Electronic Supplementary Information

Palladium-catalyzed decarboxylative heterocyclizations of [60]fullerene: preparation of novel vinyl-substituted [60]fullerene-fused tetrahydrofurans/pyrans/quinolines

Qingfeng Liu, Tong-Xin Liu,* Yifei Ru, Xue Zhu and Guisheng Zhang*

Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.

E-mail: liutongxin_0912@126.com and zgs6668@yahoo.com

Table of Contents

1. General Information	S2
2. Experimental Procedures	S2-S3
3. DEPT-135 Spectra of Compound 4c	S 4
4. UV-vis Spectra of Representative Compounds	S5-S15
5. CVs of Selected Compounds	S16-S25
6. Spectral Data for Compounds 2, 4 and 6	S26-S41
7. ¹ H NMR and ¹³ C NMR Spectra of Compounds 2, 4 and 6	S42-S83

1. General Information

Reagents were purchased as reagent grade and used without further purification. 1,2-Dichlorobenzene (ODCB) were treated with CaH₂. ¹H NMR (400 and 600 MHz) and ¹³C NMR (100 and 150 MHz) were registered on Bruker 400 and 600 M spectrometers with tetramethylsilane (TMS) as internal standard. HRMS were measured on Bruker Ultraflextreme MALDI-TOF/TOF using E-2-[3-(4-*tert*-butylphenyl)-2-methyl-2-propenylidene]malononitrile (DCTB) as a matrix. Fluorescence properties of all obtained [60]fullerene adducts in present work were investigated, and no obvious fluorescence phenomenon was detected.

2. Experimental Procedures

General Procedure for the Synthesis of Products 2 and 4: A dry 15-mL tube equipped with a magnetic stirrer was charged with C_{60} (36.0 mg, 0.05 mmol), 1a (1b–1 and 3a–e, 0.15 mmol), Pd(PPh₃)₄ (5.8 mg, 0.005 mmol). After dissolving the solids in anhydrous ODCB (4 mL) by sonication, the sealed tube was stirred in an oil bath preset at a designated temperature for a desired time (monitored by TLC) in air. The reaction mixture was filtered through a silica gel plug to remove any insoluble material. After the solvent had been evaporated under vacuum, the residue was separated on a silica gel column with CS₂ as the eluent to recover unreacted C₆₀ and the corresponding product 2a (2b–1 and 4a–e).

General Procedure for the Synthesis of Products 6: A dry 15-mL tube equipped with a magnetic stirrer was charged with C_{60} (36.0 mg, 0.05 mmol), **5a** (**5b**–**g**, 0.15 mmol), Pd(PPh₃)₄ (5.8 mg, 0.005 mmol). After dissolving the solids in a mixture of anhydrous ODCB (4 mL) and CH₃CN (1 mL) by sonication, the sealed tube was stirred in an oil bath preset at a designated temperature for a desired time (monitored by TLC) under a nitrogen atmosphere. The reaction mixture was filtered through a silica gel plug to remove any insoluble material. After the solvent had been evaporated under vacuum, the residue was separated on a silica gel column with CS_2 as the eluent to recover unreacted C_{60} , and then the eluent was switched to CS_2/DCM to give the corresponding product **6a** (**6b-e**).

Scale-up Synthetic Experiments: A dry 200-mL tube equipped with a magnetic stirrer was charged with C_{60} (1.0 g, 1.39 mmol), **1a** or **3a** (0.792 g, 4.17 mmol) and Pd(PPh₃)₄ (0.161 g, 0.005 mmol). After dissolving the solids in anhydrous ODCB (100 mL) by sonication, the sealed tube was stirred in an oil bath preset (**1a**: 80 °C; **3a**: 130 °C) for 4 h in air. The reaction mixture was filtered through a silica gel plug to remove any insoluble material. After the solvent had been evaporated under vacuum, the residue was separated on a silica gel column with CS₂ as the eluent to recover unreacted C_{60} (0.420 g for the reaction with **1a**; 0.271 g for the reaction with **1b**) and the corresponding product (**2a**: 0.637 g, 53%; **4a**: 0.736 g, 61%).

3. DEPT-135 Spectra of Compound 4c

DEPT-135 Spectra of 4c (150 MHz, CDCl₃/CS₂)

