.4, 127.1, 120.1, 115.9 (${}^{2}J_{C-F} = 21.5 \text{ Hz}$); HRMS(EI⁺) Calcd for C₃₆H₂₄F₂Si ([M]⁺) 522.1615, Found 522.1616.

Silafluorene 12

The same method as **9**. The reaction was carried out using 0.15 mmol of **8**. Allylmagnesium bromide (1.0 M solution in THF, 1.2 mL, 0.33 mmol, 2.2 equiv) were used. The crude product was purified by chromatography on silica gel (eluent: hexane/ethyl acetate = 50:1) to give the corresponding silafluorene **12** as white

solid (27.6 mg, 34% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.71-7.69 (m, 4H), 7.65-7.63 (m, 4H), 7.42-7.31 (m, 6H), 7.15 (dd, *J* = 7.3, 1.4 Hz, 2H), 6.08-5.98 (m, 2H), 5.19-5.11 (m, 4H), 3.48 (d, *J* = 6.9 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 149.3, 143.0, 137.4, 135.6, 134.2, 133.9, 133.2, 130.1, 128.4, 128.2, 121.7, 116.3, 40.8; HRMS(EI⁺) Calcd for C₃₀H₂₆Si ([M]⁺) 414.1804, Found 414.1803.

4. X-ray Structure of Compound 3b

Single crystals of $C_{28}H_{28}N_2Si$, 4,6-bis(dimethylamino)-9,9-diphenyl-9H-9silafluorene (**3b**), were recrystallized from hot toluene solution. A suitable crystal was selected, and their X-ray diffraction was collected on a XtaLAB AFC10 (RCD3): fixedchi single diffractometer with graphite monochromated Mo-K α radiation ($\lambda = 0.71070A$). The crystal was kept at 123 K during data collection. The data were collected using ω scan in the θ range of 4.752 $\leq \theta \leq 62.052$ deg. The data were corrected for Lorentz and polarization effects. The structures were solved by direct methods,¹¹ and expanded using Fourier techniques.¹² Hydrogen atoms were refined using the riding model. The final cycle of full-matrix least-squares refinement on F2 was based on 19804 observed reflections and 6081 variable parameters. Neutral atom scattering factors were taken from Cromer and Waber.¹³ All calculations were performed using the Olex-2 crystallographic software package except for refinement,¹⁴ which was performed using SHELXL-97.5 Details¹⁵ of final refinement as well as the bond lengths and angles are summarized in the supporting information, and the numbering scheme employed is also shown in the supporting information, which were drawn with ORTEP at 50% probability ellipsoid.

Crystal structure determination of [4,6-bis(dimethylamino)-9,9-diphenyl-9H-9silafluorene] (3b)

Crystal Data for C₂₈H₂₈N₂Si (*M* =420.61 g/mol): triclinic, space group P-1 (no. 2), a = 9.4768(4) Å, b = 10.9099(4) Å, c = 13.1313(5) Å, $\alpha = 113.798(3)^{\circ}$, $\beta = 91.992(4)^{\circ}$, $\gamma = 112.004(4)^{\circ}$, V = 1123.73(8) Å³, Z = 2, T = 123 K, μ (MoK α) = 0.123 mm⁻¹, *Dcalc* = 1.243 g/cm³, 19804 reflections measured (4.752° $\leq 2\Theta \leq 62.052^{\circ}$), 6081 unique ($R_{int} =$ 0.0303, $R_{sigma} = 0.0328$) which were used in all calculations. The final R_1 was 0.0402 (I > 2σ (I)) and wR_2 was 0.1100 (all data).

Table S1. Crystal data and structure refinement for 4,6-bis(dimethylamino)-9,9-diphenyl-9H-9-silafluorene (3b) .

Identification code	4,6-bis(dimethylamino)-9,9-diphenyl-9H-9- silafluorene
Empirical formula	$C_{28}H_{28}N_2Si$
Formula weight	420.61
Temperature/K	123
Crystal system	triclinic
Space group	P-1
a/Å	9.4768(4)
b/Å	10.9099(4)
c/Å	13.1313(5)
$\alpha/^{\circ}$	113.798(3)
β/°	91.992(4)
γ/°	112.004(4)
Volume/Å ³	1123.73(8)

