Construction of Seven- and Eight-Membered Carbocycles by Lewis Acid Catalyzed C(sp³)–H Bond Functionalization

Yuna Otawa, † and Keiji Mori $^{\dagger}*$

[†]Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.

<u>k_mori@cc.tuat.ac.jp</u>

Supporting Information

Table of contents	S 1
General experimental procedures	S2
Procedure and spectral data	S 3
Scanned images of ¹ H-, ¹³ C-NMR, and ¹⁹ F-NMR of new compounds	S 37

General experimental procedures

All reactions utilizing air- and moisture-sensitive reagents were performed in dried glassware under an atmosphere of dry nitrogen. Anhydrous ethereal solvents (THF, Et_2O) were purchased from Kanto Chemical Co., INC., and used directly. Dichloromethane and 1,2-dichloroethane were distilled over CaH₂. Benzene and toluene were distilled over CaH₂, and stored over 4A molecular sieves. *N*,*N*-Dimethylformamide (DMF) was distilled over CaH₂, and stored over 4A molecular sieves.

For thin-layer chromatography (TLC) analysis, Merck pre-coated plates (silica gel 60 F_{254} , Art 5715, 0.25 mm) were used. Column chromatography and preparative TLC (PTLC) were performed on Silica Gel 60N (spherical, neutral), Kanto Chemical Ltd. and Wakogel B-5F, Wako Pure Chemical Industries, respectively.

Melting point (mp) determinations were performed by using a AS ONE ATM-01 instrument and are uncorrected. ¹H NMR, ¹³C NMR, ¹⁹F NMR were measured on a AL-300 MR (JEOL Ltd., 300 MHz), ECX-400 (JEOL Ltd., 400 MHz), and ECA-500 (JEOL Ltd., 500 MHz) spectrometers. Chemical shifts are expressed in parts per million (ppm) downfield from internal standard (tetramethylsilane for ¹H, and C_6F_6 for ¹⁹F, 0.00 ppm), and coupling constants are reported as hertz (Hz). Splitting patterns are indicated as follows: br, broad; s, singlet; d, doublet; t, triplet; m, multiplet. Infrared (IR) spectra were recorded on a FTIR-8600PC instrument (Shimadzu Co.). Elemental analysis (EA) was carried out on Flash2000 instrument (Amco Inc.).

1. Preparation of starting materials.

Scheme S1. Preparation of starting materials **1**. Preparation of **3a** was shown as a representative example.

Synthesis of 3-(2-bromophenyl)propanoic acid (s2):¹

To HCO_2H (85%, 4.40 mL) were successively added Et₃N (6.40 mL, 46.2 mmol), s1 (2.0 mL, 17.1 mmol), and Meldrum's acid (2.48 g, 17.2 mmol) at 0 °C. The reaction mixture was heated to 95 °C for 4 h. After the reaction mixture was cooled to 0 °C, ice-cooled water (22.0 mL) was added. After being stirred for 14 h, the white precipitates were collected with filtration (washed with H₂O) to afford s2 (3.18 g, 81%) as white solid. This material had enough purity, so directly used next reaction without further purification.

Synthesis of 2-(3-(benzyloxy)propyl)benzaldehyde (s5):

To a solution of s2 (1.62 g, 7.07 mmol) in Et_2O (35.5 mL) was added LiAlH₄ (410 mg, 10.8 mmol) at 0 °C (portion wise). After being stirred for 2 h at refluxing temperature,

the reaction was stopped by adding $Na_2SO_4 \cdot 10H_2O$. After being stirred for another 0.5 h at room temperature, the crude material was filtered through Celite[®] pad and the resulting filtrate was concentrated in vacuo to give crude alcohol s3 (1.56 g). The crude material was used for the next reaction without further purification.

To a solution of s3 in DMF (23.6 mL) were successively added NaH (60 % oil, 478 mg, 12.0 mmol), and BnBr (1.30 mL, 10.9 mmol). After being stirred for 16 h at room temperature, the reaction was quenched by addition of Et_2NH (0.36 ml, 7.09 mmol) at 0 °C. The crude mixture was extracted with EtOAc (x3) and the combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane/EtOAc = 30/1) to give s4 (1.54 g) as colorless oil. At this moment, s4 could not be isolated as pure compound, so this material was used for next reaction without further purification.

To a solution of s4 in THF (25.2 mL) was added *n*-BuLi (1.57 M in hexane, 4.18 mL, 6.56 mmol) at -78 °C. The reaction mixture was stirred for 10 min at -78 °C, to which DMF (0.78 mL, 10.1 mmol) was added. After being stirred for 2 h, the reaction was quenched by addition of saturated aqueous NH₄Cl at -78 °C. The crude mixture was extracted with EtOAc (x3) and the combined organic extracts were washed with brine, dried (Na₂SO₄) and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane/EtOAc = 15/1) to afford aldehyde s5 (953 mg, 53% from s2) as colorless oil.

IR (neat) 3087, 3064, 3030, 2940, 2859, 2793, 2736, 1695, 1600, 1574, 1495, 1488, 1453, 1405, 1364, 1290, 1207, 1193, 1160, 1102, 1028, 954, 907 cm⁻¹.

¹H NMR (500 MHz, CDCl₃) δ 1.94 (tt, 2H, *J* = 6.0, 7.6 Hz), 3.16 (t, 2H, *J* = 7.6 Hz), 3.51 (t, 2H, *J* = 6.0 Hz), 4.52 (s, 2H), 7.24–7.32 (m, 2H), 7.33–7.42 (m, 5H), 7.49 (dd, 1H, *J* = 8.0, 8.0 Hz), 7.83 (dd, 1H, *J* = 8.0 Hz), 10.29 (s, 1H).

¹³C NMR (125 MHz, CDCl₃) δ 29.0, 31.8, 69.2, 72.9, 126.5, 127.6, 127.7, 128.4, 131.1, 131.8, 133.8, 138.4, 144.8, 192.5.

Anal. Calcd for C₁₇H₁₈O₂: C, 80.28; H, 7.13. Found: C, 80.43; H, 6.89.

Synthesis of 2-(2-(3-(benzyloxy)propyl)benzylidene)malonate (3a):

To a solution of **s5** (430 mg, 1.69 mmol) in benzene (8.4 mL) were successively added dimethyl malonate (193 μ L, 1.69 mmol), piperidine (179 μ L, 1.69 mmol), and AcOH (193 μ L, 3.38 mmol) at room temperature. The reaction mixture was heated to reflux for 17 h. The crude mixture was concentrated in vacuo, and the residue was purified by column chromatography (silica gel, hexane/EtOAc = 9/1) to give **3a** (449 mg, 72%) as colorless oil.

IR (neat) 3063, 3029, 3005, 2951, 2858, 1735, 1627, 1600, 1495, 1483, 1454, 1436, 1365, 1263, 1215, 1184, 1105, 1071, 1028, 986 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 1.89 (tt, 2H, *J* = 6.0, 7.6 Hz), 2.81 (t, 2H, *J* = 7.6 Hz),

3.46 (t, 2H, *J* = 6.0 Hz), 3.69 (s, 3H), 3.81 (s, 3H), 4.50 (s, 2H), 7.17 (ddd, 1H, *J* = 1.2, 8.0, 8.0 Hz), 7.22 (d, 1H, *J* = 8.0 Hz), 7.26–7.38 (m, 7H), 8.08 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 30.0, 30.8, 52.4, 52.6, 69.0, 72.8, 126.2, 127.3, 127.5, 127.6, 127.9, 128.3, 129.7, 130.1, 132.2, 138.4, 141.6, 142.6, 164.3, 166.7.

Anal. Calcd for C₂₂H₂₄O₅: C, 71.72; H, 6.57. Found: C, 71.87; H, 6.38.

2-(3-(Benzyloxy)propyl)-5-methylbenzaldehyde (s6).

Colorless oil (purified by silica gel column chromatography, Hexane/EtOAc = 20/1).

Yield: 743 mg (48%, synthesized from commercially available, 2-bromo-4-methylbenzaldehyde).

IR (neat) 3063, 3030, 2922, 2857, 2793, 2731, 1689, 1610, 1568, 1497, 1454, 1402, 1364, 1280, 1240, 1203, 1157, 1103, 1072, 1028, 941 cm⁻¹.

¹H NMR (500 MHz, CDCl₃) δ 1.92 (tt, 2H, *J* = 6.0, 7.6 Hz), 2.38 (s, 3H), 3.10 (t, 2H, *J* = 7.6 Hz), 3.50 (t, 2H, *J* = 6.0 Hz), 4.50 (s, 2H), 7.16 (d, 1H, *J* = 7.6 Hz), 7.24–7.41 (m, 6H), 7.64 (s, 1H), 10.26 (s, 1H).

¹³C NMR (125 MHz, CDCl₃) δ 20.8, 28.5, 31.9, 69.2, 72.9, 127.5, 127.7, 128.4, 131.1, 132.0, 133.6, 134.6, 136.2, 138.4, 141.9, 192.6.

Anal. Calcd for C₁₈H₂₀O₂: C, 80.56; H, 7.51. Found: C, 80.59; H, 7.75.

Dimethyl 2-(2-(3-(benzyloxy)propyl)-5-methylbenzylidene)malonate (**3b**). Colorless oil (purified by silica gel column chromatography, Hexane/EtOAc = 6/1). Yield: 482 mg (84%, synthesized from **s6**). IR (neat) 3029, 2951, 2858, 1734, 1627, 1609, 1495, 1454, 1436, 1365, 1267, 1228, 1183, 1102, 1071, 1028, 987, 957, 926 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 1.87 (tt, 2H, *J* = 6.0, 7.6 Hz), 2.29 (s, 3H), 2.77 (t, 2H, *J* = 7.6 Hz), 3.45 (t, 2H, *J* = 6.0 Hz), 3.71 (s, 3H), 3.81 (s, 3H), 4.49 (s, 2H), 7.08–7.13 (m, 3H), 7.25–7.32 (m, 1H), 7.32–7.39 (m, 4H), 8.06 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 20.9, 29.5, 30.9, 52.3, 52.5, 69.0, 72.7, 126.9, 127.4, 127.6, 128.3, 128.3, 129.7, 131.0, 132.0, 135.7, 138.5, 138.6, 142.6, 164.3, 166.8. Anal. Calcd for C₂₃H₂₆O₅: C, 72.23; H, 6.85. Found: C, 72.04; H, 6.58.

