Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2019

SUPPORTING INFORMATION

Nucleoside-modified AdoMet analogues for differential methyltransferase targeting

Nicolas V. Cornelissen^a, Dr. Freideriki Michailidou^a, Dr. Fabian Muttach^a, Dr. Kristina Rau^a, and Prof. Dr. Andrea Rentmeister^a

[a] N. Cornelissen, Dr. Freideriki Michailidou, Dr. Fabian Muttach, Kristina Rau, Prof. Dr. A. Rentmeister, University of Muenster, Department of Chemistry, Institute of Biochemistry, Wilhelm-Klemm-Straße 2, D-48149 Muenster, Germany

E-mail: a.rentmeister@uni-muenster.de

Methods

All chemicals were purchased from Sigma Aldrich, Alfa Aesar or TCI unless otherwise noted. HPLC grade acetonitrile was purchased from VWR. Nucleoside triphosphates and cap analogues were purchased from Jena Bioscience, NEB, TriLink Biotechnologies, Solis BioDyne and Sigma Aldrich. All chemicals were used without further purification.

Synthesis of allyl-D/L-homocysteine (1b)

Allyl-D/L-homocysteine was synthesized as previously reported.1

Synthesis of propargyl-L-selenohomocsyteine (Se-1c)

First, L-selenohomocsyteine was synthesized in two steps starting from L-homoserine (Activate Scientific) as previously reported by Bothwell *et al.*² Under an argon atmosphere L-selenohomocsyteine (119 mg, 0.65 mmol, 1 eq.) was dissolved in 20 mL dry ethanol. Sodium borohydride (124 mg, 3.28 mmol, 5 eq.) was added and the mixture was stirred for 15 min at room temperature. Sodium bicarbonate (150 mg, 1.78 mmol) and propargyl bromide (80 % in toluene, 156 μ L, 208 mg, 1.26 mmol, 2 eq.) were added and the mixture stirred for 16 h. The solvent was removed under reduced pressure and the raw product was dissolved in 6 mL ddH₂O with 1 % trifluoroacetic acid. The solution was acidified to pH = 3 using HCl. The solution was centrifuged for 5 min at 21,000 g and purified *via* preparative HPLC. The product was obtained as white crystalline solid (100.4 mg, 0.50 mmol, 77 %)

¹**H NMR** (300 MHz, D₂O): δ / ppm = 3.85 (m, 1H), 3.32 (m, 2H), 2.87 (m, J = 7.8 Hz, 2H), 2.67 (t, 1H), 2.27 (m, 2H).

MS (**ESI-pos.**): calculated mass for $[C_7H_{11}NO_2SeNa]^+$: m/z = 243.9847, found m/z = 243.9852 [M+Na]⁺.

Amino acid sequences of enzymes used in this study

The purification tag is marked in yellow and the substitution site in green. The protein sequence is underlined.

hTGS1

MRGSHHHHHGMASMTGGQQMGRDLYDDDDKDRWGS<u>EVKKKKNKKKNKKVNG</u> <u>LPPEIAAVPELAKYWAQRYRLFSRFDDGIKLDREGWFSVTPEKIAEHIAGRVSQSFK</u> <u>CDVVVDAFCGVGGNTIQFALTGMRVIAIDIDPVKIALARNNAEVYGIADKIEFICGDFL</u> <u>LLASFLKADVVFLSPPWGGPDYATAETFDIRTMMSPDGFEIFRLSKKITNNIVYFLPR</u> NADIDQVASLAGPGGQVEIEQNFLNNKLKTITAYFGDLIRRPASET

LuxS

MPSVESFELDHNAVVAPYVRHCGVHKVGTDGVVNKFDIRFCQPNKQAMKPDTIHTL EHLLAFTIRSHAEKYDHFDIIDISPMGCQTGYYLVVSGEPTSAEIVDLLEDTMKEAVEI TEIPAANEKQCGQAKLHDLEGAKRLMRFWLSQDKEELLKVFGAAALEHHHHHH

MTAN

MSYYHHHHHHDYDIPTTENLYFQGAMDPEFSMKIGIIGAMEEEVTLLRDKIENRQTIS LGGCEIYTGQLNGTEVALLKSGIGKVAAALGATLLLEHCKPDVIINTGSAGGLAPTLK VGDIVVSDEARYHDADVTAFGYEYGQLPGCPAGFKADDKLIAAAEACIAELNLNAVR GLIVSGDAFINGSVGLAKIRHNFPQAIAVEMEATAIAHVCHNFNVPFVVVRAISDVAD QQSHLSFDEFLAVAAKQSSLMVESLVQKLAHG

MATIIa I117A

MRGSHHHHHHGMASMTGGQQMGRDLYDDDDKDRWGSELENGQLNGFHEAFIEE GTFLFTSESVGEGHPDKICDQISDAVLDAHLQQDPDAKVACETVAKTGMILLAGEITS RAAVDYQKVVREAVKHIGYDDSSKGFDYKTCNVLVALEQQSPDAAQGVHLDRNEE DIGAGDQGLMFGYATDETEECMPLTIVLAHKLNAKLAELRRNGTLPWLRPDSKTQV TVQYMQDRGAVLPIRVHTIVISVQHDEEVCLDEMRDALKEKVIKAVVPAKYLDEDTIY HLQPSGRFVIGGPQGDAGLTGRKIIVDTYGGWGAHGGGAFSGKDYTKVDRSAAYA ARWVAKSLVKGGLCRRVLVQVSYAIGVSHPLSISIFHYGTSQKSERELLEIVKKNFDL RPGVIVRDLDLKKPIYQRTAAYGHFGRDSFPWEVPKKLKY

Ecm1

MRGSHHHHHHGMASMTGGQQMGRDLYDDDDKDRWGS<u>MEGKKEEIREHYNSIRE</u> RGRESRQRSKTINIRNANNFIKACLIRLYTKRGDSVLDLGCGKGGDLLKYERAGIGE YYGVDIAEVSINDARVRARNMKRRFKVFFRAQDSYGRHMDLGKEFDVISSQFSFHY AFSTSESLDIAQRNIARHLRPGGYFIMTVPSRDVILERYKQGRMSNDFYKIELEKMED VPMESVREYRFTLLDSVNNCIEYFVDFTRMVDGFKRLGLSLVERKGFIDFYEDEGR RNPELSKKMGLGCLTREESEVVGIYEVVVFRKLVPESDA

CouO

MGIEPITGSEAEAFHRMGSRAFERYNEFVDLLVGAGIADGQTVVDLCCGSGELEIILT SRFPSLNLVGVDLSEDMVRIARDYAAEQGKELEFRHGDAQSPAGMEDLLGKADLV VSRHAFHRLTRLPAGFDTMLRLVKPGGAILNVSFLHLSDFDEPGFRTWVRFLKERP WDAEMQVAWALAHYYAPRLQDYRDALAQAADETPVSEQRIWVDDQGYGVATVKC FARRAAALEHHHHHH

ChMAT

MAHHHHHMDSSRLSGNKSTYTDLQTTSEQFLFSSESVCSGHPDKLCDQISDAILD ACLEQDPESFVACETCTKTGFIMVFGEITTKANVNYERVVRETVKEIGYDSEEKGLD YKTMDVIIKLEQQSNQIAGCVHVDKNVEDIGAGDQGMMFGYATNETKELMPLTHVL ATSITRELDYIRMKGVSSRVGWLRPDGKAQVTVEYNCKHGVLIPKRIHTILVSVQHD ENIENEEIREFVLENVIKKVCPSDLMDKETRILINPSGRFTIGGPAADAGLTGRKIIVDT YGGWGAHGGGAFSGKDATKVDRSGAYMARLVAKSIVFSGLCSRCLVQVSYGIGIA RPLSLYINTFGTAKDGYNDTKLLEIVNKVFDFRPGILIKQLNLKSPIFKKTSSGGHFGR SEKEFLWEKPIILQ

Tab. S1 Plasmids used in this study.

