A Cascade Approach to 3D Cyclic Carbamates via an Ionic Decarboxylative

Functionalization of Olefinic Oxamic Acids

Huaqiang Fan,^{§a} Yi Wan,^{§a} Peng Pan,^a Wenbin Cai,^a Shihui Liu,^a Chuanxu Liu, ^{*b} and Yongqiang Zhang^{*a}

^a State Key Laboratory of Bioengineering Reactor, Shanghai Key Laboratory of New Drug Design and School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China

^b Department of Hematology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China

* Correspondence to: Professor Yongqiang Zhang (Email: yongqiangzhang@ecust.edu.cn) and Dr. Chuanxu Liu (E-mail: lioucx@gmail.com)

[§] These two authors contributed equally to this paper

CONTENTS

Figure S1	1
Table S1-S3	1
Scheme S1-S4	2
General information	4
Synthesis and characterization	4
X-Ray crystallography data	
References	52
Spectral data for the products	53

Figure S1 Selected bioactive compounds containing 3D cyclic carbamate scaffolds.

Table S1 The control reactions employing various peroxides.^a

	$ \begin{array}{c} Me \\ H \\ OH \\ $		
Entry	Reaction conditions	2a ^b (%)	
1	<i>m</i> -CPBA (2.2 equiv), $CHCl_3$	88	
2	BPO (2.2 equiv), CHCl ₃	n.d ^c	
3	TBHP (2.2 equiv), CHCl ₃	n.d ^c	
4	$Na_2S_2O_8$ (2.2 equiv), DMSO	n.d ^c	
5	H ₂ O ₂ (30%) (2.2 equiv), MeOH		
6 [1]	H ₂ O ₂ (30%) (2.2 equiv), Na ₂ WO ₄ (10 mol%), H ₃ PO ₄ (1 drop), MeOH		
7 [2]	H ₂ O ₂ (2.2 equiv), MnSO ₄ (1 mol %), NaHCO ₃ (0.25 equiv), DMF		
8 [3]	H ₂ O ₂ (2.2 equiv), MTO (0.2 mol %), Pyridine (10 mol %), 'BuOH		
9	Oxone (2.2 equiv), dioxane : $H_2O = 1 : 1$		

^{*a*} Reaction conditions: **1a** (0.15 mmol, 1.0 equiv), oxidant (0.33 mmol, 2.2 equiv), solvent (3.0 mL), rt, 24h, otherwise noted; ^{*b*} Yields were determined by ¹H NMR using CH₂Br₂ as an internal standard; ^{*c*} not detected.

Notes: Only the reaction system, which is able to mediate the epoxidation reaction, was proved to be effective in this transformation. *m*-CPBA-based reaction system displayed the most superior reactivity.

			•	^		
		o coroc	mina	at aa	wonto	ι
I ADLE S	02 II		יצוווונ	01.50		
				0 I D O .		

Me	0		Me OH
HNN	ОН	(2.2 equiv)	C C C
	Ö ^{II,}	24 11	∽ N° ⊙
1a	-(:0 ₂	3a
Entry	Solvent	Time	Yield ^b
1	CHCl ₃	24h	88%
2	MeCN	24h	76%
3	DCE	24h	65%
4	THF	24h	35%
5	DMF	24h	trace
6	Toluene	24h	72%
7	MeOH	24h	59%

^{*a*} Reaction conditions: **1a** (0.15 mmol, 1.0 equiv), *m*-CPBA (0.33 mmol, 2.2 equiv), solvent (3.0 mL), otherwise noted; ^{*b*} Yields were determined by ¹H NMR using CH₂Br₂ as an internal standard; ^{*c*} Performed at 50 °C.

Table S3 The screening of	solvents of NaClO-promoted	decarboxylative	alkoxylation
cascade reaction. ^a			

Me	0	Me Cl
, N.	NaClO (2.2 equiv)	e C
	nt, 24 h	<u>N</u>
1a	-CO ₂	16a
Entry	Solvent	Yield ^b
1	CHCl ₃	34%
2	DMF	12%
3	MeOH	38%
4	MeCN	56%
5	1,4-dioxane	63% (57%) ^c
6	1,4-dioxane/H ₂ O (1 : 1)	35%

^{*a*} Reaction conditions: **1a** (0.15 mmol, 1.0 equiv), NaClO (5%) (0.33 mmol, 2.2 equiv), solvent (3.0 mL), otherwise noted; ^{*b*} Yields were determined by ¹H NMR using CH₂Br₂ as an internal standard; ^{*c*} Isolated yield was reported.

Scheme S1 The confirmation of the structure of **3a** via single x-ray analysis.

X-ray Crystallography data of **3a'**.

Scheme S2 The control reactions.

Scheme S3 The proposed mechanism for the synthesis of 12a.

Scheme S4 The proposed mechanism for the synthesis of 16a.

General Information

Commercial reagents and solvents were used as received and without further purification, unless otherwise stated. Organic solution was concentrated under reduced pressure on a Büchi rotary evaporator using an isopropyl alcohol-dry ice bath. Analytical thin layer chromatography (TLC) was performed on 0.25 mm silica gel plates (Qingdao Haiyang Chemical China), and the compounds were visualized with a UV lamp at 254 nm. Flash chromatography was performed on silica gel 200-300 mesh (purchased from Qingdao Haiyang Chemical China) with commercial solvents (purchased from Adamas-beta®). The ¹H and ¹³C NMR spectra were recorded on a Bruker AM 400 Spectrometer (400 and 100 MHz for ¹H and ¹³C NMR, respectively) and are internally referenced to residual solvent signals (note: CDCl₃ referenced at 7.26 and 77.16 ppm in ¹H and ¹³C NMR, respectively; DMSO- d_6 referenced at 2.50 and 39.52 ppm in ¹H and ¹³C NMR, respectively). Data from the ¹H-NMR spectroscopy are reported as chemical shift (δ ppm) with the corresponding integration values. Multiplicities were given as s (singlet), d (doublet), t (triplet), dd (double of doublet), and m (multiplets). Coupling constants were reported in Hertz (Hz). Data for ¹³C NMR are reported in terms of chemical shift. High-resolution mass spectrometry (HRMS) was recorded on Waters LCT Premier XE spectrometer.

Synthesis and Characterization of the Substrates

General procedure A [4-5]

To a suspension of alkyltriphenylphosphonium bromide (1.8 equiv) in dry THF (20 mL) under an argon atmosphere at 0 °C is added n-butyllithium (2.3 equiv, 2.5 M in hexanes). The resulting mixture is stirred at 0 °C for 2 h. A solution of 2-nitrobenzaldehyde (1.0 equiv) in dry THF (10 mL) is added dropwise and the mixture is stirred at 0 °C for 2 h. After that, it is allowed to warm to room temperature and stirred for another 16 h. Then, the reaction was quenched with NH₄Cl (aq) and extracted with EtOAc (30 mL × 3). The combined organic phase was washed with brine (20 mL × 3), dried over sodium sulfate, filtered, and concentrated under vacuum. The resulting residue was purified through chromatography on silica gel (petroleum ether/ethyl acetate = 60/1 - 20/1) to yield the desired alkene structures.

To a solution of the above product (1.0 equiv) in a solvent mixture (EtOH/AcOH = 1:1, 20 mL) is added iron powder (4.0 equiv). The resulting suspension is stirred at 100 °C for 3 h. Then, the mixture was cooled to room temperature, diluted with EtOAc (20 mL). The organic phase was washed with NaHCO₃ (aq) (20 mL \times 3), dried over anhydrous Na₂SO₄, filtered and concentrated under vacuum to give the

crude product. The crude product is purified through chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to yield the title compound as a yellow oil.

To a stirred solution of the above product (1.0 equiv) and Et_3N (1.1 equiv) in CH_2Cl_2 (25 mL) at 0 °C was added the solution of methyl chlorooxoacetate (1.2 equiv) in 10 mL of CH_2Cl_2 dropwise over 10 minutes. After that, the reaction mixture was stirred at room temperature for 2 - 6 h. Then it is diluted with water (50 mL) followed by extraction with CH_2Cl_2 (30 mL × 3). The combined organic layers were washed with brine (20 mL × 3), and then dried over MgSO₄, filtrated and concentrated under vacuum to give the crude product. This crude product was used directly in next step without further purification.

To a stirred solution of the above crude product (1.0 equiv) in a solvent mixture (20 mL, THF/H₂O = 2 : 1) was added LiOH (5.0 equiv). The resulting mixture was stirred at room temperature for 0.5 - 5 h, then acidified by HCl (1 M) (pH = 3) and extracted

with EtOAc (20 mL \times 3). The combined organic phase was dried over Na₂SO₄,

filtrated and concentrated under vacuum to give the target compound.

2-oxo-2-((2-(prop-1-en-2-yl)phenyl)amino)acetic acid (1a)

This compound was prepared according to the reported procedure ^[4]. ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 9.96 (s, 1H), 7.89 (d, J = 7.9 Hz, 1H), 7.39 (t, J = 4.6 Hz, 1H), 7.35 (d, J = 5.9 Hz, 1H), 7.27 (t, J = 7.0 Hz, 1H), 5.39 (s, 1H), 5.05 (s, 1H), 2.11 (s, 3H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 162.0, 156.2, 141.9, 136.3, 132.8, 128.0, 127.6, 125.5, 122.9, 116.4, 23.7; HRMS (ESI): m/z Calcd. for C₁₁H₁₁NO₃ [(M-H)⁻] 204.0661, found 204.0664.

2-((4-fluoro-2-(prop-1-en-2-yl)phenyl)amino)-2-oxoacetic acid (1b)

This compound was prepared according to the reported procedure ^[4]. ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 9.98 (s, 1H), 7.74 (dd, J = 9.5, 5.4 Hz, 1H), 7.30 - 7.02 (m, 2H), 5.32 (s, 1H), 5.02 (s, 1H), 2.04 (s, 3H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 161.9, 160.7 (d, $J_{CF} = 251.7$ Hz), 156.7, 141.0, 139.3 (d, $J_{CF} = 7.9$ Hz), 129.3, 125.9 (d, $J_{CF} = 8.6$ Hz), 116.9, 114.8 (d, $J_{CF} = 22.6$ Hz), 114.3 (d, $J_{CF} = 22.1$ Hz), 23.3; ¹⁹F NMR (376 MHz, DMSO - d_6) δ (ppm) -116.32; HRMS (ESI): m/z Calcd. for C₁₁H₁₀FNO₃ [(M-H)⁻] 222.0566, found 222.0558.

2-((4-cyano-2-(prop-1-en-2-yl)phenyl)amino)-2-oxoacetic acid (1c)

This compound was prepared according to the reported procedure ^[4]. ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 10.02 (s, 1H), 8.21 (d, J = 8.4 Hz, 1H), 7.81 (s, 1H), 7.79 (d, J = 1.9 Hz, 1H), 5.68 - 5.35 (m, 1H), 5.13 (s, 1H), 2.09 (s, 3H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 161.5, 156.2, 140.2, 137.2, 135.9, 131.9, 131.85, 122.0, 118.5, 118.1, 107.4, 23.4; HRMS (ESI): m/z Calcd. for C₁₂H₁₀N₂O₃ [(M-H)⁻] 229.0613, found 229.0614.

2-((4-nitro-2-(prop-1-en-2-yl)phenyl)amino)-2-oxoacetic acid (1d)

This compound was prepared according to the reported procedure ^[4].¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 10.02 (s, 1H),7.97(d, J = 8.5Hz, 2H), 6.65(d, J = 8.5Hz, 2H), 5.35 (s, 1H), 5.08 (s, 1H), 2.08 (s, 3H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 157.4, 143.8, 141.7, 136.5, 130.8, 125.8, 117.1, 108.32, 85.26, 68.50, 23.51; HRMS (ESI) Calcd. for C₁₁H₁₀N₂O₅ [(M+Na)⁺] 250.0482, found 250.0487

2-oxo-2-((2-(prop-1-en-2-yl)-4-(trifluoromethyl)phenyl)amino)acetic acid (1e) This compound was prepared according to the reported procedure ^[4]. ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 10.04 (s, 1H), 8.17 (d, J = 8.5 Hz, 1H), 7.70 (d, J = 8.6 Hz, 1H), 7.63 (s, 1H), 5.45 (s, 1H), 5.11 (s, 1H), 2.10 (s, 3H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 161.7, 156.4, 140.8, 136.7, 136.3, 125.5 (q, $J_{CF} = 25.2$ Hz), 124.9 (q, $J_{CF} = 3.7$ Hz), 124.7 (q, $J_{CF} = 3.7$ Hz), 124.1 (q, $J_{CF} = 270.0$ Hz), 122.7, 117.9, 23.4; ¹⁹F NMR (376 MHz, DMSO - d_6) δ (ppm) -60.70; HRMS (ESI): m/z Calcd. for C₁₂H₁₀F₃NO₃ [(M-H)⁻] 272.0535, found 272.0533.

2-((4-fluoro-2-methyl-6-(prop-1-en-2-yl)phenyl)amino)-2-oxoacetic acid (1f)

This compound was prepared according to the reported procedure ^[4]. ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 10.15 (s, 1H), 7.08 (dd, J = 9.2, 2.5 Hz, 1H), 6.95 (dd, J =

9.3, 2.6 Hz, 1H), 5.12 (s, 1H), 4.88 (s, 1H), 2.15 (s, 3H), 1.97 (s, 3H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 162.5, 160.9 (d, J_{CF} = 242.2 Hz), 158.1, 144.3 (d, J_{CF} = 8.5 Hz), 142.4, 139.2 (d, J_{CF} = 8.9 Hz), 128.7 (d, J_{CF} = 2.6 Hz), 116.1, 115.8 (d, J_{CF} = 21.9 Hz), 112.7 (d, J_{CF} = 22.1 Hz), 23.6, 18.5; ¹⁹F NMR (376 MHz, DMSO - d_6) δ (ppm) -115.68; HRMS (ESI): m/z Calcd. for C₁₂H₁₂FNO₃ [(M-H)⁻] 236.0723, found 236.0719.

2-((2,4-dimethyl-6-(prop-1-en-2-yl)phenyl)amino)-2-oxoacetic acid (1g)

This compound was prepared according to the reported procedure ^[4]. ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 10.11 (s, 1H), 7.05 (s, 1H), 6.95 (s, 1H), 5.11 (s, 1H), 4.87 (s, 1H), 2.31 (s, 3H), 2.15 (s, 3H), 2.00 (s, 3H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 162.7, 158.0, 143.4, 142.0, 136.8, 136.0, 130.0, 129.7, 126.8, 115.2, 24.0, 21.0, 18.4; HRMS (ESI): m/z Calcd. for C₁₃H₁₅NO₃ [(M-H)⁻] 232.0974, found 232.0971.

2-oxo-2-((4-(phenylethynyl)-2-(prop-1-en-2-yl)phenyl)amino)acetic acid (1h) This compound was prepared according to the reported procedure ^[4]. ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 9.93 (s, 1H), 8.05 (d, J = 8.4 Hz, 1H), 7.56 (dd, J = 6.5,

3.0 Hz, 2H), 7.51 (dd, J = 8.4, 1.8 Hz, 1H), 7.49 - 7.46 (m, 1H), 7.45 - 7.42 (m, 3H), 5.42 (s, 1H), 5.08 (s, 1H), 2.08 (s, 3H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 161.8, 156.5, 141.0, 135.7, 133.4, 131.3, 130.9, 130.7, 128.7 (2C, overlap), 122.2, 122.0, 118.8, 117.3, 89.4, 88.9, 23.6; HRMS (ESI): m/z Calcd. for C₁₉H₁₅NO₃ [(M-H)⁻] 304.0974, found 304.0970.

2-((5-methyl-2-(prop-1-en-2-yl)phenyl)amino)-2-oxoacetic acid (1i)

This compound was prepared according to the reported procedure ^[4]. ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 9.91 (s, 1H), 7.71 (s, 1H), 7.22 (d, J = 7.8 Hz, 1H), 7.08 (d, J = 7.8, 1H), 5.35 (d, J = 0.7 Hz, 1H), 5.01 (d, J = 0.7 Hz, 1H), 2.35 (s, 3H), 2.07 (s, 3H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 162.6, 156.6, 142.30, 137.5, 133.9, 133.2, 128.3, 126.6, 123.8, 116.7, 24.3, 21.3; HRMS (ESI): m/z Calcd. for C₁₂H₁₃NO₃ [(M-H)⁻] 218.0817, found 218.0824.

2-((5-fluoro-2-(prop-1-en-2-yl)phenyl)amino)-2-oxoacetic acid (1j)

This compound was prepared according to the reported procedure ^[4]. ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 9.91 (s, 1H), 7.81 (dd, J = 11.0, 2.7 Hz, 1H), 7.34 (dd, J = 8.6, 6.5 Hz, 1H), 7.09 (dd, J = 8.5, 2.7 Hz, 1H), 5.39 (s, 1H), 5.02 (s, 1H), 2.05 (s, 3H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 162.44 (d, $J_{CF} = 241.2$ Hz), 162.2, 156.7, 141.5, 134.9, (d, $J_{CF} = 11.1$ Hz), 132.1, (d, $J_{CF} = 3.2$ Hz), 130.2, (d, $J_{CF} = 9.2$ Hz), 117.6, 112.4, (d, $J_{CF} = 21.0$ Hz), 109.4, (d, $J_{CF} = 25.9$ Hz), 24.3; ¹⁹F NMR (376 MHz, DMSO - d_6) δ (ppm) -113.42; HRMS (ESI): m/z Calcd. for C₁₁H₁₀FNO₃ [(M-H)⁻] 222.0566, found 222.0563.

2-((5-chloro-2-(prop-1-en-2-yl)phenyl)amino)-2-oxoacetic acid (1k)

This compound was prepared according to the reported procedure ^[4]. ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 9.96 (s, 1H), 7.99 (s, 1H), 7.33 (d, J = 8.3 Hz, 1H), 7.28 (d, J = 8.3, 1H), 5.39 (s, 1H), 5.04 (s, 1H), 2.05 (s, 3H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 162.2, 156.9, 141.4, 135.1, 134.8, 132.1, 130.1, 125.6, 122.4, 117.7, 24.0; HRMS (ESI): m/z Calcd. for C₁₁H₁₀CINO₃ [(M-H)⁻] 238.0271, found 238.0269.

2-oxo-2-((2-(prop-1-en-2-yl)-5-(trifluoromethyl)phenyl)amino)acetic acid (11)

This compound was prepared according to the reported procedure ^[4]. ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 10.07 (s, 1H), 8.24 (s, 1H), 7.58 (d, J = 8.1, 1H), 7.53 (d, J = 8.1 Hz, 1H), 5.52 - 5.33 (m, 1H), 5.10 (s, 1H), 2.08 (s, 3H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 161.6, 156.7, 140.8, 140.1, 133.7, 129.2, 128.0 (q, $J_{CF} = 31.9 \text{ Hz}$), 123.7 (q, $J_{CF} = 270.6 \text{ Hz}$), 121.9 (q, $J_{CF} = 3.7 \text{ Hz}$), 119.2 (q, $J_{CF} = 4.0 \text{ Hz}$), 117.6, 23.2; ¹⁹F NMR (376 MHz, DMSO - d_6) δ (ppm) -61.29; HRMS (ESI): m/z Calcd. for C₁₂H₁₀F₃NO₃ [(M-H)⁻] 272.0535, found 272.0537.