2-(3-(Benzyloxy)propyl)-5-methoxybenzaldehyde (s7).

Colorless oil (purified by silica gel column chromatography, Hexane/EtOAc = 9/1).

Yield: 520 mg (58%, synthesized from commercially available, 2-bromo-4-methoxylbenzaldehyde).

IR (neat) 3063, 3030, 3004, 2940, 2857, 2793, 2760, 1686, 1608, 1571, 1497, 1464, 1454, 1423, 1401, 1364, 1328, 1276, 1261, 1249, 1189, 1163, 1102, 1038, 937 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 1.91 (tt, 2H, *J* = 6.0, 7.6 Hz), 3.07 (t, 2H, *J* = 7.6 Hz), 3.48 (t, 2H, *J* = 6.0 Hz), 3.84 (s, 3H), 4.50 (s, 2H), 7.05 (d, 1H, *J* = 2.8, 8.4 Hz), 7.18 (d, 1H, *J* = 8.4 Hz), 7.26–7.32 (m, 1H), 7.33–7.38 (m, 5H), 10.29 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 27.7, 32.3, 55.4, 68.9, 72.9, 113.4, 121.0, 127.6, 127.7, 128.4, 132.3, 134.4, 137.3, 138.4, 158.1, 191.7.

Anal. Calcd for C₁₈H₂₀O₃: C, 76.03; H, 7.09. Found: C, 75.84; H, 7.26.

Dimethyl 2-(2-(3-(benzyloxy)propyl)-5-methoxybenzylidene)malonate (**3c**). Colorless oil (purified by silica gel column chromatography, Hexane/EtOAc = 9/1). Yield: 395 mg (78%, synthesized from **s7**). IR (neat) 3062, 3029, 3003, 2951, 2858, 2794, 1733, 1625, 1607, 1572, 1495, 1454, 1436, 1365, 1290, 1268, 1237, 1203, 1166, 1102, 1071, 1039, 989 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 1.85 (tt, 2H, *J* = 6.0, 7.6 Hz), 2.74 (t, 2H, *J* = 7.6 Hz), 3.45 (t, 2H, *J* = 6.0 Hz), 3.73 (s, 3H), 3.75 (s, 3H), 3.81 (s, 3H), 4.49 (s, 2H), 6.83–6.89 (m, 2H), 7.11 (d, 1H, *J* = 8.0 Hz), 7.25–7.32 (m, 1H), 7.32–7.37 (m, 4H), 8.03 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 29.1, 31.1, 52.5, 52.6, 55.2, 68.9, 72.8, 112.5, 116.4, 127.3, 127.5, 127.6, 128.3, 130.8, 132.9, 133.8, 138.5, 142.3, 157.7, 164.2, 166.7. Anal. Calcd for C₂₃H₂₆O₆: C, 69.33; H, 6.58. Found: C, 69.26; H, 6.72.

2-(3-(Benzyloxy)propyl)-5-fluorobenzaldehyde (s8).

Colorless oil (purified by silica gel column chromatography, Hexane/EtOAc = 9/1).

Yield: 487 mg (36%, synthesized from commercially available, 2-bromo-4-fluorobenzaldehyde).

IR (neat) 3087, 3064, 3032, 2940, 2859, 2793, 1690, 1609, 1583, 1494, 1454, 1420, 1364, 1310, 1266, 1240, 1206, 1177, 1148, 1103, 1028, 968 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 1.92 (tt, 2H, *J* = 6.0, 7.6 Hz), 3.11 (t, 2H, *J* = 7.6 Hz), 3.48 (t, 2H, *J* = 6.0 Hz), 4.50 (s, 2H), 7.15–7.25 (m, 2H), 7.26–7.40 (m, 5H), 7.86 (dd, 1H, *J* = 2.8, 9.2 Hz), 10.26 (d, 1H, J = 1.6 Hz).

¹³C NMR (100 MHz, CDCl₃) δ 28.0, 32.1, 68.8, 73.0, 116.5 (d, $J_{C-F} = 22.0$ Hz), 120.9 (d, $J_{C-F} = 21.0$ Hz), 127.6, 127.7, 128.4, 132.9 (d, $J_{C-F} = 6.7$ Hz), 135.1 (d, $J_{C-F} = 5.7$ Hz), 138.3, 140.6 (d, $J_{C-F} = 3.8$ Hz), 161.3 (d, $J_{C-F} = 246.0$ Hz), 190.8.

¹⁹F NMR (283 MHz, CDCl₃) δ 46.3 (dd, 1F, *J* = 6.8, 13.9 Hz).

Anal. Calcd for C₁₇H₁₇FO₂: C, 74.98; H, 6.29. Found: C, 75.24; H, 6.14.

Dimethyl 2-(2-(3-(benzyloxy)propyl)-5-methylbenzylidene)malonate (**3d**). Colorless oil (purified by silica gel column chromatography, Hexane/EtOAc = 9/1). Yield: 366 mg (83%, synthesized from **s8**). IR (neat) 2952, 2856, 1733, 1630, 1609, 1583, 1489, 1454, 1437, 1365, 1268, 1229, 1179, 1160, 1101, 1070, 1028, 994, 972 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 1.86 (tt, 2H, *J* = 6.0, 7.6 Hz), 2.77 (t, 2H, *J* = 7.6 Hz), 3.45 (t, 2H, *J* = 6.0 Hz), 3.74 (s, 3H), 3.82 (s, 3H), 4.49 (s, 2H), 6.96–7.04 (m, 2H), 7.17 (dd, 1H, *J* = 5.6, 8.0 Hz), 7.25–7.32 (m, 1H), 7.33–7.39 (m, 4H), 7.98 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 29.2, 30.8, 52.6, 114.5 (d, *J*_{*C-F*} = 22.9 Hz), 116.9 (d, *J*_{*C-F*} = 20.9 Hz), 127.5, 127.6, 128.3, 131.2 (d, *J*_{*C-F*} = 7.6 Hz), 133.7 (d, *J*_{*C-F*} = 8.5 Hz), 137.3 (d, *J*_{*C-F*} = 3.8 Hz), 138.4, 141.0, 160.9 (d, *J*_{*C-F*} = 244.1 Hz), 164.0, 166.2. ¹⁹F NMR (283 MHz, CDCl₃) δ 45.5 (dd, 1F, *J* = 9.3, 13.6 Hz). Anal. Calcd for C₂₂H₂₃FO₅: C, 68.38; H, 6.00. Found: C, 68.26; H, 5.79.

2-(3-(Benzyloxy)propyl)-4-methylbenzaldehyde (**s9**).

Colorless oil (purified by silica gel column chromatography, Hexane/EtOAc = 15/1).

Yield: 745 mg (65%, synthesized from commercially available, 2-bromo-5-methylbenzaldehyde).

IR (neat) 3063, 3030, 2922, 2857, 2793, 2732, 1736, 1694, 1607, 1569, 1496, 1478, 1454, 1399, 1364, 1307, 1292, 1276, 1234, 1211, 1200, 1154, 1103, 1073, 1028 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 1.93 (tt, 2H, *J* = 6.0, 7.6 Hz), 2.38 (s, 3H), 3.10 (t, 2H, *J* = 7.6 Hz), 3.51 (t, 2H, *J* = 6.0 Hz), 4.51 (s, 2H), 7.08 (s, 1H), 7.17 (d, 1H, *J* = 8.0 Hz), 7.24–7.33 (m, 1H), 7.33–7.40 (m, 4H), 7.72 (d, 1H, *J* = 8.0 Hz), 10.21 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 21.7, 29.0, 31.8, 69.3, 72.9, 127.3, 127.6, 127.7, 128.4, 131.5, 131.8, 132.2, 138.5, 144.7, 144.8, 192.1.

Anal. Calcd for C₁₈H₂₀O₂: C, 80.56; H, 7.51. Found: C, 80.46; H, 7.27.

Dimethyl 2-(2-(3-(benzyloxy)propyl)-4-methylbenzylidene)malonate (**3e**).

Colorless oil (purified by silica gel column chromatography, Hexane/EtOAc = 9/1).

Yield: 534 mg (88%, synthesized from **s9**).

IR (neat) 3030, 3002, 2951, 2857, 1735, 1626, 1610, 1496, 1454, 1436, 1365, 1264, 1245, 1216, 1182, 1113, 1102, 1069, 1028, 987 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 1.88 (tt, 2H, *J* = 6.0, 7.6 Hz), 2.31 (s, 3H), 2.78 (t, 2H, *J* = 7.6 Hz), 3.47 (t, 2H, *J* = 6.0 Hz), 3.72 (s, 3H), 3.81 (s, 3H), 4.50 (s, 2H), 6.98 (d, 1H, *J* = 8.0 Hz), 7.03 (s, 1H), 7.20 (d, 1H, *J* = 8.0 Hz), 7.25–7.32 (m, 1H), 7.32–7.39 (m, 4H), 8.05 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 21.4, 29.9, 31.0, 52.4, 52.5, 69.0, 72.8, 126.2, 127.1, 127.5, 127.6, 127.9, 128.3, 129.3, 130.6, 138.5, 140.6, 141.8, 142.3, 164.5, 167.1. Anal. Calcd for C₂₃H₂₆O₅: C, 72.23; H, 6.85. Found: C, 72.45; H, 6.94.

2-(3-(Benzyloxy)propyl)-4-methoxybenzaldehyde (s10).

Colorless oil (purified by silica gel column chromatography, Hexane/EtOAc =9/1).

Yield: 439 mg (40%, synthesized from commercially available, 2-bromo-5-methoxylbenzaldehyde).

IR (neat) 3087, 3063, 3029, 2940, 2856, 2793, 2733, 1687, 1599, 1566, 1496, 1454, 1430, 1364, 1327, 1289, 1251, 1207, 1167, 1105, 1076, 1028 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 1.94 (tt, 2H, *J* = 6.0, 7.6 Hz), 3.12 (t, 2H, *J* = 7.6 Hz), 3.53 (t, 2H, *J* = 6.0 Hz), 3.85(s, 3H), 4.52 (s, 2H), 6.77 (d, 1H, *J* = 2.0 Hz), 6.86 (dd, 1H, *J* = 2.0, 8.4 Hz), 7.24–7.33 (m, 1H), 7.33–7.40 (m, 4H), 7.79 (d, 1H, *J* = 8.4 Hz), 10.12 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 29.3, 31.6, 55.4, 69.4, 72.9, 111.8, 116.2, 127.4, 127.6, 127.7, 128.4, 134.7, 138.5, 147.5, 163.7, 190.8.