4. UV-vis Spectra of Compounds

Figure S1. UV-vis spectrum of compound 2a in CHCl₃

Figure S2. UV-vis spectrum of compound 2b in CHCl₃

Figure S3. UV-vis spectrum of compound 2c in CHCl₃

Figure S4. UV-vis spectrum of compound 2d in CHCl₃

Figure S5. UV-vis spectrum of compound 2e in CHCl₃

Figure S6. UV-vis spectrum of compound 2f in CHCl₃

Figure S7. UV–vis spectrum of compound 2g in CHCl₃

Figure S8. UV-vis spectrum of compound 2h in CHCl₃

Figure S9. UV-vis spectrum of compound 2i in CHCl₃

Figure S10. UV-vis spectrum of compound 2j in CHCl₃

Figure S11. UV-vis spectrum of compound 2k in CHCl₃

Figure S12. UV-vis spectrum of compound 4a in CHCl₃

Figure S13. UV-vis spectrum of compound 4b in CHCl₃

Figure S14. UV-vis spectrum of compound 4c in CHCl₃

Figure S15. UV-vis spectrum of compound 4d in CHCl₃

Figure S16. UV-vis spectrum of compound 4e in CHCl₃

Figure S17. UV-vis spectrum of compound 6a in CHCl₃

Figure S18. UV-vis spectrum of compound 6b in CHCl₃

Figure S19 UV-vis spectrum of compound 6c in CHCl₃

Figure S20. UV-vis spectrum of compound 6d in CHCl₃

Figure S21. UV-vis spectrum of compound 6e in CHCl₃

5. CVs of Selected Compounds

Compound	E_1	E_2	E_3	LUMO level ^{b} (ev)
2a	-1.148	-1.536	-2.071	-3.652
2b	-1.153	-1.548	-2.093	-3.647
2e	-1.142	-1.549	-2.100	-3.658
2f	-1.162	-1.571	-2.128	-3.638
2g	-1.158	-1.549	-2.089	-3.642
$2\mathbf{h}^{c}$	-1.173	-1.580	-2.135	-3.627
2i	-1.157	-1.559	-2.114	-3.643
2j	-1.158	-1.560	-2.108	-3.642
$2\mathbf{k}^d$	-1.173	-1.601	-2.177	-3.627
4 a	-1.157	-1.538	-2.062	-3.643
4d	-1.153	-1.536	-2.064	-3.647
4 f	-1.146	-1.525	-2.045	-3.654
ба	-1.178	-1.576	-2.115	-3.622
6c	-1.165	-1.551	-2.089	-3.635
6d	-1.163	-1.559	-2.090	-3.637
РСВМ	-1.175	-1.576	-2.103	-3.625
C ₆₀	-1.075	-1.463	-1.932	-3.725

Table 1 Half-wave reduction potentials (V) of selected products, PCBM and C_{60}^{a}

^{*a*}Versus ferrocene/ferrocenium; *experimental conditions*: 1 mM of compound **2**, **4** or **6** and 0.1 M of $(n-Bu)_4NClO_4$ in anhydrous *o*-dichlorobenzene; reference electrode: SCE; working electrode: Pt; auxiliary electrode: Pt wire; scanning rate: 20 mV s⁻¹. ^{*b*}Estimated using the following equation: LUMO level = $-(4.8 + E_1)$ eV. ^{*c*}Scanning rate: 50 mV s⁻¹. ^{*d*}Scanning rate: 10 mV s⁻¹.

Cyclic voltammogram of compound **2a** (scanning rate: 20 mV s⁻¹)

Cyclic voltammogram of compound **2b** (scanning rate: 20 mV s⁻¹)

Cyclic voltammogram of compound **2e** (scanning rate: 20 mV s⁻¹)

Cyclic voltammogram of compound 2f (scanning rate: 20 mV s⁻¹)

Cyclic voltammogram of compound 2g (scanning rate: 20 mV s⁻¹)

Cyclic voltammogram of compound **2h** (scanning rate: 50 mV s^{-1})

Cyclic voltammogram of compound **2i** (scanning rate: 20 mV s⁻¹)

Cyclic voltammogram of compound **2j** (scanning rate: 20 mV s⁻¹)

Cyclic voltammogram of compound 2k (scanning rate: 10 mV s⁻¹)

Cyclic voltammogram of compound **4a** (scanning rate: 20 mV s⁻¹)

Cyclic voltammogram of compound **4d** (scanning rate: 20 mV s⁻¹)

Cyclic voltammogram of compound **4e** (scanning rate: 20 mV s⁻¹)

Cyclic voltammogram of compound **6a** (scanning rate: 20 mV s^{-1})

Cyclic voltammogram of compound **6c** (scanning rate: 20 mV s⁻¹)

Cyclic voltammogram of compound **6d** (scanning rate: 20 mV s⁻¹)

Cyclic voltammogram of compound PCBM (scanning rate: 20 mV s⁻¹)

Cyclic voltammogram of compound $C_{60}~({\rm scanning\ rate:\ 20\ mV\ s^{-1}})$

6. Spectral Data for Compounds 2, 4 and 6

Spectral data of **2a**: 28.6 mg, amorphous brown solid; mp >300 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, J = 8.0 Hz, 2H), 7.50 (dd, J = 17.2, 10.8 Hz, 1H), 7.45 (t, J = 7.6 Hz, 2H), 7.34 (t, J = 7.2 Hz, 1H), 5.73 (d, J = 8.8 Hz, 1H), 5.60 (d, J = 10.8 Hz, 1H), 5.42 (d, J = 17.2 Hz, 1H), 5.19 (d, J = 8.8 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 153.31, 153.26, 150.12, 149.08, 148.19, 147.64, 146.66, 146.60, 146.45, 146.44, 146.36, 146.27, 146.23, 146.20, 146.18, 146.12, 146.08, 145.89, 145.56, 145.50, 145.39, 145.32, 145.31, 145.28, 145.26, 144.85, 144.83, 144.76, 144.65, 144.62, 143.08, 143.00, 142.90, 142.89, 142.85, 142.56, 142.52, 142.50, 142.42, 142.36, 142.34, 142.21, 142.07, 141.83, 141.63, 141.61, 140.25, 140.00, 139.96, 139.64, 139.21, 138.84, 137.85, 137.78, 136.56, 128.86, 128.80, 127.95, 117.02, 99.82, 74.03, 64.22; FT-IR v/cm⁻¹ (KBr) 2850, 1511, 1434, 1187, 1105, 1046, 996, 953, 923, 752, 699, 526; UV-vis (CHCl₃) λ_{max}/nm (log ε) 249 (5.19), 316 (4.80), 429 (3.58), 451 (3.40), 691 (2.57); MALDI-TOF MS m/z calcd for C₇₀H₁₀O [M]⁻ 866.0737, found 866.0712.

