Supporting Information

Glucose isomerization in Dioxane/Water with Sn- β catalyst: improved catalyst stability and use for HMF production

Qiang Guo,^{a+*} Limin Ren, ^{a+} Saeed M. Alhassan ^b Michael Tsapatsis ^{a,c,d}*

^a Department of Chemical Engineering and Materials Science University of Minnesota, 421 Washington Ave SE, Minneapolis, MN, 55455, USA

^b Department of Chemical Engineering, Khalifa University of Science and Technology, P. O. Box 127788, Abu Dhabi, UAE

^c Department of Chemical and Biomolecular Engineering & Institute for NanoBioTechnology Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA

^d Applied Physics Laboratory Johns Hopkins University, 11100 Johns Hopkins Road, Laurel, MB 20723, USA

⁺These authors contributed equally.

To whom correspondence should be addressed. E-mail: qguo@umn.edu; tsapatsis@jhu.edu

Experimental Section

Materials: Glucose, fructose, mannose, sucrose, maltose, trehalose, cellobiose, Hydroxymethylfurfural(HMF) and Amberlyst-131 were purchased from Sigma-Aldrich. Dioxane was purchased from Merck Millipore and difructose anhydride (III) was purchased from Wako Chemicals USA, Inc.

Sn- β was synthesized according to a literature method.^[51] First, 30.612 g of tetraethyl orthosilicate (98%, Sigma-Aldrich) was mixed with 33 g of tetraethylammonium hydroxide solution (TEAOH, 35 wt %, SACHEM) and stirred for 1 hour. A clear solution of 0.412 g of SnCl₄·5H₂O (98 %, Sigma-Aldrich) in 2.75 g of water was added into the above mixture and stirred overnight to fully evaporate the ethanol. Then 3.143g of hydrofluoric acid (HF 48-51 wt % in H₂O, Sigma-Aldrich) was added under stirring followed by adding a dealuminated β seeds suspension (0.36 g dealuminated β seeds in 1.75 g H₂O). After manually mixing for 5 min, the final gel with a chemical composition 1.0SiO₂:0.54TEAOH:10.6H₂O:0.54HF:0.008SnO₂ was transferred to autoclaves and hydrothermally treated in a rotation oven at 413 K for 21 days. The product was separated and fully washed by filtration followed by drying at 343 K overnight. After calcination at 873 K in the static air for 6 hours, final product was obtained.

Catalytic reactions: All reactions were carried out in stirred 20-mL thick-walled glass reactors (VWR) sealed with crimp tops (PTFE/silicone septa, Sigma-Aldrich). In a typical reaction (one-pot synthesis of HMF from glucose), 0.05 g of glucose, 4.7 g of dioxane, 0.25 g of ultrapure water, 0.02 g of Sn- β and 0.04 g of Amberlyst-131 catalysts were added into the reactor and sealed. The reactor was placed in a temperature-controlled oil bath at 90 °C for a certain period of time. After quenching the reactor in an ice bath, 4 g of ultrapure water was added and then the sample was taken and filtered for analysis. All the reactants and products were analyzed by high performance liquid chromatography (HPLC) using a refractive index detector with a Bio-Rad Aminex HPX87C (300 x 7.8 mm) column (Phenomenex). The mobile phase was ultrapure water (pH=7) and the column temperature was 80 °C.

Catalysts were separated from the reaction solution by centrifugation. Sn- β was washed with water between each run for glucose isomerization and dried in a convection oven at 70 °C

overnight. Amberlyst-131 was washed with water and Sn- β was calcined at 550 °C for 10 hrs between each run for the one-pot synthesis of HMF from glucose.

Characterization: FTIR spectra were recorded on a Thermo Scientific Nicolet iS50 FT-IR spectrometer. Self-supporting wafer was pressed and sealed in a heatable quartz vacuum cell with removable KBr windows. The cell was evacuated under dynamic vacuum, heated to 250 °C, and then held there overnight to pre-treat sample. IR spectra were then collected (2 cm⁻¹ resolution, 64 scans) for the sample wafer and the data analysis was performed using Omnic software. Thermogravimetric analysis (TGA) was performed using a ShimadzuTGA-50 analyzer. Analysis was carried out by heating about 7 mg of the samples in air flow (100 mL/min) from room temperature to 600 °C at a heating ramp rate of 5 °C/min.

Scheme S1. Schematic representation of series of reactions.

Figure S1. XRD patterns of fresh Sn- β (a); Sn- β used three times in dioxane/water (5 wt% water) solvent (b); and Sn- β used three times in pure water (c).

Figure S2. SEM images of fresh Sn- β (Si/Sn=111) (a and b); Sn- β used three times in dioxane/water (5 wt% water) solvent (Si/Sn=114) (c and d); and Sn- β used three times in pure water (Si/Sn=117) (e and f).

Figure S3. Results of the recycling tests for production of HMF from glucose on Sn- β and Amberlyst-131. (Reaction conditions: 50 mg glucose, 4.7 g dioxane, 0.25 g water, 20 mg Sn- β , 40 mg Amberlyst-131, 90 °C, 6 h.)

Water content/%	Conversion/%	Product dis	TOF/h ⁻¹		
		Fructose	Mannose		
0	1.8	1.3	-	8	
2.5	15.9	12.5	1.3	66	
5	13.4	9.9	1	56	
7.5	8.8	5.9	0.6	37	
10	5.5	3.4	0.4	23	
100	3	2.9	-	12	

Table S1. Glucose isomerization on Sn- β in different solvents mixture.

Reaction conditions: 50 mg glucose, 4.95 g solvent, 20 mg Sn- β (Si/Sn=125), 90 °C, 15 min.