Anal. Calcd for C₁₈H₂₀O₃: C, 76.03; H, 7.09. Found: C, 76.25; H, 6.79.

Dimethyl 2-(2-(3-(benzyloxy)propyl)-4-methoxybenzylidene)malonate (**3f**). Colorless oil (purified by silica gel column chromatography, Hexane/EtOAc = 6/1). Yield: 296 mg (82%, synthesized from **s10**). IR (neat) 33030, 3003, 2951, 2856, 1734, 1602, 1568, 1496, 1454, 1436, 1366, 1310, 1253, 1218, 1181, 1109, 1069, 1029, 987 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 1.89 (tt, 2H, *J* = 6.0, 7.6 Hz), 2.81 (t, 2H, *J* = 7.6 Hz), 3.48 (t, 2H, *J* = 6.0 Hz), 3.75 (s, 3H), 3.79 (s, 3H), 3.80 (s, 3H), 4.50 (s, 2H), 6.71 (dd, 1H, *J* = 2.4, 8.0 Hz), 6.77 (d, 1H, *J* = 2.4 Hz), 7.25–7.39 (m, 6H), 8.02 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 30.2, 30.9, 52.5, 52.5, 55.2, 69.0, 72.8, 111.8, 115.2, 124.5, 124.9, 127.5, 127.6, 128.3, 129.6, 138.4, 141.6, 144.2, 161.2, 164.6, 167.4. Anal. Calcd for C₂₃H₂₆O₆: C, 69.33; H, 6.58. Found: C, 69.51; H, 6.34.

2-(3-(Benzyloxy)propyl)-4-fluorobenzaldehyde (s11).

Colorless oil (purified by silica gel column chromatography, Hexane/EtOAc = 9/1).

Yield: 697 mg (52%, synthesized from commercially available, 2-bromo-5-fluorobenzaldehyde).

IR (neat) 3087, 3064, 3031, 2924, 2860, 2795, 2761, 1692, 1605, 1582, 1494, 1454, 1432, 1399, 1364, 1271, 1242, 1199, 1157, 1104, 1028, 961 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 1.94 (tt, 2H, *J* = 6.0, 7.6 Hz), 3.14 (t, 2H, *J* = 7.6 Hz), 3.51 (t, 2H, *J* = 6.0 Hz), 4.51 (s, 2H), 6.97 (dd, 1H, *J* = 2.4, 9.6 Hz), 7.04 (ddd, 1H, *J* = 2.4, 8.4, 8.4 Hz), 7.27–7.40 (m, 5H), 7.86 (dd, 1H, *J* = 6.0, 8.4 Hz), 10.21 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 28.7, 31.4, 68.9, 73.0, 113.8 (d, J_{C-F} = 21.0 Hz), 117.8 (d, J_{C-F} = 20.9 Hz), 127.6, 127.7, 128.4, 130.4 (d, J_{C-F} = 2.8 Hz), 134.5 (d, J_{C-F} = 9.5 Hz), 138.3, 148.3 (d, J_{C-F} = 8.6 Hz), 165.7 (d, J_{C-F} = 255.5 Hz), 190.7.

¹⁹F NMR (283 MHz, CDCl₃) δ 58.0 (dd, 1F, *J* = 7.9, 14.9 Hz).

Anal. Calcd for C₁₇H₁₇FO₂: C, 74.98; H, 6.29. Found: C, 74.74; H, 6.45.

Dimethyl 2-(2-(3-(benzyloxy)propyl)-4-fluorobenzylidene)malonate (**3g**). Colorless oil (purified by silica gel column chromatography, Hexane/EtOAc = 6/1). Yield: 320 mg (68%, synthesized from **s11**). IR (neat) 3087, 3064, 3031, 3004, 2952, 2858, 1735, 1629, 1605, 1583, 1492, 1454, 1437, 1365, 1247, 1221, 1182, 1101, 1070, 1028, 986 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 1.89 (tt, 2H, *J* = 6.0, 7.6 Hz), 2.80 (t, 2H, *J* = 7.6 Hz), 3.46 (t, 2H, *J* = 6.0 Hz), 3.71 (s, 3H), 3.82 (s, 3H), 4.50 (s, 2H), 6.87 (ddd, 1H, *J* = 2.0,

8.4, 8.4 Hz), 7.17 (dd, 1H, J = 2.8, 9.6 Hz), 7.25–7.32 (m, 2H), 7.33–7.39 (m, 4H), 7.99 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 30.0, 30.5, 52.5, 52.6, 68.7, 72.8, 113.4 (d, $J_{C-F} = 21.0$

Hz), 116.6 (d, $J_{C-F} = 21.0$ Hz), 127.3, 127.6, 127.6, 128.4, 129.9 (d, $J_{C-F} = 8.5$ Hz), 138.3, 141.3, 144.6 (d, $J_{C-F} = 7.7$ Hz), 163.6 (d, $J_{C-F} = 248.9$ Hz), 164.2, 166.6.

¹⁹F NMR (283 MHz, CDCl₃) δ 51.5 (dd, 1F, *J* = 7.6, 14.7 Hz).

Anal. Calcd for C₂₂H₂₃FO₅: C, 68.38; H, 6.00. Found: C, 68.49; H, 5.93.

2-(3-(Benzyloxy)propyl)-6-methylbenzaldehyde (s12).

Colorless oil (purified by silica gel column chromatography, Hexane/EtOAc = 30/1). Yield: 364 mg (26%, synthesized from 2-iodo-3-methylbenzaldehyde²).

IR (neat) 3063, 3030, 2024, 2858, 2791, 1690, 1592, 1577, 1496, 1466, 1454, 1411, 1380, 1364, 1283, 1255, 1236, 1191, 1169, 1104, 1028, 824 cm⁻¹.

¹H NMR (500 MHz, CDCl₃) δ 1.92 (tt, 2H, *J* = 6.0, 7.6 Hz), 2.60 (s, 3H), 3.05 (t, 2H, *J* = 7.6 Hz), 3.51 (t, 2H, *J* = 6.0 Hz), 4.51 (s, 2H), 7.10 (d, 2H, *J* = 8.0 Hz), 7.24–7.41 (m, 6H), 10.60 (s, 1H).

¹³C NMR (125 MHz, CDCl₃) δ 20.8, 29.8, 32.1, 69.3, 72.9, 127.6, 127.7, 128.4, 129.1, 129.9, 132.2, 132.9, 138.4, 141.1, 145.3, 193.5.

Anal. Calcd for C₁₈H₂₀O₂: C, 80.56; H, 7.51. Found: C, 80.77; H, 7.45.

Dimethyl 2-(2-(3-(benzyloxy)propyl)-6-methylbenzylidene)malonate (**3h**). Colorless oil (purified by silica gel column chromatography, Hexane/EtOAc = 12/1). Yield: 276 mg (89%, synthesized from **s12**). IR (neat) 3063, 3030, 2924, 2858, 2791, 1690, 1592, 1577, 1496, 1466, 1454, 1411, 1380, 1364, 1283, 1255, 1236, 1191, 1169, 1104, 1028 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 1.86 (tt, 2H, *J* = 6.4, 7.6 Hz), 2.20 (s, 3H), 2.63 (t, 2H, *J* = 7.6 Hz), 3.46 (t, 2H, *J* = 6.4 Hz), 3.53 (s, 3H), 3.85 (s, 3H), 4.49 (s, 2H), 7.01–7.07 (m, 2H), 7.14 (dd, 1H, *J* = 8.0, 8.0 Hz), 7.25–7.32 (m, 1H), 7.32–7.38 (m, 4H), 7.97 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 20.2, 30.0, 52.1, 52.6, 69.5, 72.7, 126.3, 127.5, 127.6, 128.2, 128.3, 130.4, 132.8, 135.1, 138.5, 139.0, 145.8, 163.9, 165.3. Anal. Calcd for C₂₃H₂₆O₅: C, 72.23; H, 6.85. Found: C, 72.09; H, 6.73.

3-(3-(Benzyloxy)propyl)-2-naphthaldehyde (s13).

Colorless oil (purified by silica gel column chromatography, Hexane/EtOAc = 15/1). Yield: 462 mg (34%, synthesized from 3-iodo-2-naphthaldehyde³).

IR (neat) 3058, 3030, 2921, 2855, 2795, 2750, 2721, 1699, 1695, 1652, 1627, 1593, 1575, 1496, 1463, 1454, 1408, 1362, 1330, 1308, 1276, 1256, 1231, 1205, 1175, 1157, 1148, 1101, 1028, 1018, 957 cm⁻¹.

¹H NMR (500 MHz, CDCl₃) δ 2.00 (tt, 2H, *J* = 6.0, 7.6 Hz), 3.28 (t, 2H, *J* = 7.6 Hz), 3.56 (t, 2H, *J* = 6.0 Hz), 4.53 (s, 2H), 7.26–7.42 (m, 5H), 7.52 (d, 1H, *J* = 8.0, 8.0 Hz), 7.61 (d, 1H, *J* = 8.0, 8.0 Hz), 7.67 (s, 1H), 7.79 (d, 1H, *J* = 8.0 Hz), 7.95 (d, 1H, *J* = 8.0 Hz), 8.33 (s, 1H), 10.32 (s, 1H).

¹³C NMR (125 MHz, CDCl₃) δ 29.7, 31.4, 69.5, 72.9, 126.3, 127.3, 127.5, 127.7, 128.4, 129.1, 129.2, 129.5, 131.2, 132.5, 135.7, 136.8, 138.5, 139.1, 192.9.

Anal. Calcd for C₂₁H₂₀O₂: C, 82.86; H, 6.62. Found: C, 82.97; H, 6.47.