S-26

Spectral data of **2b**: 26.8 mg, amorphous brown solid; mp >300 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.76 (d, J = 7.8 Hz, 2H), 7.50 (dd, J = 16.8, 10.8 Hz, 1H), 6.97 (d, J = 8.4 Hz, 2H), 5.68 (d, J = 9.0 Hz, 1H), 5.58 (d, J = 10.8 Hz, 1H), 5.41 (d, J = 16.8 Hz, 1H), 5.15 (d, J = 9.0 Hz, 1H), 3.84 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 158.93, 153.55, 153.39, 150.21, 149.06, 148.19, 147.63, 146.65, 146.60, 146.45, 146.41, 146.34, 146.27, 146.21, 146.19, 146.12, 146.07, 145.92, 145.57, 145.48, 145.40, 145.38, 145.31, 145.26, 145.25, 144.85, 144.81, 144.75, 144.65, 143.07, 143.00, 142.89, 142.87, 142.84, 142.61, 142.56, 142.51, 142.49, 142.43, 142.41, 142.37, 142.34, 142.27, 142.07, 141.82, 141.65, 141.61, 139.99, 139.92, 139.65, 139.31, 138.86, 137.91, 137.69, 136.51, 132.23, 129.98, 116.76, 114.08, 99.77, 74.20, 63.82, 55.38; FT-IR v/cm⁻¹ (KBr) 2921, 2850, 1608, 1511, 1456, 1434, 1297, 1250, 1184, 1104, 1033, 995, 953, 924, 813, 526; UV-vis (CHCl₃) λ_{max}/nm (log ε) 256 (5.03), 316 (4.57), 591 (2.60), 680 (2.46); MALDI-TOF MS m/z calcd for C₇₁H₁₂O₂ [M]⁻ 896.0843, found 896.0824.

Spectral data of **2c**: 34.4 mg, amorphous brown solid; mp >300 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.76 (d, J = 8.4 Hz, 2H), 7.58 (d, J = 8.4 Hz, 2H), 7.45 (dd, J = 17.4, 10.8 Hz, 1H), 5.63 (d, J = 9.6 Hz, 1H), 5.61 (d, J = 10.8 Hz, 1H), 5.38 (d, J = 17.4 Hz, 1H), 5.17 (d, J = 9.0 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃/CS₂) δ 152.79, 152.75, 149.68, 148.96, 148.10, 147.56, 146.56, 146.52, 146.36, 146.35, 146.28, 146.20,

146.14, 146.08, 146.01, 145.84, 145.72, 145.61, 145.41, 145.36, 145.31, 145.29, 145.27, 145.24, 145.20, 144.76, 144.72, 144.62, 144.59, 144.52, 143.00, 142.93, 142.84, 142.82, 142.79, 142.78, 142.46, 142.42, 142.37, 142.35, 142.33, 142.29, 142.20, 142.10, 141.92, 141.76, 141.57, 139.96, 139.92, 139.61, 139.46, 139.36, 138.53, 137.75, 137.68, 136.68, 131.86, 130.48, 122.25, 117.21, 99.67, 76.83, 73.87, 63.77; FT-IR ν/cm^{-1} (KBr) 2919, 2850, 1487, 1455, 1431, 1181, 1102, 1079, 1049, 1008, 995, 952, 923, 796, 746, 526; UV-vis (CHCl₃) $\lambda_{\text{max}}/\text{nm}$ (log ε) 256 (5.18), 316 (4.71), 590 (2.82), 689 (2.48); MALDI-TOF MS m/z calcd for C₇₀H₉BrO [M]⁻ 943.9842, found 943.9822.

Spectral data of **2d**: 31.6 mg, amorphous brown solid; mp >300 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.00 (s, 1H), 7.85 (d, J = 7.8 Hz, 1H), 7.49–7.42 (m, 2H), 7.33 (t, J = 7.8 Hz, 1H), 5.63 (d, J = 9.6 Hz, 2H), 5.41 (d, J = 17.4 Hz, 1H), 5.18 (d, J = 9.6 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃/CS₂) δ 152.72, 149.69, 148.97, 148.15, 147.62, 146.61, 146.56, 146.41, 146.39, 146.34, 146.24, 146.18, 146.12, 146.06, 145.86, 145.73, 145.65, 145.46, 145.41, 145.35, 145.34, 145.31, 145.29, 145.24, 144.81, 144.77, 144.67, 144.63, 144.56, 143.04, 142.96, 142.86, 142.83, 142.82, 142.50, 142.47, 142.42, 142.39, 142.37, 142.34, 142.23, 142.12, 141.95, 141.80, 141.65, 141.62, 140.00, 139.96, 139.65, 139.32, 138.59, 137.81, 137.73, 136.74, 131.67, 131.05, 130.19, 127.70, 123.12, 117.40, 99.73, 76.90, 73.80, 63.79; FT-IR ν/cm^{-1}

S-28

(KBr) 2919, 2850, 1559, 1473, 1419, 1167, 1102, 1049, 995, 952, 926, 902, 779, 722,
526; UV-vis (CHCl₃) λ_{max}/nm (log ε) 256 (5.12), 316 (4.66), 590 (2.78), 688 (2.43);
MALDI-TOF MS *m*/*z* calcd for C₇₁H₁₂O₂ [M]⁻ 943.9842, found 943.9827.

