Semi-bridging σ -Silyls as Z-type Ligands

Benjamin J. Frogley, Anthony F. Hill, * Manab Sharma, Arup Sinha and Jas S. Ward

Synthetic Details and Spectroscopic Data

General Considerations

All manipulations of air-sensitive compounds were carried out under a dry and oxygen-free argon atmosphere using standard Schlenk, dry-box and vacuum line techniques, Glassware was flame-dried under vacuum prior to use. Solvents were dried by conventional methods. NMR spectra were recorded at 25°C on Bruker Avance 400 MHz and 600 MHz spectrometers. The chemical shifts (δ) for ¹H and ¹³C spectra are given in ppm relative to residual signals of the solvent, ²⁹Si relative to an internal SiMe₄ reference, and ³¹P relative to an external H₃PO₄ reference. Low resolution mass spectra were obtained on a ZAB-SEQ4F spectrometer by positive ion ESI techniques using an acetonitrile matrix by the mass spectrometry service of the Australian National University. Assignments were made relative to M, where M is the molecular cation. Elemental microanalysis was performed by the micro analytical service of the Australian National University. Data for X-ray crystallography were collected with a Nonius Kappa CCD diffractometer. The compounds **1**,^[1] [Pd₂(dba)₃],^[2] [Pt(nbe)₃]^[3] and [Ni(cod)₂]^[4] were prepared according to published procedures. Other reagents were used as received from commercial suppliers.

Synthesis of [Pd₂{SiPh(NCH₂PPh₂)₂C₆H₄}₂] (4)

To a purple solution of [Pd₂(dba)₃.dba] (50 mg, 0.087 mmol) in thf (10 mL) was added the pro-ligand HSiPh(CH₂PPh₂)₂C₆H₄ (3: 53 mg, 0.087 mmol). The mixture was stirred at room temperature for 20 hours. The resulting orange solution was concentrated and pentane was added to induce precipitation. The orange precipitate was collected by filtration, washed with pentane and diethyl ether to remove excess dba and H₂dba and dried in vacuo. Although conversion was spectroscopically near quantitative, the isolated yield was diminished due to the requisite extensive washing with diethyl ether. Yield: 48 mg (77%). ¹H NMR (600 MHz, C₆D₆): δ_H = 7.61 (d, 4 H, ³J_{HH} = 7.2 Hz, C₆H₄), 7.30 (t, 4 H, ³J_{HH} = 8.4 Hz, C₆H₅), 7.02 (t, 2 H, ³J_{HH} = 7.2 Hz), 7.00 (t, 2 H, ³J_{HH} = 7.2 Hz), 6.92-6.89 (m, 6H, ³J_{HH} = 7.2 Hz), 6.87-6.79 (m, 16 H, C₆H₅), 6.74-6.70 (m, 8 H, C₆H₅), 6.65 (t, 6 H, ³J_{HH} = 6.6 Hz), 6.61 (t, 4 H, ³J_{HH} = 7.2 Hz), 6.51-66 (m, 6 H, C₆H₅), 4.37 (dd, 2 H, J = 13.2, 4.9 Hz, PCH₂), 4.02 (dt, 2 H, J = 13.3, 4.0 Hz, PCH₂), 3.87 (dd, 2 H, J = 13.1, 2.9 Hz, PCH₂), 3.45 (dt, 2 H, J = 13.1, 4.3 Hz, PCH₂). ¹³C{¹H} NMR (150 MHz, C₆D₆): $\delta_{C} = 10^{-10}$ 144.0-143.8 (m), 142.6 (t, J = 10.5 Hz), 142.2 (t, J = 3 Hz), 139.8 (t, J = 10.5 Hz), 136.6 (d, J = 24 Hz), 136.4 (d, J = 28.5 Hz), 134.6 (t, *J* = 9 Hz), 134.1 (t, *J* = 7.5 Hz), 133.9, 133.0 (t, *J* = 6 Hz), 132.0 (t, *J* = 6 Hz), 129.7, 129.6, 129.1, 128.7, 128.5, 128.3, 127.9, 127.4, 118.4, 116.8, 108.6, 107.7, 48.2 (d, J = 30 Hz), 45.9 (t, J = 12 Hz). ³¹P{¹H} NMR (162 MHz, C₆D₆): $\delta_{P} = 44.91$ (t, 2 P, J = 10.5 Hz), 25.13 (t, 2 P, J = 10.5 Hz). NB: The AA'BB' spin system manifests as two apparent triplet resonances (cf. A₂B₂), the inference being that $J_{AB} \approx J_{AB'} << (\delta_A - \delta_B)$. ²⁹Si NMR (79.5 MHz, 300 K, C₆D₆): δ_{Si} = 58.35 (m, 2Si). ESI-MS (lowres, +ve ion, MeCN): m/z = 1428 [M]⁺. Anal. Found: C, 64.19; H, 4.76; N, 3.92%. Calcd. for C₇₆H₆₆N₄P₄Si₂Pd₂: C, 63.91; H, 4.66; N, 3.92%. Crystals of a benzene solvate $4.(C_6H_6)_2$ suitable for X-ray diffraction were grown by slow diffusion of hexane vapour into a benzene (CAUTION) solution of compound 4. Crystal data for 4.(C₆H₆)₂: C₈₈H₇₈N₄P₄Pd₂Si₂, M_w = 1584.52 gmol⁻¹, orange block, 0.1903 × 0.1403 × 0.0611 mm³, triclinic, space group P-1 (No. 2), V = 3724.1(2) Å³, Z = 2, D_{calcd} = 1.4129 Mgm⁻ ³, F000 = 1636, Cu K α radiation, λ = 1.54184 Å, μ = 5.398 mm⁻¹, T = 150.0(1)K, 2 θ_{max} = 144.9°, 21950 reflections collected, 14151 unique ($R_{int} = 0.0384$), $R_1 = 0.0558$, $wR_2 = 0.1515$, R indices based on 12345 reflections with $l > 2\sigma(l)$ (refinement on F^2), 829 parameters, Lp and absorption corrections applied, CCDC 1517410.

Figure S2. ¹H-¹H COSY NMR Spectrum of 4 (PCH₂ Region).

Figure S3. $^{31}P\{^{1}H\}$ NMR Spectrum of 4 (162 MHz, C_6D_6, 298 K)

Figure S4. $^{29}\text{Si}\{^{1}\text{H}\}$ NMR Spectrum of 4 (162 MHz, C_6D_6, 298 K)

Figure S5. Molecular structure of 4 in a crystal of $4.(C_6H_6)_2$ (50% displacement ellipsoids, hydrogen atoms and solvent omitted, phenyl groups simplified). Selected bond lengths (Å) and angles (°): Pd1 Pd2 2.7856(4), Pd1–P1 2.3484(11), Pd1–P3 2.3507(11), Pd1–Si1 2.4730(11), Pd1–Si2 2.4068(11), Pd2–Pd2–Pd 2.3458(10), Pd2–Si1 2.4128(11), Pd2–Si2 2.4732(11), P1–Pd1–Pd2 23.05(3), P1–Pd1–P3 105.41(4), P1–Pd1–Si1 81.73(4), P1–Pd1–Si2 130.60(4), P3–Pd1–Pd2 130.19(3), P3–Pd1–Si1 154.65(4), P3–Pd1–Si2 84.63(4), Si1–Pd1–Pd2 54.23(3), Si2–Pd1–Pd2 56.32(3), Si2–Pd1–Si1 109.51(4), P2–Pd2–Pd1 130.91(3), P2–Pd2–Si1 84.58(4), P2–Pd2–Si2 155.87(4), P4–Pd2–Pd1 122.45(3), P4–Pd2–P2 104.85(4), P4–Pd2–Si1 129.77(4), P4–Pd2–Si2 81.79(4), Si1–Pd2–Pd1 56.26(3), Si1–Pd2–Si2 109.31(4), Si2–Pd1–Pd1 54.08(3).

