Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Electronic Supporting Information for: Bridging selenocarbonyl ligands: An open and shut case.

Benjamin J. Frogley,^a Anthony F. Hill*^a and Lachlan J. Watson^a

Experimental

General Considerations

Unless otherwise stated, experimental work was carried out at room temperature under a dry and oxygen-free nitrogen atmosphere using standard Schlenk techniques with dried and degassed solvents.

NMR spectra were obtained on a Bruker Avance 400 (¹H at 400.1 MHz, ¹³C at 100.6 MHz, ¹⁹F at 376.5 MHz), a Bruker Avance 600 (¹H at 600.0 MHz, ¹³C at 150.9 MHz) or a Bruker Avance 700 (¹H at 700.0 MHz, ¹³C at 176.1 MHz) spectrometers at the temperatures indicated. Chemical shifts (δ) are reported in ppm with coupling constants given in Hz and are referenced to the solvent peak, or external references ((PhSe)₂ for ⁷⁷Se, 1.2 M Na₂PtCl₆ in D₂O for ¹⁹⁵Pt). The multiplicities of NMR resonances are denoted by the abbreviations s (singlet), d (doublet), t (triplet), m (multiplet), br (broad) and combinations thereof for more highly coupled systems. Where applicable, the stated multiplicity refers to that of the primary resonance exclusive of ⁷⁷Se, ⁷⁹Se, ¹⁹⁵Pt or ¹⁸³W satellites. In some cases, distinct peaks were observed in the ¹H and ¹³C{¹H} NMR spectra, but to the level of accuracy that is reportable (i.e. 2 decimal places for ¹H NMR, 1 decimal place for ¹³C NMR) they are reported as having the same chemical shift. The abbreviation 'pz' is used to refer to the pyrazolyl rings on the hydrotris(3,5-dimethylpyrazol-1yl)borate (Tp*) ligand. Spectra provided generally correspond to samples obtained directly from chromatography and may contain residual solvent as recrystallised samples often display reduced solubility.

Infrared spectra were obtained using a PerkinElmer Spectrum One FT-IR spectrometer. The strengths of IR absorptions are denoted by the abbreviations vs (very strong), s (strong), m (medium), w (weak), sh (shoulder) and br (broad). Elemental microanalytical data were provided the London

* Corresponding author. E-mail: a.hill@anu.edu.au

Metropolitan University. High-resolution electrospray ionisation mass spectrometry (ESI-MS) was performed by the ANU Research School of Chemistry mass spectrometry service with acetonitrile or methanol as the matrix.

Data for X-ray crystallography were collected with an Agilent Xcalibur CCD diffractometer an Agilent SuperNova CCD diffractometer using Mo-K α radiation (λ = 0.71073 Å) or Cu-K α radiation (λ = 1.54184 Å) and the CrysAlis PRO software.¹ The structures were solved by direct or Patterson methods and refined by full-matrix least-squares on F^2 using the SHELXS or SHELXT and SHELXL programs.² Hydrogen atoms were located geometrically and refined using a riding model. Diagrams were produced using the CCDC visualisation program Mercury.³

The synthesis of the tungsten selenocarbonylate $[W(CSe)(CO)_2(Tp^*)]NEt_4$ [1]NEt₄ has been described previously.⁴ The complexes $[PtCl_2(COD)]$ (COD = 1,5-cyclooctadiene),⁵ $[PtCl_2(NBD)]$ (NBD = norbornadiene, bicyclo[2.2.1]hepta-2,5diene)⁶ and $[AuCl(SMe_2)]^7$ were prepared according to literature procedures.

Synthesis of $[W_2Pt(\mu_2-CSe)_2(COD)(CO)_4(Tp^*)_2]$ (2). A solution of [1]NEt₄ (200 mg, 0.276 mmol) and [PtCl₂(COD)] (52 mg, 0.14 mmol) in CH₂Cl₂ (20 mL) was stirred at RT for 5 min. After this time, ethanol (20 mL) was added and the CH₂Cl₂ was removed under reduced pressure. The resulting precipitate was collected by filtration and washed with ethanol (50 mL) and petroleum spirits (40-60 °C, 60 mL) to give a brick red solid of pure 2 (156 mg, 0.0999 mmol, 72%). IR (CH₂Cl₂, cm⁻¹): 1964s, 1876s v_{CO} . ¹H NMR (400 MHz, CDCl₃, 298 K): δ_{H} = 5.85 (s, 4H, pzCH), 5.77 (br m, 4H, COD{=CH}), 5.70 (s, 2H, pzCH), 2.66 (s, 12H, pzCH₃), 2.45 (br m, 4H, COD{CH₂}), 2.34 (s, 18H, pzCH₃), 2.28 (s, 6H, pzCH₃), 2.11 (br m, 4H, COD{CH₂}). ¹³C{¹H} NMR (176 MHz, CDCl₃, 298 K): δ_{C} = 266.6 (WCSe), 226.6 (WCO), 152.9, 152.1, 145.0, 144.2 (pzCCH₃), 106.5 (pzCH), 100.3 (COD{=CH}, $^2J_{\rm CPt}$ = 2230), 30.9 (COD{CH_2}, $^3J_{\rm CPt}$ = 292), 16.8, 16.3, 12.8, 12.7 (pzCH₃). ¹⁹⁵Pt NMR (86 MHz, CDCl₃, 298 K): δ_{Pt =} –3839. ⁷⁷Se NMR (76 MHz, CDCl₃, 298 K): δ_{se} = 597. MS (ESI, +ve ion, *m/z*): Found: 1582.1666. Calcd for C₄₄H₅₆¹¹B₂N₁₂NaO₄¹⁹⁵Pt⁸⁰Se₂¹⁸⁴W₂ [M+Na]⁺: 1582.1654. Anal. Found: C, 34.02; H, 3.75; N, 10.82. Calcd for C₄₄H₅₆B₂N₁₂O₄PtSe₂W₂: C, 33.89; H, 3.62; N, 10.78%.