2-((5-nitro-2-(prop-1-en-2-yl)phenyl)amino)-2-oxoacetic acid (1m)

This compound was prepared according to the reported procedure ^[4]. ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 10.12 (s, 1H), 8.26 (s, 1H), 7.54 (d, J = 8.1, 1H), 7.52 (d, J = 8.1 Hz, 1H), 5.42 (s, 1H), 5.08 (s, 1H), 2.12 (s, 3H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 161.6, 156.7, 140.8, 140.1, 133.7, 129.2, 128.0, 123.7, 121.9, 119.2, 23.2; HRMS (ESI): m/z Calcd. for C₁₁H₁₀N₂O₅ [(M-H)⁻] 250.0482, found 250.0487

2-((4,5-difluoro-2-(prop-1-en-2-yl)phenyl)amino)-2-oxoacetic acid (1n)

This compound was prepared according to the reported procedure ^[4]. ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 10.00 (s, 1H), 7.88 (dd, J = 12.4, 7.9 Hz, 1H), 7.44 (dd, J = 11.5, 8.9 Hz, 1H), 5.38 (s, 1H), 5.05 (s, 1H), 2.05 (s, 3H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 162.1, 156.9, 148.1 (dd, $J_{CF}=243.3$, 13.1 Hz), 147.1 (dd, $J_{CF}=243.5$, 13.2 Hz), 140.7, 134.2 (dd, $J_{CF}=5.7$, 3.7 Hz), 130.3 (dd, $J_{CF}=8.7$, 2.8 Hz), 117.9, 117.3 (d, $J_{CF}=18.0$ Hz), 112.8 (d, $J_{CF}=20.6$ Hz), 23.9; ¹⁹F NMR (376 MHz, DMSO - d_6) δ (ppm) -138.53 (d, $J_{FF}=23.7$ Hz), -141.54 (d, $J_{FF}=23.7$ Hz); HRMS (ESI): m/z Calcd. for C₁₁H₉F₂NO₃ [(M-H)⁻] 240.0472, found 240.0473.

2-oxo-2-((6-(prop-1-en-2-yl)-2,3-dihydro-1H-inden-5-yl)amino)acetic acid (1o) This compound was prepared according to the reported procedure ^[4]. ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 9.81 (s, 1H), 7.68 (s, 1H), 7.12 (s, 1H), 5.29 (s, 1H), 4.94 (s, 1H), 2.87 - 2.81 (m, 4H), 2.19 - 1.81 (m, 5H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 162.6, 156.5, 143.7, 142.9, 141.5, 134.9, 131.4, 124.0, 119.2, 116.5, 32.7, 32.4, 25.7, 24.4; HRMS (ESI): m/z Calcd. for C₁₄H₁₅NO₃ [(M-H)⁻] 244.0974, found 244.0968.

2-((5-methoxy-2-(prop-1-en-2-yl)phenyl)amino)-2-oxoacetic acid (1p)

This compound was prepared according to the reported procedure ^[4]. ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 9.85 (s, 1H), 7.59 (s, 1H), 7.22 (d, J = 8.5 Hz, 1H), 6.80 (d, J = 8.5, 1H), 5.33 (s, 1H), 4.98 (s, 1H), 3.76 (s, 3H), 2.04 (s, 3H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 161.9, 158.4, 156.0, 141.5, 133.9, 128.8, 127.8, 116.2, 110.5, 107.7, 55.2, 24.0; HRMS (ESI): m/z Calcd. for C₁₂H₁₃NO₄ [(M-H)⁻] 234.0766, found 234.0758.

2-oxo-2-((2-(prop-1-en-2-yl)-4-(trifluoromthoxy)phenyl)amino)acetic acid (1q)

This compound was prepared according to the reported procedure ^[4]. ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 10.15 (s, 1H), 7.95 (s, 1H), 7.34 (d, J = 8.5 Hz, 1H), 7.29 (s, 1H), 5.37 (s, 1H), 5.04 (s, 1H), 2.05 (s, 3H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 161.8, 156.5, 145.4, 140.7, 138.7, 132.2, 125.2, 120.7, 120.2, 120.0 (q, $J_{CF} = 254.6$ Hz), 117.33, 23.25; ¹⁹F NMR (376 MHz, DMSO - d_6) δ (ppm) -56.96; HRMS (ESI): m/z Calcd. for C₁₂H₁₀F₃NO₄ [(M-H)⁻] 288.0484, found 288.0486.

2-oxo-2-((6-(prop-1-en-2-yl)benzo[d][1,3]dioxol-5-yl)amino)acetic acid (1r)

This compound was prepared according to the reported procedure ^[4]. ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 9.85 (s, 1H), 7.33 (s, 1H), 6.88 (s, 1H), 6.04 (s, 2H), 5.27 (d, J = 0.9 Hz, 1H), 4.94 (d, J = 0.9 Hz, 1H), 2.00 (s, 3H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 162.0, 156.2, 146.1, 144.9, 141.7, 130.2, 126.6, 116.3, 107.6, 104.4, 101.5, 23.7; HRMS (ESI): m/z Calcd. for C₁₂H₁₁NO₅ [(M-H)⁻] 248.0559, found 248.0558.

2-((3-methyl-2-(prop-1-en-2-yl)phenyl)amino)-2-oxoacetic acid (1s)

This compound was prepared according to the reported procedure ^[4]. ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 9.54 (s, 1H), 7.85 (d, J = 8.0 Hz, 1H), 7.22 (t, J = 7.9 Hz, 1H), 7.08 (d, J = 7.5 Hz, 1H), 5.49 (s, 1H), 4.92 (s, 1H), 2.23 (s, 3H), 1.95 (s, 3H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 162.4, 156.2, 141.8, 135.7, 135.6, 133.4, 127.7, 127.2, 119.2, 118.0, 23.5, 19.6; HRMS (ESI): m/z Calcd. for C₁₂H₁₃NO₃ [(M-H)⁻] 218.0817, found 218.0825.

2-oxo-2-((1-(prop-1-en-2-yl)naphthalen-2-yl)amino)acetic acid (1t)

This compound was prepared according to the reported procedure ^[4]. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 9.64 (s, 1H), 8.47 (d, *J* = 9.0 Hz, 1H), 7.85 (d, *J* = 7.8 Hz, 3H), 7.64 - 7.39 (m, 2H), 5.82 (s, 1H), 5.21 (s, 1H), 2.15 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 160.5, 155.1, 140.3, 131.5, 130.8, 130.8, 128.9, 128.4, 128.3, 126.9,

125.9, 125.5, 120.2, 118.5, 24.2; HRMS (ESI): m/z Calcd. for C₁₅H₁₃NO₃ [(M-H)⁻] 254.0817, found 254.0808.

2-(methyl(2-(prop-1-en-2-yl)phenyl)amino)-2-oxoacetic acid (1u)

This compound was prepared according to the reported procedure ^[4]. ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 7.34 - 7.14 (m, 3H), 7.09 (d, J = 7.6 Hz, 1H), 5.11 (s, 1H), 5.02 (s, 1H), 2.93 (s, 3H), 1.92 (s, 3H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 164.6, 163.1, 142.4, 140.8, 138.7, 129.8, 129.1, 129.0, 128.6, 117.2, 35.5, 23.4; HRMS (ESI): m/z Calcd. for C₁₂H₁₃NO₃ [(M-H)⁻] 218.0817, found 254.0802.

2-oxo-2-(7-(prop-1-en-2-yl)indolin-1-yl)acetic acid (1v)

This compound was prepared according to the reported procedure ^[4]. ¹H NMR (500 MHz, DMSO - d_6) δ (ppm) 7.23 (d, J = 6.3 Hz, 1H), 7.20 - 7.13 (m, 2H), 4.97 (s, 1H), 4.88 (s, 1H), 4.08 (t, J = 7.3 Hz, 2H), 3.04 (t, J = 7.7 Hz, 2H), 1.99 (s, 3H); ¹³C NMR (126 MHz, DMSO - d_6) δ (ppm) 164.2, 159.6, 144.3, 137.7, 136.1, 134.3, 126.8, 125.9, 123.9, 112.6, 50.4, 29.8, 22.2; HRMS (ESI): m/z Calcd. for C₁₃H₁₃NO₃ [(M-H)⁻] 230.0817, found 230.0813.

2-oxo-2-(8-(prop-1-en-2-yl)-3,4-dihydroquinolin-1(2H)-yl)acetic acid (1w)

This compound was prepared according to the reported procedure ^[4]. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 6.96 (s, 1H), 6.92 (s, 1H), 5.24 (s, 1H), 4.93 (s, 1H), 4.45 - 4.38 (m, 1H), 3.22- 3.15 (m, 1H), 2.75 - 2.52 (m, 2H), 2.33 (s, 3H), 1.95 (s, 3H), 1.79 - 1.63 (m, 2H); ¹³C NMR (100 MHz, DMSO - *d*₆) δ (ppm) 165.4, 163.0, 142.8, 139.8, 137.6, 135.818, 133.4, 127.6, 127.0, 117.7, 45.2, 26.5, 24.4, 22.6, 21.1; HRMS (ESI): m/z Calcd. for C₁₅H₁₇NO₃ [(M+Na)⁺] 282.1106, found 282.1096

2-oxo-2-((2-vinylphenyl)amino)acetic acid (4a)

This compound was obtained as a light yellow solid by following the general procedure **A**. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 9.12 (s, 1H), 8.02 (d, J = 8.1 Hz, 1H), 7.47 (d, J = 6.6 Hz, 1H), 7.37 (t, J = 7.8 Hz, 1H), 7.27(t, J = 7.8 Hz, 1H), 6.83 (d,

J = 17.4, 11.1 Hz, 1H), 5.74 (d, J = 17.4 Hz, 1H), 5.57 (d, J = 11.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 160.2, 155.1, 132.1, 131.1, 130.4, 128.7, 127.6, 126.8, 122.0, 120.0; HRMS (ESI): m/z Calcd. for C₁₀H₉NO₃ [(M-H)⁻] 190.0504, found 190.0507.

2-oxo-2-((2-(1-phenylvinyl)phenyl)amino)acetic acid (4b)

This compound was prepared according to the reported procedure ^[4]. ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 9.53 (s, 1H), 7.93 (d, J = 7.7 Hz, 1H), 7.45 - 7.41 (m, 1H), 7.36 - 7.30 (m, 3H), 7.29 - 7.22 (m, 4H), 5.93 (d, J = 0.6 Hz, 1H), 5.37 (d, J = 0.6 Hz, 1H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 162.0, 156.3, 145.6, 139.7, 134.7, 134.5, 130.7, 129.0, 128.9, 128.6, 127.0, 126.1, 123.2, 117.8; HRMS (ESI): m/z Calcd. for C₁₆H₁₃NO₃ [(M-H)⁻] 266.0817, found 266.0804.

2-((4-chloro-2-(1-phenylvinyl)phenyl)amino)-2-oxoacetic acid (4c)

This compound was prepared according to the reported procedure ^[4]. ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 9.58 (s, 1H), 7.91 (d, J = 8.7 Hz, 1H), 7.50 (d, J = 8.7, 1H), 7.34 - 7.33 (m, 3H), 7.30 - 7.21 (m, 3H), 5.95 (s, 1H), 5.42 (s, 1H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 161.8, 156.4, 144.5, 139.1, 136.8, 133.7, 130.1, 130.0, 129.0, 128.8, 128.8, 127.0, 125.2, 118.7; HRMS (ESI): m/z Calcd. for C₁₆H₁₂ClNO₃ [(M-H)⁻] 300.0427, found 300.0421.

2-((4-methyl-2-(1-phenylvinyl)phenyl)amino)-2-oxoacetic acid (4d)

This compound was prepared according to the reported procedure ^[4]. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.91 (s, 1H), 8.03 (d, *J* = 8.3 Hz, 1H), 7.29 - 7.19 (m, 5H), 7.16 (d, *J* = 8.2 Hz 1H), 7.07 (s, 1H), 5.86 (d, *J* = 0.8 Hz, 1H), 5.30 (d, *J* = 0.8 Hz, 1H), 2.30 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 159.8, 154.5, 145.5, 139.0, 136.1, 133.1, 131.2, 130.5, 129.5, 128.8, 128.7, 126.7, 120.8, 117.8, 21.0; HRMS (ESI): m/z Calcd. for C₁₇H₁₅NO₃ [(M-H)⁻] 280.0974, found 280.0990.

2-((4-methoxy-2-(1-phenylvinyl)phenyl)amino)-2-oxoacetic acid (4e)

This compound was prepared according to the reported procedure ^[4]. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 9.47 (s, 1H), 8.02 (d, *J* = 8.1 Hz, 1H), 7.52 - 7.34 (m, 1H), 7.35 - 7.14 (m, 4H), 6.89 (d, *J* = 8.8 Hz, 2H), 5.86 (s, 1H), 5.23 (s, 1H), 3.74 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 161.5, 159.3, 155.7, 144.4, 134.0, 133.9, 131.4, 130.1, 128.3, 127.8, 125.4, 121.9, 115.3, 113.9, 55.1; HRMS (ESI): m/z Calcd. for C₁₇H₁₅NO₄ [(M-H)⁻] 296.0923, found 296.0923.

2-((2-(1-(4-methoxyphenyl)vinyl)phenyl)amino)-2-oxoacetic acid (4f)

This compound was prepared according to the reported procedure ^[4]. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 9.47 (s, 1H), 8.02 (d, *J* = 8.1 Hz, 1H), 7.52 - 7.34 (m, 1H), 7.35 - 7.14 (m, 4H), 6.89 (d, *J* = 8.8 Hz, 2H), 5.86 (s, 1H), 5.23 (s, 1H), 3.74 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 161.5, 159.3, 155.7, 144.4, 134.0, 133.9, 131.4, 130.1, 128.3, 127.8, 125.4, 121.9, 115.3, 113.9, 55.1; HRMS (ESI): m/z Calcd. for C₁₇H₁₅NO₄ [(M-H)⁻] 296.0923, found 296.0923.

2-((4-bromo-2-(1-(4-fluorophenyl)vinyl)phenyl)amino)-2-oxoacetic acid (4g)

This compound was prepared according to the reported procedure ^[4]. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.96 (s, 1H), 7.80 (d, *J* = 8.6 Hz, 1H), 7.63 (d, *J* = 8.5 Hz, 1H), 7.42 (s, 1H), 7.36 - 7.23 (m, 2H), 7.16 (t, *J* = 8.5 Hz, 2H), 5.90 (s, 1H), 5.41 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 161.8, 156.4, 143.5, 137.2, 135.7, 134.0, 132.9, 131.8, 129.1 125.9, 118.7, 118.5, 115.8; ⁹F NMR (376 MHz, DMSO - *d*₆) δ (ppm) - 113.87 HRMS (ESI): m/z Calcd. for C₁₆H₁₁BrFNO₃ [(M-H)⁻] 361.9828, found 361.9820.

2-oxo-2-((2-(1-phenylvinyl)naphthalen-1-yl)amino)acetic acid (4h)

This compound was prepared according to the reported procedure ^[4]. ¹H NMR (400

MHz, DMSO - d_6) δ (ppm) 10.47 (s, 1H), 7.96 - 7.88 (m, 1H), 7.84 (d, J = 8.5 Hz, 1H), 7.82 - 7.76 (m, 1H), 7.57 - 7.47 (m, 2H), 7.28 - 7.14 (m, 6H), 5.74 (s, 1H), 5.31 (s, 1H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 162.3, 158.4, 146.4, 140.7, 137.7, 133.5, 130.8, 130.6, 128.6, 128.4, 128.2, 128.1, 127.9, 127.6, 127.3, 126.8, 124.2, 117.1; HRMS (ESI): m/z Calcd. for C₂₀H₁₅NO₃ [(M-H)⁻] 316.0974, found 316.0966.

2-oxo-2-((2-(prop-1-en-1-yl)phenyl)amino)acetic acid (4j)

This compound was obtained as a light yellow solid by following the general procedure **A** (E/Z = 3.2:1). ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 9.81 (s, 1H), 7.78 (d, J = 7.9 Hz, 1H), 7.28 - 7.21 (m, 3H), 6.46 (d, J = 12 Hz, 1H), 5.91 - 5.97 (m, 1H), 1.67 (dd, J = 7.0, 1.7 Hz, 3H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 162.1, 156.4, 134.2, 130.2, 129.5, 129.3, 127.4, 125.5, 125.3, 123.1, 14.3; HRMS (ESI): m/z Calcd. for C₁₁H₁₁NO₃ [(M-H)⁻] 204.0661, found 204.0667.

2-((2-(2-methylprop-1-en-1-yl)phenyl)amino)-2-oxoacetic acid (4k)

This compound was obtained as a light yellow solid by following the general procedure **A**. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 9.21 (s, 1H), 8.27 (d, *J* = 8.1 Hz, 1H), 7.36 - 7.29 (m, 1H), 7.23 - 7.19 (m, 2H), 6.17 (s, 1H), 2.00 (d, *J* = 1.3 Hz, 3H), 1.64 (d, *J* = 1.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 160.5, 154.6, 141.7, 133.2, 130.1, 129.5, 127.7, 125.7, 119.8, 118.9, 25.7, 19.5; HRMS (ESI): m/z Calcd. for C₁₂H₁₃NO₃ [(M-H)⁻] 218.0817, found 218.0822.

(E)-2-oxo-2-((2-styrylphenyl)amino)acetic acid (4l)

This compound was prepared according to the reported procedure ^[4]. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 9.15 (s, 1H), 7.98 (d, *J* = 8.0 Hz, 1H), 7.61 (d, *J* = 7.7 Hz, 1H), 7.53 (d, *J* = 7.3 Hz, 2H), 7.40 (t, *J* = 7.5 Hz, 3H), 7.36 - 7.28 (m, 2H), 7.15 (d, *J* = 16.1 Hz, 1H), 7.07 (d, *J* = 16.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 160.4, 155.5, 136.4, 134.1, 132.3, 130.3, 128.9, 128.5, 128.5, 127.4, 127.0, 126.8, 122.5, 121.8; HRMS (ESI): m/z Calcd. for C₁₆H₁₃NO₃ [(M-H)⁻] 266.0817, found 266.0805.