Synthesis of [Ni₂{SiPh(NCH₂PPh₂)₂C₆H₄}₂] (5)

The pro-ligand HSiPh(CH₂PPh₂)₂C₆H₄ (3: 110 mg, 0.182 mmol) was added to a thf (10 mL solution of [Ni(cod)₂] (50.0 mg, 0.182 mmol). Immediately the colour of the solution changed to dark reddish brown. After stirring at room temperature for 10 mins the solution was concentrated and pentane was added to induce precipitation. The resulting dark red-brown precipitate was washed with pentane and dried *in vacuo*. Yield: 105 mg (87%). ¹H NMR (600 MHz, C₆D₆): δ_H = 7.798 (d, 4H, J = 7.2 Hz), 7.122 (dt, 4H, J = 7.8 Hz, J = 1.2 Hz), 7.074-7.026 (m, 10H), 6.934 (t, 4H, 7.2 Hz), 6.823-6.647 (m, 20H), 6.495-6.466 (m 8H), 6.419 (dt, 4H, J = 7.8 Hz, J = 1.2 Hz), 6.118 (t, 4H, J = 7.8 Hz), 4.111 (dd, 2H, J = 12 Hz, J = 6.2 Hz), 3.922 (dd, 2H, J = 13.1 Hz, J = 2.9 Hz), 3.716 (dd, 2H, J = 11.9 Hz, J = 2.5 Hz), 3.605 (dd, 2H, J = 13 Hz, J = 7.5 Hz). ¹³C NMR (150 MHz, C₆D₆): δ 143.5 (d, J = 16.5 Hz), 142.98 (d, J = 16.5 Hz), 140.21 (dd, J = 26 Hz, 13 Hz), 139.01, 138.85, 138.59, 138.34, 136.23, 135.23 (d, J = 30 Hz), 132.83, 132.75, 132.45, 132.41, 132.38, 132.18, 132.15, 132.12, 129.62, 129.29, 129.16, 129.03, 128.12, 128.00, 127.91, 127.86, 127.79, 127.77, 124.49 (d, J = 13 Hz), 118.59, 117.89, 109.20, 108.39, 48.07 (d, J = 27 Hz), 45.83 (d, J = 36 Hz). ³¹P NMR (162 MHz, C₆D₆): δ_P = 32.398 (dd, 2P, J = 11.7, 6.6 Hz), 23.768 (dd, 2P, J = 11.4, 6.3 Hz). ²⁹Si NMR (79.5 MHz, C₆D₆): δ_{Si} = 55.99 (dddd, J = 60.1, 43.2, 16.2, 5.2 Hz, 2Si). Anal. Found: C, 65.91; H, 5.31; N, 4.07%. Calcd. for C₇₆H₆₆N₄P₄Si₂Ni₂: C, 68.49; H, 4.99; N, 4.20%. Satisfactory elemental data not acquired due to the compound undergoing rapid oxidation upon exposure to air. Calcd. for C₇₆H₆₆N₄O₄P₄Si₂Ni₂: C, 65.35; H, 4.76; N, 4.01%. ESI-MS (low-res., +ve ion, MeCN): m/z = 1273.32 $[(C_{38}H_{33}N_2P_2Si)_2Ni + H]^+$, 1332.24 $[M + H]^+$. Crystals of a benzene solvate 5. $(C_6H_6)_{1.5}$ suitable for X-ray diffraction were grown by slow diffusion of hexane vapour into benzene (CAUTION) solution of compound 5. Crystal data for 5.(C₆H₆)_{1.5}: $C_{85}H_{75}N_4Ni_2P_4Si_2$, $M_w = 1450.06 \text{ gmol}^{-1}$, dark red-brown prism, $0.210 \times 0.090 \times 0.085 \text{ mm}^3$, triclinic, space group P-1 (No. 2), a = 12.6509(3), b = 16.9249(6), c = 17.6665(6) Å, $\alpha = 81.1890(12)$, $\beta = 77.4286(16)$, $\gamma = 73.2272(17)^{\circ}$, V = 3518.3(2) Å³, Z = 2, $D_{calcd} = 1.369 \text{ Mgm}^{-3}$, F000 = 1514, Nonius KappaCCD, Mo K α radiation, $\lambda = 0.71073 \text{ Å}$, $\mu = 0.711 \text{ mm}^{-1}$, T = 200(1) K, $2\theta_{max} = 0.711 \text{ mm}^{-1}$, T = 200(1) K, $2\theta_{max} = 0.711 \text{ mm}^{-1}$, T = 200(1) K, $2\theta_{max} = 0.711 \text{ mm}^{-1}$, T = 200(1) K, $2\theta_{max} = 0.711 \text{ mm}^{-1}$, T = 200(1) K, $2\theta_{max} = 0.711 \text{ mm}^{-1}$, T = 200(1) K, $2\theta_{max} = 0.711 \text{ mm}^{-1}$, T = 200(1) K, $2\theta_{max} = 0.711 \text{ mm}^{-1}$, $T = 200(1) \text{ m$ 50.3°, 46219 reflections collected, 12476 unique (Rint = 0.069). R1 = 0.0438, wR2 = 0.1071, R indices based on 9240 reflections with $l > 2.0\sigma(l)$ (refinement on F^2), 874 parameters, 0 restraints. Lp and absorption corrections applied, CCDC 1517411.

Figure S6. ¹H NMR spectrum of 5 (400 MHz, C6D6, 298 K)

5

Figure S9. ²⁹Si{¹H} NMR Spectrum of 5 (C₆D₆, 298 K)

Figure S10. Molecular structure of 5 in a crystal of $5.(C_6H_6)_{1.5}$ (50% displacement ellipsoids, hydrogen atoms and solvent omitted, phenyl groups simplified). Selected bond lengths (Å) and angles (°): Ni1–Ni2 2.6020(5), Ni1–P1 2.2358(8), Ni1–P2 2.2189(9), Ni1–Si1 2.2906(9), Ni1–Si2 2.3131(9), Ni2–P3 2.2015(9), Ni2–P4 2.2013(9), Ni2–Si1 2.3213(9), Ni2–Si2 2.2937(9), P1–Ni1–Ni2 124.16(3), P1–Ni1–Si1 117.63(3), P1–Ni1–Si2 87.40(3), P2–Ni1–Ni2 123.61(3), P2–Ni1–P1 107.81(3), P2–Ni1–Si1 82.51(3), P2–Ni1–Si2 154.45(4), Si1–Ni1–Ni2 56.21(2), Si1–Ni1–Si2 109.02(3), Si2–Ni1–Ni2 55.26(2), P3–Ni2–Ni1 118.99(3), P3–Ni2–Si1 85.54(3), P3–Ni2–Si2 113.33(3), P4–Ni2–Ni1 126.52(3), P4–Ni2–P3 108.37(4), P4–Ni2–Si1 156.08(3), P4–Ni2–Si2 84.18(3), Si1–Ni2–Ni1 55.10(2), Si2–Ni2–Ni1 55.96(2), Si2–Ni2–Si1 108.62(3).