Z	2
$\rho_{calc}g/cm^3$	1.243
μ/mm^1	0.123
F(000)	448.0
Crystal size/mm ³	$0.359 \times 0.274 \times 0.133$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/^	4.752 to 62.052
Index ranges	$-13 \le h \le 12, -15 \le k \le 15, -18 \le l \le 18$
Reflections collected	19804
Independent reflections	6081 [$R_{int} = 0.0303$, $R_{sigma} = 0.0328$]
Data/restraints/parameters	6081/0/284
Goodness-of-fit on F ²	1.085
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0402, wR_2 = 0.1060$
Final R indexes [all data]	$R_1 = 0.0467, wR_2 = 0.1100$
Largest diff. peak/hole / e Å ⁻³	0.34/-0.27

Table S2. Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for 4,6-bis(dimethylamino)-9,9-diphenyl-9H-9-silafluorene. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	у	z	U(eq)
Si31	2484.7(3)	8754.1(3)	2548.1(3)	16.61(9)
C14	1136.7(13)	8151.3(12)	1210.4(9)	17.8(2)
C9	-187.8(13)	6850.7(12)	997.0(9)	17.4(2)

N29	-2303.6(13)	3266.8(12)	2600.7(9)	28.0(2)
C6	1196.8(13)	7135.5(12)	2736.5(10)	18.7(2)
C23	2711.5(13)	10575.8(13)	3697.0(9)	18.9(2)
N30	-2728.2(13)	6366.3(12)	-1463.7(9)	27.1(2)
C7	-144.1(13)	6267.4(12)	1842.0(9)	17.7(2)
C17	4449.0(13)	8795.5(12)	2384.8(10)	18.1(2)
C27	4234.8(17)	13169.4(14)	4997.2(11)	29.7(3)
C3	-1140.1(14)	4507.2(13)	2609.9(10)	21.6(2)
C18	5509.8(14)	9046.6(13)	3294.6(10)	21.9(2)
C10	-1434.2(14)	6225.0(12)	85.9(10)	20.1(2)
C13	1157.8(14)	8767.0(13)	461.4(10)	21.3(2)
C11	-1422.7(14)	6894.3(13)	-633.7(10)	21.0(2)
C5	1352.5(14)	6636.2(13)	3535.6(10)	22.2(2)
C16	-2604.7(18)	6854.3(16)	-2339.3(11)	32.2(3)
C12	-76.3(15)	8160.4(13)	-443.3(10)	22.9(2)
C8	-1292.2(14)	4981.2(13)	1780.4(10)	20.6(2)
C25	1478.3(17)	12090.9(16)	4839.9(12)	33.4(3)
C28	4134.7(14)	11817.8(13)	4194.3(10)	23.2(2)
C22	4867.9(14)	8468.2(14)	1331.8(10)	25.1(3)
C4	221.4(15)	5348.7(14)	3477.1(10)	23.4(2)
C26	2903.9(18)	13305.5(15)	5313.7(11)	31.7(3)
C2	-1909.3(17)	2556.5(16)	3212.9(13)	35.1(3)

C19	6927.1(15)	8977.2(15)	3156.1(12)	28.4(3)
C1	-3662.4(16)	2360.0(15)	1680.9(12)	31.5(3)
C20	7317.2(16)	8661.3(16)	2101.0(12)	33.6(3)
C24	1384.6(15)	10741.8(15)	4045.0(11)	27.3(3)
C21	6291.4(16)	8406.7(17)	1189.9(12)	33.7(3)
C15	-4033.7(17)	4992.7(15)	-1701.5(13)	34.5(3)

Table S3. Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for 4,6-bis(dimethylamino)-9,9-diphenyl-9H-9-silafluorene. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U11	U22	U33	U23	U13	U12
Si31	16.06(15)	16.55(15)	16.44(15)	7.01(12)	2.91(11)	6.63(12)
C14	18.7(5)	17.3(5)	17.8(5)	7.0(4)	4.2(4)	8.9(4)
C9	19.5(5)	17.3(5)	16.9(5)	6.7(4)	4.5(4)	10.2(4)
N29	30.0(6)	23.6(5)	25.7(5)	14.4(4)	2.7(4)	3.3(4)
C6	18.9(5)	18.6(5)	18.6(5)	8.1(4)	4.8(4)	8.2(4)
C23	21.0(5)	20.3(5)	16.6(5)	8.1(4)	3.3(4)	10.1(4)
N30	28.3(5)	27.4(5)	21.9(5)	10.8(4)	-3.3(4)	9.3(5)
C7	19.4(5)	17.6(5)	17.3(5)	7.5(4)	5.2(4)	9.3(4)
C17	17.9(5)	14.9(5)	20.0(5)	6.8(4)	3.1(4)	6.7(4)
C27	36.5(7)	19.4(6)	25.8(6)	7.1(5)	4.0(5)	8.2(5)
C3	24.8(6)	18.9(5)	20.2(5)	9.2(4)	7.3(5)	7.9(5)