(E)-2-oxo-2-((2-(2-(thiophen-2-yl)vinyl)phenyl)amino)acetic acid (4m)

This compound was prepared according to the reported procedure ^[4]. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 9.79 (s, 1H), 7.64 (d, *J* = 8.0 Hz, 1H), 7.61 (d, *J* = 7.7 Hz, 1H), 7.53 (d, *J* = 7.3 Hz, 1H), 7.36 - 7.28 (m, 4H), 7.25 (d, *J* = 15.4Hz, 1H), 7.02 (d, *J* = 15.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 160.4, 155.5, 136.4, 134.1, 132.3, 130.3, 128.9, 128.5, 128.5, 127.4, 126.8, 125.4, 122.5, 121.8; HRMS (ESI): m/z Calcd. for C₁₄H₁₁NO₃S [(M-H)⁻] 272.0623, found 272.0589.

2-oxo-2-((2',3',4',5'-tetrahydro-[1,1'-biphenyl]-2-yl)amino)acetic acid (4n)

This compound was prepared according to the reported procedure ^[4]. ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 9.77 (s, 1H), 7.92 (d, J = 8.0 Hz, 1H), 7.34 - 7.25 (m, 1H), 7.25 - 7.13 (m, 2H), 5.72 (m, 1H), 2.19 - 2.14 (m, 4H), 1.79 - 1.68 (m, 2H), 1.68 - 1.57 (m, 2H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 162.5, 156.6, 136.9, 135.4, 133.7, 128.8, 128.4, 127.7, 125.6, 122.1, 29.6, 25.5, 23.0, 21.9; HRMS (ESI): m/z Calcd. for C₁₄H₁₅NO₃ [(M-H)⁻] 244.0974, found 244.0973.\

2-((2-(cyclopent-1-en-1-yl)phenyl)amino)-2-oxoacetic acid (40)

This compound was prepared according to the reported procedure ^[4]. ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 9.95 (s, 1H), 7.80 (d, J = 8.0 Hz, 1H), 7.35 - 7.30 (m, 1H), 7.28 (d, J = 7.8, 1H), 7.21 (t, J = 7.3 Hz, 1H), 6.17 - 5.93 (m, 1H), 2.66 - 2.59 (m, 2H), 2.52 - 2.43 (m, 2H), 2.03 - 1.86 (m, 2H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 162.6, 156.8, 140.2, 133.8, 131.5, 130.6, 128.6, 127.8, 126.1, 124.0, 36.1, 33.9, 23.4; HRMS (ESI): m/z Calcd. for C₁₃H₁₃NO₃ [(M-H)⁻] 230.0817, found 230.0822.

2-((2-(3,6-dihydro-2H-pyran-4-yl)phenyl)amino)-2-oxoacetic acid (4p)

This compound was prepared according to the reported procedure ^[4]. ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 9.93 (s, 1H), 7.76 (d, J = 7.9 Hz, 1H), 7.31 (t, J = 7.5 Hz, 1H), 7.28 - 7.19 (m, 2H), 5.85 - 5.79 (m, 1H), 4.17 (d, J = 2.3 Hz, 2H), 3.80 (t, J = 5.3 Hz, 2H), 2.36 - 2.28 (m, 2H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 162.1, 156.4, 135.6, 133.1, 132.4, 128.2, 127.5, 126.4, 125.7, 123.4, 64.7, 63.6, 28.7; HRMS (ESI): m/z Calcd. for C₁₃H₁₄NO₄ [(M-H)⁻] 246.0767, found 246.0774.

2-((2-(1-(tert-butoxycarbonyl)-1,2,3,6-tetrahydropyridin-4-yl)phenyl)amino)-2oxoacetic acid (4q)

This compound was prepared according to the reported procedure ^[4]. ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 9.94 (s, 1H), 7.72 (d, J = 7.9 Hz, 1H), 7.35 - 7.28 (m, 1H), 7.28 - 7.19 (m, 2H), 5.67 (d, J = 52.0 Hz, 1H), 3.94 (s, 2H), 3.52 (t, J = 5.3 Hz, 2H), 2.33 (s, 2H), 1.43 (s, 9H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 162.6, 157.0, 154.4, 136.5, 134.0, 133.6, 128.8, 128.0, 126.2, 124.8, 124.2, 79.4, 60.2, 29.3, 28.6; HRMS (ESI): m/z Calcd. for C₁₈H₂₂N₂O₅ [(M-H)⁻] 345.1451, found 345.1449.

2-((2-(1-(tert-butoxycarbonyl)-1,2,3,6-tetrahydropyridin-4-yl)-6methylphenyl)amino)-2-oxoacetic acid (4r)

This compound was prepared according to the reported procedure ^[4]. ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 10.17 (s, 1H), 7.35 - 7.14 (m, 2H), 7.16 - 7.00 (m, 1H), 5.59 (s, 1H), 3.89 (s, 2H), 3.45 (d, J = 4.7 Hz, 2H), 2.28 (s, 2H), 2.16 (s, 3H), 1.43 (s, 9H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 162.8, 158.2, 154.4, 141.3, 136.3, 135.2, 132.6, 129.4, 127.7, 126.5, 123.1, 79.2, 60.2, 29.2, 28.5, 18.4; HRMS (ESI): m/z Calcd. for C₁₉H₂₄N₂O₅ [(M-H)⁻] 359.1607, found 359.1602.

2-((2-methyl-6-(1,4-dioxaspiro[4.5]dec-7-en-8-yl)phenyl)amino)-2-oxoacetic acid (4s)

This compound was prepared according to the reported procedure ^[4]. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.76 (s, 1H), 7.26 - 7.16 (m, 2H), 7.08 (d, *J* = 7.0 Hz, 1H), 5.53 - 5.45 (m, 1H), 4.21 - 3.95 (m, 4H), 2.38 (d *J* = 6.7 Hz, 2H), 2.22 (s, 3H), 1.84 (t, *J* = 5.8 Hz, 2H), 1.26 (t, *J* = 6.9 Hz, 2H); ¹³C NMR (100 MHz, DMSO - *d*₆) δ (ppm) 162.1, 157.4, 141.8, 135.7, 135.4, 132.3, 128.6, 127.1, 125.9, 123.2, 106.7, 63.7, 35.6, 31.14, 28.2, 17.9; HRMS (ESI): m/z Calcd. for C₁₇H₁₉NO₅ [(M+Na)⁺] 340.1161, found 340.1166.

2-((2-allyl-4-methylphenyl)amino)-2-oxoacetic acid (6a)

This compound was prepared according to the reported procedure ^[4, 7]. ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 10.02 (s, 1H), 7.28 (d, J = 8.2 Hz, 1H), 7.06 - 7.05 (m, 2H), 5.91 - 5.81 (m, 1H), 5.07 - 5.03 (m, 2H), 3.32 (d, J = 6.4 Hz, 2H), 2.28 (s, 3H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 162.7, 157.6, 136.7, 136.2, 134.4, 132.6, 130.6, 127.7, 126.0, 116.7, 35.9, 21.0; HRMS (ESI): m/z Calcd. for C₁₂H₁₃NO₃ [(M-H)⁻] 218.0817, found 218.0816.

2-oxo-2-((2-phenylallyl)amino)acetic acid (8a)

This compound was prepared according to the reported procedures as a pale yellow solid ^[4, 8]. ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 9.10 (t, J = 6.0 Hz, 1H), 7.54 - 7.45 (m, 2H), 7.42 - 7.27 (m, 3H), 5.48 (s, 1H), 5.14 (s, 1H), 4.17 (d, J = 6.1 Hz, 2H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 162.6, 159.0, 143.7, 138.8, 128.9, 128.4, 126.2, 112.9, 42.5; HRMS (ESI): m/z Calcd. for C₁₁H₁₁NO₃ [(M-H)⁻] 204.0661, found 204.0659.

Methyl 2-oxo-2-((2-(prop-1-en-2-yl)phenyl)amino)acetate (11a)

This compound was obtained as a light yellow solid according to the reported procedure ^[4]. ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 10.03 (s, 1H), 7.71 (d, J = 8.0 Hz, 1H), 7.35 - 7.27 (m, 2H), 7.24 (t, J = 7.4 Hz, 1H), 5.29 (s, 1H), 4.98 (s, 1H), 3.84 (s, 3H), 2.04 (s, 3H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 161.65, 155.54, 142.42, 137.56, 133.10, 128.59, 128.10, 126.40, 124.40, 116.75, 53.74, 24.08; HRMS (ESI): m/z Calcd. for C₁₂H₁₃NO₃ [(M+Na)⁺] 242.0793, found 242.0790.

2-((2-(prop-1-en-2-yl)phenyl)amino)acetic acid (13a)

This compound was obtained as a light yellow solid according to the reported procedure ^[4, 9]. ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 7.06 (t, J = 7.7 Hz, 1H), 6.95 (d, J = 7.4 Hz, 1H), 6.60 (t, J = 7.4 Hz, 1H), 6.47 (d, J = 8.1 Hz, 1H), 5.30 (d, J = 1.5 Hz, 1H), 4.99 (d, J = 1.2 Hz, 1H), 3.83 (s, 2H), 2.01 (s, 3H);¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 172.9, 144.2, 143.5, 129.1, 128.4, 128.1, 116.7, 116.0, 110.7, 45.5, 24.2; HRMS (ESI): m/z Calcd. for C₁₁H₁₃NO₂ [(M-H)⁻] 190.0868, found

190.0871.

Synthesis and Characterization of the 3D Cyclic Carbamates General Procedure B

To a 10 mL sealed tube equipped with a magnetic stir bar was added *m*-CPBA (0.33 mmol, 2.2 equiv), olefinic oxamic acid (0.15 mmol, 1.0 equiv), and CHCl₃ (3.0 mL). The resulting mixture was stirred at room temperature for the indicated time. Then the solvent was removed under reduced pressure. Purification of the crude product by flash chromatography on silica gel using the indicated solvent system afforded the desired product.

4-(hydroxymethyl)-4-methyl-1H-benzo[d][1,3]oxazin-2(4H)-one (3a)

According to the general procedure **B**, the solution of **1a** (31.0 mg, 0.15 mmol, 1.0 equiv) and *m*-CPBA (57.0 mg, 0.33 mmol, 2.2 equiv) in CHCl₃ (3.0 mL) was stirred for 24h at room temperature. The reaction mixture was subjected to the workup protocol outlined in general procedure **B** and purified by flash chromatography (petroleum ether/ethyl acetate = 5/1 - 1/2) to provide the title compound as a white solid (23.0 mg, 79% yield). ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 10.02 (s, 1H), 7.24 - 7.20 (m, 1H), 7.20 (d, J = 4.6 Hz, 1H), 6.98 (t, J = 7.5 Hz, 1H), 6.82 (d, J = 8.0 Hz, 1H), 5.20 (t, J = 5.4 Hz, 1H), 3.62 (dd, J = 11.5, 5.2 Hz, 1H), 3.55 (dd, J = 11.5, 5.3 Hz, 1H), 1.53 (s, 3H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 150.4, 135.7, 128.5, 124.6, 122.9, 122.1, 113.6, 84.4, 67.6, 23.3; HRMS (ESI): m/z Calcd. for C₁₀H₁₁NO₃ [(M+Na)⁺] 216.0637, found 216.0630.

6-fluoro-4-(hydroxymethyl)-4-methyl-1H-benzo[d][1,3]oxazin-2(4H)-one (3b)

According to the general procedure **B**, the solution of **1b** (33.0 mg, 0.15 mmol, 1.0 equiv) and *m*-CPBA (57.0 mg, 0.33 mmol, 2.2 equiv) in CHCl₃ (3.0 mL) was stirred for 24h at room temperature. The reaction mixture was subjected to the workup protocol outlined in the general procedure **B** and purified by flash chromatography (petroleum ether/ethyl acetate = 5/1 - 1/2) to provide the title compound as a white solid (26.0 mg, 82%). ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 10.14 (s, 1H), 7.20 (dd, J = 9.4, 2.8 Hz, 1H), 7.13 (td, J = 8.7, 2.8 Hz, 1H), 6.88 (dd, J = 8.7, 4.9 Hz, 1H), 5.31 (t, J = 5.7 Hz, 1H), 3.69 (dd, J = 11.6, 5.7 Hz, 1H), 3.61 (dd, J = 11.6, 5.8 Hz,

1H), 1.57 (s, 3H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 157.6 (d, J_{CF} = 235.8 Hz), 150.1, 132.2 (d, J_{CF} = 1.9 Hz), 124.7 (d, J_{CF} = 7.3 Hz), 115.2 (d, J_{CF} = 22.8 Hz), 114.9 (d, J_{CF} = 8.1 Hz), 111.8 (d, J_{CF} = 24.4 Hz), 84.3 (d, J_{CF} = 1.8 Hz), 67.6, 23.2; ¹⁹F NMR (376 MHz, DMSO - d_6) δ (ppm) -121.27; HRMS (ESI) Calcd. for C₁₀H₁₀FNO₃ [(M+Na)⁺] 234.0542, found 234.0549.

4-(hydroxymethyl)-4-methyl-2-oxo-2,4-dihydro-1H-benzo[d][1,3]oxazine-6carbonitrile (3c)

According to the general procedure B, the solution of **1c** (34.0 mg, 0.15 mmol, 1.0 equiv) and *m*-CPBA (57.0 mg, 0.33 mmol, 2.2 equiv) in CHCl₃ (3.0 mL) was stirred for 24h at room temperature. The reaction mixture was subjected to the workup protocol outlined in the general procedure **B** and purified by flash chromatography (petroleum ether/ethyl acetate = 5/1 - 1/2) to provide the title compound as a white solid (28.0 mg, 86%). ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 10.54 (s, 1H), 7.77 (s, 1H), 7.69 -7.67 (m, 1H), 6.95 (d, J = 8.3 Hz, 1H), 5.30 (t, J = 5.7 Hz, 1H), 3.66 (dd, J = 11.7, 5.6 Hz, 1H), 3.59 (dd, J = 11.7, 5.7 Hz, 1H), 1.56 (s, 3H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 149.6, 140.2, 133.0, 129.3, 123.8, 119.0, 114.4, 104.1, 84.8, 68.3, 23.2; HRMS (ESI) Calcd. for C₁₁H₁₀N₂O₃ [(M-H)⁺] 217.0613, found 217.0608.

4-(hydroxymethyl)-4-methyl-6-nitro-1,4-dihydro-2H-benzo[d][1,3]oxazin-2-one

(3d) According to the general procedure **B**, the solution of 1d (45.0 mg, 0.15 mmol, 1.0 equiv) and *m*-CPBA (57.0 mg, 0.33 mmol, 2.2 equiv) in CHCl₃ (3.0 mL) was stirred for 24h at room temperature. The reaction mixture was subjected to the workup protocol outlined in the general procedure **B** and purified by flash chromatography (petroleum ether/ethyl acetate = 5/1 - 1/2) to provide the title compound as a white solid (34.0 mg, 78%). ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 10.48 (s, 1H), 7.97(d, J = 8.5Hz, 2H), 6.65 (d, J = 8.5Hz, 2H), 5.35 (s, 1H), 3.65 (q, J = 11.6 Hz,2H), 1.58 (s, 3H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 143.8, 141.7, 136.5, 130.8, 125.8, 117.1, 108.3, 85.3, 68.5, 23.5; HRMS (ESI) Calcd. for C₁₀H₁₀N₂O₅ [(M+Na)⁺] 261.0486, found 261.0492

4-(hydroxymethyl)-4-methyl-6-(trifluoromethyl)-1H-benzo[d][1,3]oxazin-2(4H)one (3e) According to the general procedure **B**, the solution of **1e** (41.0 mg, 0.15 mmol, 1.0 equiv) and *m*-CPBA (57.0 mg, 0.33 mmol, 2.2 equiv) in CHCl₃ (3.0 mL) was stirred for 24h at room temperature. The reaction mixture was subjected to the workup protocol outlined in the general procedure **B** and purified by flash chromatography (petroleum ether/ethyl acetate = 5/1 - 1/2) to provide the title compound as a white solid (32.0 mg, 82%). ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 10.38 (s, 1H), 7.53 - 7.52 (m, 2H), 6.92 (d, J = 8.7 Hz, 1H), 5.24 (t, J = 5.4 Hz, 1H), 3.62 (dd, J = 11.6, 5.1 Hz, 1H), 3.53 (dd, J = 11.6, 5.2 Hz, 1H), 1.51 (s, 3H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 149.9, 139.5, 125.9 (q, $J_{CF} = 3.6$ Hz), 124.4 (q, $J_{CF} = 269.7$ Hz), 123.5 (q, $J_{CF} = 31.9$ Hz), 122.4, 122.0 (q, $J_{CF} = 3.6$ Hz), 114.1, 84.8, 68.1, 23.3; ¹⁹F NMR (376 MHz, DMSO - d_6) δ (ppm) -59.86; HRMS (ESI) Calcd. for C₁₁H₁₀F₃NO₃ [(M+Na)⁺] 284.0510, found 284.0498.

6-fluoro-4-(hydroxymethyl)-4,8-dimethyl-1H-benzo[d][1,3]oxazin-2(4H)-one (3f) According to the general procedure **B**, the solution of **1f** (35.0 mg, 0.15 mmol, 1.0 equiv) and *m*-CPBA (57.0 mg, 0.33 mmol, 2.2 equiv) in CHCl₃ (3.0 mL) was stirred for 24h at room temperature. The reaction mixture was subjected to the workup protocol outlined in the general procedure **B** and purified by flash chromatography (petroleum ether/ethyl acetate = 5/1 - 1/2) to provide the title compound as a white solid (28.0 mg, 84%). ¹H NMR (400 MHz, DMSO - *d*₆) δ (ppm) 9.50 (s, 1H), 7.03 (d, *J* = 5.9 Hz, 1H), 7.01 (d, *J* = 6.2 Hz, 1H), 5.30 (t, *J* = 5.7 Hz, 1H), 3.69 (dd, *J* = 11.6, 5.7 Hz, 1H), 3.61 (dd, *J* = 11.6, 5.8 Hz, 1H), 2.27 (s, 3H), 1.56 (s, 3H); ¹³C NMR (100 MHz, DMSO - *d*₆) δ (ppm) 157.3 (d, *J*_{CF} = 235.9 Hz), 150.5, 130.4 (d, *J*_{CF} = 2.0 Hz), 125.1 (d, *J*_{CF} = 7.7 Hz), 124.7 (d, *J*_{CF} = 7.9 Hz), 116.3 (d, *J*_{CF} = 22.3 Hz), 109.1 (d, *J*_{CF} = 24.1 Hz), 83.8 (d, *J*_{CF} = 2.0 Hz), 67.5, 23.1, 17.0; ¹⁹F NMR (376 MHz, DMSO - *d*₆) δ (ppm) -121.86; HRMS (ESI) Calcd. for C₁₁H₁₂FNO₃ [(M+Na)⁺] 248.0699, found 248.0691.