Synthesis of [Pt₂{SiPh(NCH₂PPh₂)₂C₆H₄}₂] (6)

The pro-ligand HSiPh(CH₂PPh₂)₂C₆H₄ (3: 64 mg, 0.105 mmol) was added to a thf (10 mL) solution of [Pt(nbe)₃] (50 mg, 0.105 mmol). The mixture was then stirred at room temperature for 6 hours. The resulting orange solution was concentrated and pentane was added to induce precipitation. The yellow-orange precipitate was collected by filtration, washed with pentane and dried under vacuo. Yield: 48 mg (92%). ¹H NMR (600 MHz, C₆D₆, 298 K): δ_{H} = 7.88 (dd, 4 H, ^{3,4}J_{HH} = 7.8, 1.2 Hz, C₆H₄), 7.64 (t, 4 H, ³*J*_{HH} = 9 Hz), 7.05-6.98 (m, 8 H, C₆H₅), 6.93-6.85 (m, 8 H, C₆H₅), 6.81 (t, 6 H, *J* = 7.8 Hz, C₆H₅), 6.77-6.71 (m, 14 H, C₆H₅), 6.64 (td, 2 H, ^{3,4}J_{HH} = 7.5, 1.8 Hz), 6.59-6.56 (m, 6 H, C₆H₅), 6.49-6.45 (m, 6 H, C₆H₅), 4.63-4.53 (m, 2 H, PCH₂), 4.53-4.49 (dd, 2 H, J = 12, 10.2 Hz, PCH₂), 4.42-4.39 (dd, 2 H, J = 12, 6 Hz, PCH₂), 3.28-3.24 (m, 2H). ¹³C{¹H} NMR (150 MHz, C₆D₆, 298 K): δ_C = 147.4, 142.9 (d, J = 15 Hz), 142. 7, 140.1 (d, J = 36 Hz), 138.4 (t, J = 18 Hz), 135.0 (d, J = 15 Hz), 134.4 (t, J = 9 Hz), 132.7, 132.6, 132.6, 132.5, 130.0 (d, J = 4.5 Hz), 129.3 (d, J = 4.5 Hz), 128.8 (t, J = 1.5 Hz), 128.7, 128.4, 128.3, 128.13, 128.10, 128.07, 127.9, 127.8 (d, J = 10.5 Hz), 127.6, 127.4, 118.0, 117.1, 109.0, 108.5, 51.55 (m), 46.40 (d, J = 36 Hz). ³¹P{¹H} NMR (162 MHz, C₆D₆, 298 K): $\delta(P_{A,A'}) = 68.39 (^{1}J(PtP_{A}) = 3500 Hz, ^{2}J(PtP_{A}) = 522 Hz, ^{3}J(P_{A}P_{A'}) = 101 Hz), 43.83 (^{1}J(PtP_{B}) = 522 Hz, ^{3}J(P_{A}P_{A'}) = 101 Hz), 43.83 (^{1}J(PtP_{B}) = 522 Hz, ^{3}J(P_{A}P_{A'}) = 101 Hz), 43.83 (^{1}J(PtP_{B}) = 522 Hz, ^{3}J(P_{A}P_{A'}) = 101 Hz), 43.83 (^{1}J(PtP_{B}) = 522 Hz, ^{3}J(P_{A}P_{A'}) = 101 Hz), 43.83 (^{1}J(PtP_{B}) = 522 Hz, ^{3}J(P_{A}P_{A'}) = 101 Hz), 43.83 (^{1}J(PtP_{B}) = 522 Hz, ^{3}J(P_{A}P_{A'}) = 101 Hz), 43.83 (^{1}J(PtP_{B}) = 522 Hz, ^{3}J(P_{A}P_{A'}) = 101 Hz), 43.83 (^{1}J(PtP_{B}) = 522 Hz, ^{3}J(P_{A}P_{A'}) = 101 Hz), 43.83 (^{1}J(PtP_{B}) = 522 Hz, ^{3}J(P_{A}P_{A'}) = 101 Hz), 43.83 (^{1}J(PtP_{B}) = 522 Hz, ^{3}J(P_{A}P_{A'}) = 101 Hz), 43.83 (^{1}J(PtP_{B}) = 522 Hz, ^{3}J(P_{A}P_{A'}) = 101 Hz), 43.83 (^{1}J(PtP_{B}) = 522 Hz, ^{3}J(P_{A}P_{A'}) = 101 Hz), 43.83 (^{1}J(PtP_{B}) = 522 Hz, ^{3}J(P_{A}P_{A'}) = 101 Hz), 43.83 (^{1}J(PtP_{B}) = 522 Hz, ^{3}J(P_{A}P_{A'}) = 101 Hz), 43.83 (^{1}J(PtP_{B}) = 101 Hz), 43.83 (^{1}J(PtP_{B$ 2224 Hz, 2J(PBPB') and ²J(P_AP_B) not resolved), See Figure S12 for gNMR simulation. ²⁹Si NMR (79.5 MHz, C₆D₆, 298 K): δ_{Si} = 60.54 (t, ²*J*_{SiP} = 4.9 Hz), 58.44 (t, ²*J*_{SiP} = 5.6 Hz). Anal. Found: C, 56.86; H, 4.18; N, 3.55%. Calcd. for C₇₆H₆₆N₄P₄Si₂Pt₂: C, 56.85; H, 4.14; N, 3.49%. ESI-MS (low-res, +ve ion, MeCN): m/z = 1605.31 [M]⁺, 803.66 [(M/2)+H]⁺. Crystals of a benzene solvate 6.(C₆H₆)₂ suitable for X-ray diffraction were grown by slow diffusion of hexane vapour into benzene (CAUTION) solution of compound **6**. Crystal data for **6**. (C₆H₆): C₈₈H₇₈N₄P₄Pt₂Si₂, $M_w = 1761.78$ gmol⁻¹, orange plate, 0.120 x 0.110 x 0.080 mm³, triclinic, space group P-1 (No. 2), a = 12.9341(2), b = 15.4591(3), c = 20.0358(3) Å, $\alpha = 70.8529(9)$, $\beta = 79.0293(10)$, $\gamma = 12.9341(2)$, $\beta = 15.4591(3)$, $\alpha = 12.9341(2)$, $\beta = 12.$ 88.9368(10)°, V = 3711.21(11) Å³, Z = 2, D_{calcd} = 1.577 Mgm⁻³, F000 = 1756, Nonius KappaCCD, Mo Kα radiation, λ = 0.71073 0.0875, R indices based on 13109 reflections with $l > 2.0\sigma(l)$ (refinement on F^2), 847 parameters, 0 restraints. Lp and absorption corrections applied, CCDC 1517308.