Dimethyl 2-((3-(3-(benzyloxy)propyl)naphthalen-2-yl)methylene)malonate (**3i**). Colorless oil (purified by silica gel column chromatography, Hexane/EtOAc = 6/1). Yield: 325 mg (84%, synthesized from **s13**). IR (neat) 3058, 3030, 3005, 2950, 2858, 1734, 1621, 1596, 1495, 1454, 1436, 1365, 1267, 1221, 1181, 1150, 1103, 1071, 1028, 984, 951 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 1.98 (tt, 2H, *J* = 6.4, 7.6 Hz), 2.95 (t, 2H, *J* = 7.6 Hz), 3.51 (t, 2H, *J* = 6.4 Hz), 3.66 (s, 3H), 3.85 (s, 3H), 4.51 (s, 2H), 7.25–7.38 (m, 5H), 7.43 (ddd, 1H, *J* = 1.2, 8.0, 8.0 Hz), 7.49 (ddd, 1H, *J* = 1.2, 8.0, 8.0 Hz), 7.64 (s, 1H), 7.74 (d, 1H, *J* = 8.0 Hz), 7.78 (d, 1H, *J* = 8.0 Hz), 7.82 (s, 1H), 8.17 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 30.2, 30.6, 52.5, 52.7, 69.1, 72.8, 125.9, 127.1, 127.2,

127.5, 127.6, 127.8, 127.8, 127.9, 128.1, 128.4, 131.3, 131.6, 134.0, 138.1, 138.5, 142.7, 164.2, 166.7.

Anal. Calcd for C₂₆H₂₆O₅: C, 74.62; H, 6.26. Found: C, 74.83; H, 6.06.

2-(3-(Allyloxy)propyl)benzaldehyde (s14).

Colorless oil (purified by silica gel column chromatography, Hexane/EtOAc = 15/1). Yield: 892 mg (46%, synthesized from **s1**).

IR (neat) 2921, 2858, 2733, 1696, 1600, 1574, 1486, 1453, 1431, 1420, 1403, 1345, 1289, 1207, 1193, 1104, 1070, 1017, 996 cm⁻¹.

¹H NMR (500 MHz, CDCl₃) δ 1.91 (tt, 2H, *J* = 6.0, 7.6 Hz), 3.13 (t, 2H, *J* = 7.6 Hz), 3.46 (t, 2H, *J* = 6.0 Hz), 3.97 (t, 1H, *J* = 7.0 Hz), 5.18 (dd, 1H, *J* = 2.0, 10.0 Hz), 5.29 (dd, 1H, *J* = 2.0, 17.0 Hz), 5.88–5.98 (m, 1H), 7.30 (d, 1H, *J* = 8.0 Hz), 7.38 (dd, 1H, *J* = 8.0, 8.0 Hz), 7.51 (ddd, 1H, *J* = 1.0, 8.0, 8.0 Hz), 7.84 (dd, 1H, *J* = 2.0, 8.0 Hz), 10.29 (s, 1H).

¹³C NMR (125 MHz, CDCl₃) δ 28.9, 31.8, 69.1, 71.8, 116.8, 126.5, 131.1, 131.7, 133.7, 134.8, 144.8, 192.4.

Anal. Calcd for C₁₃H₁₆O₂: C, 76.44; H, 7.90. Found: C, 76.26; H, 8.15.

Dimethyl 2-(2-(3-(allyloxy)propyl)benzylidene)malonate (3j).

Colorless oil (purified by silica gel column chromatography, Hexane/EtOAc = 9/1).

Yield: 733 mg (82%, synthesized from **s14**).

IR (neat) 3069, 3017, 2952, 2856, 1734, 1627, 1601, 1483, 1436, 1367, 1262, 1215, 1184, 1164, 1143, 1107, 1071, 1018, 989, 927 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 1.87 (tt, 2H, *J* = 6.0, 7.6 Hz), 2.79 (t, 2H, *J* = 7.6 Hz), 3.42 (t, 2H, *J* = 6.0 Hz), 3.70 (s, 3H), 3.86 (s, 3H), 3.97 (dd, 2H, *J* = 1.6, 6.0 Hz), 5.17 (dd, 1H, *J* = 1.6, 10.0 Hz), 5.28 (dd, 1H, *J* = 1.6, 17.2 Hz), 5.88–5.99 (m, 1H), 7.18 (dd, 1H, *J* = 8.0, 8.0 Hz), 7.22–7.36 (m, 3H), 8.08 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 29.9, 30.8, 52.4, 52.6, 68.9, 71.7, 116.7, 126.2, 127.3, 127.9, 129.7, 130.1, 132.3, 134.9, 141.6, 142.6, 164.3, 166.7.

Anal. Calcd for C₁₈H₂₂O₅: C, 67.91; H, 6.97. Found: C, 68.14; H, 6.76.

2-(3-Ethoxypropyl)benzaldehyde (s15).

Colorless oil (purified by silica gel column chromatography, Hexane/EtOAc = 9/1).

Yield: 543 mg (44%, synthesized from s1).

IR (neat) 2974, 2932, 2864, 1696, 1600, 1575, 1488, 1453, 1404, 1377, 1350, 1290, 1238, 1208, 1186, 1159, 1113, 1030, 956 cm⁻¹.

¹H NMR (500 MHz, CDCl₃) δ 1.21 (t, 3H, *J* = 6.8 Hz), 1.91 (tt, 2H, *J* = 6.0, 7.6 Hz), 3.13 (t, 2H, *J* = 7.6 Hz), 3.43(t, 2H, *J* = 6.0 Hz), 3.47 (q, 2H, *J* = 6.8 Hz), 7.31 (d, 1H, *J* = 8.0 Hz), 7.37 (dd, 1H, *J* = 8.0, 8.0 Hz), 7.51 (dd, 1H, *J* = 8.0, 8.0 Hz), 7.84 (d, 1H, *J* = 8.0 Hz), 10.30 (s, 1H).

¹³C NMR (125 MHz, CDCl₃) δ 15.2, 28.8, 31.8, 66.1, 66.3, 126.5, 131.1, 131.5, 133.7, 144.9, 192.4.

Anal. Calcd for C₁₂H₁₆O₂: C, 74.97; H, 8.39. Found: C, 74.78; H, 8.57.

Dimethyl 2-(2-(3-(benzyloxy)propyl)benzylidene)malonate (**3k**). Colorless oil (purified by silica gel column chromatography, Hexane/EtOAc = 6/1). Yield: 377 mg (92%, synthesized from **s15**). IR (neat) 2974, 2952, 2866, 1733, 1627, 1601, 1571, 1484, 1436, 1375, 1262, 1214, 1184, 1164, 1113, 1070, 987, 944 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 1.21 (t, 3H, *J* = 6.8 Hz), 1.86 (tt, 2H, *J* = 6.0, 7.6 Hz), 2.78 (t, 2H, *J* = 7.6 Hz), 3.39 (t, 2H, *J* = 6.0 Hz), 3.46 (q, 2H, *J* = 6.8 Hz), 3.70 (s, 3H), 3.88 (s, 3H), 7.17 (dd, 1H, *J* = 8.0, 8.0 Hz), 7.22–7.34 (m, 3H), 8.08 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 15.2, 29.8, 30.8, 52.4, 52.6, 66.0, 69.1, 126.2, 127.3, 127.8, 129.7, 130.1, 132.3, 141.6, 142.7, 164.3, 166.7. Anal. Calcd for C₁₇H₂₂O₅: C, 66.65; H, 7.24. Found: C, 66.48; H, 7.02.

Scheme S2. Preparation of starting materials 5. Preparation of 5a was shown as a representative example.

Synthesis of 2-(4-(benzyloxy)butyl)benzaldehyde (s20):

To a solution of **s16** (343 mg, 1.53 mmol) in EtOH (2.0 mL) and H_2O (1.0 mL) were successively added NaOH (444 mg, 11.1 mmol) and aqueous H_2O_2 (5 µL, 0.153 mmol). After the mixture was heated to reflux for 19 h, the reaction was quenched by addition of conc. HCl. The crude mixture was extracted with EtOAc (x4) and the combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated in vacuo to give crude **s17** (350 g) as orange solid. This crude material was used for the next reaction without further purification.

To a solution of **s17** in Et₂O (7.2 mL) was added LiAlH₄ (82.7 mg, 2.18 mmol) at 0 °C (portion wise). After being stirred for 3 h at refluxing temperature, the reaction was stopped by adding Na₂SO₄•10H₂O. After being stirred for another 0.5 h at room temperature, the crude material was filtered through Celite[®] pad and the resulting filtrate was concentrated in vacuo to give crude alcohol **s18** (321 mg) as yellow liquid. The crude material was used for the next reaction without further purification.

To a solution of s18 in DMF (3.5 mL) were successively added NaH (60 % oil, 116 mg, 2.90 mmol), and BnBr (0.30 mL, 2.52 mmol). After being stirred for 16 h at room temperature, the reaction was quenched by addition of Et_2NH (217 µl, 2.10 mmol) at 0 °C. The crude mixture was extracted with EtOAc (x3) and the combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane/EtOAc = 30/1) to give s19 (408 g) as colorless oil. At this moment, s19 could not be isolated as pure compound, so this material was used for next reaction without further purification.

To a solution of **s19** in THF (6.4 mL) was added *n*-BuLi (1.57 M in hexane, 1.10 mL, 1.73 mmol) at -78 °C. The reaction mixture was stirred for 10 min at -78 °C, to which DMF (0.20 mL, 2.58 mmol) was added. After being stirred for 1 h, the reaction was quenched by addition of saturated aqueous NH₄Cl at -78 °C. The crude mixture was extracted with EtOAc (x3) and the combined organic extracts were washed with brine, dried (Na₂SO₄) and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane/EtOAc = 15/1) to afford aldehyde **s20** (164 mg, 40% from **s16**) as colorless oil.

IR (neat) 3029, 2916, 2852, 1697, 1600, 1573, 1453, 1363, 1288, 1207, 1102, 753 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 1.68–1.77 (m, 4H), 3.05 (t, 2H, *J* = 7.2 Hz), 3.51 (t, 2H, J = 6.0 Hz), 4.50 (s, 2H), 7.24–7.40 (m, 7H), 7.49 (ddd, 1H, J = 1.2, 8.0, 8.0 Hz), 7.83 (dd, 1H, J = 1.2, 8.0 Hz), 10.27 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 28.8, 29.5, 32.2, 70.0, 72.9, 126.5, 127.5, 127.6, 128.3, 131.0, 131.7, 133.6, 133.7, 138.5, 145.3, 192.3. Anal. Calcd for C₁₈H₂₀O₂: C, 80.56; H, 7.51. Found: C, 80.81; H, 7.32.