Spectral data of **2e**: 30.5 mg, amorphous brown solid; mp >300 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.11 (d, J = 7.8 Hz, 2H), 8.96 (d, J = 7.8 Hz, 2H), 7.49 (dd, J = 16.8, 10.8 Hz, 1H), 5.70 (d, J = 9.6 Hz, 1H), 5.62 (d, J = 10.8 Hz, 1H), 5.39 (d, J = 16.8 Hz, 1H), 5.22 (d, J = 9.0 Hz, 1H), 3.92 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 166.85, 152.74, 149.68, 149.01, 148.20, 147.66, 146.65, 146.60, 146.46, 146.43, 146.36, 146.28, 146.23, 146.22, 146.15, 146.10, 145.96, 145.78, 145.68, 145.66, 145.46, 145.38, 145.33, 145.32, 145.29, 144.84, 144.79, 144.71, 144.67, 144.57, 143.09, 143.00, 142.91, 142.90, 142.86, 142.85, 142.53, 142.50, 142.47, 142.41, 142.37, 142.28, 142.13, 142.00, 141.83, 141.74, 141.64, 141.63, 140.03, 140.00, 139.67, 139.35, 138.66, 137.81, 136.68, 129.97, 129.63, 128.97, 117.57, 99.81, 73.89, 64.21, 52.37; FT-IR v/cm⁻¹ (KBr) 2849, 1722, 1607, 1431, 1278, 1188, 1106, 1049, 1019, 995, 953, 925, 766, 707, 526; UV-vis (CHCl₃) λ_{max}/nm (log ε) 254 (5.19), 316 (4.72), 428 (3.55), 590 (2.81), 689 (2.42); MALDI-TOF MS *m*/*z* calcd for C₇₂H₁₂O₃ [M]⁻ 924.0792, found 924.0760.

Spectral data of **2f**: 32.9 mg, amorphous brown solid; mp >300 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 8.0 Hz, 2H), 7.69 (d, J = 8.0 Hz, 2H), 7.64 (d, J = 8.0 Hz, 2H), 7.52 (dd, J = 20.0, 8.0 Hz), 7.44 (t, J = 8.0 Hz, 2H), 7.35 (t, J = 8.0 Hz, 1H), 5.75 (d, J = 8.0 Hz, 1H), 5.63 (d, J = 8.0 Hz, 1H), 5.48 (d, J = 20.0 Hz, 1H), 5.23 (d, J =8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 153.23, 150.03, 149.03, 148.16, 147.61, 146.63, 146.58, 146.43, 146.41, 146.32, 146.25, 146.20, 146.17, 146.11, 146.05, 145.84, 145.53, 145.46, 145.37, 145.35, 145.29, 145.23, 144.82, 144.79, 144.73, 144.63, 144.59, 143.05, 142.97, 142.88, 142.86, 142.82, 142.81, 142.53, 142.49, 142.47, 142.41, 142.39, 142.33, 142.32, 142.29, 142.21, 142.04, 141.82, 141.62, 141.59, 140.36, 140.28, 139.98, 139.94, 139.64, 139.29, 139.27, 138.82, 137.89, 137.75, 136.64, 129.24, 128.98, 127.68, 127.28, 127.15, 117.04, 99.81, 77.37, 74.02, 64.02; FT-IR v/cm⁻¹ (KBr) 2920, 2848, 1486, 1428, 1180, 1104, 1049, 995, 952, 923, 763, 730, 694, 526; UV-vis (CHCl₃) λ_{max} /nm (log ε) 257 (5.19), 316 (4.69), 429 (3.54), 590 (2.78), 689 (2.43); MALDI-TOF MS m/z calcd for C₇₆H₁₄O [M]⁻ 942.1050, found 942.1080.

Spectral data of 2g: 19.2 mg, amorphous brown solid; mp >300 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.49 (d, J = 8.4 Hz, 1H), 8.28 (d, J = 6.6 Hz, 1H), 7.87–7.83 (m, 2H), 7.79 (d, J = 7.8 Hz, 1H), 7.64 (t, J = 7.2 Hz, 1H), 7.33 (t, J = 7.2 Hz, 1H), 7.19 (t, J =7.8 Hz, 1H), 5.89 (d, J = 9.0 Hz, 1H), 5.61 (d, J = 10.8 Hz, 1H), 5.29 (d, J = 17.4 Hz, 1H), 5.17 (d, J = 9.0 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃/CS₂) δ 153.67, 153.04, 149.86, 149.50, 148.11, 147.67, 147.26, 146.66, 146.57, 146.49, 146.39, 146.31, 146.23, 146.22, 146.12, 146.07, 145.96, 145.88, 145.55, 145.40, 145.39, 145.34, 145.31, 145.25, 145.10, 145.09, 144.70, 144.66, 144.62, 144.49, 142.96, 142.91, 142.86, 142.83, 142.59, 142.52, 142.45, 142.36, 142.22, 142.10, 141.88, 141.68, 141.56, 140.23, 139.98, 138.64, 138.57, 138.27, 138.03, 137.76, 137.30, 135.82, 135.22, 131.65, 131.40, 129.71, 129.14, 126.88, 125.58, 125.45, 124.16, 118.52, 100.76, 77.50, 65.60; FT-IR v/cm⁻¹ (KBr) 2851, 1510, 1426, 1169, 1111, 1049, 999, 953, 919, 772, 526; UV-vis (CHCl₃) λ_{max}/nm (log ε) 259 (5.17), 316 (4.70), 431 (3.52), 590 (2.77), 691 (2.36); MALDI-TOF MS m/z calcd for C₇₄H₁₂O [M]⁻ 916.0894, found 916.0874.