Figure S11. ²⁹Si{¹H} NMR Spectrum of 6 (C₆D₆, 298 K)

Figure S12. ³¹P{¹H} NMR Spectrum of **6** (C₆D₆, 162 MHz, 298 K) (Simulated using gNMR: P. H. M. Budzelaar, *gNMR, version 5.1*, http://www.home.cc.umanitoba.ca/~budzelaa/gNMR/gNMR.html).

Figure S13. Molecular structure of **6** in a crystal of **6**. ($C_{6}H_{6}$)₂ (50% displacement ellipsoids, hydrogen atoms and solvent omitted, phenyl groups simplified). Selected bond lengths (Å) and angles (°): Pt1–P1 2.2841(12), Pt1–P3 2.3451(12), Pt1–Si1 2.3821(12), Pt1–Si2 2.7133(13), Pt2–P2 2.2805(11), Pt2–P4 2.2836(11), Pt2–Si1 2.6421(12), Pt2–Si2 2.3782(12), P1–Pt1–Pt2 145.24(3), P1–Pt1–P3 96.95(4), P1–Pt1–Si1 83.30(4), P1–Pt1–Si2 145.59(4), P3–Pt1–Pt2 117.74(3), P3–Pt1–Si1 178.21(4), P3–Pt1–Si2 76.12(4), Si1–Pt1–Pt2 61.96(3), Si1–Pt1–Si2 102.67(4), Si2–Pt1–Pt2 51.91(3), P2–Pt2–Pt1 107.93(3), P2–Pt2–Pt1 111.18(4), P2–Pt2–Si1 81.96(4), P2–Pt2–Si2 158.40(4), P4–Pt2–Pt1 140.19(3), P4–Pt2–Si1 126.31(4), P4–Pt2–Si2 81.62(4), Si1–Pt1–Pt2 51.73(3), Si2–Pt2–Pt1 63.90(3), Si2–Pt2–Si1 104.92(4).

Figure S14. Folding of two M_2Si planes across M-M vector. (a) M = Pd; (b) M = Ni; (c) M = Pt.

Computational Details

All computational work was performed by using the Gaussian 09 suite of programs.⁵ The geometries of complexes **11-13** were optimized at the DFT level of theory using the exchange functional of Becke⁶ in conjunction with the correlation functional of Perdew^{7,8} (BP86). The Stuttgart basis set in combination with the 60-core-electron relativistic effective core potential (SDD)⁹ was used for Ni, Pd and Pt; 6-31G(d)¹⁰ basis sets were used for all other atoms. Frequency calculations were performed to confirm that optimized structures were minimal or saddle points at the BP86 level of theory. Single point energy calculations for all the optimized structures were carried out with a larger basis set viz the quadruple- ζ valence def2-QZVP¹¹ basis set on Ni, Pd and Pt along with the corresponding ECP and the 6-311+G(2d,p) basis set on other atoms. Single point calculations were also carried out at the M06, B97D and B3LYP level of theories, and found to follow similar trends. Natural bond orbital (NBO) analyses were carried out at the BP86 level of theory.

$[Pt_{2}{SiPh(NCH_{2}PPh_{2})_{2}C_{6}H_{4}_{2}]$ (6)

For this complex, NBO analysis indicates that both the Pt-centers have five lone pairs with an electronic configuration of [Xe]5d^{9.5}6s^{0.5}6p^{0.5} and natural charges of -0.5. The Wiberg bond order and HOMO-2 closely represent a conventional Pt-Pt bond. NBO second order perturbation theory analysis (donor-acceptor) suggests that this bonding interaction comprises primarily the Pt2-P2 bond electron pair to the antibonding Pt1-P3 orbital, but hardly any contribution is found from either of the Si atoms. Therefore, this corresponds a 4-centered-2-electron type of bonding as described by Nova and Nazari which here involves P-Pt-Pt-P centers rather than Si-Pt-Pt-Si. NBO analysis shows that each of the Pt-centers have three different types of interactions with both the Si atoms. The almost degenerate HOMO-5 and HOMO-6 (332-331) orbitals reflect the polar-covalent bonding interaction which primarily comprises σ -back donation from a Pt-d lone pair to an orbital on the Si atom, while the other Si atom donates electron density to the of Pt-d orbital.

[Pd₂{SiPh(NCH₂PPh₂)₂C₆H₄}₂] (4)

$[Ni_{2}{SiPh(NCH_{2}PPh_{2})_{2}C_{6}H_{4}}_{2}]$ (5)

Each nickel has five lone pairs, corresponding to HOMO, HOMO-4, HOMO-6, HOMO-7 and HOMO-8 the with electronic configuration of $3d^{9.4}4p^{0.7}5s^{0.3}$ and natural charges of -0.5. Each Ni-center is found to form covalent bonds only with the P-atoms of ligands while the Ni–Ni bond (HOMO-3; Ni-Ni bonding with from the Ni-P bonding to the Ni-d orbital) or Ni–Si bonds involve extended delocalization (HOMO-5 represent Ni to Si σ -back donation; (326) and HOMO-11 involves Si to Ni σ -donation). The primary component of the Ni–Ni σ -bond arises from HOMO-12.

Cartesian Coordinates for [Pd₂{SiPh(NCH₂PPh₂)₂C₆H₄}₂] (4)

Optimised structure at the MO6L level of theory (SDD basis set for palladium with SDD core potential and 6-31g(d) for remaining elements)

Center Number	Atomic Number	At T	tomic Type	Coo X	rdinates (An Y	igstroms) Z
1	46	0	1.37	73476	-0.032203	0.131778
2	46	Õ	-1.40)3038	0.013830	0.178978
3	15	Ō	2.66	64128	-1.105069	-1.560233
4	15	0	-2.68	34533	1.349636	-1.350026
5	15	0	-2.85	59471	-1.594695	1.169458
6	15	0	2.83	35966	1.371394	1.402657
7	14	0	-0.12	28464	-1.956267	-0.434376
8	14	0	0.09	92867	2.012456	-0.064434
9	7	0	0.39	5718	-2.465655	-2.076474
10	7	0	-0.44	17666	2.783746	-1.601597
11	7	0	1.54	4598	3.099615	-0.179495
12	6	0	0.31	7261	4.442106	-3.306047
13	6	0	-0.35	54764	-3.839005	-4.015924
14	6	0	-0.47	74979	-3.331897	-2.726466
15	6	0	0.42	28067	3.740574	-2.110053
16	6	0	2.73	37180	1.253329	-2.993542
17	6	0	2.50	04319	4.911924	-1.605549
18	6	0	-3.56	52990	0.307513	-2.565120
19	7	0	-1.59	93705	-2.999947	-0.722042
20	6	0	-2.03	30290	-1.104868	3.784395
21	6	0	2.15	05435	0.253416	3.851254
22	6	0	-3.20	10257	-3.192092	3.485482
23	6	0	-2.0	72404	-2.001192	2.945432
24	6	0	1.21	5404	2.000001	3.043911
20	6	0	1.20	51940	3.390004	-3.042213
20	6	0	0.79	28268	-2 640858	2 215703
28	6	0	3.20	0200	2 255354	-3 779562
20	6	ñ	-0.70	33895	2 726164	1 453654
30	6	ñ	3 48	2598	0 116289	-2 646266
31	6	õ	3.03	34599	2 493421	4 007468
32	6	Õ	4 63	38436	1 173907	1 155817
33	6	Õ	-1.59	97416	-3.678199	-1.924855
34	6	Ō	-1.85	57384	-1.391686	5.135753
35	6	0	5.36	60347	1.010561	-3.881237
36	6	0	-2.54	11034	-4.579102	-2.413908
37	6	0	4.80)1715	0.004498	-3.094955
38	6	0	4.52	20204	-3.226586	-2.033721
39	6	0	-2.58	39579	-3.216191	0.286125
40	6	0	-0.69	90211	2.068459	2.688576
41	6	0	2.68	30694	1.388712	3.224014
42	6	0	-2.39	90786	-5.110167	-3.701102
43	6	0	2.36	51758	5.634648	-2.795506
44	6	0	4.61	2398	2.134597	-4.221878
45	6	0	2.83	35895	2.471265	5.385131
46	6	0	-5.4	10522	-0.782542	2.046068
47	6	0	-1.48	30864	2.233136	-2.438575
48	0	0	1.44	100/3	-3.409862	3.174393
49 50	0	0	1.54	1560/	-1.90/92/	-2.112021
50	6	0	1 07	1009	-2.310309 0 221761	5 220240
52	6	0	1.97	1002	1 330780	0 00/050
52	6	0	-4.00 _1 21	15911	_A 73700/	-1 1003UE
54	6	ñ	-2.34	11252	-2.588168	5.659188
55	6	õ	5 45	56016	0.553354	2.108778
56	6	õ	5.94	2611	-4.107964	-0.294192
57	6	0	3.95	57896	-2.317835	-1.128297

