Supporting Information

Fabrication of silver chalcogenolate clusters hybrid membranes with enhanced structural stability and luminescence efficiency

Yi-Man Wang, ‡^a Jiang-Wei Zhang, ‡^b Qian-You Wang, ^a Hai-Yang Li, ^a Xi-Yan Dong, ^{a,c} Shan

Wang*a and Shuang-Quan Zang*a

^a College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P.R. China
^b State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS) Dalian 116023, P.R. China
^c Henan Polytechnic University, College of Chemistry and Chemical Engineering, Jiaozuo, CN 454000

E-mail: shanwang@zzu.edu.cn; zangsqzg@zzu.edu.cn

Table of Contents.

- **S1.** Chemicals and Materials.
- S2. Measurements.
- S3. Methods.
 - S3.1. Synthesis of ligand (NH₂-bpz).
 - S3.2. Synthesis of NH_2 - $Ag_{12}bpz$ crystal.
 - S3.3. Synthesis of nano-NH₂-Ag₁₂bpz.
 - S3.4. Synthesis of nano-MA-Ag₁₂bpz.
 - **S3.5.** Preparation of membrane.
 - S3.6. Nitrobenzene detection by Ag₁₂bpz membrane.
- S4. Crystallographic data of NH₂-Ag₁₂bpz.
- **S5.** Supplementary Figures.

S1. Chemicals and Materials.

Triethylene glycol dimethacrylate (TEGDMA), 2-methacrylic anhydride (MA), P(Cy)₃ and 2,5-dibromoaniline were purchased from Saan Chemical Technology (Shanghai) Co., Ltd. Butyl methacrylate (BMA) and Phenylbis(2,4,6-trimethylbenzoyl)phosphine oxide were supplied by J&K Chemical Technology (Beijing) Co., Ltd. Pyridine-4-boronic acid and Pd₂(DBA)₃ were purchased from Beijing HWRK Chem Co., Ltd. All reagents are of analytical grade and can be used directly after purchase. AgSⁱBu was prepared by reaction of equivalent amounts of AgO and HSⁱBu in the presence of Et₃N.

S2. Measurements.

Single-crystal X-ray diffraction (SCXRD) was performed on a Rigaku XtaLAB Pro diffractometer using Cu K α radiation (λ = 1.54184 Å). Powder X-ray diffraction (PXRD) were collected on a Riguku D/Max-2500PC X-ray diffractometer with Cu sealed tub (λ = 1.54178 Å). Morphology of all samples were carried out using Zeiss Sigma 500 on a scanning electron microscopy (SEM) measurement. The photoluminescence (PL) emission spectra were measured by using a Horiba FluoroLog⁻³ spectrofluorometer. The membrane was prepared by employing the CEL-M500/350 mercury lamp source purchased from Beijing China Education Au-light Co., Ltd. FTIR spectra were recorded in the 400-4000 cm⁻¹ region on an Alpha Centaur FT/IR spectrophotometer (KBr pellets). ¹H nuclear magnetic resonance (NMR) spectra were recorded on a Bruker DRX spectrometer operating at 400 MHz. ¹³C NMR spectra were recorded on a Bruker DRX spectrometer operating at 600 MHz in DMSO. For liquid ¹³C NMR test, approximately 20 mg of nano-NH₂-Ag₁₂bpz, nano-MA-Ag₁₂bpz and Ag₁₂bpz membrane were degraded in d₆-DMSO with one drop of HCl, respectively. Luminescence decay profiles were measured on HORIBA Scientific Fluorolog⁻³ spectrofluorometer equipped with phosphor lamp, operating in time-correlated single photon counting mode (TCSPC) with a resolution time of 200 ps.

S3. Methods.

S3.1. Synthesis of ligand (NH₂-bpz).

The ligand 1,4-bis(pyrid-4-yl)benzenenamine (NH₂-bpz) was synthesized according to the previous report.¹

Figure S1. ¹H NMR of NH₂-bpz. (400 MHz, DMSO): δ 8.6, d, 4H; 7.6, q, 2H; 7.5, t, 2H; 7.2, t, 2H; 7.0, q, 1H; 5.2, s, 2H.

S3.2. Synthesis of NH₂-Ag₁₂bpz crystal.

AgS^tBu (20 mg, 0.1 mmol) and CF₃COOAg (22 mg, 0.1 mmol) were dissolved in N,Ndimethylacetamide (DMAc, 3 mL), followed by a mixture of NH₂-bpz (20 mg, 0.08 mmol) with1 mL DMAc being added into the above solution. The obtained mixture was slowly evaporated in air for 10 min. The resultant NH₂-Ag₁₂bpz crystals were collected with 68.54 % yield based on NH₂bpz.