^{e.} Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, ACT 2601, Australia.

CCDC 1949481–1949485 contain the supplementary crystallographic data for this paper, and are available free of charge from The Cambridge Crystallographic Data Centre.

Synthesis of $[W_2Pt(\mu_2-CSe)_2(NBD)(CO)_4(Tp^*)_2]$ (3). A solution of [1]NEt₄ (300 mg, 0.414 mmol) and [PtCl₂(NBD)] (75 mg, 0.21 mmol) in CH₂Cl₂ (20 mL) was stirred at RT for 20 min. After this time, ethanol (20 mL) was added and the CH₂Cl₂ was removed under reduced pressure. The resulting precipitate was collected by filtration and washed with ethanol (20 mL) and petroleum spirits (40-60 °C, 40 mL) to give a brown solid of pure 3 (250 mg, 0.143 mmol, 69%). IR (CH₂Cl₂, cm⁻¹): 1972s, 1873s v_{CO} . ¹H NMR (400 MHz, CDCl₃, 298 K): δ_{H} = 5.86 (s, 4H, pzCH), 5.71 (s, 2H, pzCH), 5.50 (br s, 2H, ²J_{PtH} = 55, NBD{=CH}), 4.13 (br m, 2H, NBD{CH}), 2.64 (s, 12H, pzCH₃), 2.34 (s, 12H, pzCH₃), 2.34 (s, 6H, pzCH₃), 2.29 (s, 6H, pzCH₃), 1.62 (br m, 2H, NBD{CH₂}). ¹³C{¹H} NMR (176 MHz, CDCl₃, 298 K): δ_C = 268.8 (W*C*Se), 227.4 (WCO), 152.9, 152.1, 145.1, 144.2 (pzCCH₃), 106.6 (pzCH), 78.9 (NBD{=CH}), 70.2 (NBD{CH}), 50.0 (NBD{CH₂} 16.8, 16.3, 12.8, 12.7 (pzCH₃). ¹⁹⁵Pt NMR (86 MHz, CDCl₃, 298 K): δ_{Pt =} -3724. ⁷⁷Se NMR (76 MHz, CDCl₃, 298 K): δ_{Se} = 660. MS (ESI, +ve ion, *m/z*): Found: 1566.1343. Calcd for $C_{43}H_{52}^{11}B_2N_{12}NaO_4^{195}Pt^{80}Se_2^{184}W_2$ [M+Na]⁺: 1566.1348. Anal. Found: C, 33.45; H, 3.28; N, 10.73. Calcd for C43H52B2N12O4PtSe2W2: C, 33.47; H, 3.40; N, 10.89%. A crystal suitable for structure determination was grown by vapour diffusion of *n*-hexane into a CH_2Cl_2 solution at -20 °C. Crystal data for C₄₅H₅₆B₂Cl₄N₁₂O₄PtSe₂W₂ (M = 1713.14 g.mol⁻ ¹): monoclinic, space group C2/c (no. 15), *a* = 17.0574(3), *b* = 10.5308(3), c = 31.2176(8) Å, $\theta = 91.680(2)^{\circ}$, V = 5605.1(2) Å³, Z = 4, T = 150.0(1) K, μ (CuK α) = 15.658 mm⁻¹, Dcalc = 2.030 g.cm^-3, 13783 reflections measured (9.872° \leq 20 \leq 144.238°), 5488 unique ($R_{int} = 0.0517$, $R_{sigma} = 0.0742$) which were used in all calculations. The final R_1 was 0.0425 (I > 2 σ (I)) and wR₂ was 0.0926 (all data) for 336 refined parameters with 0 restraints. CCDC 1949481.