F 0	<u>^</u>	0	0.040747	0 774000	2 402250
00	0	0	-2.049/4/	-0.774000	-3.103250
59	6	0	2.163800	-4.538563	2.782782
60	6	0	5.194444	1.544869	-0.076814
61	6	0	-3 449039	-1 641984	-4 010140
62	é	õ	3 013367	3 / 97059	1 932527
02	0	0	-3.013307	-3.407030	4.052527
63	6	0	2.539343	3.132475	0.853341
64	6	0	-2.001081	3.771724	3.777391
65	6	0	-5 675093	4 551466	0 126328
66	ē	õ	6 900541	0.217212	1 026526
00	0	0	0.000341	0.317313	1.030320
67	6	0	-5.286012	-1.535593	-0.245026
68	6	0	7.346936	0.697334	0.613474
69	6	0	2 302327	1 339451	5 998341
70	e e	õ	1 507111	2 02/007	1 410040
70	0	0	-1.507111	3.934907	1.410240
71	6	0	-4.891373	0.506080	-2.954100
72	6	0	-5.862967	3.200227	0.412807
73	6	0	-2 118157	4 444337	2 560122
74	e	õ	2.110101	4 900245	1 425506
74	0	0	2.203039	-4.099315	1.430090
75	6	0	-4.588515	4.946923	-0.648479
76	6	0	-4.778726	-1.443035	-4.381406
77	6	0	-7 362972	-0 665070	0 629559
70	e	õ	2 602012	2,000946	1 1 1 1 606
70	0	0	-3.093945	3.999040	-1.141090
79	6	0	1.537179	-4.130326	0.486251
80	6	0	-3.874420	2.640501	-0.861291
81	6	0	-6 627116	-1 207923	-0 421806
00	e	õ	5 500051	1.201020	1 616545
02	0	0	5.500951	-4.121304	-1.010545
83	6	0	-4.964282	2.254948	-0.066704
84	6	0	6.540346	1.313543	-0.341070
85	6	0	5 394219	-3 205625	0 612915
86	é	õ	1 202125	2 227127	0.200101
00	0	0	4.330133	-2.527127	0.200101
87	6	0	-5.493074	-0.368836	-3.856909
88	6	0	-6.750888	-0.456319	1.864366
89	1	0	5.402145	-0.859389	-2.812145
<u>00</u>	1	Õ	6 300717	0.015601	_1 222852
01	1	0	0.000111	0.010001	4.000047
91	1	0	5.050400	2.923510	-4.020947
92	1	0	2.705606	3.137879	-4.025233
93	1	0	1.717359	1.363946	-2.614423
94	1	0	3 926605	-1 650482	0 916045
05	1	õ	5 722820	3 100335	1 651119
90		0	5.722029	-3.199333	1.031110
96	1	0	6.711898	-4.807806	0.028707
97	1	0	5.925781	-4.828460	-2.327073
98	1	0	4 196617	-3 232396	-3 075085
00	1	õ	1.100011	2 004026	0 040407
99	<u>'</u>	0	4.303134	2.004020	-0.042407
100	1	0	6.954418	1.611486	-1.303063
101	1	0	8.398843	0.511901	0.403292
102	1	0	7.425098	-0.164205	2.587883
103	1	0	5 038600	0 252606	3 060801
100	1	õ	0.000000	0.202000	0.000001
104	1	0	3.469731	3.377491	3.541335
105	1	0	3.102385	3.340961	5.983118
106	1	0	2.147970	1.326326	7.076134
107	1	Ô	1 561008	-0 667306	5 703032
107	1	0	1.001000	-0.007500	0.100002
108	I	0	1.8/9151	-0.607552	3.240724
109	1	0	1.576801	-4.420447	-0.566430
110	1	0	2.764165	-5.780977	1.124959
111	1	0	2 683756	-5 141993	3 526069
110	1	õ	1 206502	2 120251	4 007456
112	I	0	1.390393	-3.129251	4.22/400
113	1	0	0.221703	-1.756767	2.520129
114	1	0	-1.581884	4.484824	0.478995
115	1	0	-2 682169	5 375419	2 504769
116	1	õ	2.002100	4 170020	4 672442
110		0	-2.4001/3	4.1/0039	4.07.3443
117	1	0	-1.159242	2.064276	4.795460
118	1	0	-0.121499	1.135873	2.731780
119	1	0	-5.461671	1.338776	-2.543609
120	1	ñ	-6 5209/0	-0.206262	_1 150200
120	1	0	-0.029049	-0.200203	-4.100009
121	1	U	-5.255558	-2.12/391	-5.081302
122	1	0	-2.878471	-2.480644	-4.407823
123	1	0	-1.816001	-0.951672	-2.794710
124	1	Ō	-5 107656	1 200579	0 172912
105	1	0	6 707570	2 070064	1 000074
120	I	0	-0.707570	2.0/0001	1.020271