4-(hydroxymethyl)-4,6,8-trimethyl-1H-benzo[d][1,3]oxazin-2(4H)-one (3g)

According to the general procedure **B**, the solution of **1g** (35.0 mg, 0.15 mmol, 1.0 equiv) and *m*-CPBA (57.0 mg, 0.33 mmol, 2.2 equiv) in CHCl₃ (3.0 mL) was stirred for 24h at room temperature. The reaction mixture was subjected to the workup protocol outlined in the general procedure **B** and purified by flash chromatography (petroleum ether/ethyl acetate = 5/1 - 1/2) to provide the title compound as a white solid (30.0 mg, 91%). ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 9.31 (s, 1H), 6.87 (s, 2H), 5.18 (t, J = 5.7 Hz, 1H), 3.61 (dd, J = 11.5, 5.7 Hz, 1H), 3.53 (dd, J = 11.5, 5.8 Hz, 1H), 2.20 (s, 3H), 2.17 (s, 3H), 1.50 (s, 3H); ¹³C NMR (100 MHz, DMSO - d_6) δ

(ppm) 150.8, 131.4, 130.7, 130.6, 123.4, 122.5, 122.1, 84.0, 67.5, 23.2, 20.3, 16.9; HRMS (ESI) Calcd. for $C_{12}H_{15}NO_3$ [(M+K)⁺] 260.0689, found 260.0686.

4-(hydroxymethyl)-4-methyl-6-(phenylethynyl)-1H-benzo[d][1,3]oxazin-2(4H)one (3h)

According to the general procedure **B**, the solution of **1h** (46.0 mg, 0.15 mmol, 1.0 equiv) and *m*-CPBA (57.0 mg, 0.33 mmol, 2.2 equiv) in CHCl₃ (3.0 mL) was stirred for 24h at room temperature. The reaction mixture was subjected to the workup protocol outlined in the general procedure **B** and purified by flash chromatography (petroleum ether/ethyl acetate = 5/1 - 1/2) to provide the title compound as a white solid (30.0 mg, 68%). ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 10.29 (s, 1H), 7.58 - 7.49 (m, 2H), 7.49 - 7.35 (m, 5H), 6.87 (d, J = 8.2 Hz, 1H), 5.27 (t, J = 5.6 Hz, 1H), 3.68 (dd, J = 11.6, 5.7 Hz, 1H), 3.59 (dd, J = 11.6, 5.7 Hz, 1H), 1.56 (s, 3H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 150.0, 136.3, 131.9, 131.1, 128.7, 128.5, 128.0, 123.4, 122.5, 115.7, 114.0, 89.5, 88.3, 84.7, 67.9, 23.3; HRMS (ESI) Calcd. for C₁₈H₁₅NO₃ [(M+K)⁺] 332.0689, found 332.0673.

4-(hydroxymethyl)-4,7-dimethyl-1H-benzo[d][1,3]oxazin-2(4H)-one (3i)

According to the general procedure **B**, the solution of **1i** (33.0 mg, 0.15 mmol, 1.0 equiv) and *m*-CPBA (57.0 mg, 0.33 mmol, 2.2 equiv) in CHCl₃ (3.0 mL) was stirred for 24h at room temperature. The reaction mixture was subjected to the workup protocol outlined in the general procedure **B** and purified by flash chromatography (petroleum ether/ethyl acetate = 5/1 - 1/2) to provide the title compound as a white solid (21.0 mg, 74% yield). ¹H NMR (400 MHz, DMSO - d_6)) δ (ppm) 10.02 (s, 1H), 7.13 (d, J = 7.8 Hz, 1H), 6.85 (d, J = 7.8 Hz, 1H), 6.68 (s, 1H), 5.22 (t, J = 5.7 Hz, 1H), 3.64 (dd, J = 11.5, 5.7 Hz, 1H), 3.56 (dd, J = 11.5, 5.8 Hz, 1H), 2.29 (s, 3H), 1.55 (s, 3H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 150.5, 137.9, 135.7, 124.5, 122.9, 120.1, 113.9, 84.4, 67.7; HRMS (ESI): m/z Calcd. for C₁₁H₁₃NO₃ [(M+Na)⁺] 230.0793, found 230.0787.

7-fluoro-4-(hydroxymethyl)-4-methyl-1H-benzo[d][1,3]oxazin-2(4H)-one (3j)

According to the general procedure **B**, the solution of **1j** (33.0 mg, 0.15 mmol, 1.0 equiv) and *m*-CPBA (57.0 mg, 0.33 mmol, 2.2 equiv) in CHCl₃ (3.0 mL) was stirred for 24h at room temperature. The reaction mixture was subjected to the workup protocol outlined in the general procedure **B** and purified by flash chromatography

(petroleum ether/ethyl acetate = 5/1 - 1/2) to provide the title compound as a white solid (20.0 mg, 70%). ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 10.23 (s, 1H), 7.30 (dd, J = 8.5, 6.0 Hz, 1H), 6.86 (td, J = 8.7, 2.6 Hz, 1H), 6.65 (dd, J = 10.0, 2.6 Hz, 1H), 5.28 (t, J = 5.7 Hz, 1H), 3.64 (dd, J = 11.6, 5.6 Hz, 1H), 3.59 (dd, J = 11.6, 5.8 Hz, 1H), 1.57 (s, 3H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 161.9 (d, $J_{CF} = 241.1$ Hz), 150.1, 137.61 (d, $J_{CF} = 11.3$ Hz), 126.7 (d, $J_{CF} = 9.8$ Hz), 119.1 (d, $J_{CF} = 2.8$ Hz), 108.6 (d, $J_{CF} = 21.5$ Hz), 100.5 (d, $J_{CF} = 25.6$ Hz), 84.5, 67.9, 23.3; ¹⁹F NMR (376 MHz, DMSO - d_6) δ (ppm) -113.67; HRMS (ESI) Calcd. for C₁₀H₁₀FNO₃ [(M+Na)⁺] 234.0542, found 234.0546.

7-chloro-4-(hydroxymethyl)-4-methyl-1H-benzo[d][1,3]oxazin-2(4H)-one (3k)

According to the general procedure **B**, the solution of **1k** (36.0 mg, 0.15 mmol, 1.0 equiv) and *m*-CPBA (57.0 mg, 0.33 mmol, 2.2 equiv) in CHCl₃ (3.0 mL) was stirred for 24h at room temperature. The reaction mixture was subjected to the workup protocol outlined in the general procedure **B** and purified by flash chromatography (petroleum ether/ethyl acetate = 5/1 - 1/2) to provide the title compound as a white solid (24.0 mg, 70%). ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 10.24 (s, 1H), 7.30 (d, J = 8.3 Hz, 1H), 7.10 - 7.07 (m, 1H), 6.90 (s, 1H), 5.29 (t, J = 5.6 Hz, 1H), 3.65 (dd, J = 11.6, 5.5 Hz, 1H), 3.60 (dd, J = 11.6, 5.7 Hz, 1H), 1.57 (s, 3H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 149.9, 137.4, 132.7, 126.6, 121.8, 121.8, 113.0, 84.6, 67.9, 23.2; HRMS (ESI) Calcd. for C₁₀H₁₀CINO₃ [(M+Na)⁺] 250.0247, found 250.0240.

4-(hydroxymethyl)-4-methyl-7-(trifluoromethyl)-1H-benzo[d][1,3]oxazin-2(4H)one (3l)

According to the general procedure **B**, the solution of **11** (41.0 mg, 0.15 mmol, 1.0 equiv) and *m*-CPBA (57.0 mg, 0.33 mmol, 2.2 equiv) in CHCl₃ (3.0 mL) was stirred for 24h at room temperature. The reaction mixture was subjected to the workup protocol outlined in the general procedure **B** and purified by flash chromatography (petroleum ether/ethyl acetate = 5/1 - 1/2) to provide the title compound as a white solid (28.0 mg, 71%). ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 10.39 (s, 1H), 7.52 (d, J = 8.0 Hz, 1H), 7.38 (d, J = 7.4 Hz, 1H), 7.15 (s, 1H), 5.36 (t, J = 5.7 Hz, 1H), 3.71 (dd, J = 11.6, 5.6 Hz, 1H), 3.65 (dd, J = 11.6, 5.7 Hz, 1H), 1.61 (s, 3H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 149.8, 136.8, 129.1 (q, $J_{CF} = 32.0$ Hz), 127.1, 126.1, 123.8 (q, $J_{CF} = 270.5$ Hz), 118.6 (q, $J_{CF} = 3.8$ Hz), 109.8 (q, $J_{CF} = 3.9$ Hz), 84.8, 68.1, 23.2; ¹⁹F NMR (376 MHz, DMSO - d_6) δ (ppm) -61.45; HRMS (ESI) Calcd. for C₁₁H₁₀F₃NO₃ [(M+Na)⁺] 284.0510, found 284.0498.

4-(hydroxymethyl)-4-methyl-7-nitro-1,4-dihydro-2H-benzo[d][1,3]oxazin-2-one (**3m**) According to the general procedure **B**, the solution of **1m** (45.0 mg, 0.15 mmol, 1.0 equiv) and *m*-CPBA (57.0 mg, 0.33 mmol, 2.2 equiv) in CHCl₃ (3.0 mL) was stirred for 24h at room temperature. The reaction mixture was subjected to the workup protocol outlined in the general procedure **B** and purified by flash chromatography (petroleum ether/ethyl acetate = 5/1 - 1/2) to provide the title compound as a white solid (34.0 mg, 78%). ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 10.48 (s, 1H),7.84 (d, J = 8.5Hz, 1H), 7.64 (s, 1H), 7.54 (d, J = 8.4 Hz, 1H), 5.35 (s, 1H), 3.65 (q, J = 11.6 Hz, 2H), 1.58 (s, 3H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 150.1, 148.0, 137.8, 130.3, 126.9, 117.3, 108.5, 85.4, 68.6, 23.6; HRMS (ESI) Calcd. for C₁₀H₁₀N₂O₅ [(M+Na)⁺] 261.0486, found 261.0492

6,7-difluoro-4-(hydroxymethyl)-4-methyl-1H-benzo[d][1,3]oxazin-2(4H)-one (3n) According to the general procedure **B**, the solution of **1n** (36.0 mg, 0.15 mmol, 1.0 equiv) and *m*-CPBA (57.0 mg, 0.33 mmol, 2.2 equiv) in CHCl₃ (3.0 mL) was stirred for 24h at room temperature. The reaction mixture was subjected to the workup protocol outlined in the general procedure **B** and purified by flash chromatography (petroleum ether/ethyl acetate = 5/1 - 1/2) to provide the title compound as a white solid (24.0 mg, 70%). ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 10.22 (s, 1H), 7.47 (dd, J = 11.2, 8.4 Hz, 1H), 6.83 (dd, J = 11.4, 7.1 Hz, 1H), 5.31 (t, J = 5.7 Hz, 1H), 3.66 (dd, J = 11.7, 5.7 Hz, 1H), 3.60 (dd, J = 11.7, 5.8 Hz, 1H), 1.57 (s, 3H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 149.9, 148.9 (dd, $J_{CF} = 244.8$, 13.6 Hz), 144.8 (dd, $J_{CF} = 239.0$, 12.8 Hz), 132.9 (d, $J_{CF} = 9.4$ Hz), 119.5 (dd, $J_{CF} = 5.5$, 3.6 Hz), 114.3 (d, $J_{CF} = 19.6$ Hz), 102.4 (d, $J_{CF} = 23.0$ Hz), -146.92 (d, $J_{FF} = 23.1$ Hz); HRMS (ESI) Calcd. for C₁₀H₉F₂NO₃ [(M+Na)⁺] 252.0448, found 252.0446.

4-(hydroxymethyl)-4-methyl-4,6,7,8-tetrahydroindeno[5,6-d][1,3]oxazin-2(1H)one (30)

According to the general procedure **B**, the solution of **1o** (37.0 mg, 0.15 mmol, 1.0 equiv) and *m*-CPBA (57.0 mg, 0.33 mmol, 2.2 equiv) in CHCl₃ (3.0 mL) was stirred for 24h at room temperature. The reaction mixture was subjected to the workup protocol outlined in the general procedure **B** and purified by flash chromatography (petroleum ether/ethyl acetate = 5/1 - 1/2) to provide the title compound as a white

solid (28.0 mg, 80%). ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 9.83 (s, 1H), 6.98 (s, 1H), 6.62 (s, 1H), 5.09 (t, J = 5.7 Hz, 1H), 3.52 (dd, J = 11.6, 5.7 Hz, 1H), 3.44 (dd, J = 11.5, 5.8 Hz, 1H), 2.71 (t, J = 7.5 Hz, 4H), 1.87 - 1.94 (m, 2H), 1.43 (s, 3H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 151.1, 144.6, 137.9, 134.6, 121.5, 120.7, 110.0, 84.9, 68.1, 32.6, 32.2, 25.6, 23.8; HRMS (ESI) Calcd. for C₁₃H₁₅NO₃ [(M+Na)⁺] 256.0950, found 256.0931.

4-(hydroxymethyl)-7-methoxy-4-methyl-1H-benzo[d][1,3]oxazin-2(4H)-one (3p) According to the general procedure **B**, the solution of **1p** (35.0 mg, 0.15 mmol, 1.0 equiv) and *m*-CPBA (57.0 mg, 0.33 mmol, 2.2 equiv) in CHCl₃ (3.0 mL) was stirred for 24h at room temperature. The reaction mixture was subjected to the workup protocol outlined in the general procedure **B** and purified by flash chromatography (petroleum ether/ethyl acetate = 5/1 - 1/2) to provide the title compound as a white solid (20.0 mg, 60%). ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 10.00 (s, 1H), 7.17 (d, J = 8.5 Hz, 1H), 6.63 - 6.60 (m, 1H), 6.45 (s, 1H), 5.21 (t, J = 5.7 Hz, 1H), 3.77 (s, 3H), 3.62 (dd, J = 11.5, 5.6 Hz, 1H), 3.55 (dd, J = 11.5, 5.8 Hz, 1H), 1.56 (s, 3H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 159.4, 150.5, 136.9, 125.7, 115.3, 107.6, 84.3, 67.7, 55.1, 23.3; HRMS (ESI) Calcd. for C₁₁H₁₃NO₄ [(M+Na)⁺] 246.0742, found 246.0745.

4-(hydroxymethyl)-4-methyl-6-(trifluoromethoxy)-1H-benzo[d][1,3]oxazin-2(4H)-one (3q)

According to the general procedure **B**, the solution of **1q** (33.0 mg, 0.15 mmol, 1.0 equiv) and *m*-CPBA (57.0 mg, 0.33 mmol, 2.2 equiv) in CHCl₃ (3.0 mL) was stirred for 24h at room temperature. The reaction mixture was subjected to the workup protocol outlined in the general procedure **B** and purified by flash chromatography (petroleum ether/ethyl acetate = 5/1 - 1/2) to provide the title compound as a white solid (27.0 mg, 65%). ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 10.30 (s, 1H), 7.33 (s, 1H), 7.30 (d, J = 8.6 Hz, 1H), 6.96 (d, J = 8.6 Hz, 1H), 5.34 (t, J = 5.6 Hz, 1H), 3.70 (dd, J = 11.6, 5.6 Hz, 1H), 3.62 (dd, J = 11.6, 5.6 Hz, 1H), 1.59 (s, 3H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 149.9, 143.0, 135.1, 124.6, 121.6, 120.1 (q, $J_{CF} = 255.6$ Hz), 118.3, 114.8, 84.4, 67.8, 23.2; ¹⁹F NMR (376 MHz, DMSO - d_6) δ (ppm) - 57.14; HRMS (ESI) Calcd. for C₁₁H₁₀F₃NO₄ [(M-H)⁺] 276.0484, found 276.0478.

8-(hydroxymethyl)-8-methyl-5H-[1,3]dioxolo[4',5':4,5]benzo[1,2-d][1,3]oxazin-

6(8H)-one (3r)

According to the general procedure **B**, the solution of **1r** (37.0 mg, 0.15 mmol, 1.0 equiv) and *m*-CPBA (57.0 mg, 0.33 mmol, 2.2 equiv) in CHCl₃ (3.0 mL) was stirred for 24h at room temperature. The reaction mixture was subjected to the workup protocol outlined in the general procedure **B** and purified by flash chromatography (petroleum ether/ethyl acetate = 5/1 - 1/2) to provide the title compound as a white solid (17.0 mg, 48%). ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 9.88 (s, 1H), 6.91 (s, 1H), 6.47 (s, 1H), 6.02 (s, 2H), 3.63 (d, J = 11.6 Hz, 1H), 3.54 (d, J = 11.6 Hz, 1H), 1.53 (s, 3H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 150.9, 147.5, 143.0, 130.7, 115.6, 105.6, 101.6, 95.9, 84.8, 67.9, 23.7; HRMS (ESI) Calcd. for C₁₁H₁₁NO₅ [(M+Na)⁺] 260.0535, found 260.0551.

4-(hydroxymethyl)-4,5-dimethyl-1H-benzo[d][1,3]oxazin-2(4H)-one (3s)

According to the general procedure **B**, the solution of **1s** (33.0 mg, 0.15 mmol, 1.0 equiv) and *m*-CPBA (57.0 mg, 0.33 mmol, 2.2 equiv) in CHCl₃ (3.0 mL) was stirred for 24h at room temperature. The reaction mixture was subjected to the workup protocol outlined in the general procedure **B** and purified by flash chromatography (petroleum ether/ethyl acetate = 5/1 - 1/2) to provide the title compound as a white solid (20.0 mg, 64%). ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 9.89 (s, 1H), 7.01 (t, J = 7.7 Hz, 1H), 6.72 (d, J = 7.5 Hz, 1H), 6.64 (d, J = 7.4 Hz, 1H), 5.16 (t, J = 5.7 Hz, 1H), 3.77 (dd, J = 12.1, 6.1 Hz, 1H), 3.53 (dd, J = 12.1, 5.4 Hz, 1H), 2.29 (s, 3H), 1.47 (s, 3H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 150.3, 136.6, 134.1, 128.0, 126.0, 121.3, 112.4, 86.3, 66.8, 23.6, 21.6; HRMS (ESI) Calcd. for C₁₁H₁₃NO₃ [(M+Na)⁺] 230.0793, found 230.0796.

1-(hydroxymethyl)-1-methyl-1H-naphtho[2,1-d][1,3]oxazin-3(4H)-one (3t)

According to the general procedure **B**, the solution of **1t** (38.0 mg, 0.15 mmol, 1.0 equiv) and *m*-CPBA (57.0 mg, 0.33 mmol, 2.2 equiv) in CHCl₃ (3.0 mL) was stirred for 24h at room temperature. The reaction mixture was subjected to the workup protocol outlined in the general procedure **B** and purified by flash chromatography (petroleum ether/ethyl acetate = 5/1 - 1/2) to provide the title compound as a white solid (22.0 mg, 60%). ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 10.08 (s, 1H), 7.97 (d, J = 8.7 Hz, 1H), 7.79 (t, J = 8.3 Hz, 2H), 7.44 (t, J = 7.8 Hz, 1H), 7.32 (t, J = 7.2 Hz, 1H), 7.03 (d, J = 8.7 Hz, 1H), 5.23 (t, J = 5.7 Hz, 1H), 4.13 (dd, J = 12.0, 5.6 Hz, 1H), 3.69 (dd, J = 12.0, 5.7 Hz, 1H), 1.82 (s, 3H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 154.9, 139.5, 135.6, 135.2, 134.5, 134.2, 132.1, 128.8, 128.6, 120.9, 119.1, 92.9, 73.2, 30.6; HRMS (ESI) Calcd. for C₁₄H₁₃NO₃ [(M+Na)⁺] 266.0793, found 266.0787.