Spectral data of **2h**: 33.3 mg, amorphous brown solid; mp >300 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.04 (s, 1H), 7.89–7.78 (m, 3H), 7.59–7.52 (m, 2H), 7.38 (t, *J* = 7.2 Hz, 1H), 7.31 (t, *J* = 7.2 Hz, 1H), 5.79 (d, *J* = 9.2 Hz, 1H), 5.62 (d, *J* = 10.8 Hz, 1H), 5.46 (d, *J* = 17.6 Hz, 1H), 5.24 (d, *J* = 9.2 Hz, 1H), 3.95 (q, *J* = 21.6 Hz, 2H); ¹³C

NMR (150 MHz, CDCl₃/CS₂) δ 153.10, 153.07, 150.04, 148.94, 147.91, 147.36, 146.40, 146.35, 146.22, 146.21, 146.07, 146.04, 146.02, 145.98, 145.94, 145.88, 145.80, 145.69, 145.33, 145.26, 145.13, 145.11, 145.06, 145.00, 144.61, 144.59, 144.50, 144.43, 144.39, 143.42, 143.23, 142.84, 142.75, 142.68, 142.66, 142.62, 142.60, 142.45, 142.34, 142.30, 142.25, 142.19, 142.18, 142.13, 142.10, 141.95, 141.87, 141.58, 141.42, 141.36, 141.24, 141.06, 139.80, 139.76, 139.40, 139.02, 138.52, 138.38, 137.62, 137.58, 136.42, 127.81, 127.08, 126.95, 125.07, 124.91, 120.10, 119.95, 116.65, 99.52, 74.08, 64.31, 37.25; FT-IR ν /cm⁻¹ (KBr) 2853, 1464, 1423, 1399, 1181, 1102, 1051, 996, 953, 924, 904, 766, 733, 527; UV-vis (CHCl₃) λ_{max} /nm (log ε) 253 (5.15), 315 (4.71), 429 (3.57), 643 (2.70), 690 (2.46); MALDI-TOF MS m/z calcd for C₇₇H₁₄O [M]⁻ 954.1050, found 954.1080.

Spectral data of **2i**: 28.3 mg, amorphous brown solid; mp >300 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 3.6 Hz, 1H), 7.37 (d, J = 5.2 Hz, 1H), 7.32 (dd, J = 17.6, 11.2 Hz, 1H), 7.12 (t, J = 4.4 Hz, 1H), 5.72-5.65 (m, 2H), 5.46 (d, J = 9.2 Hz, 1H), 5.34 (d, J = 9.2 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 153.09, 152.67, 149.23, 149.21, 148.23, 147.67, 146.67, 146.61, 146.40, 146.38, 146.36, 146.26, 146.24, 146.15, 146.10, 145.95, 145.91, 145.54, 145.47, 145.45, 145.41, 145.39, 145.30, 145.28, 145.26, 144.74, 144.71, 144.71, 144.67, 143.07, 142.86, 142.48, 142.45, 142.43, 142.38, 142.37, 142.17, 141.91, 141.86, 141.81, 141.71, 140.09, 140.01,

139.81, 139.73, 139.59, 138.78, 138.45, 137.11, 136.90, 127.09, 126.71, 125.27, 116.79, 99.41, 77.82, 75.98, 74.52, 62.59; FT-IR ν/cm^{-1} (KBr) 2919, 2848, 1511, 1463, 1429, 1244, 1181, 1101, 1049, 995, 952, 925, 730, 696, 526; UV-vis (CHCl₃) $\lambda_{\text{max}}/\text{nm}$ (log ε) 255 (5.00), 316 (4.53), 590 (2.28), 692 (2.03); MALDI-TOF MS m/z calcd for C₆₈H₈OS [M]⁻ 872.0301, found 872.0321.

Spectral data of **2j**: 14.2 mg, amorphous brown solid; mp >300 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.47–6.38 (m, 1H), 5.67 (d, J = 17.2 Hz, 1H), 5.52 (d, J = 10.4 Hz, 1H), 5.01 (dd, J = 9.2, 6.0 Hz, 1H), 4.87 (t, J = 9.2 Hz, 1H), 4.66–4.59 (m, 1H); ¹³C NMR (100 MHz, CDCl₃/CS₂) δ 154.79, 151.68, 149.86, 148.62, 147.88, 147.27, 146.32, 146.26, 146.23, 146.17, 146.15, 146.01, 146.00, 145.94, 145.84, 145.50, 145.47, 145.35, 145.27, 145.18, 145.13, 145.10, 145.09, 144.93, 144.91, 144.59, 144.48, 144.45, 144.28, 142.84, 142.76, 142.64, 142.61, 142.58, 142.53, 142.52, 142.23, 142.20, 142.16, 142.12, 142.08, 142.04, 141.98, 141.68, 141.62, 141.42, 140.12, 139.74, 139.63, 139.49, 137.78, 137.57, 137.28, 135.80, 133.86, 120.27, 99.06, 72.54, 70.13, 59.70; FT-IR ν /cm⁻¹ (KBr) 3073, 2920, 2839, 1512, 1423, 1172, 1106, 1027, 986, 951, 921, 729, 526; UV-vis (CHCl₃) λ_{max} /nm (log ε) 253 (5.10), 314 (4.71), 428 (3.53), 590 (2.75), 691 (2.53); MALDI-TOF MS *m*/*z* calcd for C₆₄H₆O [M]⁻ 790.0424, found 790.0439.