126	1	0	-6.371415	5.294567	0.511267
127	1	0	-4.429115	6.001344	-0.869673
128	1	0	-2.836917	4.334689	-1.725309
129	1	0	-3.745814	-3.891022	2.850721
130	1	0	-3.397297	-4.420801	5.239847
131	1	0	-2.198387	-2.821432	6.713184
132	1	0	-1.339068	-0.680067	5.777777
133	1	0	-1.636843	-0.180119	3.361047
134	1	0	-4.718315	-1.940388	-1.085569
135	1	0	-7.092080	-1.370362	-1.392893
136	1	0	-8.410879	-0.406300	0.486906
137	1	0	-7.319254	-0.035046	2.692515
138	1	0	-4.936867	-0.611038	3.012593
139	1	0	-3.388497	-4.877184	-1.798386
140	1	0	-3.127005	-5.820716	-4.072980
141	1	0	-1.206830	-5.150680	-5.500520
142	1	0	0.490118	-3.550732	-4.639811
143	1	0	3.355065	5.100955	-0.952521
144	1	0	3.106000	6.386233	-3.053733
145	1	0	1.183618	5.959399	-4.569653
146	1	0	-0.522339	4.258529	-3.974846
147	1	0	-2.282142	-3.978815	1.024433
148	1	0	-3.539796	-3.549845	-0.153238
149	1	0	-1.085859	1.503389	-3.171365
150	1	0	-1.995792	3.011609	-3.021056
151	1	0	1.279082	-1.241541	-3.561963
152	1	0	2.089591	-2.789957	-3.271319
153	1	0	2.213985	3.730859	1.723116
154	1	0	3.484342	3.558487	0.490508

Cartesian Coordinates for [Ni₂{SiPh(NCH₂PPh₂)₂C₆H₄}₂] (5)

Optimised structure at the MO6L level of theory (SDD basis set for nickel with SDD core potential and 6-31g(d) for remaining elements)

Center Number	Atomic Numb	A er	tomic Type	Coordinates X Y	(Angstroms) Z
1	6	0	0.041181	0.102229	-0.028176
2	6	0	0.010670	0.106424	1.374271
3	6	0	1.185309	0.163050	2.114313
4	6	0	2.418759	0.216137	1.468657
5	6	0	2.463591	0.233853	0.078164
6	6	0	1.285888	0.185578	-0.663702
7	6	0	-2.461253	-1.141102	0.055924
8	6	0	-3.707689	-0.844465	0.602129
9	6	0	-4.401486	-1.784641	1.364074
10	6	0	-3.844194	-3.041819	1.579547
11	6	0	-2.593160	-3.350901	1.041271
12	6	0	-1.903577	-2.406760	0.289686
13	6	0	-1.108242	-0.944486	-2.447950
14	6	0	-1.344466	-0.871377	-4.861433
15	6	0	-0.736021	-2.096792	-5.119052
16	6	0	-0.739317	-2.605167	-6.424063
17	6	0	-1.358429	-1.906037	-7.453956
18	6	0	-1.967525	-0.667645	-7.205349
19	6	0	-1.936093	-0.136601	-5.921062
20	6	0	-3.443578	1.735399	-6.330372
21	6	0	-5.607322	3.672062	-6.228298
22	6	0	-6.525238	4.478586	-5.546940
23	6	0	-7.639892	4.992202	-6.200357
24	6	0	-7.869735	4.674779	-7.536572
25	6	0	-6.977372	3.847860	-8.215421
26	6	0	-5.844229	3.358110	-7.571248
27	6	0	-2.950072	4.476631	-5.687388
28	6	0	-3.325422	5.803530	-5.445830

29	6	0	-2.414872	6.840822	-5.622325
30	6	0	-1.117703	6.567925	-6.052037
31	6	0	-0.738817	5.252303	-6.304963
3∠ 33	6	0	-1.044085	4.212400	-0.118084
34	6	0	-1 110178	3 922617	-3.031741
35	6	Ő	-0.049206	4.813545	-2.869132
36	6	Õ	1.262239	4.363313	-2.989230
37	6	0	1.505407	3.019120	-3.279946
38	6	0	0.441353	2.139783	-3.452519
39	6	0	-0.822582	3.400628	1.132102
40	6	0	0.331686	3.289802	0.350068
41	6	0	1.588362	3.436588	0.927446
42 13	6	0	0.557514	3.007905	2.295027
44	6	0	-0.701868	3.642948	2.505159
45	6	0	-2.852354	5.123969	0.277522
46	6	0	-1.905750	6.046396	-0.184624
47	6	0	-2.217794	7.399306	-0.272064
48	6	0	-3.476464	7.853420	0.118329
49	6	0	-4.418192	6.945723	0.595494
50 51	6	0	-4.113622	5.589861	0.008040
52	6	0	-5.037003	2.002000	1.017202
53	6	0	-5.981090	1.422804	2.767719
54	6	Õ	-7.037673	0.628172	3.229961
55	6	0	-7.919657	0.039225	2.331154
56	6	0	-7.756322	0.214806	0.950984
57	6	0	-6.703583	0.996226	0.481152
58	6	0	-7.111848	0.719277	-1.922334
59 60	6	0	-7.531955	0.707910	-4.733170
61	6	0	-8 537791	-0.111279	-6 655731
62	6	Õ	-9.381852	0.994709	-6.659966
63	6	0	-9.217401	1.988834	-5.697853
64	6	0	-8.204804	1.881633	-4.753743
65 66	6	0	-5.283899	-0.871965	-3.472658
67	6	0	-4.001110	-1.341070	-4.037039
68	6	0	-3.885465	-3.304753	-3.473797
69	6	Õ	-4.476289	-2.837184	-2.302819
70	6	0	-5.174602	-1.631938	-2.301441
71	6	0	-5.653405	3.908238	-1.755063
72	6	0	-4.865784	4.955459	-2.268699
73	6	0	-5.41/6/4	6.18/054 6.304602	-2.624858
74	6	0	-0.767755	0.39400Z	-2.002094
76	6	0	-7.042251	4.142408	-1.662487
77	7	Õ	-6.327252	1.218801	-0.831266
78	7	0	-4.824908	2.354878	0.766713
79	7	0	-2.508645	1.048195	-5.479956
80	7	0	-1.509257	-0.254614	-3.637470
81	15	0	-1.550472	0.095430	-0.957309
02 83	15	0	-2.430109	0 783718	-3 443662
84	15	Ő	-4.124945	3.112570	-5.318349
85	14	Ō	-4.889139	2.286293	-1.058047
86	14	0	-2.339493	1.341190	-3.687423
87	28	0	-2.641329	1.983137	-1.466325
88	28	0	-4.410174	2.255609	-3.312469
89 00	1	0	-0.94/954 1 135009	0.051788 0.165002	1.892624
90 91	1	0	3 339572	0.254441	2 048730
92	1	õ	3.421250	0.286315	-0.438865
93	1	0	1.344754	0.219716	-1.750121
94	1	0	-4.146080	0.129649	0.405211
95	1	0	-5.375003	-1.522812	1.779759
96	1	0	-4.379930	-3.783352	2.170369

