Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2019

Beyond CoO_x: A versatile amorphous cobalt species as efficient

cocatalyst for visible-light-driven photocatalytic water oxidation

Hongyuan Zhang,^{‡a} Changfa Guo,^{‡a} Jiabin Ren,^a Jiqiang Ning,^b Yijun Zhong,^a Ziyang

Zhang^b and Yong Hu*a

^aKey Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China. E-mail: yonghu@zjnu.edu.cn; <u>yonghuzjnu@163.com</u>

^bVacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.

^{*‡*}*These authors contributed equally to this work.*

Experimental

All the chemicals were purchased from Sinopharm Chemical Reagent Corp (Shanghai, China) and were used without further purification.

Synthesis of flower-like Bi₂WO₆ nanosheets

 Bi_2WO_6 was synthesized according to our previous work,¹ 0.364 g of $Bi(NO_3)_3$ ·5H₂O and 0.8 g of PVP were dispersed in 20 mL ethylene glycol with ultrasonication and then stirred for 15 min. Afterwards, 20 mL of aqueous solution containing 0.248 g Na₂WO₄·2H₂O were added to the above solution slowly and stirred for 20 min. The resulting solution was sealed in a 50 mL PTFE-lined stainless-steel autoclave, and then heated to 180 °C and maintained for 5 h. The final product was collected by centrifugation, washed with ethanol and distilled water for several times, and dried at 60 °C for 4 h.

Preparation of Bi₂WO₆/a-Co-E nanocomposites

A certain amounts of $Co(NO_3)_2 \cdot 6H_2O$ and ethylenediaminetetraacetic acid disodium salt (EDTA-2Na) were dissolved in 2 mL of distilled water, and the molar ratio of $Co(NO_3)_2 \cdot 6H_2O$ and EDTA-2Na was controlled 1:1. The as-obtained 100 mg of Bi₂WO₆ powder was added to mortar for fully grinding and then dispersed in the above solution. The mixture was stirred for 5 min and dried at 60 °C until the water was completely evaporated to obtain pink product. The resulting sample was calcined at a certain temperature (250 °C, 300 °C and 350 °C) in air for 120 min with a heating rate of 2.5 °C min⁻¹ to gain different Bi₂WO₆/a-Co-E nanocomposites.

The loading amount of a-Co-E on Bi_2WO_6 was adjusted by changing the amounts of $Co(NO_3)_2 \cdot 6H_2O$ and EDTA-2Na. Samples with different weight ratios of Bi_2WO_6 to a-Co-E (0.5%, 1.5%, 3.0%, 5.0%) were labelled as Bi_2WO_6 /a-Co-E-0.5%, Bi_2WO_6/a -Co-E-1.5%, Bi_2WO_6/a -Co-E-3.0%, Bi_2WO_6/a -Co-E-5.0%, respectively. The Bi_2WO_6/a -Co-E in this manuscript generally refers to the sample of the best photocatalytic performance, that is, the sample with 3.0% a-Co-E loading and calcined at 300 °C in air.

For comparison, the bulk a-Co-E was prepared in terms of Bi_2WO_6/a -Co-E except for adding Bi_2WO_6 . Bi_2WO_6/a -E was prepared by calcining the mixture of EDTA-2Na and Bi_2WO_6 with the absence of cobalt salts. The mechanical mixture of Bi_2WO_6 and a-Co-E with 3 wt% content was also obtained.

Preparation of Bi₂WO₆/CoO_x nanocomposites

The synthesis process of Bi_2WO_6/CoO_x is similar to that of Bi_2WO_6/a -Co-E, and the mass ratio of Bi_2WO_6 to CoO_x was only adjusted by changing the contents of $Co(NO_3)_2$ ·6H₂O.