Vector	Insert	Resistance	Producer
pRSET-A	hTGS1	Ampicillin	Lab plasmid collection ³
pET-29a(+)	LuxS	Kanamycin	Prof. Zhaohui Zhou,
			Prof. Birgit Dräger ⁴
pProEX HTa	MTAN	Ampicillin	Prof. Zhaohui Zhou,
			Prof. Birgit Dräger ⁴
pRSET-A	MATIIa I117A	Ampicillin	Lab plasmid collection ¹
pRSET-A	Ecm1	Ampicillin	Lab plasmid collection ⁵
pET-28a(+)	CouO	Kanamycin	This study
BG1861	ChMAT	Ampicillin	SSGCID

Cloning

The gene *CouO* of *Streptomyces rishiriensis* was codon optimized and synthesized by BioCat GmbH. The obtained sequence was cloned into the expression vector pET-28a(+) upstream of the histidine tag using restriction enzymes FastDigest Ncol and Xhol (Thermo Scientific TM).

Recombinant expression in *E. coli*

For protein production *E. coli* BL21(DE3) cells were transformed with the respective plasmid and cultivated on LB-agar plates supplemented with the respective antibiotics. Single colonies were picked to inoculate an overnight pre-culture. Main cultures were inoculated with 1% of the pre-culture and induced using isopropyl- β -D-1-thiogalactopyranoside (IPTG). Expression conditions for all constructs used in this study are summarized below. After production, cells were centrifuged at 5,000 g for 20 min and pellets were stored at -80 °C for further use.

Tab. S2 Expression conditions of enzymes used in this study.

enzyme	expression host	medium	OD ₆₀₀	IPTG addition	expression conditions
			for induction		
ChMAT	E. coli BL21 (DE3)	LB	0.6-0.8	0.5 mM	16 h at 17 °C
hMAT2a I117A	E. coli BL21 (DE3)	LB	0.6-0.8	0.5 mM	16 h at 17 °C
Ecm1	E. coli BL21-Gold (DE3)	LB	0.6	0.2 mM 2 % EtOH	16 h at 18 °C
hTGS1	E. coli BL21 (DE3)	2YT	0.6	0.32 mM 2 %	16 h at 18 °C
				glucose	
CouO	E. coli BL21 (DE3)	LB	0.8	0.1 mM	16 h at 25 °C
MTAN	E. coli BL21 (DE3)	LB	0.6-0.7	0.2 mM	3 h at 37 °C
LuxS	E. coli BL21 (DE3)	LB	0.6	0.8 mM	6 h at 37 °C

Protein purification using immobilized metal affinity chromatography

Proteins were purified *via* their His-tag by immobilized metal affinity chromatography (IMAC). Cell pellets were resuspended in lysis buffer and PMSF (100 μM final concentration) was added. The suspension was sonicated for 3×3 min at an amplitude of 30 % using a Sonopuls GM3100 (Bandelin, Berlin). The cell lysate was centrifuged at 21,000 g for 30 min (4 °C). The supernatant was filtered through a 0.2 μm filter and loaded into the Superloop of the ÄKTApurifier. A HisTrap FF column (1 mL) was equilibrated in lysis buffer, the sample was injected and proteins were eluted by an increasing gradient of imidazole.

Fractions containing the desired protein were pooled. Concentration and buffer exchange to storage buffer was performed using Amicon Ultra-15 centrifugal units (10 kDa cut-off). Concentrated proteins were flash frozen in liquid nitrogen and stored in aliquots at -80 °C.

Tab. S3 Buffers used for IMAC.

ChMAT

Lysis buffer: 20 mM NaH₂PO₄ pH 7.8, 300 mM NaCl, 10 mM imidazole

Elution buffer: 20 mM NaH₂PO₄ pH 8.0, 300 mM NaCl, 500 mM imidazole

Storage buffer: 25 mM Tris HCl pH 8.0, 80 mM KCl, 10 % glycerol

CouO

Lysis buffer:100 mM Tris HCl pH 8.0, 150 mM NaCl, 10 mM imidazole

Elution buffer: 100 mM Tris HCl pH 8.0, 150 mM NaCl, 500 mM imidazole

Storage buffer: 25 mM Tris HCl pH 8.0, 80 mM KCl, 10 % glycerol

HPLC analysis

HPLC was performed on an Agilent 1260 Infinity HPLC equipped with a diode array detector (DAD) (190–640 nm).

For analytical reversed-phase HPLC, a NUCLEODUR® C18 Pyramid (5 μ m, 125×4 mm) column from Macherey-Nagel was used. Elution was performed at a flow rate of 1 mL/min in a linear gradient of buffer A (100 mM K₂HPO₄/KH₂PO₄ pH = 6.5) and buffer B (50 % buffer A, 50 % MeCN).

Detection was performed using a diode array detector (DAD) at a wavelength of 225 nm for methionine analogues (1a, 1b, Se-1c) and at 260 nm for GpppA (16) ATP analogues, AdoMet analogues as well as their degradation products. For the assignment of the cap analogues (16a-c, 17a,c) a detection wavelength of 300 nm was used. Coumarin derivatives were detected at 330 nm.

Evaluation for Figure 3 was performed as follows:

- 1. Integration of peaks for GpppA, m⁷GpppA or p⁷GpppA
- 2. Calculation of conversion (in %) (product/(educt+product)
- 3. Normalization of conversion obtained with AdoMet analog to conversion obtained with AdoMet.

LC/MS analysis

UHPLC-ESI-TOF-MS analysis was performed using an UltiMate 3000[®] UHPLC (Thermo Scientific, Waltham, USA) coupled to a maXis II ultra-high resolution QTOF (Bruker, Bremen). Separation was performed using a NUCLEODUR[®] C18 Pyramid column (125×2 mm, Macherey-Nagel) eluting in a gradient of 20 mM ammonium formate (pH = 3.5, buffer A) and methanol (buffer B) at a flow-rate of 0.6 mL/min.

For LC/MS analysis of AdoMet analogues the respective methionine analogue **1a, 1b,** or **Se-1c** (6 mM) was incubated with an ATP analogue (**2,4** or **5,** 2.5 mM) and 100 μ M ChMAT in a total volume of 25 μ L. Reaction buffer consisted of 5 mM Tris-HCl, 10 mM MgCl₂, 5 mM KCl (pH = 8.0). The reaction was incubated for 3 h at 23 °C. The enzymes were inactivated by the addition of 10 % (v/v) of 1 M HClO₄ and centrifuged for 10 min at 21,000 g. The supernatant was directly analyzed *via* LC/MS.