S3.3. Synthesis of nano-NH₂-Ag₁₂bpz.

Nanocrystals of NH₂-Ag₁₂bpz (nano-NH₂-Ag₁₂bpz) were prepared by stirring method. AgStBu

(20 mg, 0.1 mmol) and CF₃COOAg (22 mg, 0.1 mmol) was first dissolved in 3 mL DMAc, the resulting solution was then added dropwise to a solution consisting of 20 mg NH₂-bpz and 1 mL DMAc. Under vigorous stirring for 1 min, the pale yellow product was obtained by filtration.

S3.4. Synthesis of nano-MA-Ag₁₂bpz.

Nano-NH₂-Ag₁₂bpz (20 mg) were soaked in the mixture solution of 2-methacrylate anhydride (MA, 14.7 μ L) and dichloromethane (CH₂Cl₂, 1 mL) for 2 days at room temperature. Afterwards, nano-MA-Ag₁₂bpz was obtained and separated by filtration.

S3.5. Preparation of membrane.

S3.5.1. Preparation of Ag₁₂bpz membrane.

TEGDMA (100 μ L), BMA (100 μ L) and phenylbis-(2,4,6-trimethylbenzoyl) phosphine oxide (0.8 mg) were uniformly mixed together, and then different amounts of nano-MA-Ag₁₂bpz were added into the mixture under sonication until the solutions were well-dispersed. The resulting suspension was dripped into a glass plate, and another glass slide was covered over the suspension. The interfacial polymerization was occurred upon irradiated by the UV-lamp source. After 5 min, the obtained Ag₁₂bpz membrane can be easily peeled off from the glass slide.

S3.5.2. Preparation of NH₂-Ag₁₂bpz membrane.

The nano-NH₂-Ag₁₂bpz (35.3 mg) were dispersed in the mixture of TEGDMA (100 μ L), BMA (100 μ L) and phenylbis-(2,4,6-trimethylbenzoyl) phosphine oxide (0.8 mg), and formed a homogeneous suspension. Through the same photo-polymerization method mentioned above, we obtained the NH₂-Ag₁₂bpz membrane

S3.5.3. Preparation of Ag₁₂ membrane.

The Ag₁₂ membrane was obtained by directly mixing Ag₁₂ clusters (22.2 mg) particles with BMA (100 μ L) and TEGDMA (100 μ L) in the presence of phenylbis-(2,4,6-trimethylbenzoyl) phosphine oxide (0.8 mg), then via the same photo-polymerization method.

S3.6. Nitrobenzene detection by Ag₁₂bpz membrane.

S3.6.1. Liquid phase detection.

We prepared a solution of nitrobenzene with the concentration raging form 1 μ M to 10 μ M. And then the NB solution were dripped onto the Ag₁₂bpz membrane. During the fluorescence measurements, the samples were excited at 454 nm.

S3.6.2. Vapor-phase detection.

2 mL of nitrobenzene solution was placed in a capped glass vial for a week to ensure that the equilibrated vapor pressure of nitrobenzene was reached. To conduct a test, the $Ag_{12}bpz$ membrane were put into the vial for a specified time for exposure to the NB vapors, and then taken out quickly to measure the corresponding fluorescence spectra.

For the cycle test, after each luminescence quenching by NB, $Ag_{12}bpz$ membrane was vacuumed at 40 °C for 5 hours, then used for the next round of testing.

S4. Crystallographic data of NH₂-Ag₁₂bpz.

Table S1	. Crystal	data :	and st	ructure	refineme	ents.
----------	-----------	--------	--------	---------	----------	-------

	NH ₂ -Ag ₁₂ bpz		
CCDC number	1956711		
Empirical formula	$C_{84}H_{96}Ag_{12}F_{18}N_{12}O_{12}S_6$		
Formula weight	3294.51		
Temperature / K	293(2)		
Crystal system	hexagonal		
Space group	P6/mmm		
<i>a</i> / Å	23.5654(5)		
<i>b</i> / Å	23.5654(5)		
<i>c</i> / Å	11.2007(3)		
<i>a</i> / °	90		
<i>β</i> / °	90		
γ/°	120		
Volume / Å ³	5386.7(3)		
Ζ	1.00008		
$ ho_{ m calc}{ m g}/{ m cm}^3$	1.016		
μ/mm^{-1}	9.477		
F(000)	1602.0		
Crystal size / mm ³	$0.2 \times 0.05 \times 0.01$		
Radiation	Cu K α (λ = 1.54184)		
2Θ range for data collection / $^\circ$	4.33 to 132.98		
Index ranges	$-16 \le h \le 28, -27 \le k \le 19, -13 \le l \le 9$		
Reflections collected	18296		
Independent reflections	1779 [R int = 0.0419 , R sigma = 0.0220]		
Data / restraints / parameters	1779 / 48 / 107		
Goodness-of-fit on F ²	1.099		
Final R indexes [I >= 2σ (I)]	$R_1 = 0.0896, WR_2 = 0.2569$		
Final R indexes [all data]	$R_1 = 0.0959, wR_2 = 0.2665$		
Largest diff. peak/hole / e Å ⁻³	1.71/-0.69		