4-(hydroxymethyl)-1,4-dimethyl-1H-benzo[d][1,3]oxazin-2(4H)-one (3u)

According to the general procedure **B**, the solution of **1u** (33.0 mg, 0.15 mmol, 1.0 equiv) and *m*-CPBA (57.0 mg, 0.33 mmol, 2.2 equiv) in CHCl₃ (3.0 mL) was stirred for 24h at room temperature. The reaction mixture was subjected to the workup protocol outlined in the general procedure **B** and purified by flash chromatography (petroleum ether/ethyl acetate = 5/1 - 1/2) to provide the title compound as a white solid (27.0 mg, 82%). ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 7.32 (td, J = 8.2, 1.4 Hz, 1H), 7.25 (dd, J = 7.6, 1.3 Hz, 1H), 7.06 (td, J = 7.5, 0.9 Hz, 1H), 7.02 (d, J = 8.2 Hz, 1H), 5.21 (t, J = 5.7 Hz, 1H), 3.61 (dd, J = 11.6, 5.6 Hz, 1H), 3.53 (dd, J = 11.6, 5.8 Hz, 1H), 3.24 (s, 3H), 1.51 (s, 3H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 150.9, 137.2, 128.7, 125.1, 124.5, 122.5, 113.2, 83.0, 67.2, 30.9, 22.9; HRMS (ESI) Calcd. for C₁₁H₁₃NO₃ [(M+Na)⁺] 230.0793, found 239.0780.

1-(hydroxymethyl)-1-methyl-5,6-dihydro-[1,3]oxazino[5,4,3-hi]indol-3(1H)-one (3v)

According to the general procedure **B**, the solution of **1v** (35.0 mg, 0.15 mmol, 1.0 equiv) and *m*-CPBA (57.0 mg, 0.33 mmol, 2.2 equiv) in CHCl₃ (3.0 mL) was stirred for 24h at room temperature. The reaction mixture was subjected to the workup protocol outlined in the general procedure **B** and purified by flash chromatography (petroleum ether/ethyl acetate = 5/1 - 1/2) to provide the title compound as a green solid (20.0 mg, 61%).¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 7.14 (d, J = 7.4 Hz, 1H), 7.04 (d, J = 7.6 Hz, 1H), 6.93 (t, J = 7.5 Hz, 1H), 5.20 (t, J = 5.7 Hz, 1H), 3.91 (t, J = 8.7 Hz, 2H), 3.59 (dd, J = 11.7, 5.7 Hz, 1H), 3.54 (dd, J = 11.8, 5.9 Hz, 1H), 3.16 (t, J = 8.6 Hz, 2H), 1.52 (s, 3H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 149.5, 138.9, 127.6, 124.4, 123.0, 122.0, 120.2, 87.1, 67.8, 46.3, 27.4, 23.2; HRMS (ESI) Calcd. for C₁₂H₁₃NO₃ [(M+Na)⁺] 242.0793, found 242.0786.

1-(hydroxymethyl)-1-methyl-6,7-dihydro-1H-[1,3]oxazino[5,4,3-ij]quinolin-3(5H)-one (3w)

According to the general procedure **B**, the solution of **1w** (39.0 mg, 0.15 mmol, 1.0 equiv) and *m*-CPBA (57.0 mg, 0.33 mmol, 2.2 equiv) in CHCl₃ (3.0 mL) was stirred for 24h at room temperature. The reaction mixture was subjected to the workup protocol outlined in the general procedure **B** and purified by flash chromatography (petroleum ether/ethyl acetate = 5/1 - 1/2) to provide the title compound as a white

solid (21.0 mg, 56%). ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 6.88 (s, 2H), 5.16 (t, J = 5.8 Hz, 1H), 3.78 - 3.69 (m, 1H), 3.64 - 3.55 (m, 2H), 3.49 (dd, J = 11.6, 5.8 Hz, 1H), 2.67 (t, J = 6.1 Hz, 2H), 2.20 (s, 3H), 1.89 - 1.77 (m, 2H), 1.48 (s, 3H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 150.3, 130.9, 130.4, 129.1, 124.3, 123.4, 122.8, 82.8, 67.2, 42.6, 26.0, 22.9, 20.6, 20.3; HRMS (ESI) Calcd. for C₁₄H₁₇NO₃ [(M+Na)⁺] 270.1106, found 270.1098.

4-(hydroxymethyl)-1H-benzo[d][1,3]oxazin-2(4H)-one (5a)

According to the general procedure **B**, the solution of **4a** (28.0 mg, 0.15 mmol, 1.0 equiv) and *m*-CPBA (57.0 mg, 0.33 mmol, 2.2 equiv) in CHCl₃ (3.0 mL) was stirred for 24h at room temperature. The reaction mixture was subjected to the workup protocol outlined in the general procedure **B** and purified by flash chromatography (petroleum ether/ethyl acetate = 5/1 - 1/2) to provide the title compound as a white solid (18.0 mg, 67%). ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 10.01 (s, 1H), 7.21 - 7.14 (m, 2H), 6.95 (t, J = 7.4 Hz, 1H), 6.80 (d, J = 7.9 Hz, 1H), 5.31 (t, J = 4.3 Hz, 1H), 5.15 (t, J = 5.5 Hz, 1H), 3.72 - 3.63 (m, 2H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 150.7, 136.2, 128.6, 125.0, 122.0, 118.8, 113.5, 79.6, 63.7; HRMS (ESI) Calcd. for C₉H₉NO₃ [(M-H)⁺] 178.0504, found 178.0497.

4-(hydroxymethyl)-4-phenyl-1H-benzo[d][1,3]oxazin-2(4H)-one (5b)

According to the general procedure **B**, the solution of **4b** (40.0 mg, 0.15 mmol, 1.0 equiv) and *m*-CPBA (57.0 mg, 0.33 mmol, 2.2 equiv) in CHCl₃ (3.0 mL) was stirred for 24h at room temperature. The reaction mixture was subjected to the workup protocol outlined in the general procedure **B** and purified by flash chromatography (petroleum ether/ethyl acetate = 5/1 - 1/2) to provide the title compound as a white solid (27.0 mg, 71%). ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 10.23 (s, 1H), 7.52 (d, J = 7.4 Hz, 1H), 7.43 - 7.25 (m, 6H), 7.14 (t, J = 7.6 Hz, 1H), 6.93 (d, J = 7.6 Hz, 1H), 5.49 (t, J = 5.9 Hz, 1H), 4.17 (dd, J = 12.4, 6.7 Hz, 1H), 3.95 (dd, J = 12.4, 4.9 Hz, 1H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 151.1, 140.5, 136.3, 128.8, 128.3, 128.1, 126.2, 125.6, 122.1, 121.9, 114.2, 87.2, 66.1; HRMS (ESI) Calcd. for C₁₅H₁₃NO₃ [(M+Na)⁺] 278.0793, found 278.0783.

6-chloro-4-(hydroxymethyl)-4-phenyl-1H-benzo[d][1,3]oxazin-2(4H)-one (5c)

According to the general procedure **B**, the solution of 4c (45.0 mg, 0.15 mmol, 1.0 equiv) and *m*-CPBA (57.0 mg, 0.33 mmol, 2.2 equiv) in CHCl₃ (3.0 mL) was stirred

for 24h at room temperature. The reaction mixture was subjected to the workup protocol outlined in the general procedure **B** and purified by flash chromatography (petroleum ether/ethyl acetate = 5/1 - 1/2) to provide the title compound as a white solid (34.0 mg, 78%). ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 10.31 (s, 1H), 7.54 (d, J = 2.3 Hz, 1H), 7.36 - 7.27 (m, 4H), 7.23 (d, J = 1.6 Hz, 1H), 7.21 (d, J = 1.6 Hz, 1H), 6.86 (d, J = 8.5 Hz, 1H), 5.48 (t, J = 5.7 Hz, 1H), 4.14 (dd, J = 12.4, 6.9 Hz, 1H), 3.86 (dd, J = 12.4, 5.1 Hz, 1H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 150.6, 139.8, 135.3, 128.8, 128.4, 128.3, 126.1, 126.1, 125.6, 123.8, 115.9, 87.0, 65.9; HRMS (ESI) Calcd. for C₁₅H₁₂NO₃ [(M+Na)⁺] 312.0403, found 312.0398.

4-(hydroxymethyl)-6-methyl-4-phenyl-1H-benzo[d][1,3]oxazin-2(4H)-one (5d)

According to the general procedure **B**, the solution of **4d** (42.0 mg, 0.15 mmol, 1.0 equiv) and *m*-CPBA (57.0 mg, 0.33 mmol, 2.2 equiv) in CHCl₃ (3.0 mL) was stirred for 24h at room temperature. The reaction mixture was subjected to the workup protocol outlined in the general procedure **B** and purified by flash chromatography (petroleum ether/ethyl acetate = 5/1 - 1/2) to provide the title compound as a white solid (31.0 mg, 77%). ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 10.03 (s, 1H), 7.32 - 7.23 (m, 4H), 7.21 (d, J = 1.6 Hz, 1H), 7.19 (d, J = 1.5 Hz, 1H), 7.04 (d, J = 8.0 Hz, 1H), 6.72 (d, J = 8.0 Hz, 1H), 5.37 (t, J = 5.2 Hz, 1H), 4.06 (dd, J = 12.4, 6.9 Hz, 1H), 3.84 (dd, J = 12.4, 5.3 Hz, 1H), 2.26 (s, 3H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 151.1, 140.6, 133.9, 131.0, 129.3, 128.2, 128.0, 126.4, 125.7, 121.8, 114.0, 87.2, 66.1, 20.6; HRMS (ESI) Calcd. for C₁₆H₁₅NO₃ [(M+Na)⁺] 292.0950, found 292.0940.

4-(hydroxymethyl)-6-methoxy-4-phenyl-1,4-dihydro-2H-benzo[d][1,3]oxazin-2-

one (5e)According to the general procedure **B**, the solution of 4e (45.0 mg, 0.15 mmol, 1.0 equiv) and *m*-CPBA (57.0 mg, 0.33 mmol, 2.2 equiv) in CHCl₃ (3.0 mL) was stirred for 24h at room temperature. The reaction mixture was subjected to the workup protocol outlined in the general procedure **B** and purified by flash chromatography (petroleum ether/ethyl acetate = 5/1 - 1/2) to provide the title compound as a white solid (34.0 mg, 78%). ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 9.99 (s, 1H), 7.30-7.25 (m, 5H), 7.08 (d, J = 1.6 Hz, 1H), 6.89 (d, J = 1.6 Hz, 1H), 6.80 (d, J = 1.6 Hz, 1H), 5.40 (t, J = 5.7 Hz, 1H), 4.13 (dd, J = 12.4, 6.9 Hz, 1H), 3.89 (dd, J = 12.4, 5.1 Hz, 1H), 3.77 (s, 3H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 155.1, 151.5, 140.9, 130.2, 128.7, 128.5, 126.2, 123.6, 115.5, 114.5, 112.6, 87.5, 67.5, 66.5, 56.0, 25.6; HRMS (ESI) Calcd. for C₁₆H₁₅NO₄ [(M+Na)⁺] 308.0899, found 308.0894.

4-(hydroxymethyl)-4-(4-methoxyphenyl)-1,4-dihydro-2H-benzo[d][1,3]oxazin-2one (5f)

According to the general procedure **B**, the solution of **4f** (45.0 mg, 0.15 mmol, 1.0 equiv) and *m*-CPBA (57.0 mg, 0.33 mmol, 2.2 equiv) in CHCl₃ (3.0 mL) was stirred for 24h at room temperature. The reaction mixture was subjected to the workup protocol outlined in the general procedure **B** and purified by flash chromatography (petroleum ether/ethyl acetate = 5/1 - 1/2) to provide the title compound as a white solid (34.0 mg, 78%). ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 10.18 (s, 1H), 7.47 (d, J = 7.2 Hz, 1H), 7.32 (td, J = 7.8, 1.2 Hz, 1H), 7.20 - 7.09 (m, 3H), 6.94 (dq, J = 4.9, 2.9 Hz, 3H), 5.42 (dd, J = 6.6, 5.3 Hz, 1H), 4.12 (dd, J = 12.4, 6.8 Hz, 1H), 3.94 (dd, J = 12.4, 5.1 Hz, 1H), 3.75 (s, 3H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 159.0, 151.1, 136.3, 132.4, 128.7, 127.0, 126.1, 122.0, 114.1, 113.6, 87.0, 66.1, 55.1; HRMS (ESI) Calcd. for C₁₆H₁₅NO₄ [(M+Na)⁺] 308.0899, found 308.0894.

6-bromo-4-(4-fluorophenyl)-4-(hydroxymethyl)-1,4-dihydro-2Hbenzo[d][1,3]oxazin-2-one (5g)

According to the general procedure **B**, the solution of **4g** (45.0 mg, 0.15 mmol, 1.0 equiv) and *m*-CPBA (57.0 mg, 0.33 mmol, 2.2 equiv) in CHCl₃ (3.0 mL) was stirred for 24h at room temperature. The reaction mixture was subjected to the workup protocol outlined in the general procedure **B** and purified by flash chromatography (petroleum ether/ethyl acetate = 5/1 - 1/2) to provide the title compound as a white solid (34.0 mg, 78%). ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 10.44 (s, 1H), 7.73 (d, J = 2.1 Hz, 1H), 7.55 (dd, J = 8.5, 2.1 Hz, 1H), 7.36 - 7.32 (m, 2H), 7.27 (dt, J = 8.9, 2.4 Hz, 2H), 6.91 (d, J = 8.5 Hz, 1H), 5.59 (t, J = 5.3 Hz, 1H), 4.21 (dd, J = 12.3, 6.0 Hz, 1H), 3.96 (dd, J = 12.3, 3.9 Hz, 1H).; ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 161.8, 150.5, 136.0, 135.7, 131.9, 128.7, 128.0, 127.9, 124.0, 116.4, 115.4, 115.2, 114.0, 86.5, 65.8; HRMS (ESI) Calcd. for C₁₆H₁₅NO₄ [(M+Na)⁺] 373.9804, found 373.9800

4-(hydroxymethyl)-4-phenyl-1H-naphtho[1,2-d][1,3]oxazin-2(4H)-one (5h)

According to the general procedure **B**, the solution of **4h** (48.0 mg, 0.15 mmol, 1.0 equiv) and *m*-CPBA (57.0 mg, 0.33 mmol, 2.2 equiv) in CHCl₃ (3.0 mL) was stirred for 24h at room temperature. The reaction mixture was subjected to the workup protocol outlined in the general procedure **B** and purified by flash chromatography (petroleum ether/ethyl acetate = 5/1 - 1/2) to provide the title compound as a white solid (38.0 mg, 83%). ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 10.45 (s, 1H), 8.31 (d, J = 9.4 Hz, 1H), 7.90 (d, J = 9.4 Hz, 1H), 7.65 (d, J = 8.6 Hz, 1H), 7.58 (d, J = 8.6 Hz, 1H), 7.54 - 7.46 (m, 2H), 7.33 - 7.27 (m, 2H), 7.27 - 7.22 (m, 3H), 5.48 (t, J = 6.0 Hz, 1H), 4.22 (dd, J = 12.4, 6.9 Hz, 1H), 3.97 (dd, J = 12.4, 5.0 Hz, 1H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 156.7, 146.0, 138.3, 136.9, 133.6, 133.4, 131.8, 131.4, 131.0, 129.0, 127.3, 126.6, 126.5 (2C, overlap), 123.0, 92.6, 71.4; HRMS (ESI) Calcd. for C₁₉H₁₅NO₃ [(M+Na)⁺] 328.0950, found 328.0957.

4-(1-hydroxyethyl)-1H-benzo[d][1,3]oxazin-2(4H)-one (5j)

According to the general procedure **B**, the solution of **4j** (31.0 mg, 0.15 mmol, 1.0 equiv) and *m*-CPBA (57.0 mg, 0.33 mmol, 2.2 equiv) in CHCl₃ (3.0 mL) was stirred for 24h at room temperature. The reaction mixture was subjected to the workup protocol outlined in the general procedure **B** and purified by flash chromatography (petroleum ether/ethyl acetate = 5/1 - 1/2) to provide the title compound as a white solid (25.0 mg, 86%). ¹H NMR (400 MHz, DMSO - d_6) (dr = 3.7 : 1), δ (ppm) 9.93 (s, 1H), 7.17 - 7.12 (m, 2H), 6.96 - 6.89 (m, 1H), 6.76 (d, J = 7.8 Hz, 1H), 5.13 (d, J = 3.1 Hz, 1H), 4.96 (d, J = 4.9 Hz, 1H), 3.86 - 3.83 (m, 1H), 1.08 (d, J = 6.4 Hz, 3H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 150.7, 136.3, 128.4, 125.4, 121.8, 119.0, 113.4, 82.3, 69.0, 18.9; HRMS (ESI) Calcd. for C₁₀H₁₁NO₃ [(M+K)⁺] 232.0376, found 232.0369.

4-(2-hydroxypropan-2-yl)-1H-benzo[d][1,3]oxazin-2(4H)-one (5k)

According to the general procedure **B**, the solution of **4k** (33.0 mg, 0.15 mmol, 1.0 equiv) and *m*-CPBA (57.0 mg, 0.33 mmol, 2.2 equiv) in CHCl₃ (3.0 mL) was stirred for 24h at room temperature. The reaction mixture was subjected to the workup protocol outlined in the general procedure **B** and purified by flash chromatography (petroleum ether/ethyl acetate = 5/1 - 1/2) to provide the title compound as a white solid (26.0 mg, 84%). ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 9.95 (s, 1H), 7.18 (td, J = 7.8, 1.3 Hz, 1H), 7.14 (d, J = 7.5 Hz, 1H), 6.92 (td, J = 7.5, 1.0 Hz, 1H), 6.77 (d, J = 7.9 Hz, 1H), 4.97 (s, 1H), 4.73 (s, 1H), 1.12 (s, 3H), 1.06 (s, 3H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 150.8, 136.4, 128.5, 127.5, 121.2, 117.5, 113.5, 84.9, 72.5, 26.2, 24.5; HRMS (ESI) Calcd. for C₁₁H₁₃NO₃ [(M+Na)⁺] 230.0793, found 232.03787.