Spectral data of **2k**: 14.7 mg, amorphous brown solid; mp >300 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.76–6.67 (m, 1H), 6.59–6.50 (m, 1H), 5.88–5.83 (m, 2H), 5.64 (d, J = 10.0 Hz, 1H), 5.55–5.49 (m, 2H), 4.57 (dd, J = 10.0, 4.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃/CS₂) δ 155.11, 153.37, 149.39, 149.27, 148.00, 147.42, 146.40, 146.36, 146.24, 146.22, 146.10, 146.07, 145.98, 145.95, 145.72, 145.64, 145.43, 145.26, 145.24, 145.22, 145.20, 145.19, 145.13, 145.11, 145.06, 144.61, 144.56, 144.43, 142.91, 142.88, 142.72, 142.64, 142.49, 142.29, 142.28, 142.22, 142.20, 142.18, 142.14, 142.12, 141.86, 141.75, 141.70, 141.54, 139.99, 139.97, 139.85, 139.59, 138.35, 137.41, 137.34, 136.00, 135.02, 133.29, 120.05, 119.94, 98.01, 82.14, 73.17, 62.25; FT-IR v/cm⁻¹ (KBr) 3076, 2919, 2847, 1420, 1179, 1104, 1019, 978, 918, 767, 526; UV-vis (CHCl₃) λ_{max} /nm (log ε) 254 (5.09), 315 (4.60), 428 (3.42), 590 (2.70), 693 (2.40); MALDI-TOF MS m/z calcd for C₆₆H₈O [M]⁻ 816.0581, found 816.0555.

Spectral data of **4a**: 19.9 mg, amorphous brown solid; mp >300 °C; ¹H NMR (400 MHz, CDCl₃/CS₂) δ 7.67 (d, J = 8.0 Hz, 2H), 7.37 (t, J = 8.0 Hz, 2H), 7.37 (t, J = 8.0 Hz, 1H), 5.84 (s, 1H), 5.79 (d, J = 16.0 Hz, 1H), 5.56 (d, J = 16.0 Hz, 1H), 5.52 (s, 1H), 5.39 (s, 1H); ¹³C NMR (150 MHz, CDCl₃/CS₂) δ 155.05, 152.40, 149.95, 148.94,

148.34, 147.71, 147.10, 146.68, 146.67, 146.46, 146.40, 146.26, 146.22, 146.21, 145.68, 145.62, 145.60, 145.50, 145.44, 145.37, 145.23, 145.19, 145.14, 144.76, 144.72, 144.70, 144.65, 142.90, 142.86, 142.75, 142.72, 142.67, 142.41, 142.39, 142.29, 142.26, 142.18, 142.12, 142.06, 141.44, 141.38, 141.26, 140.81, 140.05, 139.83, 139.19, 138.64, 138.40, 137.15, 136.67, 134.94, 132.18, 128.32, 127.96, 111.20, 93.78, 69.36, 66.39, 56.16; FT-IR ν/cm^{-1} (KBr) 3027, 2844, 1512, 1428, 1182, 1102, 1065, 900, 740, 526; UV-vis (CHCl₃) $\lambda_{\text{max}}/\text{nm}$ (log ε) 256 (5.00), 318 (4.60), 431 (3.38), 691 (2.34); MALDI-TOF MS m/z calcd for C₇₀H₁₀O [M]⁻ 866.0726, found 866.0727.

Spectral data of **4b**: 25.5 mg, amorphous brown solid; mp >300 °C; ¹H NMR (400 MHz, CDCl₃/CS₂) δ 7.54 (d, J = 8.0 Hz, 2H), 7.16 (d, J = 8.0 Hz, 2H), 5.80–5.75 (m, 2H), 5.56–5.50 (m, 2H), 5.38 (s, 1H), 2.35 (s, 3H); ¹³C NMR (150 MHz, CDCl₃/CS₂) δ 154.83, 152.21, 149.72, 148.66, 147.99, 147.35, 146.84, 146.33, 146.11, 146.05, 145.91, 145.87, 145.35, 145.31, 145.27, 145.17, 145.09, 145.08, 145.02, 144.96, 144.88, 144.83, 144.54, 144.41, 144.39, 144.38, 144.30, 142.56, 142.52, 142.41, 142.38, 142.33, 142.08, 142.06, 141.96, 141.93, 141.83, 141.78, 141.72, 141.12, 141.06, 140.92, 140.48, 139.70, 139.47, 138.90, 138.32, 138.10, 137.13, 136.78, 136.30, 134.58, 131.74, 128.77, 110.78, 93.42, 69.06, 66.17, 55.44, 21.12; FT-IR ν /cm⁻¹ (KBr) 2917, 2846, 1512, 1427, 1183, 1102, 1065, 890, 772, 526; UV-vis

(CHCl₃) λ_{max} /nm (log ε) 256 (5.07), 317 (4.62), 431 (3.38), 692 (2.35); MALDI-TOF MS m/z calcd for C₇₁H₁₂O [M]⁻ 880.0883, found 880.0882.

Spectral data of **4c**: 25.6 mg, amorphous brown solid; mp >300 °C; ¹H NMR (600 MHz, CDCl₃/CS₂) δ 7.64 (d, J = 8.0 Hz, 2H), 7.36 (d, J = 8.0 Hz, 2H), 5.81 (s, 1H), 5.78 (d, J = 15.6 Hz, 1H), 5.56 (d, J = 16.2 Hz, 1H), 5.20 (s, 1H), 5.34 (s, 1H); ¹³C NMR (150 MHz, CDCl₃/CS₂) δ 154.76, 152.04, 149.78, 148.81, 148.45, 147.82, 146.78, 146.76, 146.56, 146.50, 146.34, 146.32, 146.29, 145.71, 145.62, 145.59, 145.55, 145.53, 145.48, 145.35, 145.32, 145.01, 144.85, 144.79, 144.75, 144.73, 144.49, 143.01, 142.96, 142.85, 142.82, 142.77, 142.49, 142.47, 142.36, 142.31, 142.25, 142.17, 142.14, 141.49, 141.40, 140.88, 140.15, 139.93, 139.41, 138.67, 138.60, 137.23, 136.85, 135.15, 134.00, 133.40, 128.62, 111.38, 93.83, 69.30, 66.24, 55.73; FT-IR ν /cm⁻¹ (KBr) 2920, 2846, 1512, 1489, 1428, 1262, 1181, 1102, 1065, 1014, 902, 789, 731, 526; UV-vis (CHCl₃) λ_{max} /nm (log ε) 255 (5.12), 317 (4.67), 431 (3.41), 691 (2.37); MALDI-TOF MS m/z calcd for C₇₀H₉ClO [M]⁻ 900.0336, found 900.0337.