97	1	0	-2.152398	-4.331871	1.213095
98	1	0	-0.919093	-2.650017	-0.112758
99	1	0	-0.025715	-1.158386	-2.446306
100	1	0	-1 621853	-1 918088	-2 364856
101	1	ñ	-0 289289	-2 665592	-4 304269
107	1	ñ	-0.260000	-3 561824	-6 625665
102	1	0	1 266200	2 212665	0.020000
103	1	0	-1.300200	-2.312003	-0.403731
104	1	0	-2.453697	-0.119111	-0.011040
105	1	0	-2.971030	2.109691	-1.2558/6
106	1	0	-4.282702	1.080778	-6.640322
107	1	0	-6.367838	4.688358	-4.488676
108	1	0	-8.340283	5.622837	-5.652575
109	1	0	-8.749422	5.062256	-8.048626
110	1	0	-7.158350	3.589397	-9.257607
111	1	0	-5.142402	2.732791	-8.122829
112	1	0	-4.343600	6.025676	-5.125350
113	1	0	-2.723803	7.867763	-5.430321
114	1	0	-0.404150	7.378754	-6.189666
115	1	0	0.275402	5.027000	-6.631553
116	1	0	-1 315269	3 184942	-6 272285
117	1	Õ	-2 135960	4 290341	-2 980475
118	1	ñ	-0 253506	5 865456	-2 670038
110	1	ñ	2 003723	5.056668	-2.867171
120	1	0	2.035725	2 660456	2 282405
120	1	0	2.330100	2.000430	-3.303493
121	1	0	0.640900	1.090000	-3.714570
122	1	0	0.237 160	3.072083	-0.715338
123	1	0	2.478888	3.343332	0.307012
124	1	0	2.686459	3.767732	2.751812
125	1	0	0.645673	3.940627	4.155858
126	1	0	-1.594555	3.748246	3.122742
127	1	0	-0.911693	5.698223	-0.466103
128	1	0	-1.469780	8.103112	-0.635298
129	1	0	-3.720843	8.912517	0.053078
130	1	0	-5.407286	7.288637	0.896009
131	1	0	-4.880153	4.886967	0.994382
132	1	0	-3.204579	1.786305	2.001986
133	1	0	-3.841413	3.417733	2.315437
134	1	0	-5.289680	1.885596	3.470732
135	1	0	-7.168102	0.481352	4,300500
136	1	Ő	-8 747617	-0.566167	2 696140
137	1	ñ	-8 443754	-0 257588	0.250830
138	1	ñ	-7 /626/7	-0 311521	-1 7/5051
120	1	0	8 012064	1 220400	2 110282
140	1	0	6 006180	1.330409	-2.110203
140	1	0	-0.900100	-1.119270	-3.000937
141	1	0	-0.0000000	-0.090209	-1.39/409
142	1	0	-10.100123	1.083172	-7.410019
143	1	0	-9.867265	2.862649	-5.694823
144	1	0	-8.059904	2.681957	-4.024068
145	1	0	-4.690602	-0.749765	-5.552864
146	1	0	-3.493923	-2.889506	-5.559221
147	1	0	-3.331027	-4.242658	-3.472732
148	1	0	-4.385776	-3.398512	-1.372619
149	1	0	-5.612083	-1.279154	-1.368928
150	1	0	-3.787094	4.813984	-2.331849
151	1	0	-4.766790	6.987701	-2.976837
152	1	0	-7.224044	7.356842	-2.769116
153	1	0	-8.675778	5.518925	-1.928187
154	1	0	-7,687496	3,362615	-1.254297
	•	5		0.002010	0 .207

Cartesian Coordinates for $[Pt_2{SiPh(NCH_2PPh_2)_2C_6H_4}_2]$ (6)

Optimised structure at the MO6L level of theory (SDD basis set for platinum with 60 electron SDD core potential and 6-31g(d) for remaining elements)

Center	Atomic	Atomic	Coc	ordinates	(Angstroms)
Number	Number	Туре	Х	Y	Z

1	6	Δ	9 175611	2 202452	1 975566
, ,	0	0	7 700 470	2.333432	1.075500
2	6	0	7.798470	1.779814	0.827162
3	6	0	8.303833	0.609029	0.263832
4	6	0	9 482814	0.058851	0 758713
Ē	e	õ	10 160040	0.672246	1 000705
5	0	0	10.160243	0.073210	1.000725
6	6	0	9.667293	1.852671	2.373935
7	6	0	9.457903	2.085676	5.143282
o	Ê	Õ	0 226002	2 020405	5 472570
0	0	0	0.320002	2.030495	5.475570
9	6	0	7.462215	2.419704	6.478725
10	6	0	7.735990	1.249266	7.182816
11	6	Ô	8 868248	0 501053	6 869809
40	0	0	0.000240	0.001000	0.003003
12	6	0	9.721403	0.910223	5.849428
13	6	0	12.158651	1.929971	3.821930
14	6	0	14 425640	2 649228	4 353783
15	ē	õ	15 000012	1 720276	2 520540
15	0	0	13.009243	1.730370	3.330349
16	6	0	16.489975	1.763336	3.473018
17	6	0	17.212850	2.688948	4.213020
18	6	0	16 554064	3 607722	5 0/2/67
10	0	0	10.00+00+	0.007722	5.042407
19	6	0	15.165779	3.588232	5.121747
20	6	0	14.928936	5.567612	6.518641
21	6	0	13.445605	6.213771	8,919393
22	e e	õ	12 722100	4 000407	0.245004
22	0	0	13.722190	4.909497	9.345094
23	6	0	13.510058	4.543874	10.670901
24	6	0	13.022225	5.473708	11.585092
25	6	Ô	12 7/0/86	6 775035	11 160/85
20	0	0	12.743400	0.113333	0.044455
26	6	0	12.955719	7.144768	9.844455
27	6	0	14.397313	8.305337	7.244692
28	6	0	15.602423	8.468831	7.942120
20	6	0	16 215030	0 71/602	8 000/07
23	0	0	10.2100040	3.7 14002	7.000407
30	6	0	15.628242	10.814957	1.3/53/0
31	6	0	14.428740	10.663061	6.688992
32	6	0	13.821378	9.411948	6.621505
33	ĥ	Õ	11 78/505	3 / 28731	7 0/0028
55	0	0	11.704030	0.420701	7.049920
34	6	0	12.369671	2.288543	7.622687
35	6	0	11.878372	1.737804	8.804443
36	6	0	10.782883	2.320375	9.441005
37	ĥ	Õ	10 176633	3 113066	8 883100
57	0	0	10.170033	0.440900	7.0000100
38	6	0	10.672278	3.982617	7.699356
39	6	0	12.670837	3.405054	0.565376
40	6	0	13,298733	2.352919	-0.092321
11	ĥ	Õ	12 611061	1 635409	1 070942
41	0	0	12.011301	1.033400	-1.070042
42	6	0	11.295828	1.970438	-1.377884
43	6	0	10.663869	3.023516	-0.721764
44	6	0	11.348613	3.761646	0.248687
15	ĥ	Õ	8 080/158	5 544828	0.6/8032
40	0	0	0.300430	5.544020	0.040002
46	6	0	8.639774	5.656665	-0.706228
47	6	0	7.378338	6.109496	-1.079503
48	6	0	6.454299	6.488075	-0.107226
10	e e	õ	6 702200	6 100000	1 240700
49	0	0	0.792200	0.400903	1.240790
50	6	0	8.044782	5.932049	1.614825
51	6	0	11.551885	6.664510	0.598990
52	6	0	10 403943	8 768076	1 249080
52	e e	õ	0.022405	0.107720	0.011665
	0	0	9.933403	9.197730	0.011005
54	6	0	9.134744	10.342947	-0.068930
55	6	0	8.816869	11.059564	1.076497
56	6	0	9 277332	10 632152	2 328212
57	č	0	10.050010	0.400070	2.020212
57	0	0	10.050616	9.400070	2.420001
58	6	0	10.314722	9.519911	4.856156
59	6	0	8.428263	7.712823	5.989792
60	6	0	7 405602	8 552600	6 450320
64	ĉ	0	6 074000Z	0.002000	6 05/0020
01	0	U	0.07 1800	0.211029	0.204939
62	6	0	5.742362	7.027053	5.597108
63	6	0	6.752201	6.184456	5.142191
64	6	0	8 080080	6 522780	5 341062
65	6	0	10 04 5055	0.022103	7 750777
00	Ö	U	10.215255	9.053284	1.150/1/
66	6	0	10.666395	10.366209	7.931376
67	6	0	10.739071	10.919643	9.208197