Preparation of BiFeO₃/a-Co-E nanocomposites

The BiFeO₃ nanofibers were synthesized according to our previous work.² 0.3 mmol of Bi(NO₃)₃·5H₂O, 0.3 mmol of ferric acetylacetonate and 0.25 g of PAN (Mw≈150000) were dissolved in 5 mL N, N-dimethylformamide and kept stirring for overnight. The precursor sol was placed into a 5 mL syringe attached to a needle, and the voltages applied to the tip and collector were 15 and -2 kV, respectively. The distance between the needle tip and the collector was controlled to be 14 cm and the feeding rate was set to 0.3 mL h⁻¹. The resulting precursor was first calcined at 120 °C for 120 min, and then calcined in air at 550 °C for 120 min with a heating rate of 5 °C min⁻¹. After cooled to room temperature, the as-obtained product was collected and washed with ethanol for several times. BiFeO₃/CoO_x and BiFeO₃/a-Co-E were

prepared using the same method as that of Bi_2WO_6/CoO_x and Bi_2WO_6/a -Co-E by using BiFeO₃ to replace Bi_2WO_6 , respectively.

Preparation of Bi₂Fe₄O₉/a-Co-E nanocomposites

1.21 g Bi(NO₃)₃·5H₂O and 2.02 g Fe(NO₃)₃·9H₂O were dissolved in 50 mL acetone getting a homogeneous solution. Then, 150 mL of distilled water were added under vigorous stirring and the pH was adjusted to 10 using concentrated ammonia. After filtering and rinsing with distilled water, the red co-precipitate was dispersed in 40 mL aqueous solution containing 5 M of NaOH and 2 g of sodium dodecyl benzene sulfonate. The resulting solution was sealed in Teflon-liner autoclave and kept at 180 °C for 48 hours. The final products were washed with distilled water and alcohol several times, and then dried at 80 °C for overnight. Bi₂Fe₄O₉/a-Co-E and Bi₂Fe₄O₉/CoO_x were prepared with the same method as that of Bi₂WO₆/a-Co-E and Bi₂WO₆/CoO_x by using Bi₂Fe₄O₉ to replace Bi₂WO₆, respectively.

Preparation of SiO₂/a-Co-E nanocomposites

The SiO₂ spheres were prepared according to the previous literature.² Tetraethyl orthosilicate (TEOS) was hydrolyzed in an ethanol medium with the addition of deionized water and ammonia. Typically, 10 mL of TEOS and 40 mL of NH₄OH were mixed with 100 mL of absolute ethanol with continuous stirring for 8 h at room temperature, resulting in the formation of a white SiO₂ colloidal suspension. The silica particles were centrifugally separated and washed several times by ethanol and deionized water and dried at 60 °C for usage. SiO₂/a-Co-E with 3 wt% loading was prepared using the same method as that of Bi₂WO₆/a-Co-E by using SiO₂ to replace Bi₂WO₆.

Characterizations

X-ray diffraction (XRD) patterns of as-prepared samples were obtained by a Philips PW3040/60 X-ray diffractometer utilizing Cu K α radiation at a scanning rate of 0.06 deg s⁻¹. The microstructure and morphology were analyzed via a Hitachi S-4800 field emission scanning electron microanalyzer (FE-SEM) with an acceleration voltage of 15 kV. The transmission electron microscopy (TEM) observation was performed on JEM-2100F field-emission TEM. X-ray photoelectron spectroscopy (XPS) analysis were conducted on an electron spectrometer (ESCALAB 250Xi). UV-vis diffuse reflectance spectra were recorded on a Thermo Nicolet Evolution 500 UV-vis spectrophotometer and the spectral range is from 200 to 800 nm. The content of elements in the as-prepared sample was determined by inductive coupled plasma atomic emission spectrometer (ICP-AES, Leeman Prodigy). The photoluminescence (PL) spectrum was measured on an FLS 920 fluorescence spectrophotometer with an excitation wavelength of 325 nm.