Spectral data of **4d**: 26.1 mg, amorphous brown solid; mp >300 °C; ¹H NMR (400 MHz, CDCl₃/CS₂) δ 8.13 (s, 1H), 7.83–7.78 (m, 4H), 7.46–7.44 (m, 2H), 6.01 (s, 1H), 5.83 (d, *J* = 16.0 Hz, 1H), 5.58 (d, *J* = 16.0 Hz, 1H), 5.55 (s, 1H), 5.40 (s, 1H); ¹³C NMR (150 MHz, CDCl₃/CS₂) δ 154.60, 152.06, 149.64, 148.51, 147.92, 147.29, 146.59, 146.28, 146.05, 145.98, 145.87, 145.82, 145.27, 145.19, 145.11, 145.07, 145.03, 144.99, 144.96, 144.83, 144.80, 144.64, 144.44, 144.36, 144.30, 144.24, 142.73, 142.51, 142.45, 142.37, 142.33, 142.31, 142.25, 142.02, 142.00, 141.87, 141.84, 141.81, 141.72, 141.67, 141.07, 140.99, 140.84, 140.42, 139.70, 139.46, 138.89, 138.26, 138.07, 136.73, 136.26, 134.57, 132.87, 132.49, 131.27, 129.22, 127.82, 127.46, 127.31, 126.13, 125.98, 111.13, 93.44, 68.97, 65.99, 55.92; FT-IR v/cm⁻¹ (KBr) 2920, 2845, 1511, 1427, 1181, 1102, 1065, 897, 817, 740, 526; UV-vis (CHCl₃) λ_{max} /nm (log ε) 256 (5.04), 316 (4.59), 431 (3.41), 691 (2.30); MALDI-TOF MS *m*/*z* calcd for C₇₄H₁₂O [M]⁻916.0888, found 916.0889.

4e

Spectral data of **4e**: 24.1 mg, amorphous brown solid; mp >300 °C; ¹H NMR (400 MHz, CDCl₃/CS₂) δ 5.52 (s, 2H), 5.47 (s, 2H), 4.26 (s, 2H); ¹³C NMR (150 MHz, CDCl₃/CS₂) δ 155.36, 149.00, 148.38, 147.67, 146.62, 146.37, 146.25, 146.23, 146.17, 145.71, 145.56, 145.43, 145.32, 145.29, 144.90, 144.77, 144.65, 143.30, 142.91, 142.68, 142.65, 142.53, 142.31, 142.18, 141.97, 141.54, 141.24, 140.19, 139.78, 138.06, 136.02, 110.42, 92.46, 69.64, 63.17, 43.24; FT-IR *v*/cm⁻¹ (KBr) 2921, 2849,

1562, 1510, 1427, 1181, 1101, 1063, 975, 890, 767, 526; UV-vis (CHCl₃) λ_{max}/nm (log ε) 257 (5.01), 316 (4.52), 431 (3.32), 693 (2.18); MALDI-TOF MS m/z calcd for C₆₄H₆O [M]⁻ 790.0413, found 790.0414.

Spectral data of **6a**: 11.5 mg, amorphous brown solid; mp >300 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.52 (d, J = 7.2 Hz, 1H), 7.43 (t, J = 7.8 Hz, 1H), 7.24–7.17 (m, 2H), 6.95 (br, 1H), 5.64–5.58 (m, 3H), 5.15 (d, J = 10.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃/CS₂) δ 148.08, 147.63, 146.58, 146.51, 146.48, 146.46, 146.16, 145.99, 145.75, 145.73, 145.60, 145.41, 145.34, 145.32, 145.27, 145.04, 144.82, 144.76, 144.68, 144.54, 144.20, 142.99, 142.96, 142.67, 142.66, 142.63, 142.59, 142.30, 142.25, 142.23, 142.18, 142.16, 142.07, 142.05, 141.89, 141.83, 141.43, 141.41, 140.00, 139.82, 139.46, 139.27, 137.03, 136.54, 136.33, 135.85, 131.95, 128.68, 126.94, 122.56, 117.68, 78.22, 71.61; FT-IR v/cm⁻¹ (KBr) 3333, 2919, 1606, 1592, 1511, 1462, 1423, 1254, 1182, 927, 750, 574, 526; UV-vis (CHCl₃) λ_{max} /nm (log ε) 256 (5.01), 314 (4.63), 590 (2.70), 698 (2.41); MALDI-TOF MS m/z calcd for C₆₉H₉N [M]⁻ 851.0740, found 851.0720.