C18	22.6(6)	22.4(6)	21.9(5)	10.8(5)	3.5(4)	9.9(5)
C10	20.9(5)	17.4(5)	20.0(5)	7.0(4)	2.5(4)	7.8(4)
C13	23.1(6)	18.5(5)	22.6(6)	10.0(4)	5.2(5)	8.3(5)
C11	25.3(6)	20.3(5)	16.6(5)	5.3(4)	1.4(4)	12.4(5)
C5	22.3(6)	24.0(6)	18.6(5)	9.4(5)	2.7(4)	8.5(5)
C16	42.1(8)	30.7(7)	23.4(6)	12.0(5)	-3.3(6)	16.2(6)
C12	30.4(6)	21.6(6)	20.7(5)	11.7(5)	4.4(5)	12.8(5)
C8	21.2(5)	19.4(5)	18.9(5)	7.9(4)	2.8(4)	7.2(5)
C25	37.9(7)	40.0(8)	30.3(7)	12.4(6)	11.5(6)	27.8(7)
C28	23.9(6)	21.2(6)	23.0(6)	9.0(5)	5.5(5)	9.0(5)
C22	23.0(6)	29.7(6)	18.8(5)	6.9(5)	2.9(5)	11.9(5)
C4	28.4(6)	24.6(6)	19.2(5)	12.5(5)	5.9(5)	10.4(5)
C26	50.3(8)	25.5(6)	21.7(6)	6.4(5)	7.8(6)	23.2(6)
C2	36.3(7)	31.9(7)	36.0(7)	24.2(6)	4.2(6)	3.9(6)
C19	24.3(6)	28.7(6)	31.1(7)	10.8(5)	-0.8(5)	13.7(5)
C1	30.3(7)	26.2(6)	30.5(7)	15.7(5)	2.1(5)	1.7(5)
C20	22.8(6)	36.3(7)	36.2(7)	6.6(6)	5.9(5)	17.8(6)
C24	22.6(6)	29.7(6)	26.8(6)	8.5(5)	3.5(5)	13.1(5)
C21	28.4(7)	40.2(8)	25.1(6)	5.1(6)	9.4(5)	17.3(6)
C15	32.9(7)	26.2(7)	33.3(7)	10.8(6)	-10.2(6)	5.9(6)

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Si31	C14	1.8526(12)	C7	C8	1.3848(16)
Si31	C6	1.8514(12)	C17	C18	1.3997(16)
Si31	C23	1.8735(12)	C17	C22	1.3939(16)
Si31	C17	1.8671(12)	C27	C28	1.3887(17)
C14	C9	1.4098(16)	C27	C26	1.383(2)
C14	C13	1.3941(16)	C3	C8	1.4052(16)
C9	C7	1.4913(15)	C3	C4	1.4038(17)
C9	C10	1.3896(16)	C18	C19	1.3874(17)
N29	C3	1.3838(15)	C10	C11	1.4065(16)
N29	C2	1.4440(17)	C13	C12	1.3806(17)
N29	C1	1.4383(17)	C11	C12	1.4060(17)
C6	C7	1.4100(16)	C5	C4	1.3809(17)
C6	C5	1.3893(16)	C25	C26	1.379(2)
C23	C28	1.3917(17)	C25	C24	1.3855(18)
C23	C24	1.4024(16)	C22	C21	1.3908(18)
N30	C11	1.3841(15)	C19	C20	1.386(2)
N30	C16	1.4407(17)	C20	C21	1.379(2)
N30	C15	1.4423(17)			

Table	S4 .	Bond	Lengths	for	4,6-bis(dimethylamino)-9,9-diphenyl-9H-9-
silafluo	orene.				

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C14	Si31	C23	112.68(5)	C8	C7	C6	121.09(10)
C14	Si31	C17	115.18(5)	C18	C17	Si31	121.14(9)
C6	Si31	C14	91.83(5)	C22	C17	Si31	121.21(9)
C6	Si31	C23	113.97(5)	C22	C17	C18	117.48(10)
C6	Si31	C17	112.72(5)	C26	C27	C28	120.11(12)
C17	Si31	C23	109.63(5)	N29	C3	C8	121.68(11)
C9	C14	Si31	109.49(8)	N29	C3	C4	120.13(11)
C13	C14	Si31	132.95(9)	C4	C3	C8	118.18(11)
C13	C14	C9	117.45(10)	C19	C18	C17	121.34(11)
C14	C9	C7	114.59(10)	C9	C10	C11	120.74(11)
C10	C9	C14	121.09(10)	C12	C13	C14	122.01(11)
C10	C9	C7	124.28(10)	N30	C11	C10	120.83(11)
C3	N29	C2	118.79(11)	N30	C11	C12	121.15(11)
C3	N29	C1	120.18(11)	C12	C11	C10	117.93(11)
C1	N29	C2	116.47(11)	C4	C5	C6	121.51(11)
C7	C6	Si31	109.64(8)	C13	C12	C11	120.66(11)
C5	C6	Si31	132.42(9)	C7	C8	C3	120.49(11)
C5	C6	C7	117.88(10)	C26	C25	C24	119.87(12)
C28	C23	Si31	123.28(9)	C27	C28	C23	121.32(12)
C28	C23	C24	117.32(11)	C21	C22	C17	121.42(12)