Synthesis of [W2Pt(µ2-CSe)2(CO)4(Tp*)2] (4). A solution of 3 (142 mg, 0.0919 mmol) in toluene (50 mL) was heated under reflux for 90 mins. After cooling to RT, the volatiles were removed in vacuo to give a purple solid of pure 4 (113 mg, 0.0777 mmol, 85%). The same product can be obtained from 2 on refluxing in toluene for 5 h. Purification (if required) can be performed on a short (4 x 6 cm) silica plug, eluting the first red band with 20% v/v CH₂Cl₂/petroleum spirits (40–60 $^{\circ}$ C). IR (CH₂Cl₂, cm⁻¹): 1972s, 1895s v_{CO}. ¹H NMR (700 MHz, CDCl₃, 298 K): $\delta_{H} = 5.83$ (s, 4H, pzCH), 5.82 (s, 2H, pzCH), 2.43 (s, 12H, pzCH₃), 2.42 (s, 6H, pzCH₃), 2.32 (s, 6H, pzCH₃), 2.23 (s, 12H, pzCH₃). ¹³C{¹H} NMR (176 MHz, CDCl₃, 298 K): δ_C = 261.3 (WCSe), 218.6 (WCO), 153.8, 152.7, 145.5, 144.5 (pzCCH₃), 107.5, 107.4 (pzCH), 17.1, 15.9, 13.1, 12.9 (pzCH₃). The ¹⁹⁵Pt NMR resonance was not identified. ⁷⁷Se NMR (76 MHz, CDCl₃, 298 K): δ_{Se} = 501.8 (tentative). MS (ESI, +ve ion, m/z): Found: 1451.0798. Calcd. for $C_{36}H_{44}{}^{11}B_2N_{12}O_4{}^{195}Pt{}^{80}Se_2{}^{184}W_2 \quad [M-e^-]^+: \quad 1451.0822. \quad \text{Anal}.$ Found: C, 29.63; H, 2.91; N, 11.45. Calcd for $C_{36}H_{44}B_2N_{12}O_4PtSe_2W_2$: C, 29.80; H, 3.06; N, 11.58%. A crystal suitable for structure determination was grown by slow evaporation of a CH_2CI_2 solution at -20 °C. Crystal data for $C_{38}H_{48}B_2Cl_4N_{12}O_4PtSe_2W_2$ (*M* = 1621.01 g.mol⁻¹): monoclinic, space group P2₁/n (no. 14), a = 12.4389(3), b = 13.8519(4), c = 14.2608(3) Å, $\beta = 90.601(2)^{\circ}$, V = 2457.04(11) Å³, Z = 2, T =150.0(1) K, μ (CuK α) = 17.809 mm⁻¹, *Dcalc* = 2.191 g.cm⁻³, 13477 reflections measured (8.9° $\leq 2\Theta \leq 141.6^{\circ}$), 4651 unique ($R_{int} =$ 0.0365, $R_{sigma} = 0.0416$) which were used in all calculations. The final R_1 was 0.0434 (I > 2 σ (I)) and wR_2 was 0.1229 (all data) for 305 refined parameters with 0 restraints. CCDC 1949482.

Synthesis of [W₂Pt(µ₂-CSe)₂(CN^tBu)₂(CO)₄(Tp*)₂] (5). To a solution of 3 (50 mg, 0.032 mmol) in MeCN (10 mL) was added ^tBuNC (2 drops) and the resulting mixture was stirred for 1 h at RT. After this time, the resulting orange precipitate was collected by filtration, washed with MeCN (10 mL) and petroleum spirits (40-60°C, 20 mL) and dried in vacuo to give an orange solid of pure 5 (23 mg, 0.014 mmol, 44%). IR (CH₂Cl₂, cm⁻ ¹): 2205m, 2193sh v_{CN}, 1951s, 1864s v_{CO}. ¹H NMR (700 MHz, CDCl₃, 298 K): δ_H = 5.83 (s, 4H, pzCH), 5.71 (s, 2H, pzCH), 2.70 (s, 12H, pzCH₃), 2.40 (s, 6H, pzCH₃), 2.31 (s, 12H, pzCH₃), 2.28 (s, 6H, pzCH₃), 1.12 (s, 18H, C(CH₃)₃). ¹³C{¹H} NMR (176 MHz, CDCl₃, 298 K): δ_c = 289.0 (WCSe), 224.7 (WCO), 152.8, 152.4, 144.6, 143.9 (pzCCH₃), 106.5, 106.4 (pzCH), 58.7 (NC(CH₃)₃), 29.4 (NC(CH₃)₃), 17.1, 15.5, 12.7 (pzCH₃). The carbyne (WCSe) carbon assignment was confirmed by a correlation with pzCH₃ protons in the ¹H-¹³C HMBC spectrum. ¹⁹⁵Pt and ⁷⁷Se NMR resonances could not be located, presumably due to the poor solubility of 5 in all common organic solvents. MS (ESI, +ve ion, m/z): Found: 1620.2314. Calcd. for C₄₆H₆₃¹¹B₂N₁₄O₄¹⁹⁵Pt⁸⁰Se₂¹⁸⁴W₂ [M+H]⁺: 1620.2340. Anal. Found: C, 34.35; H, 3.76; N, 12.00. Calcd for C46H62B2N14O4PtSe2W2: C, 34.16; H, 3.86; N, 12.12%. A crystal suitable for structure determination was grown by vapour diffusion of *n*-hexane into a CH₂Cl₂ solution at -20 °C. Crystal data for $C_{46}H_{62}B_2N_{14}O_4PtSe_2W_2$ (*M* = 1617.42 g.mol⁻): monoclinic, space group P21/n (no. 14), a = 10.4524(6), b = 16.4733(10), c = 16.6029(12) Å, β = 99.080(6)°, V = 2823.0(3) Å³, $Z = 2, T = 150.0(1) \text{ K}, \mu(\text{MoK}\alpha) = 7.879 \text{ mm}^{-1}, Dcalc = 1.903 \text{ g.cm}^{-1}$ ³, 14762 reflections measured (7.012° $\leq 2\Theta \leq 52.74^{\circ}$), 5771 unique ($R_{int} = 0.0511$, $R_{sigma} = 0.0767$) which were used in all calculations. The final R_1 was 0.0386 (I > $2\sigma(I)$) and wR_2 was 0.0640 (all data) for 332 refined parameters with 0 restraints. CCDC 1949483.