Enzymatic generation of AdoMet analogues

For the enzymatic generation of AdoMet analogues, L-methionine (**1a**, 6 mM) was incubated with ATP analogues (**2-8**, 2.5 mM), 25 μ M MAT (hMAT2a I117A, ChMAT), 30 μ M Ecm1, 5 μ M MTAN, 5 μ M LuxS and 300 μ M GpppA in a total volume of 30 μ L.†1,6,7 Reaction buffer consisted of 5 mM Tris-HCl, 10 mM MgCl₂, 5 mM KCl (pH = 8). Samples were taken after 0 h, 1 h, 2 h, 3 h, 4 h and 8 h, stopped by the addition of 10 % (v/v) of 1 M HClO₄ and centrifuged for 10 min at 21,000 g. The supernatant was directly analyzed *via* HPLC.

Enzymatic cascade using N⁶-modified ATP analogues

For the enzymatic cascade, the respective methionine analogue **1a, 1b** or **Se1-c**, (6 mM) was incubated with an ATP analogue (**4** or **5**, 2.5 mM), 100 μ M ChMAT, 30 μ M Ecm1, 5 μ M MTAN, 5 μ M LuxS and GpppA (**16**, 300 μ M) in a total volume of 50 μ L.

^{†1} MTAN and LuxS are added to degrade the coproduct SAH (or SAH analogs) which are known to inhibit MTases.

Reaction buffer consisted of 5 mM Tris-HCl, 10 mM MgCl_2 , 5 mM KCl (pH = 8.0). Samples were taken after 0 h, 1 h, 2 h, 3 h, 4 h and 8 h.

Samples containing **4** were inactivated (5 min, 95 °C) and dephosphorylated with FastAP (ThermoFisher Scientific) for 30 min at 23 °C to avoid coelution of **4** with **16b**. Next, the samples were acidified by the addition of 10 % (v/v) of 1 M HClO₄, centrifuged for 10 min at 21,000 g and the supernatant was directly analyzed *via* HPLC.

Enzymatic cascade using different MTases

For the enzymatic cascade using different MTases 6 mM L-methionine (**1a**) or propargyl-L-selenohomocysteine (**Se-1c**) was incubated with 2.5 mM ATP (**2**) or b^6ATP (**5**), 100 μ M ChMAT, 30 μ M MTase (Ecm1, hTGS1 or CouO), 5 μ M MTAN, 5 μ M LuxS and 300 μ M MTase substrate (GpppA (**16**), m^7 GpppA (**16a**) or 4,5,7-trihydroxy-3-phenylcoumarin (**18**)) in a total volume of 20 μ L. Reaction buffer consisted of 5 mM Tris-HCl, 10 mM MgCl₂, 5 mM KCl (pH = 8). Samples were taken after 0 h, 30 min and 8 h. The reaction was stopped by the addition of 10 % (v/v) of 1M HClO₄ and centrifuged for 10 min at 21,000 g. The supernatant was directly analyzed via HPLC.

Supplementary Figures

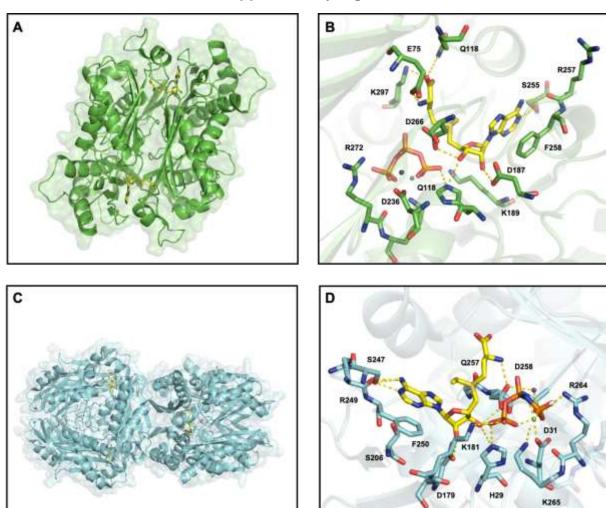


Fig. S1: Crystal structure of ChMAT (PDB: 4ODJ) deposited by the Seattle Structural Genomics Center for Infectious Disease (SSGCID) and of hMAT2a (PDB: 5A1G). A) Homodimer of ChMAT in complex with S-adenosylmethionine (SAM and triphosphate (1.6 Å). The SAM molecule indicates the position of the binding sites. B) Active site of ChMAT dimer. Residues that form H-bonds with SAM (yellow) and triphosphate (orange) are shown in sticks, H-bonds are shown as dashed yellow lines and magnesium ions are shown as grey spheres. C) Homotetramer of hMAT2a in complex with S-adenosylethionine (SAE) and (diphosphono)aminophosphonic acid (PPNP) (1.83 Å). The SAE molecule indicates the position of the binding sites. D) Active site of ChMAT dimer. Residues that form H-bonds with SAE (yellow), triphosphate (orange) are shown in sticks, H-bonds are shown as dashed yellow lines, magnesium and potassium ions are shown as green and purple spheres respectively.

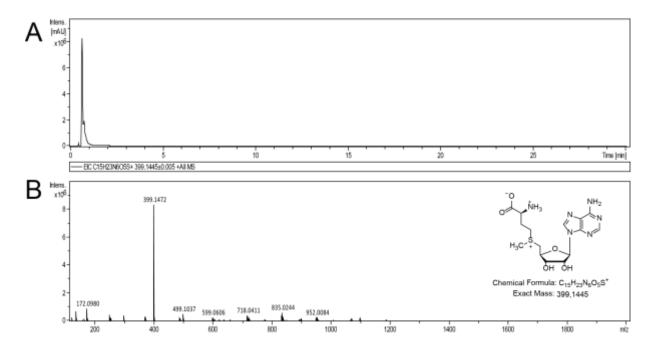


Fig. S2: LC/MS analysis of compound **9a**. Calculated mass for $[M]^+$ = 399.1445 Da, found m/z = 399.1472.

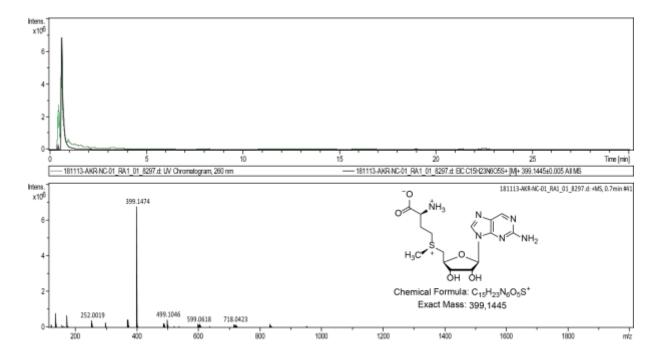


Fig. S3: LC/MS analysis of compound **10a**. Calculated mass for $[M]^+$ = 399.1445 Da, found m/z = 399.1474.

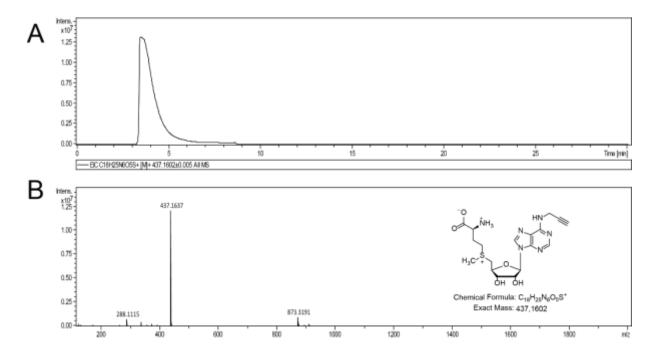


Fig. S4: LC/MS analysis of compound **11a**. Calculated mass for $[M]^+$ = 437.1602 Da, found m/z = 437.1637.