 Table S5. Bond Angles for 4,6-bis(dimethylamino)-9,9-diphenyl-9H-9-silafluorene.

C24	C23	Si31	119.32(9)	C5	C4	C3	120.80(11)
C11	N30	C16	119.94(11)	C25	C26	C27	119.85(12)
C11	N30	C15	119.43(11)	C20	C19	C18	119.88(12)
C16	N30	C15	117.13(11)	C21	C20	C19	119.93(12)
C6	C7	C9	114.39(10)	C25	C24	C23	121.52(12)
C8	C7	C9	124.51(10)	C20	C21	C22	119.94(12)

Table S6. Hydrogen Atom Coordinates $(\text{Å} \times 10^4)$ and Isotropic Displacement Parameters $(\text{Å}^2 \times 10^3)$ for 4,6-bis(dimethylamino)-9,9-diphenyl-9H-9-silafluorene.

Atom	x	у	z	U(eq)
H8AA	5198.41	13984.42	5322.58	36
H0BA	5259.54	9264.35	4006.49	26
H1BA	-2285.6	5353.83	-49.46	24
H2BA	2029.71	9612.02	574.57	26
H4BA	2238.74	7181.53	4123.26	27
НА	-2157.99	7915.9	-1991.95	48
HB	-3623.34	6462.62	-2799.43	48
HC	-1950.45	6509.41	-2809.85	48
H5BA	-16.43	8593.65	-931.66	27
H6BA	-2170.35	4427.08	1185.58	25
H7BA	581.74	12177.51	5053.62	40
H8BA	5036.72	11741.11	3984.74	28

H9BA	4180.65	8286.92	710.7	30
H0CA	363.25	5035.29	4018.69	28
H1CA	2969.87	14213.68	5844.78	38
H2CA	-995.82	2414.84	3019.64	53
H2CB	-2762.59	1614.23	3007.51	53
H2CC	-1707.46	3168.23	4018.5	53
НЗСА	7614.15	9142.5	3770.2	34
H4CA	-4077.6	2976.74	1552.27	47
H4CB	-4435.61	1672.27	1875.98	47
H4CC	-3381.07	1825.71	1000.68	47
H5CA	8269.64	8620.92	2007.47	40
H6CA	419.51	9927.44	3735.15	33
H7CA	6551.43	8194.21	481.32	40
H8CA	-3707.71	4204.17	-1962.63	52
H8CB	-4850.85	4789.2	-2280.89	52
H8CC	-4411.7	5070.41	-1019.4	52

5. NMR Spectra

Figure S1. ¹H NMR (top) and ¹³C NMR (bottom) of 1a

Figure S3. ¹H NMR (top) and ¹³C NMR (bottom) of 1c

Figure S4. ¹H NMR (top) and ¹³C NMR (bottom) of 1d

Figure S5. ¹H NMR (top) and ¹³C NMR (bottom) of 1e

Figure S6. ¹H NMR (top) and ¹³C NMR (bottom) of **1f**

Figure S7. ¹H NMR (top) and ¹³C NMR (bottom) of 1g

Figure S8. ¹H NMR (top) and ¹³C NMR (bottom) of 5-Bromo-*N*,*N*,2-trimethylaniline

Figure S9. ¹H NMR (top) and ¹³C NMR (bottom) of 1h

Figure S10. ¹H NMR (top) and ¹³C NMR (bottom) of 5-bromo-2-chloro-*N*,*N*-dimethylaniline

Figure S11. ¹H NMR (top) and ¹³C NMR (bottom) of 1i

Figure S12. ¹H NMR (top) and ¹³C NMR (bottom) of 5-bromo-2-fluoro-N,N-dimethylaniline

Figure S13. ¹H NMR (top) and ¹³C NMR (bottom) of 1j

Figure S14. ¹H NMR (top) and ¹³C NMR (bottom) of 3-bromo-*N*,*N*,5-trimethylaniline