Synthesis of $[W_2Pt(\mu_2-CSe)_2(CNMes)_2(CO)_4(Tp^*)_2]$ (6). A solution of 3 (20 mg, 0.013 mmol) and CNMes (5 mg, 0.03 mmol) in acetonitrile (5 mL) was stirred for 10 min. The resulting orange precipitate was collected by filtration, washed with MeCN (15 mL) and petroleum spirits (40-60 °C) (40 mL) to give an orange solid of pure 6 (13 mg, 0.0075 mmol, 58%). IR (CH₂Cl₂, cm⁻¹): 2184m v_{NC} , 1954s, 1864s v_{CO} . ¹H NMR (700 MHz, CDCl₃, 298 K): δ_H = 6.76 (s, 4H, Mes{CH}), 5.65 (s, 2H, pzCH), 5.59 (s, 4H, pzCH), 2.64 (s, 12H, pzCH₃), 2.32 (s, 6H, pzCH₃), 2.28 (s, 6H, pzCH₃), 2.27 (s, 12H, pzCH₃), 2.24 (s, 6H, Mes{p-CH₃}), 2.13 (s, 12H, Mes{o-CH₃}). ¹³C{¹H} NMR (176 MHz, CDCl₃, 298 K): δ_{C} = 224.9 (WCO), 152.6, 152.3, 144.6, 143.6 (pzCCH₃), 143.6 (CNMes), 140.0 (CN{p-Mes}), 136.3 (CN{o-Mes}), 128.4 (CN{m-Mes}), 123.5 (CN{i-Mes}, br, tentative), 106.3, 106.2 (pzCH), 21.5 (Mes{p-CH₃}), 18.3 (Mes{o-CH₃}), 17.1, 15.4, 12.7 (pzCH₃). Carbyne carbon (WCSe), platinum and selenium resonances were not unequivocally identified in the ¹³C{¹H}, ¹⁹⁵Pt and ⁷⁷Se NMR spectra respectively due to poor solubility of 6 in all common organic solvents. MS (ESI, +ve ion, m/z): Found: for $C_{56}H_{66}^{11}B_2N_{14}O_4^{195}Pt^{80}Se_2^{184}W_2Na$ 1764.2493. Calcd. [M+Na]⁺: 1764.2487.

COMMUNICATION

Synthesis of $[W_2PtAu_2(\mu_3-CSe)_2Cl_2(COD)(CO)_4(Tp^*)_2]$ (7). A solution of 2 (100 mg, 0.0640 mmol) and [AuCl(SMe₂)] (34 mg, 0.12 mmol) in CH₂Cl₂ (15 mL) was stirred at RT for 5 min. After this time, the mixture was filtered through a pad of diatomaceous earth, which was washed with CH_2Cl_2 until the filtrate ran clear. To the filtrate was added petroleum spirits (40-60 °C, 10 mL) and the CH₂Cl₂ was removed under reduced pressure. The resulting precipitate was collected by filtration and washed with petrol (5 mL) to give an orange microcrystalline solid of pure 7 (82 mg, 0.041 mmol, 63%). IR (CH₂Cl₂, cm⁻¹): 1988s, 1904s v_{CO}. ¹H NMR (700 MHz, CDCl₃, 298 K): $\delta_{H} = 6.10$ (br m, 4H, COD{=CH}), 5.90 (s, 4H, pzCH), 5.86 (s, 2H, pzCH), 2.90 (br m, 4H, COD{CH₂}), 2.64 (s, 12H, pzCH₃), 2.45 (s, 6H, pzCH₃), 2.35 (s, 12H, pzCH₃), 2.35 (br m, 4H, COD{CH₂}), 2.31 (s, 6H, pzCH₃). ¹³C{¹H} NMR (176 MHz, CDCl₃, 298 K): δ_C = 257.1 (WCSe), 217.1 (WCO, ¹J_{WC} = 157), 153.1, 153.0, 145.6, 145.1 (pzCCH₃), 107.9, 107.5 (pzCH), 100.2 (COD{=CH}), 31.1 (COD{CH₂}), 18.2, 16.0 13.1, 12.9 (pzCH₃). ¹⁹⁵Pt NMR (150 MHz, CDCl₃, 298 K): $\delta_{Pt} = -3701$. ⁷⁷Se NMR (134 MHz, CDCl₃, 298 K): δ_{Se} = 545. MS (ESI, +ve ion, m/z): Found: 1989.0758. Calcd for $C_{44}H_{56}Au_{2}{}^{11}B_{2}{}^{35}CIN_{12}O_{4}{}^{195}Pt{}^{80}Se_{2}{}^{184}W_{2} \hspace{0.5cm} [M-CI]^{+} \hspace{-0.5cm}: \hspace{0.5cm} 1989.0776.$ Anal. Found: C, 26.45; H, 2.39; N, 7.94. Calcd for $C_{44}H_{56}Au_{2}B_{2}Cl_{2}N_{12}O_{4}PtSe_{2}W_{2}\text{: }C,\ 26.11\text{; }H,\ 2.79\text{; }N,\ 8.30\%. \ A$ crystal suitable for structure determination was grown by vapour diffusion of *n*-hexane into a CH_2Cl_2 solution at -20 °C. Crystal data for $C_{48}H_{64}Au_2B_2CI_{10}N_{12}O_4PtSe_2W_2$ (M = 2363.87 g.mol⁻¹): monoclinic, space group $P2_1/c$ (no. 14), a =20.1587(9) Å, b = 19.5305(6), c = 19.4821(8), $\theta = 117.307(6)^{\circ}$, V = 6815.5(6) Å³, Z = 4, T = 150.0(1) K, μ(MoKα) = 11.208 mm⁻¹, Dcalc = 2.304 g.cm⁻³, 31925 reflections measured ($6.46^{\circ} \le 2\Theta \le$ 50.052°), 12015 unique ($R_{int} = 0.0480$, $R_{sigma} = 0.0668$) which were used in all calculations. The final R_1 was 0.0358 (I > 2 σ (I)) and wR₂ was 0.0695 (all data) for 756 refined parameters with 50 restraints. CCDC 1949484.