4-(hydroxy(phenyl)methyl)-1H-benzo[d][1,3]oxazin-2(4H)-one (5l)

According to the general procedure **B**, the solution of **4l** (40.0 mg, 0.15 mmol, 1.0 equiv) and *m*-CPBA (57.0 mg, 0.33 mmol, 2.2 equiv) in CHCl₃ (3.0 mL) was stirred for 24h at room temperature. The reaction mixture was subjected to the workup protocol outlined in the general procedure **B** and purified by flash chromatography (petroleum ether/ethyl acetate = 5/1 - 1/2) to provide the title compound as a white solid (18.0 mg, 47%). ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 9.98 (s, 1H), 7.37 - 7.30 (m, 3H), 7.28 - 7.23 (m, 2H), 7.21 (d, J = 7.5 Hz, 1H), 6.85 (t, J = 7.5 Hz, 1H), 6.81 (d, J = 7.9 Hz, 1H), 6.63 (d, J = 7.4 Hz, 1H), 5.92 (d, J = 4.6 Hz, 1H), 5.51 (d, J = 4.7 Hz, 1H), 4.93 (t, J = 4.3 Hz, 1H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 150.4, 140.3, 136.3, 128.6, 127.7, 127.4, 126.9, 126.4, 121.0, 117.1, 113.4, 82.3, 75.1; HRMS (ESI) Calcd. for C₁₅H₁₃NO₃ [(M+H)⁺] 256.0974, found 256.0969

4-(hydroxy(thiophen-2-yl)methyl)-1,4-dihydro-2H-benzo[d][1,3]oxazin-2-one

(5m)According to the general procedure **B**, the solution of 4m (45.0 mg, 0.15 mmol, 1.0 equiv) and *m*-CPBA (57.0 mg, 0.33 mmol, 2.2 equiv) in CHCl₃ (3.0 mL) was stirred for 24h at room temperature. The reaction mixture was subjected to the workup protocol outlined in the general procedure **B** and purified by flash chromatography (petroleum ether/ethyl acetate = 5/1 - 1/2) to provide the title compound as a white solid (34.0 mg, 78%). ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 9.97 (s, 1H), 7.80-7.48 (m, 4H), 7.44-7.12 (m, 3H), 6.69 (d, J = 8.4 Hz, 1H), 6.59 (d, J = 8.4 Hz, 1H), 5.41 (s,1H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 154.6, 143.4, 139.8, 134.0, 133.8, 131.2, 129.8, 129.0, 125.7, 121.4, 117.5, 82.3,77.5; HRMS (ESI) Calcd. for C₁₃H₁₁NO₃S [(M+Na)⁺] 284.7023, found 284.7018

2'-hydroxyspiro[benzo[d][1,3]oxazine-4,1'-cyclohexan]-2(1H)-one (5n)

According to the general procedure **B**, the solution of **4n** (37.0 mg, 0.15 mmol, 1.0 equiv) and *m*-CPBA (57.0 mg, 0.33 mmol, 2.2 equiv) in CHCl₃ (3.0 mL) was stirred for 24h at room temperature. The reaction mixture was subjected to the workup protocol outlined in the general procedure **B** and purified by flash chromatography (petroleum ether/ethyl acetate = 5/1 - 1/2) to provide the title compound as a white solid (28.0 mg, 80%). ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 10.17 (s, 1H), 7.30 - 7.25 (m, 2H), 7.04 (t, J = 7.5 Hz, 1H), 6.90 (d, J = 7.8 Hz, 1H), 4.99 (d, J = 5.1 Hz,

1H), 3.83 - 3.78 m, 1H), 2.43 (t, J = 12.7 Hz, 1H), 1.91 (t, J = 12.1 Hz, 1H), 1.81 - 1.57 (m, 5H), 1.50 - 1.43 (m, 1H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 150.5, 135.1, 128.4, 126.6, 124.1, 121.9, 113.6, 82.8, 66.1, 29.0, 28.2, 20.0, 18.1; HRMS (ESI) Calcd. for C₁₃H₁₅NO₃ [(M+Na)⁺] 256.0950, found 256.0955.

2'-hydroxyspiro[benzo[d][1,3]oxazine-4,1'-cyclopentan]-2(1H)-one (50)

According to the general procedure **B**, the solution of **4o** (35.0 mg, 0.15 mmol, 1.0 equiv) and *m*-CPBA (57.0 mg, 0.33 mmol, 2.2 equiv) in CHCl₃ (3.0 mL) was stirred for 24h at room temperature. The reaction mixture was subjected to the workup protocol outlined in the general procedure **B** and purified by flash chromatography (petroleum ether/ethyl acetate = 5/1 - 1/2) to provide the title compound as a white solid (17.0 mg, 52%). ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 10.19 (s, 1H), 7.31 - 7.27 (m, 2H), 7.04 (t, J = 7.6 Hz, 1H), 6.91 (d, J = 7.4 Hz, 1H), 5.00 (d, J = 5.2 Hz, 1H), 4.07 - 4.04 (m, 1H), 2.54 - 2.45 (m, 1H), 2.23 - 2.09 (m, 1H), 2.02 - 1.78 (m, 3H), 1.76 - 1.65 (m, 1H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 150.7, 136.0, 128.6, 126.5, 121.7, 120.7, 113.5, 92.8, 74.6, 33.2, 32.1, 19.6; HRMS (ESI) Calcd. for C₁₂H₁₃NO₃ [(M-H)⁺] 218.0817, found 218.0811.

3'-hydroxy-2',3',5',6'-tetrahydrospiro[benzo[d][1,3]oxazine-4,4'-pyran]-2(1H)one (5p)

According to the general procedure **B**, the solution of **4p** (37.0 mg, 0.15 mmol, 1.0 equiv) and *m*-CPBA (57.0 mg, 0.33 mmol, 2.2 equiv) in CHCl₃ (3.0 mL) was stirred for 24h at room temperature. The reaction mixture was subjected to the workup protocol outlined in the general procedure **B** and purified by flash chromatography (petroleum ether/ethyl acetate = 5/1 - 1/2) to provide the title compound as a white solid (29.0 mg, 82%). ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 10.21 (s, 1H), 7.23 - 7.21 (m, 2H), 6.99 (t, J = 7.2 Hz, 1H), 6.86 (d, J = 7.4 Hz, 1H), 5.23 (d, J = 6.4 Hz, 1H), 3.83 - 3.74 (m, 3H), 3.66 - 3.59 (m, 1H), 3.50 (d, J = 5.9 Hz, 1H), 2.74 - 2.66 (m, 1H), 1.58 (d, J = 13.8 Hz, 1H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 150.0, 135.1, 128.8, 126.7, 122.6, 122.0, 113.8, 80.5, 67.5, 65.6, 61.7, 29.3; HRMS (ESI) Calcd. for C₁₂H₁₃NO₄ [(M+Na)⁺] 258.0742, found 258.0746.

Tert-butyl 3'-hydroxy-2-oxo-1,2-dihydrospiro[benzo[d][1,3]oxazine-4,4'-piper idine]-1'-carboxylate (5q)

According to the general procedure **B**, the solution of 4q (52.0 mg, 0.15 mmol, 1.0 equiv) and m-CPBA (57.0 mg, 0.33 mmol, 2.2 equiv) in CHCl₃ (3.0 mL) was stirred for 24h at room temperature. The reaction was quenched with NaHCO₃ (aq) and extracted with DCM (20 mL x 3). The combined organic phase was washed with brine (20 mL x 3), dried over Na₂SO₄, filtered and concentrated under vacuum to give the crude product. Then it was purified by flash chromatography (petroleum ether/ethyl acetate = 5/1 - 1/2) to provide the title compound as a white solid (31.0 mg, 62%). ¹H NMR (400 MHz, DMSO - d₆) δ (ppm) 10.31 (s, 1H), 7.32 -7.29 (m, 2H), 7.06 (t, J = 7.3 Hz, 1H), 6.94 (d, J = 7.7 Hz, 1H), 5.33 (s, 1H), 4.11-3.81 (m, 2H), 3.76- 3.68 (m, 1H), 3.34 - 3.11 (m, 2H), 2.69 - 2.58 (m, 1H), 1.71 (d, J = 13.6 Hz, 1H), 1.47 (s, 9H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 150.5, 135.5, 129.3, 127.2, 123.1, 122.6, 114.3, 81.5, 79.1, 65.6, 28.6; HRMS (ESI) Calcd. for $C_{17}H_{22}N_2O_5$ [(M+Na)⁺] 357.1426, found 357.1428.

Tert-butyl 3'-hydroxy-8-methyl-2-oxo-1,2-dihydrospiro[benzo[d][1,3]oxazine-4, 4'-piperidine]-1'-carboxylate (5r)

According to the general procedure **B**, the solution of **4r** (54.0 mg, 0.15 mmol, 1.0 equiv) and m-CPBA (57.0 mg, 0.33 mmol, 2.2 equiv) in CHCl₃ (3.0 mL) was stirred for 24h at room temperature. The reaction was guenched with NaHCO₃ (ag) and extracted with DCM (20 mL x 3). The combined organic phase was washed with brine (20 mL x 3), dried over Na₂SO₄, filtered and concentrated under vacuum to give product. it was purified by the crude Then flash chromatography (petroleum ether/ethyl acetate = 5/1 - 1/2) to provide the title compound as a white solid (35.0 mg, 67%). ¹H NMR (400 MHz, DMSO - d₆) δ (ppm) 9.73 (s, 1H), 7.17 (d, J = 7.5 Hz, 1H), 7.14 (d, J = 7.7 Hz, 1H), 6.98 (t, J = 7.6 Hz, 1H), 5.30 (s, 1H), 4.05 -3.85 (m, 2H), 3.76 - 3.66 (m, 1H), 3.35 - 3.11 (m, 2H), 2.67 - 2.58 (m, 1H), 2.29 (s, 3H), 1.69 (d, J = 13.6 Hz, 1H), 1.47 (s, 9H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 150.3, 133.1, 130.3, 124.3, 123.3, 122.5, 121.9, 80.6, 78.5, 78.2, 65.0, 28.1, 17.0; HRMS (ESI) Calcd. for $C_{18}H_{24}N_2O_5$ [(M-H)⁻] 347.1607, found 347.1607.

2'-hydroxy-4'-(1,4-dioxa-spiro[4.5]decan-8-yl)-8-

methylspiro[benzo[d][1,3]oxazine-4,1'-cyclohexan]-2(1H)-one (5s)

According to the general procedure **B**, the solution of **4s** (48.0 mg, 0.15 mmol, 1.0 equiv) and *m*-CPBA (57.0 mg, 0.33 mmol, 2.2 equiv) in CHCl₃ (3.0 mL) was stirred for 24h at room temperature. The reaction was quenched with NaHCO₃ (aq) and

extracted with DCM (20 mL x 3). The combined organic phase was washed with brine (20 mL x 3), dried over Na₂SO₄, filtered and concentrated under vacuum to give product. Then it was purified by flash chromatography the crude (petroleum ether/ethyl acetate = 5/1 - 1/2) to provide the title compound as a white solid (34.0 mg, 74%). ¹H NMR (400 MHz, DMSO - d₆) δ (ppm) 9.59 (s, 1H), 7.15 (d, J = 7.6 Hz, 1H), 7.10 (d, J = 7.4 Hz, 1H), 6.92 (t, J = 7.6 Hz, 1H), 4.64 (d, J = 6.3 Hz, 1H), 3.99 - 3.83 (m, 5H), 2.22 (s, 3H), 2.05 (dd, J = 14.0, 3.7 Hz, 1H), 1.98 - 1.64 (m, 4H), 1.25 (d, J = 9.4 Hz, 1H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 151.1, 133.9, 130.6, 124.5, 123.8, 123.0, 122.3, 107.4, 82.6, 68.6, 64.5, 63.9, 37.1, 30.3, 28.3, 17.5; HRMS (ESI) Calcd. for $C_{16}H_{19}NO_5$ [(M+Na)⁺] 328.1161, found 328.1153.

4-(hydroxymethyl)-7-methyl-4,5-dihydrobenzo[d][1,3]oxazepin-2(1H)-one (7a)

According to the general procedure **B**, the solution of **6a** (33.0 mg, 0.15 mmol, 1.0 equiv) and *m*-CPBA (57.0 mg, 0.33 mmol, 2.2 equiv) in CHCl₃ (3.0 mL) was stirred for 24h at room temperature. The reaction mixture was subjected to the workup protocol outlined in the general procedure **B** and purified by flash chromatography (petroleum ether/ethyl acetate = 5/1 - 1/2) to provide the title compound as a white solid (13.0 mg, 41%). ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 9.42 (s, 1H), 7.00 - 6.89 (m, 3H), 5.05 (t, J = 5.8 Hz, 1H), 4.44 - 4.35 (m, 1H), 3.62 - 3.44 (m, 2H), 3.02 - 2.91 (m, 2H), 2.21 (s, 3H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 153.8, 134.5, 131.5, 130.7, 127.7, 126.1, 119.1, 80.0, 63.0, 35.0, 20.0; HRMS (ESI) Calcd. for C₁₁H₁₃NO₃ [(M+Na)⁺] 230.0793, found 230.0791.

5-(hydroxymethyl)-5-phenyloxazolidin-2-one (9a)

According to the general procedure **B**, the solution of **8a** (31.0 mg, 0.15 mmol, 1.0 equiv) and *m*-CPBA (57.0 mg, 0.33 mmol, 2.2 equiv) in CHCl₃ (3.0 mL) was stirred for 24h at room temperature. The reaction mixture was subjected to the workup protocol outlined in the general procedure **B** and purified by flash chromatography (petroleum ether/ethyl acetate = 5/1 - 1/2) to provide the title compound as a white solid (11.0 mg, 32%).¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 7.56 (s, 1H), 7.43 - 7.29 (m, 5H), 5.44 (t, J = 6.0 Hz, 1H), 3.87 (d, J = 8.8 Hz, 1H), 3.56 (d, J = 6.0 Hz, 2H), 3.44 (d, J = 8.7 Hz, 1H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 158.5, 142.3, 128.8, 128.2, 125.3, 85.1, 67.1, 48.4; HRMS (ESI) Calcd. for C₁₀H₁₁NO₃ [(M+Na)⁺] 216.0637, found 216.0638.

The synthesis of methyl 2-((2-acetylphenyl)amino)-2-oxoacetate (12a)

According to the general procedure **B**, the solution of **11a** (33.0 mg, 0.15 mmol, 1.0 equiv) and *m*-CPBA (57.0 mg, 0.33 mmol, 2.2 equiv) in CHCl₃ (3.0 mL) was stirred for 24h at room temperature. The reaction mixture was subjected to the workup protocol outlined in the general procedure **B** and purified by flash chromatography (petroleum ether/ethyl acetate = 50/1) to provide the title compound **12a** as a yellow solid (19.0 mg, 58%). ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 12.77 (s, 1H), 8.57 (d, J = 8.3 Hz, 1H), 8.15 (d, J = 7.9 Hz, 1H), 7.70 (t, J = 7.8 Hz, 1H), 7.32 (t, J = 7.6 Hz, 1H), 3.89 (s, 3H), 2.69 (s, 3H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 203.4, 160.9, 155.0, 138.4, 135.3, 133.0, 124.6, 123.6, 120.4, 54.1, 29.2.

The synthesis of 2-((2-acetylphenyl)amino)acetic acid (14a)

According to the general procedure B, **13a** (29.0 mg, 0.15 mmol, 1.0 equiv), *m*-CPBA (57.0 mg, 0.33 mmol, 2.2 equiv), and CHCl₃ (3.0 mL). After stirring 24h at room temperature. Then the solvent was removed under reduced pressure (63%, yield was determined by ¹H NMR using CH₂Br₂ as an internal standard). ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 9.01 (t, J = 4.6 Hz, 1H), 7.85 (d, J = 7.1 Hz, 1H), 7.39 (t, J = 7.8 Hz, 1H), 6.68 - 6.59 (m, 2H), 4.01 (d, J = 5.0 Hz, 2H), 2.55 (s, 3H).

The synthesis of N-(p-tolyl)benzamide (16a) [11]

The compound **15a** was prepared according to the reported procedure ^[10] as a light yellow solid (1.10 g, 82% yield). ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 7.85 (d, J = 6.7 Hz, 2H), 7.63 - 7.50 (m, 3H), 7.17 (d, J = 8.1 Hz, 2H), 6.89 (d, J = 8.2 Hz, 2H), 2.29 (s, 3H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 166.85, 161.56, 147.73, 134.36, 134.13, 132.25, 129.83, 129.41, 128.03, 120.22, 20.96.

According to the general procedure **B**, the solution of **15a** (36.0 mg, 0.15 mmol, 1.0 equiv) and *m*-CPBA (57.0 mg, 0.33 mmol, 2.2 equiv) in CHCl₃ (3.0 mL) was stirred for 24h at room temperature. The reaction mixture was subjected to the workup protocol outlined in the general procedure **B** and purified by flash chromatography (petroleum ether/ethyl acetate = 20/1) to provide the title compound **16a** as a white
solid (28.5 mg, 90%). ¹H NMR (400 MHz, DMSO - d_6) δ (ppm) 10.18 (s, 1H), 7.96 (d, J = 7.1 Hz, 2H), 7.67 (d, J = 8.3 Hz, 2H), 7.57 (t, J = 7.2 Hz, 1H), 7.53 (t, J = 7.3 Hz, 2H), 7.16 (d, J = 8.3 Hz, 2H), 2.29 (s, 3H); ¹³C NMR (100 MHz, DMSO - d_6) δ (ppm) 165.8, 137.1, 135.5, 133.0, 131.9, 129.4, 128.8, 128.1, 120.8, 21.0.

The synthesis of chloro-substituted 3D cyclic carbamates

General Procedure C

To a 10 mL sealed tube equipped with a magnetic stir bar was added *NaClO* (0.33 mmol, 2.2 equiv), olefinic oxamic acid (0.15 mmol, 1.0 equiv), and 1,4-dioxane(3.0 mL). The resulting mixture was stirred at room temperature for the indicated time. Then the solvent was removed under reduced pressure. Purification of the crude product by flash chromatography on silica gel using the indicated solvent system afforded the desired product.