Photoelectrochemical measurements

Photocurrent measurements were performed on a CHI840C electrochemical workstation (Chenhua Instrument, China) with a standard three-electrode system. The working electrode, counter electrode and reference electrode were ITO precoated by photocatalyst (coated area: 1 cm²), Pt wire and Hg/Hg²⁺ (saturated KCl) respectively. 0.1 M Na₂SO₄ aqueous solution was used as the electrolyte. A Xe lamp with a cut-on filter ($\lambda > 420$ nm) was employed as the visible light source. 5 mg of certain test sample was add to 50 µL of ethanol and 10 µL of Nafion solution (5 wt%) under sonication, then 15 µL of mixture ink was pipetted on the surface of an ITO glass to obtain 1×1 cm² coating films.The electrochemical impedance spectroscopy (EIS)

measurements were conducted on the Zennium E station, the three-electrode system with K_3 [Fe(CN)₆] (5 mM) and KCl (1 M) aqueous solution, using an ac voltage of 10 mV and the frequency was in the range of 0.1 to 100 Hz.

Photocatalytic O₂ evolution experiments

Photocatalytic O₂ production was tested on Labsolar-III AG system under visible light irradiation using ultraviolet filtered 300W xenon lamp with a 420 nm cut-off filter (MicroSolar300, Perfect Light) as light source ($\lambda > 420$ nm). Typically, 40 mg of photocatalyst were dispersed in aqueous solution (50 mL) consisting of 200 mg of NaOH and 238.1 mg of Na₂S₂O₈. The obtained suspension was vacuumed for 30 min to remove air with argon and the reactor was cooled by a continuous flow of 25 °C water. The amount of generated O₂ was measured by an online gas chromatography (Agilent Technologies GC-7890B, TCD, Ar carrier). The apparent quantum efficiency (AQE) was calculated using the following equation (1):

$$AQE = \frac{N_e}{N_P} = \frac{4 \times N_{O_2}}{N_P} = \frac{4 \times N_{O_2}}{\frac{I \times A \times t}{h \times v}} \times 100 \Box$$
(1)

Here, N_e , N_p , and N_{O_2} are the number of reacted electrons, incident photons and generated O₂, respectively; *I* is the light intensity; *A* is the irradiation area; *t* is the irradiation time; *h* is the Planck constant; and *v* is the incident light frequency.

Fig. S1 XRD patterns of the as-prepared $\mathrm{Bi}_2\mathrm{WO}_6$ and $\mathrm{Bi}_2\mathrm{WO}_6$ /a-Co-E samples.

Fig. S2 (a) Low-resolution and (b) high-resolution SEM images of as-prepared Bi_2WO_6 mircostructures.

Fig. S3 XPS spectra of the as-prepared Bi_2WO_6/a -Co-E: (a) Survey spectrum, (b) high-resolution spectrum of O1s.

Fig. S4 Schematic illustration of the photocatalytic mechanism of Bi₂WO₆/a-Co-E for water oxidation under visible-light irradiation.

Fig. S5 (a) Typical time course of O_2 evolution and (b) average O_2 evolution rate over a-Co-E anchored SiO₂, bulk a-Co-E, Bi₂WO₆/a-E and the mixture of a-Co-E and Bi₂WO₆.

Fig. S6 Typical time course of O_2 evolution catalysed by the different Bi₂WO₆/a-Co-E samples (a and c) and the corresponding average O_2 production rate in 6 h (b and d).

Fig. S7 Typical time course of O_2 evolution catalysed by the (a) $Bi_2Fe_4O_9/a$ -Co-E and (b) $BiFeO_3/a$ -Co-E nanocomposites, respectively.

Fig. S8 (a and c) Typical time course of O_2 evolution catalysed by $Bi_2Fe_4O_9/a$ -Co-E and $BiFeO_3/a$ -Co-E produced at the different temperatures and (b and d) the corresponding average O_2 production rate in 6 h.

Fig. S9 (a and b) UV-vis DRS spectra, (c) Photocurrent responses, and (d) EIS of the as-prepared $Bi_2Fe_4O_9/a$ -Co-E, $Bi_2Fe_4O_9/CoO_x$, $BiFeO_3/a$ -Co-E, and $BiFeO_3/CoO_x$ photocatalysts.