Synthesis of dimethyl 2-(2-(4-(benzyloxy)butyl)benzylidene)malonate (5a):

To a solution of **s20** (164 mg, 0.611 mmol) in benzene (3.1 mL) were successively added dimethyl malonate (70 μ L, 0.611 mmol), piperidine (65 μ L, 0.611 mmol), and AcOH (35 μ L, 0.611 mmol) at room temperature. The reaction mixture was heated to reflux for 20 h. The crude mixture was concentrated in vacuo, and the residue was purified by column chromatography (silica gel, hexane/EtOAc = 9/1) to give **5a** (134 mg, 57%) as colorless oil.

IR (neat) 3029, 2950, 2859, 1733, 1626, 1600, 1483, 1436, 1365, 1263, 1215, 1102, 1072, 986 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 1.61–1.73 (m, 4H), 2.71 (t, 2H, *J* = 7.2 Hz), 3.48 (t, 2H, *J* = 6.0 Hz), 3.69 (s, 3H), 3.84 (s, 3H), 4.49 (s, 2H), 7.17 (dd, 1H, *J* = 7.6. 7.6 Hz), 7.21 (d, 1H, *J* = 7.6 Hz), 7.25–7.35 (m, 7H), 8.06 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 27.6, 29.3, 33.3, 52.4, 52.6, 70.0, 72.9, 126.2, 127.2, 127.5, 127.6, 127.9, 128.3, 129.7, 130.1, 132.1, 138.5, 142.0, 142.7, 164.3, 166.8. Anal. Calcd for C₂₃H₂₆O₅: C, 72.23; H, 6.85. Found: C, 72.44; H, 6.59.

2-(4-(Benzyloxy)butyl)-5-methylbenzaldehyde (s21).

Colorless oil (purified by silica gel column chromatography, Hexane/EtOAc = 10/1). Yield: 317 mg (25%, synthesized from commercially available, 2-bromo-4-methylbenzaldehyde). IR (neat) 3029, 2918, 2855, 1687, 1609, 1567, 1497, 1454, 1409, 1364, 1281, 1239, 1202, 1157, 1103, 1028, 942 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 1.64–1.72 (m, 4H), 2.38 (s, 3H), 3.00 (t, 2H, *J* = 7.6 Hz), 3.49 (t, 2H, *J* = 6.0 Hz), 4.49 (s, 2H), 7.15 (d, 1H, *J* = 8.0 Hz), 7.22–7.38 (m, 6H), 6.63 (s, 1H), 10.23 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 20.7, 28.9, 29.5, 31.8, 70.0, 72.9, 127.5, 127.6, 128.3, 131.0, 131.9, 133.4, 134.6, 136.1, 138.5, 142.4, 192.5.

Anal. Calcd for C₁₉H₂₂O₂: C, 80.82; H, 7.85. Found: C, 80.59; H, 7.94.

Dimethyl 2-(2-(4-(benzyloxy)butyl)-5-methylbenzylidene)malonate (5b).

Colorless oil (purified by silica gel column chromatography, Hexane/EtOAc = 6/1). Yield: 266 mg (76%, synthesized from **s21**).

IR (neat) 3029, 2949, 2859, 1735, 1627, 1566, 1495, 1454, 1436, 1365, 1270, 1227, 1163, 1103, 1071, 1028, 988 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 1.61–1.70 (m, 4H), 2.28 (s, 3H), 2.67 (t, 2H, *J* = 6.8 Hz), 3.47 (t, 2H, *J* = 5.6 Hz), 3.71 (s, 3H), 3.84 (s, 3H), 4.49 (s, 2H), 7.07–7.13 (m, 3H), 7.24–7.30 (m, 1H), 7.31–7.36 (m, 4H), 8.03 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 20.9, 27.7, 29.3, 32.8, 52.3, 52.6, 70.1, 72.8, 126.8, 127.4, 127.6, 128.3, 128.3, 129.6, 131.0, 131.9, 135.6, 138.5, 139.1, 142.7, 164.4, 166.8.

Anal. Calcd for C₂₄H₂₈O₅: C, 72.70; H, 7.12. Found: C, 72.61; H, 6.98.

2-(4-(Benzyloxy)butyl)-5-methoxybenzaldehyde (s22).

Colorless oil (purified by silica gel column chromatography, Hexane/EtOAc = 9/1).

Yield: 276 mg (36%, synthesized from commercially available, 2-bromo-4-methoxylbenzaldehyde).

IR (neat) 3030, 2937, 2858, 1686, 1607, 1571, 1497, 1454, 1400, 1364, 1327, 1264,

1190, 1163, 1103, 1038, 938 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 1.61–1.76 (m, 4H), 2.97 (t, 2H, *J* = 7.6 Hz), 3.49 (t, 2H, *J* = 6.0 Hz), 3.84 (s, 3H), 4.49 (s, 2H), 7.06 (d, 1H, *J* = 2.8, 8.4 Hz), 7.17 (d, 1H, *J* = 8.4 Hz), 7.26–7.31 (m, 1H), 7.31–7.39 (m, 4H), 10.27 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 29.4, 31.1, 55.5, 70.0, 72.9, 113.4, 121.1, 127.5, 127.6, 128.4, 132.2, 134.2, 137.9, 138.5, 158.1, 191.6.

Anal. Calcd for C₁₉H₂₂O₃: C, 76.48; H, 7.43. Found: C, 76.37; H, 7.67.

Dimethyl 2-(2-(4-(benzyloxy)butyl)-5-methoxybenzylidene)malonate (5c).

Colorless oil (purified by silica gel column chromatography, Hexane/EtOAc = 4/1). Yield: 258 mg (87%, synthesized from **s1**).

IR (neat) 3029, 3003, 2949, 2860, 1732, 1625, 1606, 1572, 1495, 1454, 1436, 1366, 1271, 1237, 1203, 1167, 1103, 1071, 1039, 989 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 1.57–1.70 (m, 4H), 2.64 (t, 2H, *J* = 7.2 Hz), 3.47 (t, 2H, *J* = 5.6 Hz), 3.73 (s, 3H), 3.74 (s, 3H), 3.83 (s, 3H), 4.48 (s, 2H), 6.83–6.89 (m, 2H), 7.11 (d, 1H, *J* = 8.4 Hz), 7.24–7.31 (m, 1H), 7.31–7.37 (m, 4H), 8.01 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 27.8, 29.2, 32.4, 52.5, 52.6, 55.2, 70.0, 72.8, 112.5, 116.3, 127.2, 127.4, 127.5, 128.3, 130.7, 132.7, 134.3, 138.5, 142.3, 157.6, 164.2, 166.7.

Anal. Calcd for C₂₄H₂₈O₆: C, 69.88; H, 6.84. Found: C, 70.04; H, 6.73.

2-(4-(Bbenzyloxy)butyl)-5-methoxybenzaldehyde (s23).

Colorless oil (purified by silica gel column chromatography, Hexane/EtOAc = 9/1).

Yield: 354 mg (23%, synthesized from commercially available, 2-bromo-5-fluorobenzaldehyde).

IR (neat) 3063, 3031, 2937, 2860, 1693, 1605, 1582, 1493, 1454, 1431, 1399, 1363, 1240, 1194, 1155, 1103, 1028, 965 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 1.65–1.80 (m, 4H), 3.04 (t, 2H, *J* = 7.2 Hz), 3.50 (t, 2H, *J* = 5.6 Hz), 4.49 (s, 2H), 6.95 (dd, 1H, *J* = 2.4, 9.6 Hz), 7.02 (ddd, 1H, *J* = 2.4, 8.0, 8.0 Hz), 7.26–7.30 (m, 1H), 7.31–7.38 (m, 4H), 7.83 (dd, 1H, *J* = 6.0, 8.0 Hz), 10.18 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 28.4, 29.4, 32.0, 69.8, 72.9, 113.7 (d, $J_{C-F} = 21.9$ Hz), 117.6 (d, $J_{C-F} = 21.0$ Hz), 127.5, 127.6, 128.3, 130.2 (d, $J_{C-F} = 2.9$ Hz), 134.5 (d, $J_{C-F} = 9.4$ Hz), 138.2, 148.7 (d, $J_{C-F} = 9.6$ Hz), 165.7 (d, $J_{C-F} = 254.6$ Hz), 190.5.

¹⁹F NMR (283 MHz, CDCl₃) δ 57.9 (dd, 1F, *J* = 9.1, 15.8 Hz).

Anal. Calcd for C₁₈H₁₉FO₂: C, 75.50; H, 6.69. Found: C, 75.72; H, 6.82.

Dimethyl 2-(2-(4-(benzyloxy)butyl)-4-fluorobenzylidene)malonate (5d).

Colorless oil (purified by silica gel column chromatography, Hexane/EtOAc = 6/1).

Yield: 168 mg (80%, synthesized from s23).

IR (neat) 3031, 2951, 2852, 1735, 1605, 1583, 1492, 1436, 1365, 1245, 1220, 1155, 1102, 1071, 986 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 1.61–1.73 (m, 4H), 2.69 (t, 2H, *J* = 7.2 Hz), 3.49 (t, 2H, *J* = 6.0 Hz), 3.71 (s, 3H), 3.84 (s, 3H), 4.49 (s, 2H), 6.87 (ddd, 1H, *J* = 2.8, 8.4, 8.4 Hz), 6.93 (dd, 1H, *J* = 2.8, 9.6 Hz), 7.25–7.36 (m, 4H), 7.97 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 27.2, 29.2, 33.2, 52.5 (m), 52.7 (m), 69.9, 72.9, 113.3 (d, $J_{C-F} = 21.9$ Hz), 116.5 (d, $J_{C-F} = 24.7$ Hz), 127.2, 127.5, 127.6, 128.2 (d, $J_{C-F} = 3.9$ Hz), 128.3, 129,8 (d, $J_{C-F} = 8.6$ Hz), 138.4, 141.3, 145.0 (d, $J_{C-F} = 7.7$ Hz), 163.6 (d, $J_{C-F} = 249.8$ Hz), 155.6, 164.2,

¹⁹F NMR (283 MHz, CDCl₃) δ 51.5 (dd, 1F, *J* = 9.1, 13.6 Hz).

Anal. Calcd for C₂₃H₂₅FO₅: C, 68.99; H, 6.29. Found: C, 69.23; H, 6.17.

3-(4-(Benzyloxy)butyl)-2-naphthaldehyde (s24).