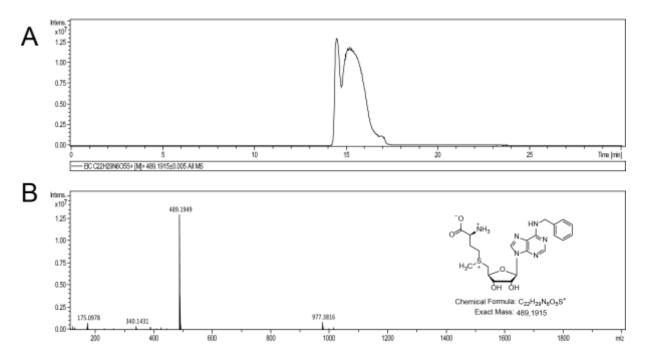


Fig. S5: LC/MS analysis of compound **12a**. Calculated mass for $[M]^+$ = 489.1915 Da, found m/z = 489.1949.

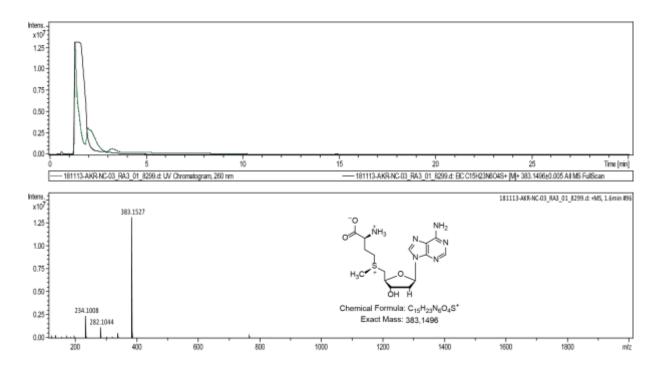


Fig. S6: LC/MS analysis of compound **13a**. Calculated mass for $[M]^+$ = 383.1496 Da, found m/z = 383.1527.

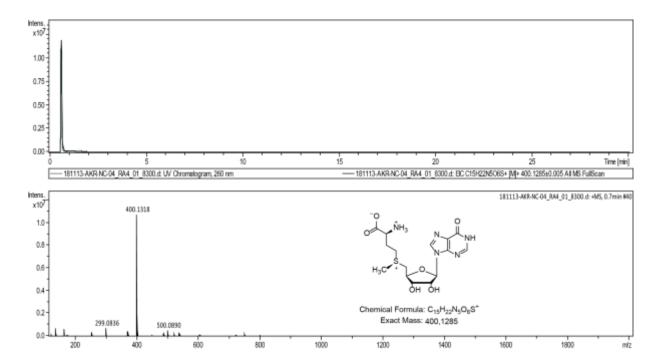


Fig. S7: LC/MS analysis of compound **14a**. Calculated mass for $[M]^+$ = 400.1285 Da, found m/z = 400.1318.

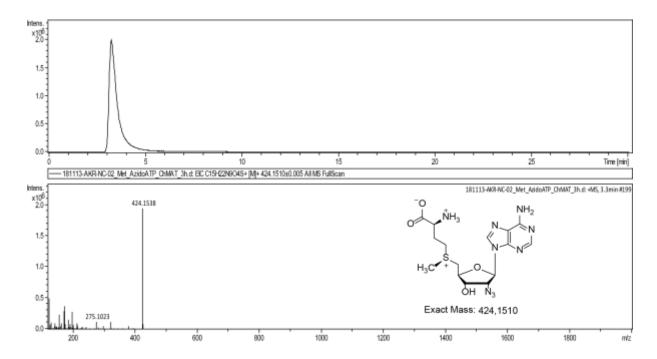


Fig. S8: LC/MS analysis of compound **15a**. Calculated mass for $[M]^+$ = 424.1510 Da, found m/z = 424.1538.

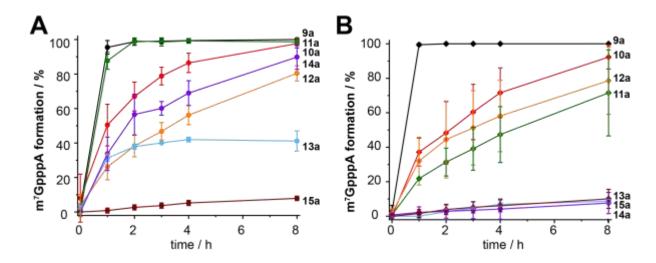


Fig. S9: Data from Figure S3 including error bars.

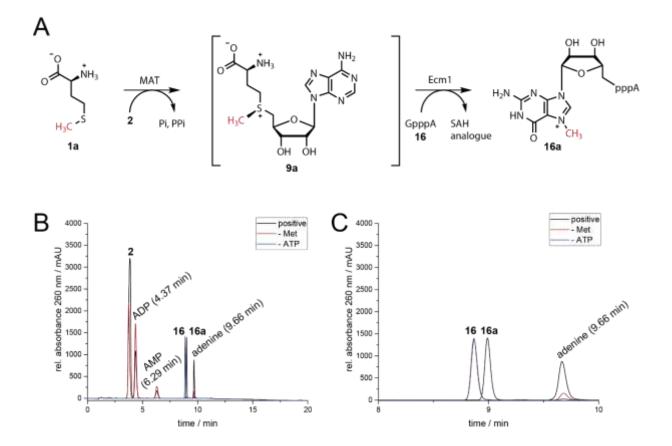


Fig. S10 [A] Controls for enzymatic cascade reaction with ChMAT and Ecm1 (1a, 2, 16 leading to formation of 16a). [B] Entire chromatogram of the reaction and [C] Enlarged view for relevant compounds. No product formation (16a) is observed if methionine or ATP are left out. Conditions: 6 mM L-methionine (1a) 2.5 mM ATP (2), 25 μ M ChMAT, 30 μ M Ecm1, 5 μ M MTAN, 5 μ M LuxS and 300 μ M GpppA (16) in a total volume of 20 μ L. Reaction buffer consisted of 5 mM Tris-HCl, 10 mM MgCl₂, 5 mM KCl (pH = 8). Reaction mixture was incubated for 8 h.

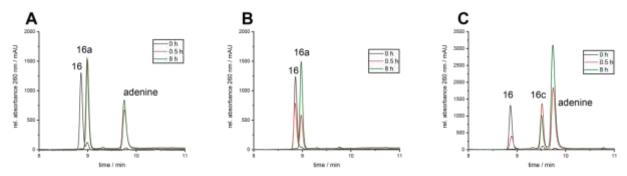


Fig. S11: HPLC analysis of cascade reactions. AdoMet analogue formation starting from different methionine analogues (6 mM) and ATP analogues (2.5 mM) catalyzed by ChMAT and subsequent alkylation reactions catalyzed by Ecm1. Reaction mixture contained 100 μ M ChMAT, 30 μ M Ecm1, 5 μ M MTAN, 5 μ M LuxS and 300 μ M GpppA (16) in a total volume of 20 μ L. Reaction buffer consisted of 5 mM Tris-HCl, 10 mM MgCl₂, 5 mM KCl (pH = 8). [A] L-methionine (1a) and ATP (2) [B] L-methionine (1a) and b⁶ATP (5) [C] propargyl-L-selenohomocysteine (Se-1c) and ATP (2). Samples were taken after 0 h and 0.5 h and 8 h. Note that adenine is only formed in [A] and [C].