Synthesis of [W₂PtAu₂(µ₃-CSe)₂Cl₂(NBD)(CO)₄(Tp*)₂] (8). A solution of 3 (57 mg, 0.037 mmol) and [AuCl(SMe2)] (23 mg, 0.078 mmol) in CH₂Cl₂ (10 mL) was stirred at RT for 5 min. After this time, the mixture was filtered through a pad of diatomaceous earth, which was washed with CH_2Cl_2 until the filtrate ran clear. To the filtrate was added ethanol (5 mL) and the CH₂Cl₂ was removed under reduced pressure. The resulting orange precipitate was collected by filtration, washed with ethanol (5 mL) and *n*-hexane (30 mL), and dried in vacuo to give an orange solid of pure 8 (24 mg, 0.012 mmol, 32%). A second crop of slightly reduced purity was collected by further reduction of the filtrate solvent volume under reduced pressure (29 mg, 0.014 mmol, 39%). IR (CH₂Cl₂, cm⁻¹): 2010m, 1932m v_{co}. ^1H NMR (400 MHz, CDCl_3, 298 K): δ_{H} = 6.21 (br m, 4H, NBD{=CH}), 5.94 (s, 4H, pzCH), 5.86 (s, 2H, pzCH), 4.37 (br m, 2H, NBD{CH}), 2.62 (s, 12H, pzCH₃), 2.55 (s, 6H, pzCH₃), 2.45 (s, 12H, pzCH₃), 2.31 (s, 6H, pzCH₃), 1.64 (br m, 2H, NBD{CH₂}). ¹³C{¹H} NMR (176 MHz, CDCl₃, 298 K): δ_C = 255.2 (W*C*Se), 217.0 (W*C*O, ¹J_{CW} = 162), 153.1, 153.0, 145.6, 145.1 (pzCCH₃), 107.9, 107.5 (pzCH), 87.2 (NBD{=CH}), 70.6 (NBD{CH}), 50.0 (NBD{CH₂}), 18.2, 16.0 13.1, 12.9 (pzCH₃). ¹⁹⁵Pt NMR (150 MHz, CDCl₃, 298 K): δ_{Pt} $_{=}$ –3594. ⁷⁷Se NMR (134 MHz, CDCl₃, 298 K): δ_{Se} = 587. MS (ESI, +ve ion, m/z): Found: 1847.0147 (z=2). Calcd for $C_{72}H_{88}Au_6^{11}B_4N_{24}O_8^{80}Se_4^{184}W_4$ [4[1]⁻⁺6Au⁺]²⁺: 1847.0180. MS (ESI, +ve ion, *m/z*): Found: 3497.0551 (z=1). Calcd for $C_{72}H_{88}Au_5^{11}B_4N_{24}O_8^{80}Se_4^{184}W_4$ [4[1]⁻+5Au⁺]²⁺: 3497.0693. NB: The complex apparently decomposes during ESI mass spectrometry conditions to give clusters comprised of the tungsten selenocarbonyls and gold(I) cations.