Spectral data of **6b**: 12.3 mg, amorphous brown solid; mp >300 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.35 (d, J = 7.8 Hz, 1H), 7.08 (d, J = 7.8 Hz, 1H), 6.97 (br, 1H), 5.82 (s, 1H), 5.65–5.59 (m, 2H), 5.15 (d, J = 10.2 Hz, 1H), 2.49 (s, 3H), 2.45 (s, 3H); ¹³C NMR (150 MHz, CDCl₃/CS₂ with Cr(acac)₃ as relaxation reagent) δ 148.01, 147.54, 146.50, 146.41, 146.38, 146.36, 146.07, 145.90, 145.89, 145.67, 145.50, 145.32, 145.25, 145.21, 145.19, 144.77, 144.72, 144.60, 144.47, 143.04, 142.90, 142.86, 142.58, 142.57, 142.55, 142.50, 142.24, 142.18, 142.10, 141.96, 141.82, 141.75, 141.36, 141.32, 140.04, 139.77, 139.39, 136.95, 136.40, 135.76, 129.62, 124.01, 123.64, 123.43, 78.21, 71.76, 20.84, 12.95; FT-IR v/cm⁻¹ (KBr) 3368, 2920, 1587, 1512, 1455, 1278, 1182, 1096, 997, 926, 796, 787, 767, 737, 707, 574, 527; UV-vis (CHCl₃) λ_{max} /nm (log ε) 256 (5.07), 313 (4.66), 429 (3.45), 698 (2.50); MALDI-TOF MS *m*/z calcd for C₇₁H₁₃N [M]⁻ 879.1053, found 879.1068.

Spectral data of **6c**: 11.0 mg, amorphous brown solid; mp >300 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.21 (d, J = 8.4 Hz, 1H), 7.15 (d, J = 2.4 Hz, 1H), 6.95 (br, 1H), 7.02 (dd, J = 8.4, 2.8 Hz, 1H), 5.69–5.62 (m, 2H), 5.51 (s, 1H), 5.18 (d, J = 9.6 Hz, 1H), 3.93 (s, 3H); ¹³C NMR (150 MHz, CDCl₃/CS₂) δ 155.51, 148.11, 147.68, 146.61, 146.54, 146.51, 146.20, 145.78, 145.64, 145.46, 145.39, 145.37, 145.33, 144.86, 144.80, 144.75, 144.61, 143.02, 142.99, 142.70, 142.68, 142.64, 142.35, 142.29, 142.23, 142.11, 141.93, 141.87, 141.48, 141.45, 140.05, 139.87, 139.47, 138.37,

133.44, 118.53, 113.49, 113.25, 55.56; FT-IR ν/cm^{-1} (KBr) 3334, 2920, 2849, 1611, 1497, 1455, 1434, 1281, 1228, 1037, 927, 809, 739, 527; UV-vis (CHCl₃) $\lambda_{\text{max}}/\text{nm}$ (log ε) 256 (5.02), 312 (4.60), 589 (2.74), 697 (2.35); MALDI-TOF MS m/z calcd for C₇₀H₁₁NO [M]⁻ 881.0846, found 881.0832.

Spectral data of **6d**: 9.3 mg, amorphous brown solid; mp >300 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.52 (s, 1H), 7.42 (d, *J* = 8.4 Hz, 1H), 7.20 (d, *J* = 8.4 Hz, 1H), 6.91 (br, 1H), 5.71–5.68 (m, 2H), 5.63 (s, 1H), 5.15 (d, *J* = 9.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃/CS₂) δ 148.02, 147.57, 146.54, 146.47, 146.46, 146.41, 146.11, 146.08, 145.99, 145.87, 145.68, 145.65, 145.51, 145.41, 145.37, 145.27, 145.22, 144.74, 144.67, 144.59, 144.43, 144.01, 143.88, 143.48, 142.94, 142.90, 142.63, 142.60, 142.55, 142.25, 142.18, 142.08, 142.05, 142.02, 141.99, 141.83, 141.78, 141.37, 139.98, 139.78, 139.43, 137.03, 135.74, 133.55, 128.44, 127.84, 127.05, 118.63, 78.13, 71.23; FT-IR v/cm⁻¹ (KBr) 3335, 2919, 2849, 1511, 1484, 1436, 1259, 1188, 931, 814, 769, 715, 574, 526; UV-vis (CHCl₃) λ_{max} /nm (log ε) 256 (5.11), 315 (4.63), 590 (2.80), 697 (2.48); MALDI-TOF MS *m*/*z* calcd for C₆₉H₈CIN [M]⁻ 885.0351, found 885.0335.

Spectral data of **6e**: 9.3 mg, amorphous brown solid; mp >300 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, J = 8.0 Hz, 1H), 7.29 (d, J = 2.0 Hz, 1H), 7.29 (dd, J = 8.0, 2.0 Hz, 1H), 6.94 (br, 1H), 5.68–5.63 (m, 3H), 5.14 (d, J = 9.6 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃/CS₂) δ 148.25, 147.80, 146.73, 146.67, 146.64, 146.60, 146.32, 146.26, 146.16, 146.05, 145.91, 145.84, 145.70, 145.55, 145.48, 145.44, 145.42, 144.93, 144.87, 144.80, 144.66, 144.15, 144.14, 143.13, 143.12, 142.81, 142.78, 142.74, 142.42, 142.38, 142.33, 142.30, 142.28, 142.23, 142.21, 142.19, 142.04, 141.97, 141.56, 141.53, 140.16, 139.97, 139.60, 137.06, 135.88, 134.26, 130.54, 128.17, 122.58, 117.88, 78.23, 71.52; FT-IR ν /cm⁻¹ (KBr) 3333, 2918, 1600, 1589, 1512, 1491, 1446, 1432, 1278, 1182, 1091, 1028, 931, 908, 848, 769, 715, 574, 527; UV-vis (CHCl₃) λ_{max} /nm (log ε) 257 (5.01), 315 (4.57), 694 (2.52); MALDI-TOF MS m/z calcd for C₆₉H₈CIN [M]⁻ 885.0921, found 885.0920.

7. ¹H NMR and ¹³C NMR Spectra of Compounds 2, 4 and 6

S-78