Colorless oil (purified by silica gel column chromatography, Hexane/EtOAc = 9/1).

Yield: 240 mg (25%, synthesized from 3-iodo-2-naphthaldehyde³).

IR (neat) 3058, 2936, 2858, 1696, 1629, 1594, 1496, 1454, 1361, 1255, 1173, 1102, 889 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 1.69–1.82 (m, 4H), 3.19 (t, 2H, *J* = 7.2 Hz), 3.52 (t, 2H, *J* = 6.0 Hz), 4.50 (s, 2H), 7.26–7.30 (m, 1H), 7.31–7.37 (m, 4H), 7.50 (ddd, 1H, *J* = 1.2, 8.0, 8.0 Hz), 7.60 (ddd, 1H, *J* = 1.2, 8.0, 8.0 Hz), 7.66 (s, 1H), 7.80 (d, 1H, *J* = 8.0 Hz), 7.94 (d, 1H, *J* = 8.0 Hz), 8.31 (s, 1H), 11.32 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 28.3, 29.6, 32.9, 20.2, 72.9, 126.3, 127.3, 127.5, 127.6, 128.3, 129.1, 129.2, 129.4, 131.2, 12.5, 135.7, 136.6, 138.5, 139.6, 192.9.

Anal. Calcd for C₂₂H₂₂O₂: C, 82.99; H, 6.96. Found: C, 83.24; H, 7.14.

Dimethyl 2-((3-(4-(benzyloxy)butyl)naphthalen-2-yl)methylene)malonate (**5e**). Colorless oil (purified by silica gel column chromatography, Hexane/EtOAc = 6/1). Yield: 173 mg (92%, synthesized from **s24**).

IR (neat) 3058, 3030, 2949, 2861, 1732, 1621, 1596, 1496, 1454, 1436, 1363, 1266, 1220, 1181, 1150, 1103, 1071, 1028, 984, 951 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 1.64–1.82 (m, 4H), 32.85 (t, 2H, *J* = 7.2 Hz), 3.51 (t, 2H, *J* = 6.0 Hz), 3.66 (s, 3H), 3.87 (s, 3H), 4.50 (s, 2H), 7.26–7.37 (m, 4H), 7.43 (dd, 1H, *J* = 8.0, 8.0 Hz), 7.49 (dd, 1H, *J* = 8.0, 8.0 Hz), 7.64 (s, 1H), 7.76 (dd, 1H, *J* = 8.0, 8.0 Hz), 7.81 (s, 1H), 8.15 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 27.2, 29.3, 33.4, 52.4, 52.6, 70.0, 72.8, 125.8, 127.1, 127.1, 127.4, 127.5, 127.6, 127.6, 127.8, 128.1, 128.3, 131.1, 131.5, 134.0, 138.4, 138.5, 142.7, 164.2, 166.9.

Anal. Calcd for C₂₇H₂₈O₅: C, 74.89; H, 6.53. Found: C, 74.72; H, 6.78.

2-(4-Ethoxybutyl)benzaldehyde (s25).

Colorless oil (purified by silica gel column chromatography, Hexane/EtOAc = 9/1).

Yield: 319 mg (42%, synthesized from s1).

IR (neat) 2974, 2934, 2861, 1697, 1600, 1574, 1487, 1452, 1377, 1354, 1289, 1208, 1191, 1160, 1112 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 1.19 (t, 3H, *J* = 6.8 Hz), 1.62–1.75 (m, 4H), 3.06 (t, 2H, *J* = 7.2 Hz), 3.41–3.50 (m, 2H), 3.47 (q, 2H, *J* = 6.8 Hz), 3.70 (s, 3H), 3.86 (s, 3H), 7.28 (dd, 1H, *J* = 1.2, 7.6 Hz), 7.36 (dd, 1H, *J* = 7.6, 7.6 Hz), 7.50 (ddd, 1H, *J* = 1.2, 7.6, 7.6 Hz), 7.83 (dd, 1H, *J* = 1.2, 7.6 Hz), 10.28 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 15.2, 28.9, 29.5, 32.3, 66.1, 70.3, 126.5, 131.0, 131.6, 133.6, 133.8, 145.4, 192.4.

Anal. Calcd for C₁₃H₁₈O₂: C, 75.69; H, 8.80. Found: C, 75.46; H, 8.94.

Dimethyl 2-(2-(4-ethoxybutyl)benzylidene)malonate (5f).

Colorless oil (purified by silica gel column chromatography, Hexane/EtOAc = 6/1).

Yield: 283 mg (85%, synthesized from s25).

IR (neat) 2950, 2863, 2800, 1731, 1627, 1601, 1565, 1484, 1436, 1375, 1263, 1215, 1184, 1113, 1071, 987 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 1.19 (t, 3H, *J* = 6.8 Hz), 1.56–1.70 (m, 4H), 2.71 (t, 2H, *J* = 6.8 Hz), 3.37–3.48 (m, 2H), 3.46 (q, 2H, *J* = 6.8 Hz), 3.70 (s, 3H), 3.86 (s, 3H), 7.17 (dd, 1H, *J* = 7.6, 7.6 Hz), 7.23 (d, 1H, *J* = 7.6 Hz), 7.25–7.34 (m, 2H), 8.06 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 15.1, 27.5, 29.3, 33.3, 52.4, 52.6, 66.0, 70.3, 126.1, 127.1, 127.8, 129.6, 131.0, 132.1, 142.0, 142.6, 164.3, 166.7.

Anal. Calcd for C₁₈H₂₄O₅: C, 67.48; H, 7.55. Found: C, 67.19; H, 7.71.

2. Synthesis of spiro isochroman derivatives.

General Procedure of the formation of 7- or 8-membred ring adducts.

To a solution of benzylidene malonate **3** or **5** (0.10 mmol) in $ClCH_2CH_2Cl (1.0 mL)$ was added $Sc(OTf)_3$ (5 or 10 mol%), and the mixture was heated at reflux. After completion of the reaction, the reaction was stopped by adding saturated aqueous NaHCO₃. The crude products were extracted with EtOAc (x3) and the combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by preparative TLC to give 7- or 8-membred ring adducts **4** or **6**.

Dimethyl 7-(benzyloxy)-8,9-dihydro-5*H*-benzo[7]annulene-6,6(7*H*)-dicarboxylate (**4a**). Colorless oil (purified by preparative TLC, Hexane/EtOAc = 6/1).

Yield: 27.6 mg (75%).

IR (neat) 3063, 3027, 2951, 2857, 1739, 1496, 1455, 1435, 1348, 1329, 1306, 1273, 1246, 1222, 1208, 1185, 1172, 1159, 1101, 1065, 1029, 959 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 2.01–2.12 (m, 1H), 2.27–2.45 (m, 2H), 3.17–3.26 (m, 1H), 3.27 (d, 1H, J = 14.4 Hz), 3.48 (s, 3H), 3.64 (s, 3H), 3.73 (d, 1H, J = 14.4 Hz), 4.41 (d, 1H, J = 12.0 Hz), 4.39–4.46 (m, 1H), 4.72 (d, 1H, J = 12.0 Hz), 7.01–7.12 (m, 4H), 7.24–7.39 (m, 5H).

¹³C NMR (100 MHz, CDCl₃) δ 26.6, 27.6, 34.2, 51.9, 52.6, 70.6, 78.2, 125.9, 127.1, 127.4, 127.5, 128.2, 128.3, 130.6, 135.6, 138.2, 143.6, 169.1, 170.5.

Anal. Calcd for C₂₂H₂₄O₅: C, 71.72; H, 6.57. Found: C, 71.54; H, 6.67.

Dimethyl 7-(benzyloxy)-3-methyl-8,9-dihydro-5*H*-benzo[7]annulene-6,6(7*H*)-dicar boxylate (**4b**).

Colorless oil (purified by preparative TLC, Hexane/EtOAc = 9/1).

Yield: 27.7 mg (69%).

IR (neat) 3029, 3006, 2950, 2858, 1348, 1327, 1303, 1272, 1243, 1210, 1153, 1112, 1093, 1065, 1029, 968 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 1.97–2.10 (m, 1H), 2.25 (s, 3H), 2.22–2.43 (m, 2H), 3.12–3.27 (m, 2H), 3.49 (s, 3H), 3.63 (s, 3H), 3.61–3.75 (m, 1H), 4.40 (d, 1H, *J* = 12.0 Hz), 4.36–4.47 (m, 1H), 4.72 (d, 1H, *J* = 12.0 Hz), 6.87–6.99 (m, 3H), 7.23–7.40 (m, 5H).

¹³C NMR (100 MHz, CDCl₃) δ 20.8, 26.8, 27.1, 34.2, 51.8, 52.6, 60.4, 70.6, 78.3, 127.4, 127.5, 127.6, 128.1, 128.3, 131.4, 135.2, 135.4, 138.2, 140.5, 169.1, 170.6.

Anal. Calcd for C₂₃H₂₆O₅: C, 72.23; H, 6.85. Found: C, 72.46; H, 6.59.

Dimethyl 7-(benzyloxy)-3-methoxy-8,9-dihydro-5*H*-benzo[7]annulene-6,6(7*H*)-dicarbo xylate (4c).

Colorless crystal (purified by preparative TLC, Hexane/EtOAc = 9/1), which was subjected to the X-ray crystallographic analysis.

Yield: 31.0 mg (72%).

IR (neat) 3027, 3001, 2951, 2857, 2837, 1739, 1610, 1582, 1506, 1455, 1434, 1348, 1327, 1276, 1262, 1245, 1211, 1159, 1111, 1094, 1066, 1029, 965 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 2.01–2.12 (m, 1H), 2.26–2.38 (m, 2H), 3.15–3.28 (m, 2H), 3.50 (s, 3H), 3.63 (s, 3H), 3.61–3.78 (m, 1H), 3.75 (s, 3H), 4.41 (d, 1H, *J* = 12.0 Hz), 4.38–4.47 (m, 1H), 4.72 (d, 1H, *J* = 12.0 Hz), 6.59 (dd, 1H, *J* = 2.8, 8.4 Hz), 6.63 (d, 1H, *J* = 2.8 Hz), 6.98 (d, 1H, *J* = 8.4 Hz), 7.25–7.40 (m, 5H).