Synthesis of [W(=CSeCH2CI)(CO)2(Tp*)] (9). A solution of $[1]NEt_4$ (100 mg, 0.138 mmol) in CH_2Cl_2 (20 mL) was stirred for 5 h, during which time the initially yellow solution turned brown. After this time, the solvent was removed under reduced pressure, the residue was extracted with toluene and filtered through a pad of diatomaceous earth. The solvent was once more removed under reduced pressure to give a brown solid of pure 9 (91 mg, 0134 mmol, 97%). IR (CH₂Cl₂, cm⁻¹): 1983s, 1893s v_{CO} . ¹H NMR (400 MHz, CDCl₃, 298 K): δ_{H} = 5.91 (s, 2H, pzCH), 5.78 (s, 1H, pzCH), 5.04 (s, ²J_{HSe} = 13, 2H, SeCH₂Cl), 2.57 (s, 6H, pzCH₃), 2.41 (s, 3H, pzCH₃), 2.37 (s, 6H, pzCH₃), 2.32 (s, 3H, pzCH₃). ¹³C{¹H} NMR (176 MHz, CDCl₃, 298 K): δ_C = 247.3 (W*C*Se, ${}^{1}J_{CW}$ = 219, ${}^{1}J_{CSe}$ = 184), 224.0 (WCO, ${}^{1}J_{CW}$ = 166), 152.7, 152.2, 145.5, 144.6 (pzCCH₃), 106.9, 106.7 (pzCH), 37.7 (SeCH₂Cl, ¹J_{CSe} = 99.0), 16.8, 15.4, 12.8, 12.8 (pzCH₃). ⁷⁷Se NMR (76 MHz, CDCl₃, 298 K): $\delta_{se} = 673$ (t, ${}^{2}J_{seH} = 13$ Hz). MS (ESI, +ve ion, m/z): Found: 701.0294. Calcd for $C_{19}H_{24}^{11}B^{35}CIN_6NaO_2^{80}Se^{184}W$ [M+Na]⁺: 701.0305. Anal. Found: C, 33.74; H, 3.29; N, 12.51. Calcd for C₁₉H₂₄BClN₆O₂SeW: C, 33.68; H, 3.57; N, 12.40%.

Synthesis of [WAu(µ-CSeCH₂Cl)Cl(CO)₂(Tp*)] (10). A solution of 9 (45 mg, 0.066 mmol) and [AuCl(SMe₂)] (22 mg, 0.077 mmol) in CH_2Cl_2 (10 mL) was stirred for 10 min with protection from light. After this time, the mixture filtered through a pad of diatomaceous earth, which was washed with CH₂Cl₂ until the filtrate ran clear. The solvent was removed under reduced pressure to give a brown solid of pure 10 (42 mg, 0.046 mmol, 70%). IR (CH₂Cl₂, cm⁻¹): 2008s, 1926s v_{CO}. ¹H NMR (600 MHz, CDCl₃, 298 K): δ_{H} = 5.96 (s, 2H, pzCH), 5.93 (s, 1H, pzCH), 5.23 (s, ${}^{2}J_{HSe}$ = 15 Hz, 2H, SeCH₂Cl), 2.50 (s, 6H, pzCH₃), 2.46 (s, 3H, pzCH₃), 2.38 (s, 6H, pzCH₃), 2.35 (s, 3H, pzCH₃). ¹³C{¹H} NMR (151 MHz, CDCl₃, 298 K): δ_{C} = 245.4 (W*C*Se, ¹*J*_{WC} = 101), 216.2 (WCO, ${}^{1}J_{WC}$ = 156), 153.4, 152.8, 146.4, 145.8 (pzCCH₃), 108.4, 107.9 (pzCH), 42.8 (SeCH₂Cl, ¹J_{SeC} = 96), 17.5, 15.9, 13.2, 12.8 (pzCH₃). ⁷⁷Se NMR (76 MHz, CDCl₃, 298 K): δ_{Se} = 702 (t, ²J_{SeH} = 15 Hz). MS (ESI, +ve ion, *m/z*): Found: 916.0346. Calcd. for $C_{21}H_{27}Au^{11}B^{35}N_7O_2^{80}Se^{184}WCH_3CN$ [M–Cl+CH₃CN]⁺: 916.0342. Anal. Found: C, 25.12; H, 2.74; N 9.11. Calcd for $C_{19}H_{24}AuBCIN_6O_2SeW \cdot CH_2CI_2$: C, 24.93; H, 2.73; N, 8.76%. A crystal suitable for structure determination was grown by slow evaporation of a CH₂Cl₂ solution at -20 °C and proved to be a dichloromethane solvate. Crystal data for $C_{20}H_{26}AuBCl_4N_6O_2SeW$ (*M* = 994.85 g.mol⁻¹): monoclinic, space group P2₁ (no. 4), a = 14.1718(3), b = 15.5447(4), c = 15.4562(4) Å, $\beta = 106.216(2)^{\circ}$, $V = 3269.48(14) Å^{3}$, Z = 4, $T = 106.216(2)^{\circ}$ 150.0(1) K, μ(CuKα) = 19.228 mm⁻¹, *Dcalc* = 2.021 g.cm⁻³, 11885 reflections measured (7.488° \leq 20 \leq 133.184°), 8266 unique (R_{int} = 0.0343, R_{sigma} = 0.0581) which were used in all calculations. The final R_1 was 0.0438 (I > $2\sigma(I)$) and wR_2 was 0.1211 (all data) for 664 refined parameters with 669 restraints. CCDC 1949485.

Figure ESI-1. Molecular structure of **10** in a crystal of **10**- CH_2Cl_2 showing 50% thermal probability ellipsoids. Pyrazolyl groups are simplified and solvent are not shown for clarity. Selected distances [Å] and angles [°]: W1–C1 1.933(17), W1–Au1 2.7737(7), C1–Au1 2.029(18), Au1–Cl1 2.283(5), C1–Se1 1.843(18), Se1–C4 1.92(2), W1–C1–Se1 145.8(10), C1–Se1–C4 99.5(9). Inset = alternative view of core.