	Bi ₂ WO ₆ / CoOx	Bi ₂ WO ₆ / a-Co-E	BiFeO ₃ / CoOx	BiFeO ₃ /a- Co-E	Bi ₂ Fe ₄ O ₉ / CoOx	Bi ₂ Fe ₄ O ₉ / a-Co-E
R _s	19.48	11.7	19.7	17.05	27.7	14.43
R _{ct}	2992	2165	40390	1002	2807	806
R _{SC}	9086	6750	53764	4616	32750	4782
CPE1-T	2.4637E-5	2.999E-7	2.2184E-5	5.2863E-7	2.9997E-5	3.6231E-7
CPE1-P	0.92152	0.77916	0.898	0.85699	0.87011	0.77916
CPE2-T	7.0126E-5	1.3787E-5	3.016E-3	2.2662E-3	9.8649E-5	1.3787E-5
CPE2-P	0.91166	0.63043	0.74646	0.74581	0.817464	0.63043

Table S1 Values of elements in equivalent circuit resulted from fitting the EIS data.

<u> </u>		Sacrificial	•••	O ₂ evolution rates	D.4	
Samples	cocatalyst	agents	Lights source	(µmol g ⁻¹ h ⁻¹)	References	
	a-Co-E		300W Xe lamps (λ≥420nm)	602.7	This work	
Bi ₂ Fe ₄ O ₉	CoOx			372.2		
Bi ₂ WO ₆	a-Co-E	Na-S-O-		352.3		
	CoOx	114225208		91.2		
	a-Co-E			494.9		
BiFeO3	CoOx			217.4		
3D Bi ₂ Mo _x W _{1-x} O ₆ PBMs	5% Co ₃ O ₄	$\mathrm{Na_2S_2O_8}$	300W Xe lamps (λ≥420nm)	147.2	1	
MoO _x /Bi ₂ WO ₆	MoOx	Ce(SO ₄) ₂	Hg lamps Xe lamps	288 53	4	
SCL-Bi ₂ WO ₆	none	AgNO ₃	300W Xe lamps (λ≥400nm)	84.4	5	
BWO/PDI composite	none	AgNO ₃	500W Xe lamps (λ≥420nm)	~7.6	6	
BiVO ₄ nanoparticles	none	AgNO ₃	300W Xe lamps (λ≥420nm)	~54	7	
BiFeO ₃ nanowires	Au	FeCl ₃	300W Xe lamps (λ≥380nm)	50	8	

Table S2 The selected results for photocatalytic O_2 evolution rate in recent literature

References:

- 1 A. Etogo, R. Liu, J. Ren, L. Qi, C. Zheng, J. Ning, Y. Zhong and Y. Hu, *J. Mater. Chem. A*, 2016, **4** 13242.
- 2. D. Wang, T. Hisatomi, T. Takata, C. Pan, M. Katayama, J. Kubota, and Kazunari Domen, *Angew. Chem. Int. Ed.*, 2013, **52**, 11252.
- 3 J. Ren, D. Zhao, H. Liu, Y. Zhong, J. Ning, Z. Zhang, C. Zheng and Y. Hu, J. Alloys Compd., 2018, **766**, 274.
- 4 A. Dittmer, J. Menze, B. Mei, J. Strunk, H.S. Luftman, R. Gutkowski, I.E. Wachs, W. Schuhmann and M. Muhler, *J. Phys. Chem. C*, 2016, **120**, 18191.
- 5 C. Li, G. Chen, J. Sun, J. Rao, Z. Han, Y. Hu and Y. Zhou, *ACS Appl. Mater. Interfaces*, 2015, **7**, 25716.
- 6 K. Zhang, J. Wang, W. Jiang, W. Yao, H. Yang and Y. Zhu, *Appl. Catal. B*, 2018, 232, 175.
- 7 Y. K. Kho, W. Y. Teoh, A. Iwase, L. Mädler, A. Kudo and R. Amal, ACS Appl. Mater. Interf., 2011, **3**, 1997.
- 8 S. Li, J. Zhang, M. G. Kibria, Z. Mi, M. Chaker, D. Ma, R. Nechache and F. Rosei, *Chem. Commun.*, 2013, **49**, 5856.