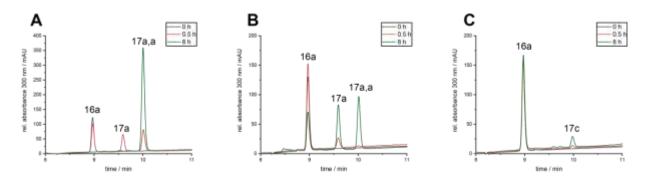


Fig. S12: HPLC analysis of cascade reactions. AdoMet analogue formation starting from different methionine analogues (6 mM) and ATP analogues (2.5 mM) catalyzed by ChMAT and subsequent alkylation reactions catalyzed by hTGS1. Reaction mixture contained 100 μ M ChMAT, 30 μ M hTGS1, 5 μ M MTAN, 5 μ M LuxS and 300 μ M m⁷GpppA (16a) in a total volume of 20 μ L. Reaction buffer consisted of 5 mM Tris-HCl, 10 mM MgCl₂, 5 mM KCl (pH = 8). [A] L-methionine (1a) and ATP (2) [B] L-methionine (1a) and b⁶ATP (5) [C] propargyl-L-selenohomocysteine (Se-1c) and ATP (2). Samples were taken after 0 h and 0.5 h and 8 h. Note that a single methyl group can be attached at the N^2 position of 16a to form 17a. Subsequently a second methylation occurs at the same N atom to form 17a,a. For the propargylation reaction only the single alkylated product 17c is observed.

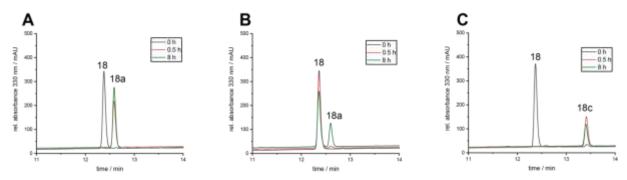


Fig. S13: HPLC analysis of cascade reactions. AdoMet analogue formation starting from different methionine analogues (6 mM) and ATP analogues (2.5 mM) catalyzed by ChMAT and subsequent alkylation reactions catalyzed by CouO. Reaction mixture contained 100 μ M ChMAT, 30 μ M CouO, 5 μ M MTAN, 5 μ M LuxS and 300 μ M THPC (18) in a total volume of 20 μ L. Reaction buffer consisted of 5 mM Tris-HCl, 10 mM MgCl₂, 5 mM KCl (pH = 8). [A] L-methionine (1a) and ATP (2) [B] L-methionine (1a) and b⁶ATP (5) [C] propargyl-L-selenohomocysteine (Se-1c) and ATP (2). Samples were taken after 0 h and 0.5 h and 8 h.

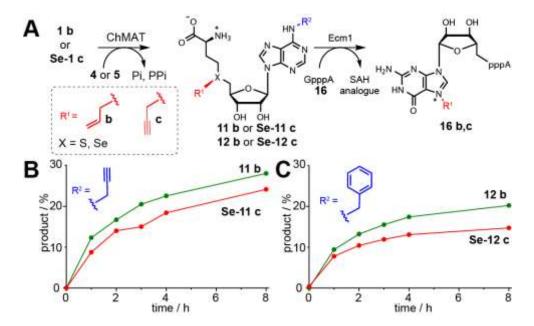


Fig. S14: Methionine analogues (**1b**, **Se-1c**) can be reacted with N^6 -modified-ATP. Double modified AdoMet analogues (**11a,b**, **Se-11c** or **12a,b**, **Se-12c**) are formed and are converted by Ecm1. A) Reaction scheme. B)-C) Cascade reactions with indicated methionine analogues and N^6 -propargyl-ATP (**4**) (B) or N^6 -benzyl-ATP (**5**) (C). Conditions: 6 mM **1b** or **Se-1c**, 2.5 mM **4** or **5**, 4 mol% ChMAT (rel. to **4** or **5**), 300 μ M **16**, 10 mol% Ecm1 (rel. to **16**).

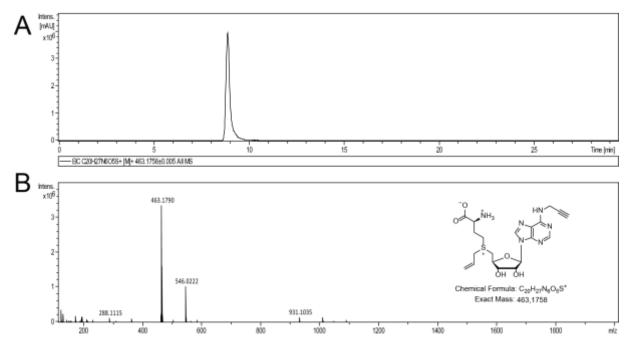


Fig. S15: LC/MS analysis of compound **11b**. Calculated mass for $[M]^+$ = 463.1748 Da, found m/z = 463.1790.

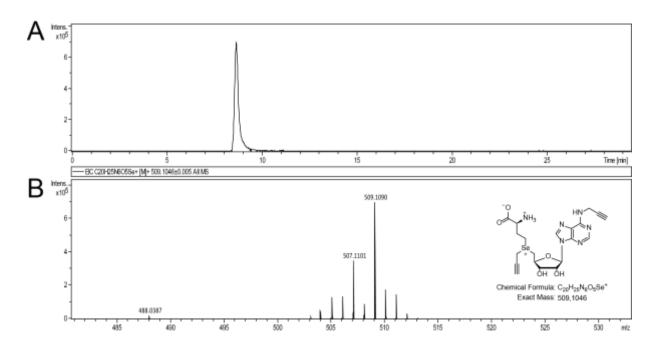


Fig. S16: LC/MS analysis of compound **Se-11c**. Calculated mass for $[M]^+ = 509.1046$ Da, found m/z = 509.1090.

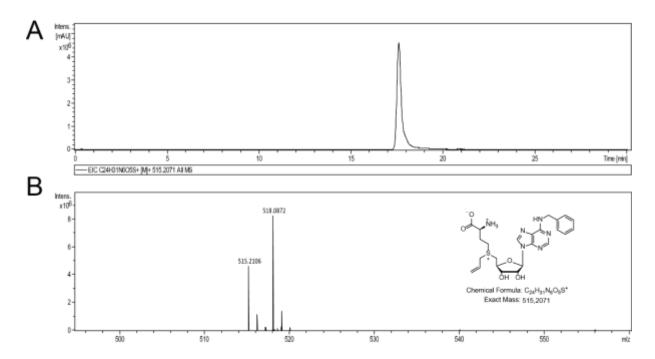


Fig. S17: LC/MS analysis of compound **12b**. Calculated mass for $[M]^+$ = 515.2071 Da, found m/z = 515.2106. Note that the m/z = 518.0872 corresponds to the mass of N^6 -benzyl-ADP with a calculated mass of $[M+H]^+$ = 518.0836 that coelutes.

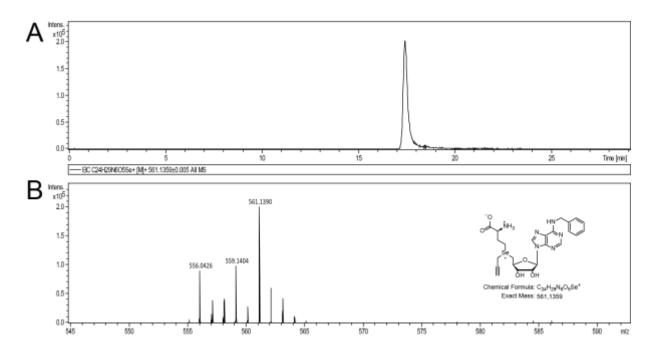


Fig. S18: LC/MS analysis of compound **Se-12c**. Calculated mass for $[M]^+ = 561.1359$ Da, found m/z = 561.1390.