Figure S15. ¹H NMR (top) and ¹³C NMR (bottom) of 1k

Figure S16. ¹H NMR (top) and ¹³C NMR (bottom) of 11

Figure S17. ¹H NMR (top) and ¹³C NMR (bottom) of 1m

Figure S18. ¹H NMR (top) and ¹³C NMR (bottom) of 1n

Figure S19. ¹H NMR (top) and ¹³C NMR (bottom) of 3a

Figure S20. ¹H NMR (top) and ¹³C NMR (bottom) of 3b

Figure S21. ¹H NMR (top) and ¹³C NMR (bottom) of 3c

Figure S22. ¹H NMR (top) and ¹³C NMR (bottom) of 3d

Figure S23. ¹H NMR (top) and ¹³C NMR (bottom) of 3e

Figure S26. ¹H NMR (top) and ¹³C NMR (bottom) of 3h

Figure S27. ¹H NMR (top) and ¹³C NMR (bottom) of 3i

Figure S28. ¹H NMR (top) and ¹³C NMR (bottom) of 3j

Figure S29. ¹H NMR (top) and ¹³C NMR (bottom) of 3k

Figure S31. ¹H NMR (top) and ¹³C NMR (bottom) of 3m

Figure S33. ¹H NMR (top) and ¹³C NMR (bottom) of 30

Figure S34. 1 H NMR (top) and 13 C NMR (bottom) of 3p

Figure S35. 1 H NMR (top) and 13 C NMR (bottom) of 3q

Figure S36. ¹H NMR (top) and ¹³C NMR (bottom) of 3r

Figure S40. ¹H NMR (top) and ¹³C NMR (bottom) of 6

Figure S41. ¹H NMR (top) and ¹³C NMR (bottom) of 7

Figure S42. ¹H NMR (top) and ¹³C NMR (bottom) of 9

Figure S43. ¹H NMR (top) and ¹³C NMR (bottom) of 9

Figure S46. ¹H NMR (top) and ¹³C NMR (bottom) of 12

6. References

- [1] (a) X. Yang, C. Wang, Angew. Chem. Int. Ed., 2018, 57, 923; (b) J. C. Corey, C. S. John, Martha C. Ohmsted, L. S. Chang, J. Organomet. Chem., 1986, 304, 93.
- [2] J. F. Hartwig, M. Kawatsura, S. I. Hauck, K. H. Shaughnessy, L. M. Alcarzar-Roman, J. Org. Chem., 1999, 64, 5575.
- [3] H. Shen, X. Zhang, Q. Liu, J. Pan, W. Hu, Y. Xiong, X. Zhu, *Tetrahedron Lett.*, 2015, 56, 5628.
- [4] T. Pastierik, P. Šebej, J. Medalová, P. Štacko, P. Klán, J. Org. Chem., 2014, 79, 3374.
- [5] S. Yang, W. Tang, Z. Yang, J. Xu, ACS Catal., 2018, 8, 9320.
- [6] G. Cahiez, C. Chaboche, F. Mahuteau-Betzer, M. Ahr, Org. Lett., 2005, 7, 1943.
- [7] P. P. Roy, K. D'Souza, M. Cuperlovic-Culf, P. C. Kienesberger, M. Touaibia, *Eur. J. Med. Chem.*, 2016, **118**, 290.
- [8] J. P. Wolfe, D. L. Buchwald, J. Org. Chem., 2000, 65, 1144.
- [9] Y. Ma, B. Wang, L. Zhang, Z. Hou, J. Am. Chem. Soc., 2016, 138, 3663.
- [10] J. T. Reeves, D. R. Fandrick, Z. Tan, J. J. Song, H. Lee, N. K. Yee, C. H. Senanayake, Org. Lett., 2015, 14, 4388.
- [11] SIR2008: M. C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G. L. Cascarano, L. De Caro, C. Giacovazzo, G. Polidori, D. Siliqi, R. Spagna, *J. Appl. Crystallogr.*, 2007, 40, 609.
- [12] DIRDIF99: P. T. Beurskens, G. Admiraal, G. Beurskens, W. P. Bosman, R. de Gelder, R. Israel, J. M. M. Smits, The DIRDIF-99 program system; Technical Report of the Crystallography Laboratory; University of Nijmegen, Nijmegen, The Netherlands, 1999.
- [13] D. T. Cromer, J. T. Waber, International Tables for X-ray Crystallography; Kynoch Press: Birmingham, U.K., 1974, Vol. 4.
- [14] Olex2 program package: O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst., 2009, 42, 339.
- [15] SHELX97: G. M. Sheldrick, Acta Cryst., 2008, A64, 112.