 $R_1 = \sum ||F_0| - |F_c| \sum /|F_0|$. $wR_2 = [\sum w(F_0^2 - F_c^2)^2 / \sum w(F_0^2)^2]^{1/2}$

S5. Supplementary Figures.

Figure S2. Photographs of Ag_{12} clusters before and after exposure in air for 1 hour.

Figure S3. Single crystal structure of NH₂-Ag₁₂bpz.

Figure S4. Fluorescence emission spectra of NH₂-Ag₁₂bpz (single crystals).

Figure S5. Optical microscope images of NH₂-Ag₁₂bpz (single crystals) (a) under normal light and (b) under UV light.

Figure S6. Photographs of $Ag_{12}bpz$ membrane loaded with increasing (left-to-right) concentrations of nano-MA- $Ag_{12}bpz$ under normal light and UV light.

Figure S7. SEM images Ag₁₂bpz membrane with different loadings (a) 5%, (b) 15%, and (c) 30%.

Figure S8. ¹³C NMR spectrum of nano-NH₂-Ag₁₂bpz, nano-MA-Ag₁₂bpz and Ag₁₂bpz membrane in d_6 -DMSO.

Figure S9. Photographs of (a) nano- NH_2 - $Ag_{12}bpz$ and (b) nano-MA- $Ag_{12}bpz$ under normal light.

Figure S10. Photographs of (a) nano-NH₂-Ag₁₂bpz and (b) nano-MA-Ag₁₂bpz under UV light.

Figure S11. PXRD patterns of simulated NH₂-Ag₁₂bpz, single crystal of NH₂-Ag₁₂bpz, nano-NH₂-Ag₁₂bpz, nano-MA-Ag₁₂bpz and Ag₁₂bpz membrane with different Ag₁₂bpz loading.

Figure S12. Corresponding photographs before and after exposure of Ag_{12} membrane in air for 1 hour.

Figure S13. Photographs of nano- NH_2 - $Ag_{12}bpz$, NH_2 - $Ag_{12}bpz$ membrane, nano-MA- $Ag_{12}bpz$ and $Ag_{12}bpz$ membrane under 365 nm UV light as well as their corresponding SEM images.

Figure S14. PXRD patterns of $Ag_{12}bpz$ membrane and NH_2 - $Ag_{12}bpz$ membrane upon treated by water, base and acid with different time.

Figure S15. Time-resolved fluorescence-decay profiles of (a) Ag_{12} cluster, (b) nano-NH₂-Ag₁₂bpz and Ag₁₂bpz membrane.

Ag₁₂ cluster showed a lifetime of 5.7 μ s, which can be attributed to the metal-centered transitions. On the other hand, due to the luminescence mainly derived from the ligand-centered emission, nano-NH₂-Ag₁₂bpz and Ag₁₂bpz membrane exhibited nanoseconds lifetime. It is worth mention that the lifetime of Ag₁₂bpz membrane (4.6 ns) is longer than nano-NH₂-Ag₁₂bpz (0.44 ns). The relatively slower exciton energy release of Ag₁₂bpz membrane can be accounts for the covalent linkages between nanocrystal and polymer binder, which effectively restricted Ag₁₂bpz moieties motions in the polymer matrix.

Figure S16. (a) Fluorescence spectra showing response on the incremental addition of the solution of NB on $Ag_{12}bpz$ membrane. (b) SV plot with the addition of NB to 10 μ M. (c) Fluorescence intensity changes of $Ag_{12}bpz$ membranes exposed to nitrobenzene vapor at different time. (d) Cycling test of the $Ag_{12}bpz$ membrane upon exposure to vapors of NB.

Figure S17. PXRD patterns of $Ag_{12}bpz$ membrane before and after exposure to the NB vapor for three cycles.

1 X. G. Guo, Z. Y. Zhang, S. Qiu, X. Su, Y. B. Wang and X. Sun, *Chem. Eur. J*, 2017, **23**, 17727-17733.