Notes and references

- 1. CrysAlis PRO, Agilent Technologies Ltd, Yarnton, Oxfordshire, England, 2014.
- (a) G. Sheldrick, Acta Crystallogr. Sect. A: Found. Crystallogr., 2008, 64, 112-122; (b) G. M. Sheldrick, Acta Crystallogr. Sect. C: Cryst. Struct. Commun., 2015, 71, 3-8.
- (a) C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler and J. van de Streek, *J. Appl. Crystallogr.*, 2006, **39**, 453-457; (b) C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek and P. A. Wood, *J. Appl. Crystallogr.*, 2008, **41**, 466-470.
- B. J. Frogley, A. F. Hill and L. J. Watson, *Dalton Trans.*, 2019, 48, 12598-12606.
- 5. J. X. McDermott, J. F. White and G. M. Whitesides, J. Am. Chem. Soc., 1976, **98**, 6521-6528.
- A. Lüning, M. Neugebauer, V. Lingen, A. Krest, K. Stirnat, G. B. Deacon, P. R. Drago, I. Ott, J. Schur, I. Pantenburg, G. Meyer and A. Klein, *Eur. J. Inorg. Chem.*, 2015, 2015, 226-239.
- 7. R. Uson, A. Laguna, M. Laguna , D. A. Briggs , H. H. Murray and J. P. Fackler Jr, in *Inorg. Synth.*, ed. H. D. Kaesz, 2007, ch. 17.

IR (CH₂Cl₂, cm⁻¹) for $[W_2Pt(\mu_2-CSe)_2(COD)_2(CO)_4(Tp^*)_2]$ (2).

Chemical Communications

¹H NMR (400 MHz, CDCl₃, 298 K) for $[W_2Pt(\mu_2$ -CSe)₂(COD)₂(CO)₄(Tp*)₂] (**2**).

6 | Chem. Commun., 2019, **00**, 1-3

This journal is © The Royal Society of Chemistry 2019

This journal is © The Royal Society of Chemistry 2019

Chem. Commun., 2019, **00**, 1-3 | **7**

icase do not adjust margins

COMMUNICATION

Chemical Communications

¹⁹⁵Pt NMR (86 MHz, CDCl₃, 298 K) for $[W_2Pt(\mu_2-CSe)_2(COD)_2(CO)_4(Tp^*)_2]$ (2).

This journal is © The Royal Society of Chemistry 2019

8 | Chem. Commun., 2019, 00, 1-3

Chemical Communications

COMMUNICATION

⁷⁷Se NMR (76 MHz, CDCl₃, 298 K) for [W₂Pt(µ₂-CSe)₂(COD)₂(CO)₄(Tp*)₂] (2).

This journal is © The Royal Society of Chemistry 2019

Chem. Commun., 2019, **00**, 1-3 | **9**

Please do not adjust margins

IR (CH₂Cl₂, cm⁻¹) for $[W_2Pt(\mu_2-CSe)_2(NBD)_2(CO)_4(Tp^*)_2]$ (3).

10 | Chem. Commun., 2019, 00, 1-3

Chemical Communications

COMMUNICATION

This journal is © The Royal Society of Chemistry 2019

Chem. Commun., 2019, **00**, 1-3 | **11**

This journal is © The Royal Society of Chemistry 2019

12 | Chem. Commun., 2019, 00, 1-3

Chemical Communications

COMMUNICATION

COMMUNICATION

Chemical Communications

 $^{195} Pt$ NMR (86 MHz, CDCl_3, 298 K) for $[W_2 Pt(\mu_2 \text{-}CSe)_2 (NBD)_2 (CO)_4 (Tp^*)_2]$ (3).

This journal is © The Royal Society of Chemistry 2019

Chem. Commun., 2019, **00**, 1-3 | **13**

COMMUNICATION

Chemical Communications

14 | Chem. Commun., 2019, 00, 1-3

This journal is © The Royal Society of Chemistry 2019

IR (CH₂Cl₂, cm⁻¹) for $[W_2Pt(\mu_2-CSe)_2(CO)_4(Tp^*)_2]$ (4).

This journal is © The Royal Society of Chemistry 2019

COMMUNICATION

Chemical Communications

This journal is © The Royal Society of Chemistry 2019

^{16 |} Chem. Commun., 2019, 00, 1-3

Chemical Communications

COMMUNICATION

¹³C{¹H} NMR (176 MHz, CDCl₃, 298 K) for $[W_2Pt(\mu_2-CSe)_2(CO)_4(Tp^*)_2]$ (4).

This journal is © The Royal Society of Chemistry 2019

COMMUNICATION

Chemical Communications

 ^{77}Se NMR (76 MHz, CDCl₃, 298 K) for $[W_2Pt(\mu_2\text{-}CSe)_2(CO)_4(Tp^*)_2]$ (4).

18 | Chem. Commun., 2019, **00**, 1-3

This journal is © The Royal Society of Chemistry 2019

IR (CH₂Cl₂, cm⁻¹) for $[W_2Pt(\mu_2-CSe)_2(CN^tBu)_2(CO)_4(Tp^*)_2]$ (5).

This journal is © The Royal Society of Chemistry 2019

Chemical Communications

20 | Chem. Commun., 2019, 00, 1-3

This journal is © The Royal Society of Chemistry 2019

Chemical Communications

COMMUNICATION

 $^{13}C\{^{1}H\}$ NMR (176 MHz, CDCl_3, 298 K) for $[W_2Pt(\mu_2\text{-}CSe)_2(CN^tBu)_2(CO)_4(Tp^*)_2]$ (5).