Solvents	Salt	T/ºC	Catalyst(s)	HMF	Ref.
				yield/%	
Ionic Liquids	-	100	CrCl ₂	70	S2
N,N-dimethylacetamide	-	100	CrBr ₃ /LiBr	80	S3
THF(66) ^a /water	NaCl	180	Sn-Beta, HCl	56.9	S4
SBP(108) ^a /water	NaCl	170	AICI ₃	61.9	S5
GVL(207) ^a /water	NaCl	170	AICI ₃	61.6	S6
GHL(215) ^a /water	-	170	AICI ₃	58.5	S6
THF(66) ^a /water	-	130	Sn-Beta, Amberlyst-70	63	S6
MTHF(63) ^a /water	-	180	TiO ₂ -containing carbonaceous acid	60	S7
			catalyst		
MIBK(117) ^a /water	-	150	large-pore mesoporous tin	50	S8
			phosphate		
1-Butanol(117.7) ^a /water	-	175	Phosphated TiO ₂	81	S9
DMSO(189) ^a /THF(66) ^a	-	160	Sn-Mont ^b	53.5	S10
DMSO(189) ^a /THF(66) ^a /water	-	180	H-Beta	42.9	S11
Dioxane(101) ^a /water	-	220	H ₃ PO ₄ , pyridine	46	S12
Dioxane(101) ^a /water	-	90	Sn-Beta, Amberlyst-131		This work

Table S2. Conversion of glucose to HMF in different solvents mixture.

THF: Tetrahydrofuran; SBP: *sec*-butylphenol; GVL: γ-valerolactone; GHL: γ-hexalactone; MTHF: methyltetrahydrofuran; MIBK: Methyl isobutyl ketone; DMSO: Dimethyl sulfoxide. a: boiling point of the organic solvent; b: Sn-Montmorillonite

Feed	Catalyst	Solvent	T/⁰C	HMF yield/%	Ref.
Sucrose	Ionic Liquids	DMSO	160	68.7	S13
Cellobiose	Ionic Liquids	DMSO	160	24.7	S13
Sucrose	CrCl ₂ /HCl	Ionic Liquids	120	82	S14
Sucrose	ZnCl ₂ /HCl	Ionic Liquids	120	68.4	S14
Sucrose	CrCl ₂	Choline chloride	100	42	S15
Sucrose	SnCl ₄	Ionic Liquids	100	65	S16
Cellobiose	SnCl ₄	Ionic Liquids	100	57	S16
Maltose	Sn-β/Amberlyst-131	Dioxane/water	90	56	This work
Trehalose	Sn-β/Amberlyst-131	Dioxane/water	90	56	This work
Cellobiose	Sn-β/Amberlyst-131	Dioxane/water	90	56	This work
Sucrose	Sn- <i>β</i> /Amberlyst-131	Dioxane/water	90	60	This work

Table S3. Comparison of disaccharides conversion to HMF.

Reference:

- [S1] Corma. A;, Nemeth. L. T.; Renz. M.; Valencia. S., Nature 2002, 412, 423.
- [S2] Zhao, H. B.; Holladay, J. E.; Brown, H.; Zhang, Z. C. Science 2007, 316, 1597.
- [S3] Binder, J. B.; Raines, R. T. J. Am. Chem. Soc. 2009, 131, 1979.
- [S4] Nikolla, E.; Roman-Leshkov, Y.; Moliner, M.; Davis, M. E. ACS Catal. 2011, 1, 408.
- [S5] Pagan-Torres, Y. J.; Wang, T. F.; Gallo, J. M. R.; Shanks, B. H.; Dumesic, J. A. ACS Catal.

2012, 2, 930.

- [S6] Gallo, J. M. R.; Alonso, D. M.; Mellmer, M. A.; Dumesic, J. A. Green Chem. 2013, 15, 85.
- [S7] Mazzotta, M. G.; Gupta, D.; Saha, B.; Patra, A. K.; Bhaumik, A.; Abu-Omar, M. M.
- ChemSusChem 2014, 7, 2342.
- [S8] Dutta, A.; Gupta, D.; Patra, A. K.; Saha, B.; Bhaumik, A. ChemSusChem 2014, 7, 925.
- [S9] Atanda, L.; Mukundan, S.; Shrotri, A.; Ma, Q.; Beltramini, J. ChemCatChem 2015, 7, 781.
- [S10] Wang, J. J.; Ren, J. W.; Liu, X. H.; Xi, J. X.; Xia, Q. N.; Zu, Y. H.; Lu, G. Z.; Wang, Y. Q.
- Green Chem. 2012, 14, 2506.
- [S11] Otomo, R.; Tatsumi, T.; Yokoi, T. Catal. Sci. Technol. 2015, 5, 4001.
- [S12] Mednick, M. L. J. Org. Chem. 1962, 27, 398.
- [S13] Qu, Y. S.; Li, L.; Wei, Q. Y.; Huang, C. P.; Oleskowicz-Popiel, P.; Xu, J. Sci. Rep. 2016, 6.
- [S14] Chun, J. A.; Lee, J. W.; Yi, Y. B.; Hong, S. S.; Chung, C. H. Korean J. Chem. Eng. 2010, 27, 930.
- [S15] Ilgen, F.; Ott, D.; Kralisch, D.; Reil, C.; Palmberger, A.; Konig, B. *Green Chem.* 2009, *11*, 1948.
- [S16] Hu, S. Q.; Zhang, Z. F.; Song, J. L.; Zhou, Y. X.; Han, B. X. Green Chem. 2009, 11, 1746.