¹³C NMR (100 MHz, CDCl₃) δ 26.7, 27.8, 33.3, 51.9, 52.6, 55.1, 60.5, 70.7, 78.2, 110.7, 114.0, 127.4, 127.5, 127.6, 128.3, 131.6, 138.2, 144.9, 158.5, 169.2, 170.6. Anal. Calcd for C₂₃H₂₆O₆: C, 69.33; H, 6.58. Found: C, 69.56; H, 6.45.

Dimethyl 7-(benzyloxy)-3-fluoro-8,9-dihydro-5H-benzo[7]annulene-6,6(7H)-dicarbo xylate (4d).

Colorless oil (purified by preparative TLC, Hexane/EtOAc = 9/1).

Yield: 23.4 mg (65%).

IR (neat) 3064, 3031, 3005, 2952, 2859, 1739, 1612, 1593, 1499, 1455, 1435, 1348, 1327, 1307, 1271, 1256, 1244, 1212, 1065, 1029, 978 cm⁻¹.

¹H NMR (500 MHz, CDCl₃) δ 1.97–2.06 (m, 1H), 2.25–2.35 (m, 1H), 2.39 (dd, 1H, J = 6.5, 14.0 Hz), 3.17 (d, 1H, J = 14.0 Hz), 3.23 (d, 1H, J = 14.0 Hz), 3.53 (s, 3H), 3.64 (s, 3H), 3.71 (d, 1H, J = 14.0 Hz), 4.40 (d, 1H, J = 11.0 Hz), 4.39–4.46 (m, 1H), 4.71 (d, 1H, J = 11.0 Hz), 6.75–6.83 (m, 2H), 7.00 (dd, 1H, J = 6.0, 8.0 Hz), 7.25–7.38 (m, 5H). ¹³C NMR (125 MHz, CDCl₃) δ 26.6, 26.8, 34.1, 52.0, 52.7, 60.2, 70.7, 78.1, 113.4 (d, $J_{C-F} = 20.4$ Hz), 117.3 (d, $J_{C-F} = 21.4$ Hz), 127.4, 127.6, 128.3, 129.5 (d, $J_{C-F} = 6.6$ Hz), 137.8 (d, $J_{C-F} = 5.7$ Hz), 138.1, 139.3, 161.0 (d, $J_{C-F} = 242.0$ Hz), 168.8, 170.2. ¹⁹F NMR (283 MHz, CDCl₃) δ 43.4 (dd, 1F, J = 9.1, 13.6 Hz).

Anal. Calcd for C₂₂H₂₃FO₅: C, 68.38; H, 6.00. Found: C, 68.12; H, 6.25.

Dimethyl 7-(benzyloxy)-2-methyl-8,9-dihydro-5*H*-benzo[7]annulene-6,6(7*H*)-dicarbo xylate (4e).

Colorless oil (purified by preparative TLC, Hexane/EtOAc = 9/1).

Yield: 25.7 mg (68%).

IR (neat) 3029, 3006, 2951, 2858, 1739, 1506, 1497, 1455, 1435, 1347, 1329, 1305, 1273, 1253, 1240, 1220, 1207, 1176, 1156, 1112, 1093, 1065, 1029, 968 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 1.99–2.10 (m, 1H), 2.25 (s, 3H), 2.25–2.39 (m, 2H), 3.15–3.28 (m, 2H), 3.49 (s, 3H), 3.63 (s, 3H), 3.61–3.72 (m, 1H), 4.40 (d, 1H, *J* = 12.0 Hz), 4.38–4.46 (m, 1H), 4.72 (d, 1H, *J* = 12.0 Hz), 6.84–6.89 (m, 2H), 6.96 (d, 1H, *J* = 7.6 Hz), 7.25–7.38 (m, 5H).

¹³C NMR (100 MHz, CDCl₃) δ 21.0, 26.7, 27.5, 33.8, 51.9, 52.6, 60.4, 70.6, 78.3, 126.5, 127.4, 127.5, 128.3, 129.1, 130.5, 132.4, 136.6, 138.2, 143.4, 169.2, 170.6.

Anal. Calcd for $C_{23}H_{26}O_5$: C, 72.23; H, 6.85. Found: C, 72.27; H, 6.72.

Dimethyl 7-(benzyloxy)-2-methoxy-8,9-dihydro-5*H*-benzo[7]annulene-6,6(7*H*)-dicarbo xylate (**4f**).

Colorless oil (purified by preparative TLC, Hexane/EtOAc = 9/1).

Yield: 21.1 mg (53%).

IR (neat) 3001, 2951, 1738, 1609, 1580, 1506, 1454, 1436, 1331, 1310, 1280, 1263, 1243, 1219, 1207, 1185, 1173, 1156, 1114, 1093, 1064, 1044, 1029, 1013, 948 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 1.96–2.08 (m, 1H), 2.24–2.41 (m, 2H), 3.13 (d, 1H, *J* = 12.4 Hz), 3.21 (d, 1H, *J* = 14.0 Hz), 3.52 (s, 3H), 3.63 (s, 3H), 3.60–3.78 (m, 1H), 3.74 (s, 3H), 4.41 (d, 1H, *J* = 11.2 Hz), 4.36–4.48 (m, 1H), 4.72 (d, 1H, *J* = 11.2 Hz), 6.63 (dd, 1H, *J* = 2.4, 8.0 Hz), 6.67 (d, 1H, *J* = 2.4 Hz), 6.97 (d, 1H, *J* = 8.0 Hz), 7.25–7.38 (m, 5H).

¹³C NMR (100 MHz, CDCl₃) δ 26.6, 26.9, 34.4, 51.9, 52.6, 55.2, 60.4, 70.6, 78.2, 111.6, 116.7, 127.4, 127.5, 128.3, 129.0, 135.8, 136.9, 138.2, 157.7, 169.0, 170.5.

Anal. Calcd for C₂₃H₂₆O₆: C, 69.33; H, 6.58. Found: C, 69.15; H, 6.75.

Dimethyl 7-(benzyloxy)-2-fluoro-8,9-dihydro-5H-benzo[7]annulene-6,6(7H)-dicarbo xylate (**4g**).

Colorless oil (purified by preparative TLC, Hexane/EtOAc = 6/1).

Yield: 24.3 mg (64%).

IR (neat) 3064, 3031, 3005, 2952, 2861, 1739, 1610, 1594, 1501, 1455, 1436, 1348, 1330, 1308, 1273, 1242, 1216, 1206, 1164, 1147, 1094, 1063, 1029, 972 cm⁻¹.

¹H NMR (500 MHz, CDCl₃) δ 2.01–2.12 (m, 1H), 2.28–2.40 (m, 2H), 3.17–3.30 (m, 1H), 3.26 (d, 1H, J = 14.0 Hz), 3.49 (s, 3H), 3.64 (s, 3H), 3.71 (d, 1H, J = 14.0 Hz), 3.66 (d, 1H, J = 14.0 Hz), 4.39–4.48 (m, 1H), 4.40 (d, 1H, J = 12.0 Hz), 4.71 (d, 1H, J = 12.0 Hz), 6.72–6.83 (m, 2H), 7.03 (dd, 1H, J = 6.0, 8.0 Hz), 7.25–7.38 (m, 5H).

¹³C NMR (100 MHz, CDCl₃) δ 26.5, 27.6, 33.4, 52.0, 52.7, 60.2, 70.7, 78.1, 112.3 (d, $J_{C-F} = 21.0$ Hz), 115.1 (d, $J_{C-F} = 21.0$ Hz), 127.4, 127.6, 128.3, 131.3 (d, $J_{C-F} = 2.9$ Hz),

132.0 (d, $J_{C-F} = 7.7$ Hz), 138.1, 145.8 (d, $J_{C-F} = 7.7$ Hz), 161.7 (d, $J_{C-F} = 243.1$ Hz), 169.0, 170.3.

¹⁹F NMR (283 MHz, CDCl₃) δ 45.2 (dd, 1F, *J* = 9.1, 13.6 Hz).

Anal. Calcd for C₂₂H₂₃FO₅: C, 68.38; H, 6.00. Found: C, 68.12; H, 6.25.

Dimethyl 7-(benzyloxy)-4-methyl-8,9-dihydro-5*H*-benzo[7]annulene-6,6(7*H*)-dicarbo xylate (**4h**).

Colorless oil (purified by preparative TLC, Hexane/EtOAc = 9/1).

Yield: 23.3 mg (60%).

IR (neat) 3065, 3028, 2951, 2858, 1738, 1575, 1497, 1466, 1455, 1434, 1348, 1328, 1302, 1271, 1239, 1211, 1185, 1171, 1092, 1069, 1028, 972, 957 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 2.08–2.22 (m, 1H), 2.26–2.46 (m, 2H), 2.39 (s, 3H), 3.15–3.29 (m, 1H), 3.45–3.53 (m, 1H), 3.46 (s, 3H), 3.62–3.73 (m, 1H), 3.64 (s, 3H), 4.37–4.45 (m, 1H), 4.41 (d, 1H, J = 12.0 Hz), 4.72 (d, 1H, J = 12.0 Hz), 6.88–7.03 (m, 3H), 7.23–7.40 (m, 5H).

¹³C NMR (100 MHz, CDCl₃) δ 19.9, 26.5, 28.2, 51.6, 52.6, 60.0, 70.5, 78.3, 126.5, 126.6, 127.4, 127.5, 128.3, 128.5, 134.1, 137.0, 138.3, 143.9, 169.3, 170.7. Anal. Calcd for C₂₃H₂₆O₅: C, 72.23; H, 6.85. Found: C, 72.51; H, 6.58.

Dimethyl 8-(benzyloxy)-9,10-dihydro-6H-cyclohepta[b]naphthalene-7,7(8H)-dicarbo xylate (**4i**).

Colorless oil (purified by preparative TLC, Hexane/EtOAc = 9/1).

Yield: 26.4 mg (65%).

IR (neat) 3005, 2950, 2851, 1738, 1574, 1454, 1432, 1345, 1324, 1280, 1264, 1240, 1210, 1146, 1092, 1065, 1045, 1028, 1013, 953 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 2.08–2.18 (m, 1H), 2.38–2.49 (m, 1H), 2.55–2.66 (m, 1H), 3.32–3.52 (m, 2H), 3.45 (s, 3H), 3.66 (s, 3H), 3.83 (d, 1H, *J* = 13.6 Hz), 4.41–4.49

(m, 1H), 4.44 (d, 1H, J = 12.0 Hz), 4.75 (d, 1H, J = 12.0 Hz), 7.21–7.45 (m, 7H), 7.52 (s, 1H), 7.56 (s, 1H), 7.71 (d, 2H, J = 8.4 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 27.4, 27.8, 34.5, 52.0, 52.7, 61.2, 70.7, 78.0, 125.2, 125.6, 126.1, 127.0, 127.1, 127.4, 127.6, 128.3, 129.3, 132.2, 132.8, 134.4, 138.2, 141.6,

169.0, 170.5.