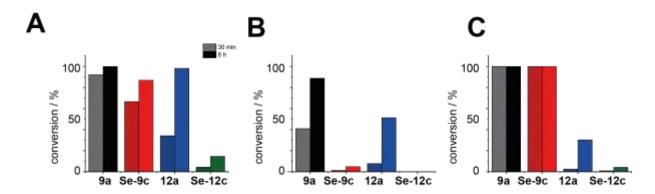


Fig. S19: Differential MTase targeting by AdoMet analogues bearing no modification, a modification at the sulfur/selenium atom, at the nucleoside or both. Absolute conversions for Ecm1 (A), hTGS1 (B) or CouO (C), respectively. Conditions: 6 mM 1a or Se-1c, 2.5 mM 2 or 5, 4 mol% ChMAT (rel. to 2 or 5), 300 μM 16, 16a, or 18, 10 mol% MTase (rel. to 16, 16a, or 18). Reaction mixture is incubated at 23 °C for 30 min (striped bars) or 8h.

Additional supplementary data for figures shown in main text

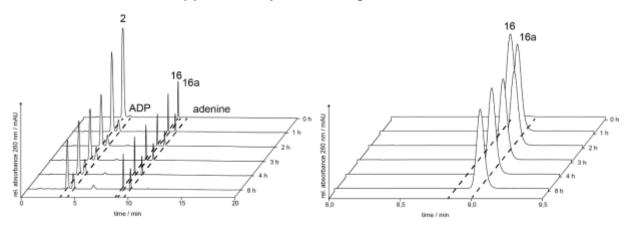


Fig. S20: HPLC analysis of the enzymatic cascade using methionine (**1a**), ATP (**2**, 3.66 min), MAT2a I117A, and Ecm1. The substrate GpppA (**16**, 8.84 min) is converted to m⁷GpppA (**16a**, 9.02 min)

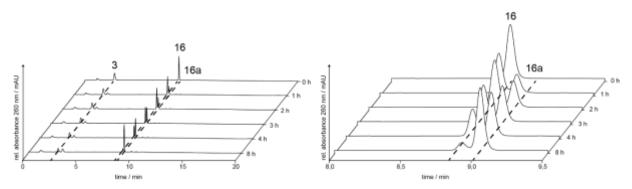


Fig. S21: HPLC analysis of the enzymatic cascade using methionine (**1a**), 2-APTP (**3**, 2.79 min), MAT2a I117A, and Ecm1. The substrate GpppA (**16**, 8.84 min) is converted to m⁷GpppA (**16a**, 9.02 min).

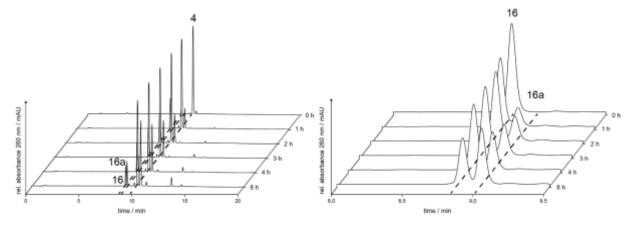


Fig. S22: HPLC analysis of the enzymatic cascade using methionine (**1a**), p⁶ATP (**4**, 9.91 min), MAT2a I117A, and Ecm1. The substrate GpppA (**16**, 8.84 min) is converted to m⁷GpppA (**16a**, 9.02 min).

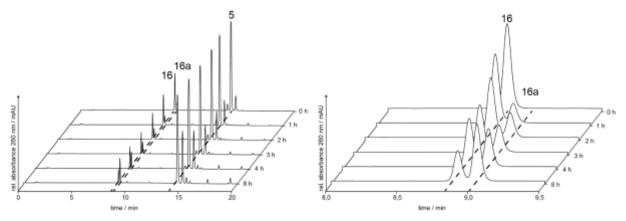


Fig. S23: HPLC analysis of the enzymatic cascade using methionine (**1a**), b⁶ATP (**5**, 14.10 min), MAT2a I117A, and Ecm1. The substrate GpppA (**16**, 8.84 min) is converted to m⁷GpppA (**16a**, 9.02 min).

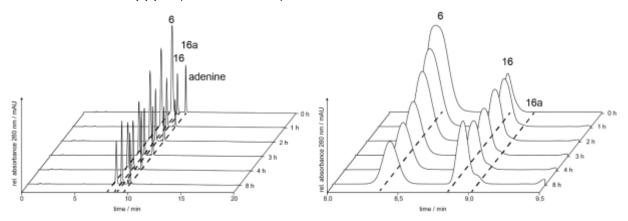


Fig. S24: HPLC analysis of the enzymatic cascade using methionine (**1a**), dATP (**6**, 8.33 min), MAT2a I117A, and Ecm1. The substrate GpppA (**16**, 8.84 min) is converted to m⁷GpppA (**16a**, 9.02 min).

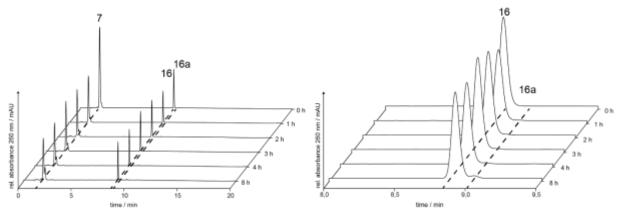


Fig. S25: HPLC analysis of the enzymatic cascade using methionine (**1a**), ITP (**7**, 1.84 min), MAT2a I117A, and Ecm1. The substrate GpppA (**16**, 8.84 min) is converted to m⁷GpppA (**16a**, 9.02 min).

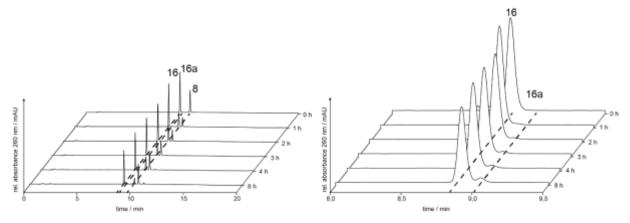


Fig. S26: HPLC analysis of the enzymatic cascade using methionine (**1a**), 2'-azido-2'-dATP (**8**, 9.77 min), MAT2a I117A, and Ecm1. The substrate GpppA (**16**, 8.84 min) is converted to m⁷GpppA (**16a**, 9.02 min).