This journal is © The Royal Society of Chemistry 2019

22 | Chem. Commun., 2019, 00, 1-3

This journal is © The Royal Society of Chemistry 2019

COMMUNICATION

IR (CH₂Cl₂, cm⁻¹) for $[W_2Pt(\mu_2-CSe)_2(CNMes)_2(CO)_4(Tp^*)_2]$ (6).

This journal is © The Royal Society of Chemistry 2019

Chemical Communications

24 | Chem. Commun., 2019, 00, 1-3

This journal is © The Royal Society of Chemistry 2019

COMMUNICATION

This journal is © The Royal Society of Chemistry 2019

Chem. Commun., 2019, **00**, 1-3 | **25**

IR (CH₂Cl₂, cm⁻¹) for $[W_2PtAu_2(\mu_3-CSe)_2Cl_2(COD)(CO)_4(Tp^*)_2]$ (7).

26 | Chem. Commun., 2019, 00, 1-3

This journal is © The Royal Society of Chemistry 2019

Chemical Communications

COMMUNICATION

¹H NMR (700 MHz, CDCl₃, 298 K) for [W₂PtAu₂(µ₃-CSe)₂Cl₂(COD)(CO)₄(Tp*)₂] (**7**).

This journal is © The Royal Society of Chemistry 2019

Chem. Commun., 2019, **00**, 1-3 | **27**

28 | Chem. Commun., 2019, 00, 1-3

This journal is © The Royal Society of Chemistry 2019

COMMUNICATION

Chemical Communications

Chem. Commun., 2019, 00, 1-3 | 29

This journal is © The Royal Society of Chemistry 2019

COMMUNICATION

Chemical Communications

Please do not adjust margins

30 | Chem. Commun., 2019, **00**, 1-3

This journal is © The Royal Society of Chemistry 2019

IR (CH₂Cl₂, cm⁻¹) for [W₂PtAu₂(μ_3 -CSe)₂Cl₂(NBD)(CO)₄(Tp^{*})₂] (8).

This journal is © The Royal Society of Chemistry 2019

COMMUNICATION

Chemical Communications

¹H NMR (700 MHz, CDCl₃, 298 K) for [W₂PtAu₂(µ₃-CSe)₂Cl₂(NBD)(CO)₄(Tp*)₂] (8).

32 | Chem. Commun., 2019, 00, 1-3

This journal is © The Royal Society of Chemistry 2019

Chemical Communications

COMMUNICATION

This journal is © The Royal Society of Chemistry 2019

Chem. Commun., 2019, **00**, 1-3 | **33**

COMMUNICATION

Chemical Communications

¹⁹⁵Pt NMR (150 MHz, CDCl₃, 298 K) for [W₂PtAu₂(µ₃-CSe)₂Cl₂(NBD)(CO)₄(Tp*)₂] (8).

34 | Chem. Commun., 2019, 00, 1-3

This journal is © The Royal Society of Chemistry 2019

⁷⁷Se NMR (76 MHz, CDCl₃, 298 K) for [W₂PtAu₂(µ₃-CSe)₂Cl₂(NBD)(CO)₄(Tp*)₂] (8).

This journal is © The Royal Society of Chemistry 2019

Chem. Commun., 2019, **00**, 1-3 | **35**

COMMUNICATION

Chemical Communications

Please do not adjust margins

IR (CH₂Cl₂, cm⁻¹) for [W(\equiv CSeCH₂Cl)(CO)₂(Tp^{*})] (**9**).

36 | Chem. Commun., 2019, 00, 1-3

COMMUNICATION

Chem. Commun., 2019, 00, 1-3 | 37

38 | Chem. Commun., 2019, 00, 1-3

This journal is © The Royal Society of Chemistry 2019

COMMUNICATION

Chemical Communications

COMMUNICATION

Chemical Communications

⁷⁷Se NMR (76 MHz, CDCl₃, 298 K) for [W(≡CSeCH₂Cl)(CO)₂(Tp*)] (**9**).

This journal is © The Royal Society of Chemistry 2019

Chem. Commun., 2019, **00**, 1-3 | **39**

Please do not adjust margins

IR (CH₂Cl₂, cm⁻¹) for [WAu(μ -CSeCH₂Cl)Cl(CO)₂(Tp^{*})] (**10**).

COMMUNICATION

¹H NMR (600 MHz, CDCl₃, 298 K) for [WAu(μ-CSeCH₂Cl)Cl(CO)₂(Tp*)] (**10**).

COMMUNICATION

Chemical Communications

¹³C{¹H} NMR (151 MHz, CDCl₃, 298 K) for [WAu(µ-CSeCH₂Cl)Cl(CO)₂(Tp*)] (**10**).

This journal is © The Royal Society of Chemistry 2019

42 | Chem. Commun., 2019, 00, 1-3

COMMUNICATION

Chemical Communications

⁷⁷Se NMR (76 MHz, CDCl₃, 298 K) for [WAu(μ-CSeCH₂Cl)Cl(CO)₂(Tp*)] (**10**).