4-(chloromethyl)-4-methyl-1H-benzo[d][1,3]oxazin-2(4H)-one (10a)

According to the general procedure **C**, the solution of **1a** (31 mg, 0.15 mmol, 1.0 equiv) and *NaClO* (57.0 mg, 0.33 mmol, 2.2 equiv) in dioxane (3.0 mL) was stirred for 24h at room temperature. The reaction mixture was subjected to the workup protocol outlined in the general procedure **C** and purified by flash chromatography (petroleum ether/ethyl acetate = 5/1 - 1/2) to provide the title compound as a white solid (28.0 mg, 71%). ¹H NMR (400 MHz, DMSO - d_6) δ 10.20 (s, 1H), 7.25 (d, *J* = 7.5 Hz, 1H), 7.20 (td, *J* = 7.9, 1.3 Hz, 1H), 6.96 (td, *J* = 7.6, 1.1 Hz, 1H), 6.81 (dd, *J* = 7.9, 0.7 Hz, 1H), 4.05 (d, *J* = 12.0 Hz, 1H), 3.91 (d, *J* = 12.0 Hz, 1H), 1.60 (s, 3H); ¹³C NMR (100 MHz, DMSO - d_6) δ 149.90, 135.86, 129.76, 125.12, 123.02, 121.89, 114.52, 83.44, 51.79, 25.78; HRMS (ESI) Calcd. for C₁₀H₁₀CINO₂ [(M+Na)⁺] 234.0298, found 234.0299.

6-chloro-4-(chloromethyl)-4-phenyl-1H-benzo[d][1,3]oxazin-2(4H)-one(10b) According to the general procedure C, the solution of 4c (35.0 mg, 0.15 mmol, 1.0

equiv) and *NaClO* (57.0 mg, 0.33 mmol, 2.2 equiv) in dioxane (3.0 mL) was stirred for 24h at room temperature. The reaction mixture was subjected to the workup protocol outlined in the general procedure **C** and purified by flash chromatography (petroleum ether/ethyl acetate = 5/1 - 1/2) to provide the title compound as a white solid (28.0 mg, 71%). ¹H NMR (400 MHz, DMSO - d_6) δ 10.53 (s, 1H), 7.80 (d, J =2.2 Hz, 1H), 7.45 – 7.35 (m, 4H), 7.31 (dt, J = 8.4, 2.8 Hz, 2H), 6.92 (d, J = 8.5 Hz, 1H), 4.77 (d, J = 12.5 Hz, 1H), 4.31 (d, J = 12.5 Hz, 1H); ¹³C NMR (100 MHz, DMSO - d_6) δ 150.25, 139.69, 135.44, 130.07, 129.45, 129.22, 127.01, 126.31, 126.08, 123.08, 116.77, 86.03, 49.07; HRMS (ESI) Calcd. for C₁₅H₁₁Cl₂NO₂ [(M+Na)⁺] 330.0065, found 330.0070.

1-(chloromethyl)-1-methyl-5,6-dihydro-[1,3]oxazino[5,4,3-hi]indol-3(1H)-one (10c)

According to the general procedure **C**, the solution of **1v** (35.0 mg, 0.15 mmol, 1.0 equiv) and *NaClO* (57.0 mg, 0.33 mmol, 2.2 equiv) in dioxane (3.0 mL) was stirred for 24h at room temperature. The reaction mixture was subjected to the workup protocol outlined in the general procedure **C** and purified by flash chromatography (petroleum ether/ethyl acetate = 5/1 - 1/2) to provide the title compound as a white solid (28.0 mg, 71%). ¹H NMR (400 MHz, DMSO - d_6) δ 7.21 (dd, J = 7.4, 0.8 Hz, 1H), 7.19 – 7.13 (m, 1H), 7.00 (t, J = 7.6 Hz, 1H), 4.13 (dd, J = 21.4, 12.0 Hz, 1H), 4.05 – 3.93 (m, 3H), 3.20 (t, J = 8.5 Hz, 2H), 1.69 (s, 3H); ¹³C NMR (100 MHz, DMSO - d_6) δ 148.92, 138.97, 128.68, 125.67, 123.84, 122.41, 119.28, 85.76, 51.93, 46.88, 27.91, 25.70; HRMS (ESI) Calcd. for C₁₂H₁₂ClNO₂ [(M+Na)⁺] 260.0454, found 260.0453.

2'-chlorospiro[benzo[d][1,3]oxazine-4,1'-cyclohexan]-2(1H)-one (10d)

According to the general procedure **C**, the solution of **4n** (37.0 mg, 0.15 mmol, 1.0 equiv) and *NaClO* (57.0 mg, 0.33 mmol, 2.2 equiv) in dioxane (3.0 mL) was stirred for 24h at room temperature. The reaction mixture was subjected to the workup protocol outlined in the general procedure **C** and purified by flash chromatography (petroleum ether/ethyl acetate = 5/1 - 1/2) to provide the title compound as a white solid (28.0 mg, 71%). ¹H NMR (400 MHz, DMSO - d_6) δ 10.37 (s, 1H), 7.30 (dd, *J* = 12.1, 4.4 Hz, 2H), 7.07 - 7.01 (m, 1H), 6.93 (d, *J* = 7.8 Hz, 1H), 4.49 (s, 1H), 2.65 - 2.52 (m, 1H), 2.25 (tt, *J* = 11.7, 3.7 Hz, 1H), 1.93 - 1.52 (m, 6H); ¹³C NMR (100 MHz, DMSO - d_6) δ 150.26, 135.63, 129.76, 127.25, 122.87, 122.54, 114.67, 82.56, 59.79, 29.31, 29.13, 20.14, 18.76; HRMS (ESI) Calcd. for C₁₃H₁₄CINO₂ [(M+Na)⁺]

274.0611, found 274.0613.

X-ray Crystallography data

X-ray crystal structure analysis of 3a'

Crystal data and structure refinement for compound 3a'

Table 1 (Crystal	data ai	nd structure	refinement	for cd1	6437.
-----------	---------	---------	--------------	------------	---------	-------

Identification code Empirical formula	cd16437 C17 H17 N O5 S
Formula weight	347.37
Temperature	293(2) K

0.71073 Å Orthorhombic F d d 2	
$ \begin{array}{ll} a = 20.250(3) \ \ \mathring{A} & \alpha = 90^{\circ}. \\ b = 21.622(3) \ \ \mathring{A} & \beta = 90^{\circ}. \\ c = 15.041(2) \ \ \mathring{A} & \gamma = 90^{\circ}. \end{array} $	
6585.5(15) Å ³ 16	
1.401 Mg/m ³ 0.224 mm ⁻¹ 2912	
0.200 x 0.160 x 0.110 mm ³ 1.932 to 25.500°. -24 <=h <=21, -26 <=k <=26, -18 <=l <=17 9205 3023 [R(int) = 0.0524] 99.9 % Semi-empirical from equivalents 0.7456 and 0.6600	
Full-matrix least-squares on F ² 3023 / 1 / 223	
0.990 R1 = 0.0468, wR2 = 0.0937 R1 = 0.0697, wR2 = 0.1023 -0.01(7) n/a 0.156 and -0.120 e.Å ⁻³	

Table 2 Atomic coordinates ($x10^4$) and equivalent isotropic displacement parameters (Å² $x10^3$) for cd16437. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	у	Z	U (eq)
S(1)	1276(1)	9108(1)	774(1)	68(1)
N(1)	2296(2)	8337(2)	3478(3)	65(1)
O(1)	1625(2)	7522(1)	3644(3)	72(1)
O(2)	1178(1)	8443(1)	3526(2)	69(1)
O(3)	1324(2)	8888(1)	1767(2)	61(1)
O(4)	1706(2)	8701(2)	317(3)	88(1)
O(5)	600(2)	9144(2)	528(2)	85(1)
C(1)	1879(2)	9363(2)	3351(3)	56(1)
C(2)	1994(3)	9990(2)	3298(4)	81(2)
C(3)	2621(3)	10221(2)	3318(5)	93(2)
C(4)	3145(3)	9829(2)	3382(5)	86(2)
C(5)	3041(2)	9203(2)	3447(4)	72(1)
C(6)	2406(2)	8972(2)	3420(3)	56(1)
C(7)	1704(2)	8073(2)	3546(3)	56(1)
C(8)	1187(2)	9104(2)	3320(3)	57(1)
C(9)	885(2)	9170(2)	2407(3)	61(1)
C(10)	720(3)	9393(3)	3986(4)	79(2)
C(11)	1605(2)	9857(2)	792(3)	63(1)
C(12)	1201(3)	10363(2)	723(4)	74(1)
		20		

C(13)	1482(3)	10945(3)	755(4)	85(2)
C(14)	2149(3)	11026(2)	830(4)	76(1)
C(15)	2539(2)	10512(2)	901(4)	79(1)
C(16)	2273(2)	9927(2)	884(4)	77(2)
C(17)	2442(3)	11670(2)	864(5)	104(2)

Table 3. Bond lengths [Å] and angles $[\degree]$ for cd16437.

	8 1 8	
S(1)-O(4)	1.415(4)	
S(1)-O(5)	1.419(4)	
S(1)-O(3)	1.572(3)	
S(1)-C(11)	1.751(5)	
N(1)-C(7)	1.333(6)	
N(1)-C(6)	1.394(5)	
N(1)-H(1)	0.87(5)	
O(1)-C(7)	1.211(5)	
O(2)-C(7)	1.332(5)	
O(2)-C(8)	1.464(4)	
O(3)-C(9)	1.446(5)	
C(1)-C(6)	1.365(6)	
C(1)-C(2)	1.379(6)	
C(1)-C(8)	1.509(6)	
C(2)-C(3)	1.364(7)	
C(2)-H(2)	0.9300	
C(3)-C(4)	1.361(7)	
C(3)-H(3)	0.9300	
C(4)-C(5)	1.372(6)	
C(4)-H(4)	0.9300	
C(5)-C(6)	1.380(6)	
C(5)-H(5)	0.9300	
C(8)-C(9)	1.510(7)	
C(8)-C(10)	1.514(6)	
C(9)-H(9A)	0.9700	
C(9)-H(9B)	0.9700	
C(10)-H(10A)	0.9600	
C(10)-H(10B)	0.9600	
C(10)-H(10C)	0.9600	
C(11)-C(16)	1.368(7)	
C(11)-C(12)	1.371(6)	
C(12)-C(13)	1.382(/)	
C(12)-H(12)	0.9300	
C(13)-C(14)	1.36/(8)	
C(13)-H(13)	0.9300	
C(14)-C(15)	1.366(7)	
C(14)-C(17)	1.315(7)	
C(15)-C(16) C(15) $U(15)$	1.3/5(/)	
C(15)-H(15)	0.9300	
$C(10) - \Pi(10)$ $C(17) \Pi(17A)$	0.9300	
C(17) = H(17A) C(17) = H(17D)	0.9000	
C(17) H(17C)	0.9000	
O(1) - S(1) - O(5)	120 1(2)	
O(4) - S(1) - O(3)	120.1(2) 103.6(2)	
O(5) = S(1) = O(3)	103.0(2) 108.0(2)	
S(3) S(1) - O(3)	100.7(2)	

O(4)-S(1)-C(11)	110.4(2)
O(5)-S(1)-C(11)	108.7(2)
O(3)-S(1)-C(11)	104.0(2)
C(7)-N(1)-C(6)	124.8(4)
C(7)-N(1)-H(1)	118(3)
C(6)-N(1)-H(1)	117(3)
C(7)-O(2)-C(8)	125.5(3)
C(9)-O(3)-S(1)	117.8(3)
C(6)-C(1)-C(2)	118 8(4)
C(6)-C(1)-C(8)	119 9(4)
C(2)-C(1)-C(8)	1213(4)
C(3)-C(2)-C(1)	121.0(1) 121.0(5)
C(3)-C(2)-H(2)	119.5
C(1)- $C(2)$ -H(2)	119.5
C(4)-C(3)-C(2)	119.9(5)
C(4)-C(3)-H(3)	120.0
C(2)-C(3)-H(3)	120.0
C(3)-C(4)-C(5)	120.0 120.0(5)
C(3)-C(4)-H(4)	120.0
C(5)-C(4)-H(4)	120.0
C(4)- $C(5)$ - $C(6)$	119 8(4)
C(4)- $C(5)$ - $H(5)$	120.1
C(6)-C(5)-H(5)	120.1
C(1)- $C(6)$ - $C(5)$	120.1 120.4(4)
C(1)- $C(6)$ - $N(1)$	119 3(4)
C(5)-C(6)-N(1)	120.3(4)
O(1)-C(7)-O(2)	119 1(4)
O(1)-C(7)-N(1)	123.4(4)
O(2)-C(7)-N(1)	117.5(4)
O(2)-C(8)-C(1)	111.6(3)
O(2)-C(8)-C(9)	106.2(3)
C(1)-C(8)-C(9)	111.7(4)
O(2)-C(8)-C(10)	104.8(4)
C(1)-C(8)-C(10)	114.0(4)
C(9)-C(8)-C(10)	108.0(4)
O(3)-C(9)-C(8)	108.4(3)
O(3)-C(9)-H(9A)	110.0
C(8)-C(9)-H(9A)	110.0
O(3)-C(9)-H(9B)	110.0
C(8)-C(9)-H(9B)	110.0
H(9A)-C(9)-H(9B)	108.4
C(8)-C(10)-H(10A)	109.5
C(8)-C(10)-H(10B)	109.5
H(10A)-C(10)-H(10B)	109.5
C(8)-C(10)-H(10C)	109.5
H(10A)-C(10)-H(10C)	109.5
H(10B)-C(10)-H(10C)	109.5
C(16)-C(11)-C(12)	120.7(4)
C(16)-C(11)-S(1)	118.7(4)
C(12)-C(11)-S(1)	120.6(4)
C(11)-C(12)-C(13)	118.6(5)
С(11)-С(12)-Н(12)	120.7
C(13)-C(12)-H(12)	120.7
C(14)-C(13)-C(12)	121.7(5)
С(14)-С(13)-Н(13)	119.1
C(12)-C(13)-H(13)	119.1

C(15)-C(14)-C(13)	118.3(5)
C(15)-C(14)-C(17)	121.2(5)
C(13)-C(14)-C(17)	120.5(5)
C(14)-C(15)-C(16)	121.4(5)
C(14)-C(15)-H(15)	119.3
C(16)-C(15)-H(15)	119.3
C(11)-C(16)-C(15)	119.4(5)
C(11)-C(16)-H(16)	120.3
C(15)-C(16)-H(16)	120.3
C(14)-C(17)-H(17A)	109.5
C(14)-C(17)-H(17B)	109.5
H(17A)-C(17)-H(17B)	109.5
C(14)-C(17)-H(17C)	109.5
H(17A)-C(17)-H(17C)	109.5
H(17B)-C(17)-H(17C)	109.5

Symmetry transformations used to generate equivalent atoms:

Table 4 Anisotropic displacement parameters (Å²x10³) for cd16437. The anisotropic displacement factor exponent takes the form: $-2\pi^{2}$ [h²a*²U¹¹+ ... + 2 h k a* b* U¹²]

	U^{11}	U^{22}	U ³³	U ²³	U ¹³	U^{12}
S(1)	66(1)	66(1)	71(1)	-11(1)	-4(1)	-9(1)
N(1)	47(2)	48(2)	99(4)	-2(2)	6(2)	11(2)
O(1)	64(2)	44(2)	109(3)	9(2)	9(2)	7(2)
O(2)	51(2)	50(2)	105(3)	15(2)	5(2)	10(2)
O(3)	60(2)	53(2)	70(2)	-7(2)	2(2)	6(2)
O(4)	102(3)	74(2)	88(3)	-30(2)	20(2)	-9(2)
O(5)	75(3)	95(3)	84(3)	-2(2)	-20(2)	-20(2)
C(1)	53(3)	48(2)	67(3)	-6(2)	0(2)	4(2)
C(2)	69(3)	52(3)	122(5)	-6(3)	-16(4)	6(3)
C(3)	78(4)	54(3)	147(6)	-12(4)	-18(4)	-6(3)
C(4)	64(3)	65(3)	127(5)	-16(4)	-11(3)	-11(3)
C(5)	53(3)	62(3)	101(4)	-13(3)	-9(3)	3(2)
C(6)	57(3)	47(2)	64(3)	-14(2)	-1(2)	1(2)
C(7)	57(3)	52(3)	59(3)	0(2)	3(2)	12(2)
C(8)	57(3)	43(2)	72(3)	0(3)	5(2)	9(2)
C(9)	49(3)	55(3)	79(3)	1(2)	1(2)	6(2)
C(10)	74(4)	79(4)	85(4)	-9(3)	17(3)	12(3)
C(11)	57(3)	65(3)	68(3)	-3(2)	3(3)	0(2)
C(12)	54(3)	75(4)	95(4)	8(3)	4(3)	2(3)
C(13)	74(4)	65(3)	117(5)	12(3)	21(4)	16(3)
C(14)	71(3)	68(3)	89(4)	-1(3)	17(3)	-7(3)
C(15)	54(3)	75(3)	109(4)	-6(3)	5(3)	-1(3)
C(16)	56(3)	64(3)	110(4)	-3(3)	6(3)	1(2)
C(17)	106(5)	72(3)	134(6)	4(4)	24(4)	-18(3)

	X	у	Z	U(eq)
H(2)	1639	10260	3249	97
H(3)	2690	10645	3288	112
H(4)	3573	9985	3383	103
H(5)	3398	8936	3509	86
H(9A)	457	8968	2391	73
H(9B)	823	9604	2267	73
H(10Å)	888	9332	4577	119
H(10B)	293	9203	3936	119
H(10C)	682	9828	3869	119
H(12)	747	10316	655	89
H(13)	1210	11291	724	102
H(15)	2993	10559	963	95
H(16)	2545	9582	934	92
H(17A)	2867	11669	582	156
H(17B)	2489	11796	1473	156
H(17C)	2155	11953	560	156
H(1)	2640(20)	8100(20)	3490(30)	76(16)

Table 5 Hydrogen coordinates $(x10^4)$ and isotropic displacement parameters $(\text{\AA}^2 x10^3)$ for cd16437.