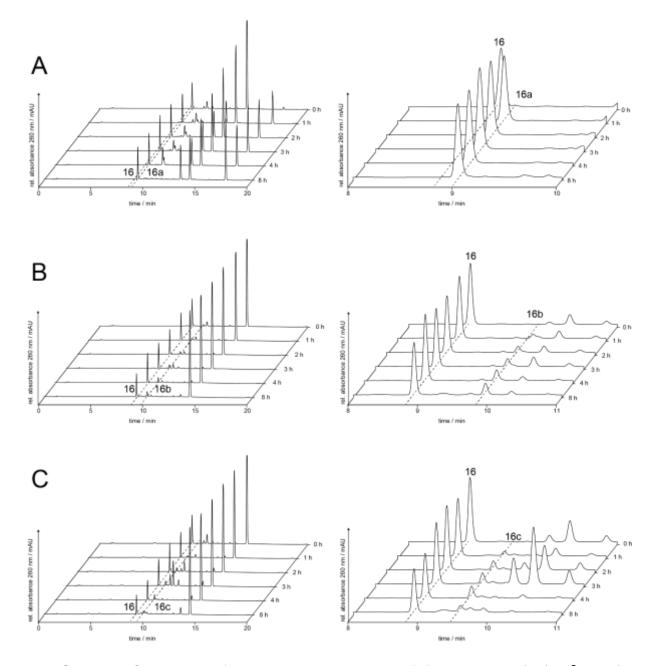


Fig. S27: HPLC analysis of the enzymatic cascade. [A] Methionine (1a), p⁶ATP (4, 9.88 min), ChMAT, and Ecm1. The substrate GpppA (16, 8.84 min) is converted to m⁷GpppA (16a, 9.02 min). [B] Allyl-D/L-homocysteine (1b), p⁶ATP (4, 9.88 min), ChMAT, and Ecm1. The substrate GpppA (16, 8.84 min) is converted to a⁷GpppA (16b, 9.85 min). [C] Propargyl-L-selenohomocysteine (Se-1c), p⁶ATP (4, 9.88 min), ChMAT, and Ecm1. The substrate GpppA (16, 8.84 min) is converted to p⁷GpppA (16c, 9.50 min). Note that the reaction mixture was dephosphorylated with FastAP® to avoid coelution of 16b with 4 as described above.

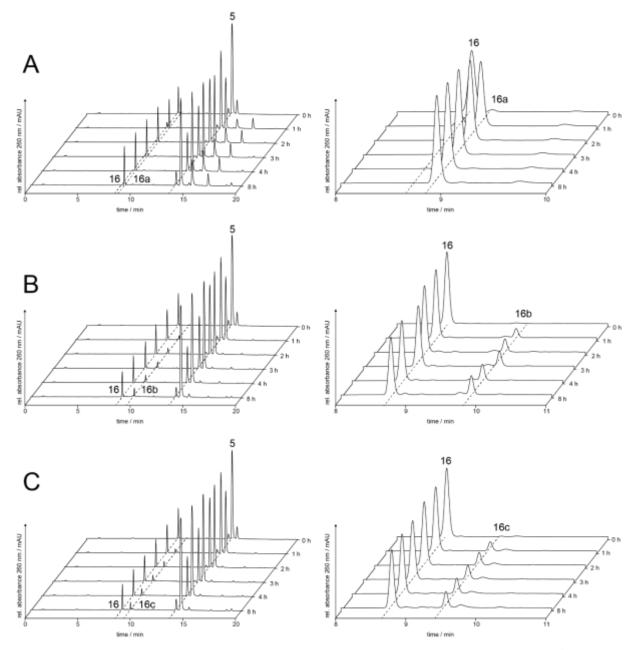


Fig. S28: HPLC analysis of the enzymatic cascade. [A] Methionine (1a), b⁶ATP (5, 14.10 min), ChMAT, and Ecm1. The substrate GpppA (16, 8.84 min) is converted to m⁷GpppA (16a, 9.02 min). [B] Allyl-D/L-homocysteine (1b), b⁶ATP (5, 14.10 min), ChMAT, and Ecm1. The substrate GpppA (16, 8.84 min) is converted to a⁷GpppA (16b, 9.85 min). [C] Propargyl-L-selenohomocysteine (Se-1c), b⁶ATP (5, 14.10 min), ChMAT, and Ecm1. The substrate GpppA (16, 8.84 min) is converted to p⁷GpppA (16c, 9.50 min).

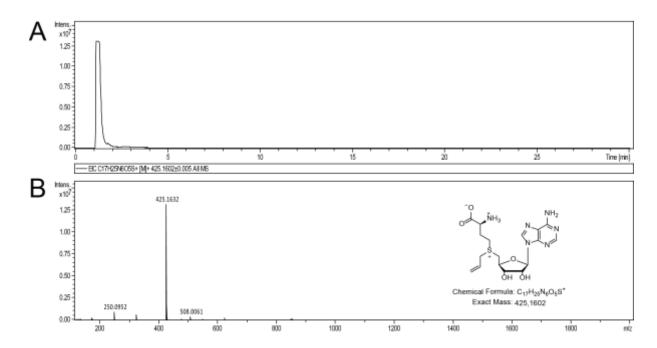


Fig. S29: LC/MS analysis of compound **9b**. Calculated mass for $[M]^+$ = 425.1602 Da, found m/z = 425.1632.

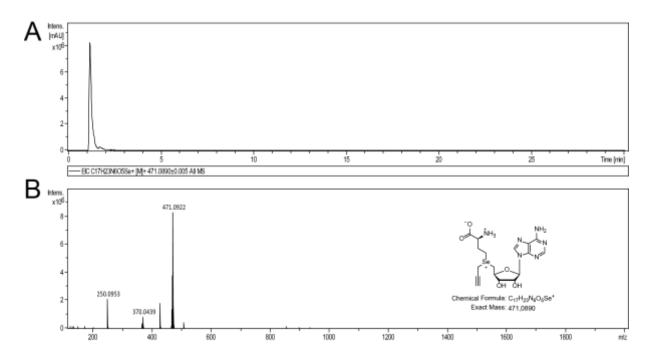


Fig. S30: LC/MS analysis of compound **Se-9c**. Calculated mass for $[M]^+ = 471.0890$ Da, found m/z = 471.0922.

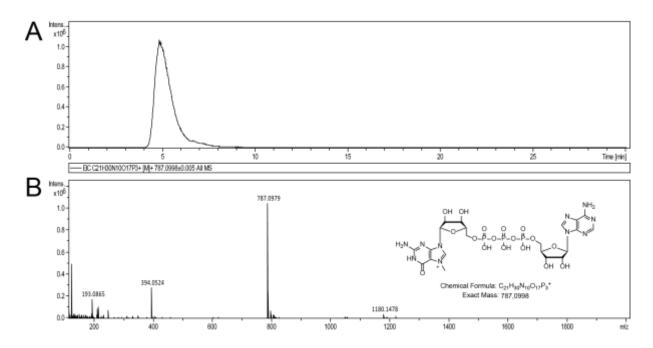


Fig. S31: LC/MS analysis of compound **16a**. Calculated mass for $[M]^+$ = 787.0998 Da, found m/z = 787.0979.

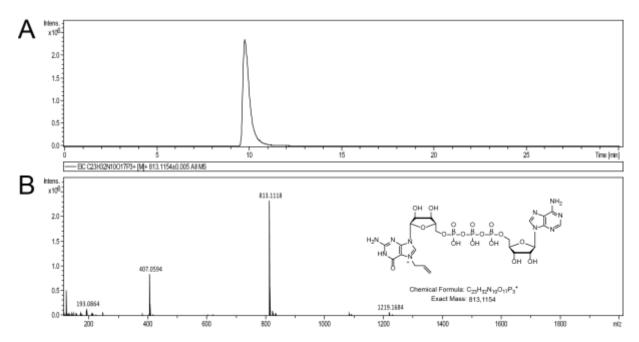


Fig. S32: LC/MS analysis of compound **16b**. Calculated mass for $[M]^+$ = 813.1154 Da, found m/z = 813.1118.