68	6	0	10.349900	10.176388	10.318781
69	6	0	9.893478	8.869464	10.149764
70	6	0	9.837939	8.309623	8.879969
71	6	0	13.377991	7.820377	3.380494
72	6	0	13.796108	9.158295	3.303097
73	6	0	15.147095	9.493535	3.285073
74	6	0	16.115719	8.491088	3.320695
75	6	0	15.725192	7.153956	3.367215
76	6	0	14.369968	6.82/131	3.405364
//	1	0	11.220958	7.689382	1.532194
78	7	0	10.546049	0.001002	3.591092
79	7	0	13.058010	2.804198	4.018334
0U Q1	15	0	14.340329	4.433019	1 221059
82	15	0	10.003203	8 105882	6 1/0765
83	15	0	10.192400	2 710805	3 769/72
84	15	0 0	13 578111	6 674645	7 160387
85	14	Ő	11 533818	7 389765	3 303446
86	14	Ő	12 571805	4 236486	5 518319
87	78	Õ	10 977207	5 017493	3 531118
88	78	Õ	11.733561	6.512054	5.747581
89	1	0	8.080795	3.313008	2.310510
90	1	0	6.882861	2.229240	0.443378
91	1	0	7.780710	0.128251	-0.561219
92	1	0	9.886020	-0.853363	0.321058
93	1	0	11.081859	0.225428	2.178246
94	1	0	8.142817	3.775717	4.945813
95	1	0	6.589617	3.022335	6.727633
96	1	0	7.074920	0.926937	7.985669
97	1	0	9.097752	-0.403023	7.431702
98	1	0	10.606048	0.316681	5.621035
99	1	0	12.451631	1.832165	2.760281
100	1	0	12.154664	0.907366	4.243866
101	1	0	14.523863	1.006790	2.961086
102	1	0	17.007865	1.044144	2.840388
103	1	0	18.300017	2.702396	4.158915
104	1	0	17.122450	4.329975	5.627647
105	1	0	15.579941	5.263940	7.356938
100	1	0	13.34///2	0.109401	0.029047
107	1	0	14.003070	4.100404	0.032134
100	1	0	12 8561/3	5 185270	10.904020
110	1	0	12 37/156	7 511077	11 870725
111	1	0	12 738001	8 165270	9 525198
112	1	Ő	16 054393	7 617423	8 452404
113	1	õ	17,154654	9.830679	8.539737
114	1	Õ	16.109071	11.790525	7.427371
115	1	0	13.967028	11.514787	6.188927
116	1	0	12.894491	9.274243	6.065085
117	1	0	13.234635	1.834646	7.131752
118	1	0	12.350572	0.853367	9.233324
119	1	0	10.398152	1.894275	10.367291
120	1	0	9.308610	3.893882	9.366049
121	1	0	10.183814	4.855634	7.255353
122	1	0	13.203220	3.945955	1.352850
123	1	0	14.323159	2.092481	0.169219
124	1	0	13.099950	0.809519	-1.585600
125	1	0	10.745172	1.397300	-2.122996
126	1	0	9.623528	3.250152	-0.946773
127	1	0	9.371357	5.407064	-1.475308
128	1	0	7.122572	6.187087	-2.134929
129	1	0	5.475464	6.860789	-0.404123
130	1	0	6.08/405	6./30612	2.006202
131	1	0	8.328006	5.883078	2.009303
132	T A	U	12.03503/	0.459858	0.5/6146
133	1	0	11.232/51	0.900544	-0.423823
134	1	0	10.19131/ 8 777700	0.049040	-0.094008
100	I	U	0.////00	10.077530	-1.041540

136	1	0	8.213547	11.963125	1.010895
137	1	0	9.028735	11.209744	3.216722
138	1	0	11.121833	10.230647	5.119001
139	1	0	9.373582	10.089886	4.849503
140	1	0	7.658073	9.479421	6.967722
141	1	0	5.285757	8.872990	6.615745
142	1	0	4.697427	6.762313	5.442305
143	1	0	6.497128	5.258174	4.624057
144	1	0	8.900368	5.874940	4.985509
145	1	0	10.967465	10.967965	7.074993
146	1	0	11.098040	11.940153	9.331572
147	1	0	10.405406	10.612730	11.314656
148	1	0	9.597600	8.275821	11.013102
149	1	0	9.510796	7.274891	8.758943
150	1	0	13.042909	9.949437	3.255657
151	1	0	15.449011	10.540092	3.244516
152	1	0	17.173024	8.752128	3.303302
153	1	0	16.472217	6.359412	3.382502
154	1	0	14.070660	5.776266	3.461876

References

- L. S. H. Dixon, A. F. Hill, M. Sinha, J. S. Ward, J. S. Organometallics 2014, 33, 653. 1
- a) I. J. S. Fairlamb, A. R. Kapdi, A. F. Lee, Org. Lett. 2004, 6, 4435; b) A. R. Kapdi, A. C. Whitwood, D. C. Williamson, J. 2 M. Lynam, M. J. Burns, T. J. Williams, A. J. Reay, J. Holmes, I. J. S. Fairlamb, *J. Am. Chem. Soc.* **2013**, *135*, 8388. a) L. E. Crascall, J. L. Spencer, *Inorg. Synth.* **1990**, 28, 126; b) D. B. Dell'Amico, L. Labella, F. Marchetti, S. Samaritani,
- 3 S. J. Organomet. Chem. 2011, 696, 1349.
- a) R. A. Schunn, *Inorg. Synth.* **1974**, *15*, 5; b) D. J. Krysan, J. Mackenzie, *J. Org. Chem.* **1990**, *55*, 4229. M. J. Frisch et al., *Gaussian 09*®, revision A.02; Gaussian, Inc.: Wallingford, CT, 2009. A. D. Becke, *Phys. ReV. A* **1988**, *38*, 3098. 4
- 5
- 6
- J. P. Perdew, *Phys. ReV. B* **1986**, *34*, 7406. J. P. Perdew, *Phys. ReV. B* **1986**, *33*, 8822. 7
- 8
- (a) W. Kuechle, M. Dolg, H. Stoll and H. Preuss, J. Chem. Phys. 1994,100, 7535. (b) M. Dolg, H. Stoll, H. Preuss and R. M. 9 Pitzer, J. Phys. Chem. 1993,97, 5852.
 P. C. Hariharan and J. A. Pople, Theor. Chim. Acta 1973, 28, 213.
- 11 F. Weigend, F. Furche and R. Ahlrichs, J. Chem. Phys. 2003, 119, 12753.