O(4) $S(1)$ $O(2)$ $C(0)$	172 ((2)
O(4)-S(1)-O(3)-C(9)	-1/3.0(3)
O(5)-S(1)-O(3)-C(9)	-44.8(3)
C(11)-S(1)-O(3)-C(9)	/1.0(3)
C(6)-C(1)-C(2)-C(3)	-0.3(9)
C(8)-C(1)-C(2)-C(3)	-179.4(6)
C(1)-C(2)-C(3)-C(4)	0.6(10)
C(2)-C(3)-C(4)-C(5)	-1.4(11)
C(3)-C(4)-C(5)-C(6)	1.9(10)
C(2)-C(1)-C(6)-C(5)	0.8(8)
C(8)-C(1)-C(6)-C(5)	179.8(5)
C(2)-C(1)-C(6)-N(1)	179.7(5)
C(8)-C(1)-C(6)-N(1)	-1.2(7)
C(4)-C(5)-C(6)-C(1)	-1.6(8)
C(4)-C(5)-C(6)-N(1)	179.4(5)
C(7)-N(1)-C(6)-C(1)	-6.0(8)
C(7)-N(1)-C(6)-C(5)	173.0(5)
C(8)-O(2)-C(7)-O(1)	-173.2(4)
C(8)-O(2)-C(7)-N(1)	8.4(6)
C(6)-N(1)-C(7)-O(1)	-175.8(5)
C(6)-N(1)-C(7)-O(2)	2.6(7)
C(7)-O(2)-C(8)-C(1)	-14.0(6)
C(7)-O(2)-C(8)-C(9)	107.9(5)
C(7)-O(2)-C(8)-C(10)	-137.9(4)
C(6)-C(1)-C(8)-O(2)	9.9(6)
C(2)-C(1)-C(8)-O(2)	-171.1(5)
C(6)-C(1)-C(8)-C(9)	-108.9(5)
C(2)-C(1)-C(8)-C(9)	70.2(6)
C(6)-C(1)-C(8)-C(10)	128.3(5)
C(2)-C(1)-C(8)-C(10)	-52.6(7)
S(1)-O(3)-C(9)-C(8)	-156.8(3)
O(2)-C(8)-C(9)-O(3)	-67.3(4)
C(1)-C(8)-C(9)-O(3)	54.6(4)
C(10)-C(8)-C(9)-O(3)	-179.2(4)
O(4)-S(1)-C(11)-C(16)	-36.9(5)
O(5)-S(1)-C(11)-C(16)	-170.5(4)
O(3)-S(1)-C(11)-C(16)	73.6(5)
O(4)-S(1)-C(11)-C(12)	143.6(4)
O(5)-S(1)-C(11)-C(12)	10.0(5)
O(3)-S(1)-C(11)-C(12)	-105.9(4)
C(16)-C(11)-C(12)-C(13)	-0.5(8)
S(1)-C(11)-C(12)-C(13)	179.0(5)
C(11)-C(12)-C(13)-C(14)	1.7(9)
C(12)-C(13)-C(14)-C(15)	-2.0(10)
C(12)-C(13)-C(14)-C(17)	-179.9(6)
C(13)-C(14)-C(15)-C(16)	1.1(9)
C(17)-C(14)-C(15)-C(16)	179.0(6)
C(12)-C(11)-C(16)-C(15)	-0.3(8)
S(1)-C(11)-C(16)-C(15)	-179.9(5)
C(14)-C(15)-C(16)-C(11)	0.1(9)

Table 6. Torsion angles [°] for cd16437.

Symmetry transformations used to generate equivalent atoms:

Table 7 Hydrogen bonds for cd16437 [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(1)-H(1)O(1)#1	0.87(5)	2.02(5)	2.879(5)	172(5)
C(9)-H(9A)O(4)#3	0.93	2.64	3.548(6)	152.8

Symmetry transformations used to generate equivalent atoms: #1 -x+1/2,-y+3/2,z #2 x+1/4,-y+7/4,z-1/4 #3 x-1/4,-y+7/4,z+1/4

X-ray crystal structure analysis of 5j

Table 1. Crystal data and structure refinem	ent for mo_d8v17224_0m.	
Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions	mo_d8v17224_0m C13 H15 N O3 233.26 296(2) K 0.71073 Å Monoclinic P 21/c a = 6.3499(4) Å b = 20.1527(14) Å c = 9.1657(7) Å	$\alpha = 90^{\circ}.$ $\beta = 96.921(2)^{\circ}.$ $\gamma = 90^{\circ}$
Volume Z Density (calculated) Absorption coefficient	$\begin{array}{c} 1164.37(14) \text{ Å}^{3} \\ 4 \\ 1.331 \text{ Mg/m}^{3} \\ 0.095 \text{ mm}^{-1} \\ 106 \end{array}$	y 90.
F(000) Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.242° Absorption correction Max. and min. transmission	496 0.200 x 0.160 x 0.130 mm ³ 3.232 to 24.991°. -7<=h<=7, -23<=k<=23, -10< 14539 2026 [R(int) = 0.0485] 96.2 % Semi-empirical from equivale 0.7456 and 0.6836	=l<=10 nts
Refinement method Data / restraints / parameters Goodness-of-fit on F^2 Final R indices [I>2sigma(I)] R indices (all data) Extinction coefficient Largest diff. peak and hole	Full-matrix least-squares on F 2026 / 0 / 160 1.162 R1 = 0.0594, wR2 = 0.1137 R1 = 0.0696, wR2 = 0.1190 0.032(7) 0.168 and -0.150 e.Å ⁻³	2

Crystal data and structure refinement for compound 5j

	Х	у	Z	U(eq)
N(1)	2909(3)	5536(1)	5528(2)	39(1)
O(1)	6201(2)	5386(1)	6723(2)	46(1)
O(2)	4174(2)	6160(1)	7522(2)	39(1)
O(3)	-916(2)	5991(1)	9026(2)	51(1)
C(1)	4489(3)	5672(1)	6589(2)	34(1)
C(2)	1136(3)	5950(1)	5214(2)	34(1)
C(3)	-83(4)	5912(1)	3863(3)	45(1)
C(4)	-1786(4)	6329(2)	3558(3)	58(1)
C(5)	-2271(5)	6778(2)	4595(3)	64(1)
C(6)	-1058(4)	6813(1)	5948(3)	51(1)
C(7)	669(3)	6396(1)	6290(2)	35(1)
C(8)	1993(3)	6358(1)	7761(2)	33(1)
C(9)	2294(4)	7015(1)	8583(3)	43(1)
C(10)	3656(4)	6945(1)	10057(3)	47(1)
C(11)	2721(4)	6432(1)	11004(3)	47(1)
C(12)	2533(4)	5768(1)	10215(3)	46(1)
C(13)	1157(3)	5821(1)	8748(2)	36(1)

Table 2. Atomic coordinates ($x10^4$) and equivalent isotropic displacement parameters (Å²x10³) for mo_d8v17224_0m. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

N(1)-C(1)	1338(3)
$\mathbf{N}(1) \mathbf{C}(2)$	1.330(3)
N(1)-C(2)	1.403(3)
N(1)-H(1)	0.88(3)
O(1) $C(1)$	1.224(3)
O(1)-O(1)	1.224(3)
O(2)-C(1)	1.334(2)
O(2) - C(8)	1.483(2)
O(2) - O(0)	1.403(2)
O(3)-C(13)	1.413(3)
O(3)-H(3)	0 8200
C(2) C(2)	1.291(2)
C(2) - C(3)	1.301(3)
C(2)-C(7)	1.392(3)
C(3) - C(4)	1.371(4)
C(3) $U(3)$	1.371(-1)
C(3)-H(3A)	0.9300
C(4)-C(5)	1.374(4)
$C(A) \amalg(A)$	0.0200
C(4)-11(4)	0.9300
C(5)-C(6)	1.381(4)
C(5)-H(5)	0.9300
$C(5) \Pi(5)$	1.207(2)
C(6)-C(7)	1.38/(3)
C(6)-H(6)	0.9300
C(7) $C(8)$	1.502(2)
C(7)- $C(8)$	1.505(5)
C(8)-C(9)	1.523(3)
C(8)-C(13)	1.546(3)
C(0) C(10)	1.510(3)
C(9)-C(10)	1.520(3)
C(9)-H(9A)	0.9700
C(0)-H(0B)	0.9700
	0.9700
C(10)-C(11)	1.516(3)
C(10)-H(10A)	0.9700
C(10) II(10D)	0.0700
C(10)-H(10B)	0.9700
C(11)-C(12)	1.520(3)
C(11)-H(11A)	0.9700
C(11) $H(11D)$	0.9700
C(11)-H(11B)	0.9700
C(12)-C(13)	1.516(3)
$C(12) \mathbf{\mu}(12\mathbf{A})$	0.0700
C(12)-II(12A)	0.9700
C(12)-H(12B)	0.9700
C(13)-H(13)	0 9800
C(1) N(1) C(2)	122.70(10)
C(1)-IN(1)-C(2)	122.70(19)
C(1)-N(1)-H(1)	118.0(15)
C(2) = N(1) = H(1)	1171(15)
C(2) = N(1) = H(1)	117.1(15)
C(1)-O(2)-C(8)	120.54(16)
C(13)-O(3)-H(3)	109.5
	118 88(10)
O(1) - O(1) - O(2)	110.00(17)
O(1)-C(1)-N(1)	123.7(2)
O(2)-C(1)-N(1)	117 35(19)
C(2) C(1) C(1)	121.9(2)
C(3)-C(2)-C(7)	121.8(2)
C(3)-C(2)-N(1)	120.0(2)
C(7) - C(2) - N(1)	118 20(19)
C(1) $C(2)$ $C(1)$	110.20(1)
C(4)-C(3)-C(2)	119.5(2)
C(4)-C(3)-H(3A)	120.3
$C(2) C(2) U(2 \Lambda)$	120.2
$C(2)$ - $C(3)$ - $\Pi(3A)$	140.5
C(3)-C(4)-C(5)	119.9(2)
C(3)-C(4)-H(4)	120.0
C(5) C(4) II(4)	120.0
U(3)-U(4)-H(4)	120.0
C(4)-C(5)-C(6)	120.6(2)
C(4) - C(5) - H(5)	1197
$C(1) C(3) \Pi(3)$	1107
U(0)-U(3)-H(3)	119./

Table 3. Bond lengths [Å] and angles $[\circ]$ for mo_d8v17224_0m.

C(5)-C(6)-C(7)	120.8(2)
C(5)-C(6)-H(6)	119.6
C(7)-C(6)-H(6)	119.6
C(6)-C(7)-C(2)	117.5(2)
C(6)-C(7)-C(8)	125.1(2)
C(2)-C(7)-C(8)	117.32(19)
O(2)-C(8)-C(7)	108.24(16)
O(2)-C(8)-C(9)	104.10(17)
C(7)-C(8)-C(9)	115.03(19)
O(2)-C(8)-C(13)	106.83(17)
C(7)-C(8)-C(13)	111.47(18)
C(9)-C(8)-C(13)	110.55(17)
C(10)-C(9)-C(8)	112.52(19)
C(10)-C(9)-H(9A)	109.1
C(8)-C(9)-H(9A)	109.1
C(10)-C(9)-H(9B)	109.1
C(8)-C(9)-H(9B)	109.1
H(9A)-C(9)-H(9B)	107.8
C(11)-C(10)-C(9)	110.6(2)
C(11)-C(10)-H(10A)	109.5
C(9)-C(10)-H(10A)	109.5
C(11)-C(10)-H(10B)	109.5
C(9)-C(10)-H(10B)	109.5
H(10A)-C(10)-H(10B)	108.1
C(10)-C(11)-C(12)	109.95(19)
C(10)-C(11)-H(11A)	109.7
C(12)-C(11)-H(11A)	109.7
C(10)-C(11)-H(11B)	109.7
C(12)-C(11)-H(11B)	109.7
H(11A)-C(11)-H(11B)	108.2
C(13)-C(12)-C(11)	111.4(2)
C(13)-C(12)-H(12A)	109.3
C(11)-C(12)-H(12A)	109.3
C(13)-C(12)-H(12B)	109.3
C(11)-C(12)-H(12B)	109.3
H(12A)-C(12)-H(12B)	108.0
O(3)-C(13)-C(12)	107.84(19)
O(3)-C(13)-C(8)	109.15(18)
C(12)-C(13)-C(8)	111.47(18)
O(3)-C(13)-H(13)	109.4
C(12)-C(13)-H(13)	109.4
C(8)-C(13)-H(13)	109.4

Symmetry transformations used to generate equivalent atoms

a* b* U	J ¹²]					
	U^{11}	U^{22}	U ³³	U^{23}	U^{13}	U^{12}
N(1)	34(1)	45(1)	36(1)	-14(1)	1(1)	7(1)
O(1)	33(1)	58(1)	45(1)	-12(1)	0(1)	12(1)
O(2)	30(1)	48(1)	40(1)	-15(1)	7(1)	-2(1)
O(3)	36(1)	75(1)	44(1)	-7(1)	10(1)	-13(1)
C(1)	33(1)	38(1)	32(1)	-5(1)	6(1)	1(1)
C(2)	29(1)	41(1)	32(1)	0(1)	6(1)	2(1)
C(3)	39(1)	60(2)	35(1)	-4(1)	4(1)	3(1)
C(4)	48(2)	80(2)	42(2)	7(1)	-4(1)	10(1)
C(5)	54(2)	76(2)	59(2)	9(2)	-1(1)	29(2)
C(6)	51(2)	53(2)	50(2)	-1(1)	11(1)	18(1)
C(7)	35(1)	38(1)	34(1)	2(1)	12(1)	2(1)
C(8)	32(1)	34(1)	34(1)	-4(1)	8(1)	1(1)
C(9)	57(2)	30(1)	44(1)	-4(1)	20(1)	-4(1)
C(10)	56(2)	47(2)	42(1)	-16(1)	14(1)	-15(1)
C(11)	51(2)	58(2)	33(1)	-5(1)	3(1)	-10(1)
C(12)	52(2)	46(2)	40(1)	6(1)	4(1)	-5(1)
C(13)	38(1)	33(1)	37(1)	-4(1)	4(1)	-6(1)

Table 4. Anisotropic displacement parameters ($Å^2x10^3$) for mo_d8v17224_0m. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$h^2 a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}$]

Table 5. Hydrogen coordinates $(x10^4)$ and isotropic displacement parameters $(\text{\AA}^2 x10^3)$ for mo d8v17224 0m.

	Х	у	z U(eq)	
H(3)	-1776	5856	8353	77
H(3A)	249	5607	3165	54
H(4)	-2613	6308	2649	69
H(5)	-3427	7060	4385	76
H(6)	-1402	7121	6639	61
H(9A)	2954	7331	7982	51
H(9B)	916	7189	8741	51
H(10Å)	5080	6813	9900	57
H(10B)	3745	7370	10559	57
H(11A)	1331	6577	11212	57
H(11B)	3623	6386	11931	57
H(12A)	3935	5615	10057	56
H(12B)	1923	5445	10826	56
H(13)	1125	5391	8245	43
H(1)	3150(40)	5243(12)	4850(30)	43(7)

C(8)-O(2)-C(1)-O(1)	-158.4(2)
C(8)-O(2)-C(1)-N(1)	23.3(3)
C(2)-N(1)-C(1)-O(1)	-167.1(2)
C(2)-N(1)-C(1)-O(2)	11.2(3)
C(1)-N(1)-C(2)-C(3)	159.5(2)
C(1)-N(1)-C(2)-C(7)	-20.0(3)
C(7)-C(2)-C(3)-C(4)	0.8(4)
N(1)-C(2)-C(3)-C(4)	-178.7(2)
C(2)-C(3)-C(4)-C(5)	-0.2(4)
C(3)-C(4)-C(5)-C(6)	-0.1(5)
C(4)-C(5)-C(6)-C(7)	-0.2(4)
C(5)-C(6)-C(7)-C(2)	0.8(4)
C(5)-C(6)-C(7)-C(8)	-175.2(2)
C(3)-C(2)-C(7)-C(6)	-1.1(3)
N(1)-C(2)-C(7)-C(6)	178.4(2)
C(3)-C(2)-C(7)-C(8)	175.3(2)
N(1)-C(2)-C(7)-C(8)	-5.3(3)
C(1)-O(2)-C(8)-C(7)	-44.2(2)
C(1)-O(2)-C(8)-C(9)	-167.01(18)
C(1)-O(2)-C(8)-C(13)	76.0(2)
C(6)-C(7)-C(8)-O(2)	-150.6(2)
C(2)-C(7)-C(8)-O(2)	33.4(3)
C(6)-C(7)-C(8)-C(9)	-34.7(3)
C(2)-C(7)-C(8)-C(9)	149.3(2)
C(6)-C(7)-C(8)-C(13)	92.2(3)
C(2)-C(7)-C(8)-C(13)	-83.9(2)
O(2)-C(8)-C(9)-C(10)	-61.4(2)
C(7)-C(8)-C(9)-C(10)	-179.69(19)
C(13)-C(8)-C(9)-C(10)	53.0(3)
C(8)-C(9)-C(10)-C(11)	-56.4(3)
C(9)-C(10)-C(11)-C(12)	58.1(3)
C(10)-C(11)-C(12)-C(13)	-58.6(3)
C(11)-C(12)-C(13)-O(3)	-63.8(2)
C(11)-C(12)-C(13)-C(8)	56.0(3)
O(2)-C(8)-C(13)-O(3)	179.22(16)
C(7)-C(8)-C(13)-O(3)	-62.7(2)
C(9)-C(8)-C(13)-O(3)	66.6(2)
O(2)-C(8)-C(13)-C(12)	60.2(2)
C(7)-C(8)-C(13)-C(12)	178.27(18)
C(9)-C(8)-C(13)-C(12)	-52.5(2)

Table 6. Torsion angles [°] for mo_d8v17224_0m.

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds	s for mo	_d8v17224_	_0m	[Å and °]	

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(1)-H(1)O(1)#1	0.88(3)	2.00(3)	2.882(2)	177(2)
O(3)-H(3)O(1)#2	0.82	2.08	2.893(2)	172.3

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+1,-z+1 #2 x-1,y,z

References

[1] Lane, B. S.; Vogt, M.; DeRose, V. J.; Burgess, K. J. Am. Chem. Soc. 2002, 124, 11946-11954.

[2] Rudolph, J.; Reddy, K. L.; Chiang, J. P.; Sharpless, K. B. J. Am. Chem. Soc. 1997, 119, 6189-6190.

[3] Wang, B.; Wong, O. A.; Zhao, M.-X.; Shi, Y. J. Org. Chem. 2008, 73, 9539-9543.

[4] Fan, H.; Pan, P.; Zhang, Y.; Wang, W. Org. Lett. 2018, 20, 7929-793.

[5] Ortgies, S.; Breder, A. Org. Lett. 2015,, 17, 2748-2751.

[6] Youn, S. W.; Lee, S. R. Org. Biomol. Chem. 2015, 13, 4652-4656.

[7] Theodorou, A.; Kokotos, C. G. Adv. Synth. Catal. 2017, 359, 1577-1581.

[8] Fort, D. A.; Woltering, T. J.; Nettekoven, M.; Knust, H.; Bach, T. *Chem. Commun.* **2013**, *49*, 2989-2991.

[9] Rohlmann, R.; Stopka, T.; Richter, H.; Garcia Mancheno, O. J. Org. Chem. 2013, 78, 6050-6064.

[10] Xu, W.-T.; Huang, B.; Dai, J.-J.; Xu, J.; Xu, H.-J. Org. Lett. 2016, 18, 3114-3117.

[11] Liu, J.; Liu, Q.; Yi, H.; Qin, C.; Bai, R.; Qi, X.; Lan, Y.; Lei, A. Angew. Chem., Int. Ed. 2014, 53, 502-506.

Spectral Data for the Products

NMR spectra of 3a ſ ſ

-12000 -11000

NMR spectra of 3m

NMR spectra of 5a

NMR spectra of 5b

89

NMR spectra of 5k

NMR spectra of 5l

NMR spectra of 5m

NMR spectra of 10b

NMR spectra of 10c

NMR spectra of 10d