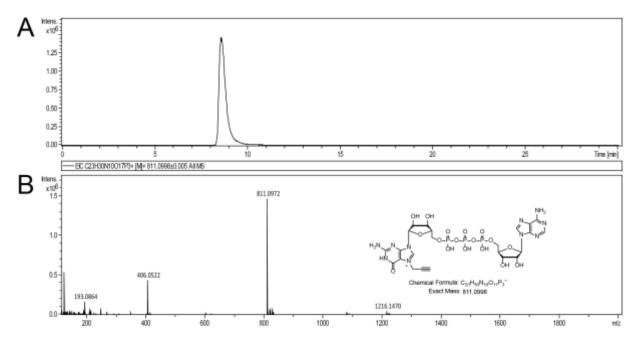


Fig. S33: LC/MS analysis of compound **16c**. Calculated mass for $[M]^+$ = 811.0998 Da, found m/z = 811.0972.

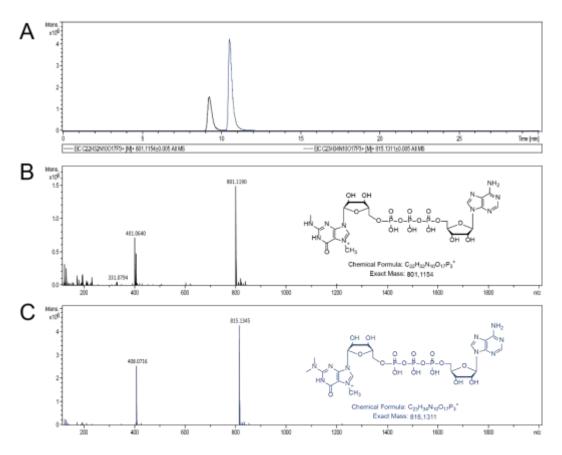


Fig. S34: LC/MS analysis of compounds **17a** and **17a,a**. [A] EIC of **17a** and **17a,a**. [B] Calculated mass for **17a** $[M]^+$ = 801.1154 Da, found m/z = 801.1190. [C] Calculated mass for **17a,a** $[M]^+$ = 815.1311 Da, found m/z = 815.1345.

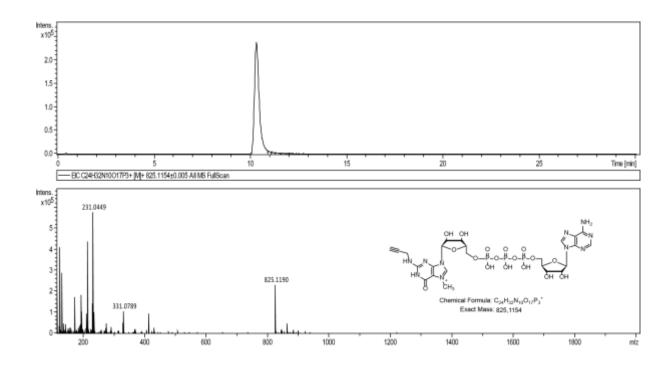


Fig. S35: LC/MS analysis of compound **17c**. [A] EIC of **17c**. [B] Calculated mass for **17c** $[M]^+$ = 825.1154 Da, found m/z = 825.1190.

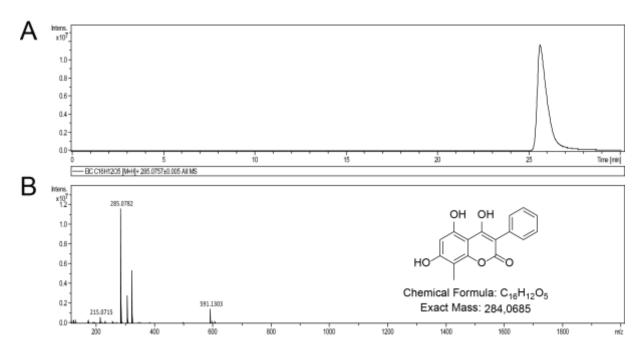


Fig. S36: LC/MS analysis of compound **18a**. Calculated mass for $[M+H]^+ = 285.0757$ Da, found m/z = 285.0782.

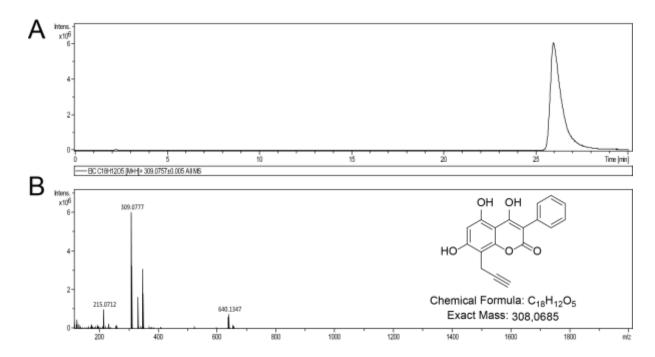


Fig. S37: LC/MS analysis of compound **18c**. [A] EIC of **18c**. [B] Calculated mass for **18c** $[M+H]^+ = 309.0757$ Da, found m/z = 309.0777.

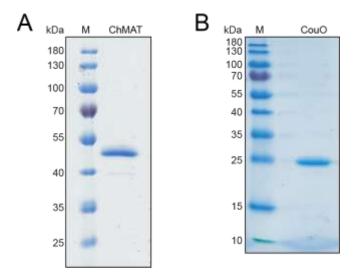


Fig. S38: SDS-PAGE of IMAC purified enzymes. [A] ChMAT (45.9 kDa) and [B] CouO (26.6 kDa).

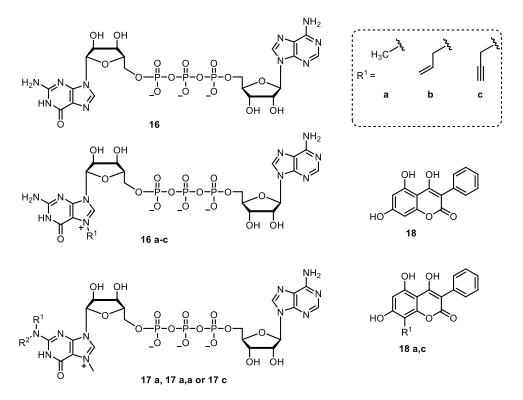


Fig. S39: Methyltransferase substrates used and products produced in this study. mRNA cap and analogues (GpppA **16**, **16a-c** and **17a,c**), 4,5,7-trihydroxy-3-phenylco umarin and analogues (**18a,c**). **17a,a** refers to the m^{2,2,7}GpppA.

References

- 1. F. Muttach and A. Rentmeister, *Angew Chem*, 2016, **55**, 1917-1920.
- 2. I. R. Bothwell and M. Luo, *Org Lett*, 2014, **16**, 3056-3059.
- 3. D. Schulz and A. Rentmeister, *RNA Biol*, 2012, **9**, 577-586.
- 4. S. Biastoff, M. Teuber, Z. S. Zhou and B. Drager, *Planta Med*, 2006, **72**, 1136-1141.
- 5. J. M. Holstein, L. Anhauser and A. Rentmeister, *Angewandte Chemie* (International ed. in English), 2016, **55**, 10899-10903.
- 6. J. Leiter, D. Reichert, A. Rentmeister and R. Micura, *ChemBioChem*, 2019, DOI: 10.1002/cbic.201900590.
- 7. D. Schulz and A. Rentmeister, *RNA Biology*, 2012, **9**, 577 586.