Anal. Calcd for C₂₆H₂₆O₅: C, 74.62; H, 6.26. Found: C, 74.39; H, 6.03.

Dimethyl 7-(allyloxy)-8,9-dihydro-5*H*-benzo[7]annulene-6,6(7*H*)-dicarboxylate (**4j**). Colorless oil (purified by preparative TLC, Hexane/EtOAc = 9/1).

Yield: 20.5 mg (62%).

IR (neat) 3065, 3020, 2952, 2856, 1739, 1574, 1495, 1456, 1434, 1410, 1328, 1306, 1273, 1246, 1223, 1208, 1185, 1172, 1130, 1103, 1086, 1065, 1015, 996, 961 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 1.95–2.06 (m, 1H), 2.18–2.28 (m, 1H), 2.34–2.43 (m, 1H), 3.18 (d, 1H, *J* = 14.4 Hz), 3.25 (d, 1H, *J* = 14.4 Hz), 3.49 (s, 3H), 3.67 (d, 1H, *J* = 14.4 Hz), 3.74 (s, 3H), 3.87 (tdd, 1H, *J* = 1.2, 5.6, 12.8 Hz), 3.87 (tdd, 1H, *J* = 1.2, 5.6, 12.8 Hz), 4.32 (brs, 1H), 5.15 (tdd, 1H, *J* = 1.2, 1.2, 10.8 Hz), 5.28 (tdd, 1H, *J* = 1.2, 1.2, 17.2 Hz), 5.79–5.93 (m, 1H), 7.02–7.14 (m, 4H).

¹³C NMR (100 MHz, CDCl₃) δ 26.8, 27.6, 34.2, 51.9, 52.6, 60.3, 69.8, 78.1, 116.5, 125.9, 127.1, 128.2, 130.6, 134.6, 135.6, 143.6, 169.1, 170.5.

Anal. Calcd for C₁₈H₂₂O₅: C, 67.91; H, 6.97. Found: C, 68.15; H, 7.25.

Dimethyl 7-ethoxy-8,9-dihydro-5*H*-benzo[7]annulene-6,6(7*H*)-dicarboxylate (4k).

Colorless oil (purified by preparative TLC, Hexane/EtOAc = 9/1).

Yield: 21.9 mg (70%).

IR (neat) 3021, 2975, 2952, 1741, 1495, 1455, 1436, 1346, 1328, 1305, 1272, 1247, 1222, 1208, 1185, 1115, 1091, 1067, 1047, 1025, 958 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 1.16 (t, 3H, J = 6.8 Hz), 1.92–2.05 (m, 1H), 2.17–2.28

(m, 1H), 2.32–2.42 (m, 1H), 3.12–3.27 (m, 2H), 3.29–3.38 (m, 1H), 3.49 (s, 3H), 3.60– 3.80 (m, 2H), 3.75 (s, 3H), 4.26 (brs, 1H), 7.02–7.13 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 15.5, 26.9, 27.6, 34.2, 51.9, 52.6, 60.4, 62.4, 78.1, 125.9, 127.0, 128.2, 130.6, 135.7, 143.8, 169.2, 170.7. Anal. Calcd for C₁₇H₂₂O₅: C, 66.65; H, 7.24. Found: C, 66.84; H, 7.52.

Dimethyl 7-(benzyloxy)-7,8,9,10-tetrahydrobenzo[8]annulene-6,6(5*H*)-dicarboxylate (**6a**).

Colorless oil (purified by preparative TLC, Hexane/EtOAc = 9/1).

Yield: 21.9 mg (56%).

IR (neat) 3062, 3027, 2950, 2850, 1739, 1566, 1495, 1452, 1235, 1204, 1164, 1116, 1076, 1060, 1028, 978, 921 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 1.40–1.65 (m, 2H), 1.90–2.15 (m, 2H), 2.61–2.72 (m, 1H), 2.91–3.03 (m, 1H), 3.27 (d, 1H, *J* = 14.0 Hz), 3.65 (s, 3H), 3.60–3.73 (m, 1H), 3.73 (s, 3H), 4.18 (d, 1H, *J* = 8.4 Hz), 4.37 (d, 1H, *J* = 12.0 Hz), 4.63 (d, 1H, *J* = 12.0 Hz), 7.01–7.13 (m, 3H), 7.17 (ddd, 1H, *J* = 1.2, 8.0, 8.0 Hz), 7.23–7.38 (m, 5H).

¹³C NMR (100 MHz, CDCl₃) δ 25.4, 27.4, 32.3, 33.8 52.1, 52.4, 64.3, 72.1, 78.9, 126.0, 127.3, 127.4, 127.5, 128.2, 129.2, 130.0, 135.4, 138.3, 141.5, 170.4, 170.5. Anal. Calcd for C₂₃H₂₆O₅: C, 72.23; H, 6.85. Found: C, 72.01; H, 7.11.

Dimethyl 7-(benzyloxy)-3-methyl-7,8,9,10-tetrahydrobenzo[8]annulene-6,6(5*H*)dicarboxylate (**6b**).

Colorless oil (purified by preparative TLC, Hexane/EtOAc = 9/1).

Yield: 25.8 mg (66%).

IR (neat) 3029, 3005, 2950, 2863, 1731, 1605, 1498, 1470, 1454, 1435, 1335, 1304, 1265, 1235, 1197, 1164, 1120, 1089, 1062, 1029, 983 cm⁻¹.

¹H NMR (500 MHz, CDCl₃) δ 1.40–1.65 (m, 2H), 1.87–2.21 (m, 2H), 2.26 (s, 3H),

2.59–2.69 (m, 1H), 2.86–2.98 (m, 1H), 3.22 (d, 1H, J = 14.0 Hz), 3.52–3.64 (m, 1H), 3.65 (s, 3H), 3.74 (s, 3H), 4.08–4.21 (m, 1H), 4.37 (d, 1H, J = 12.0 Hz), 4.62 (d, 1H, J = 12.0 Hz), 6.85 (brs, 1H), 6.94–7.03 (m, 2H), 7.23–7.36 (m, 5H). ¹³C NMR (100 MHz, CDCl₃) δ 20.9, 25.7, 27.6, 31.9, 33.9, 51.9, 52.4, 64.3, 72.0, 79.1, 127.3, 127.3, 127.3, 128.2, 128.2, 129.1, 130.7, 135.1, 135.3, 138.3, 169.3, 170.5.

Anal. Calcd for C₂₄H₂₈O₅: C, 72.70; H, 7.12. Found: C, 72.45; H, 7.18.

Dimethyl 7-(benzyloxy)-3-methoxy-7,8,9,10-tetrahydrobenzo[8]annulene-6,6(5H)-dicarboxylate (**6c**).

Colorless oil (purified by preparative TLC, Hexane/EtOAc = 9/1).

Yield: 28.9 mg (72%).

IR (neat) 3028, 3001, 2950, 2934, 2849, 1738, 1608, 1579, 1500, 1434, 1327, 1257, 1235, 1196, 1108, 1062, 914 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 1.37–1.70 (m, 2H), 1.87–2.22 (m, 2H), 2.58–2.66 (m, 1H), 2.80–2.95 (m, 1H), 3.22 (d, 1H, *J* = 14.0 Hz), 3.52–3.62 (m, 1H), 3.64 (s, 3H), 3.73 (s, 3H), 3.75 (s, 3H), 4.16 (brd, 1H, *J* = 6.4 Hz), 4.37 (d, 1H, *J* = 12.0 Hz), 4.62 (d, 1H, *J* = 12.0 Hz), 6.62 (s, 1H), 6.72 (dd, 1H, *J* = 2.4, 8.0 Hz), 6.98 (d, 1H, *J* = 8.0 Hz), 7.23–7.36 (m, 5H).

¹³C NMR (100 MHz, CDCl₃) δ 25.6, 27.6, 31.5, 34.0, 52.1, 52.4, 55.0, 64.2, 72.1, 79.0, 112.7, 115.6, 127.3, 127.3, 128.2, 130.0, 133.6, 136.5, 138.3, 157.7, 170.3, 170.5. Anal. Calcd for C₂₄H₂₈O₆: C, 69.88; H, 6.84. Found: C, 70.05; H, 6.59.

Dimethyl 7-(benzyloxy)-2-fluoro-7,8,9,10-tetrahydrobenzo[8]annulene-6,6(5*H*)dicarboxylate (**6d**).

Colorless oil (purified by preparative TLC, Hexane/EtOAc = 9/1).

Yield: 32.5 mg (82%).

IR (neat) 3063, 3030, 951, 2851, 1738, 1610, 1591, 1498, 1472, 1452, 1435, 1335, 1319,

1265, 1235, 1200, 1175, 1113, 1078, 1060, 1007, 984 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 1.42–1.64 (m, 2H), 1.91–2.18 (m, 2H), 2.58–2.69 (m, 1H), 2.89–3.02 (m, 1H), 3.25 (d, 1H, *J* = 14.4 Hz), 3.55 (d, 1H, *J* = 14.4 Hz), 3.64 (s, 3H), 3.72 (s, 3H), 4.22 (brd, 1H, *J* = 8.4 Hz), 4.37 (d, 1H, *J* = 11.6 Hz), 4.63 (d, 1H, *J* = 11.6 Hz), 6.75–6.83 (m, 2H), 7.01 (dd, 1H, *J* = 6.4, 7.2 Hz), 7.24–7.38 (m, 5H).

¹³C NMR (100 MHz, CDCl₃) δ 25.1, 27.0, 32.3, 32.9, 52.1, 52.4, 64.2, 72.2, 78.7, 112.7 (d, $J_{C-F} = 20.0$ Hz), 115.6 (d, $J_{C-F} = 21.0$ Hz), 127.3, 127.4, 128.2, 131.1, 131.4, 138.1, 143.8 (d, $J_{C-F} = 6.7$ Hz), 162.1 (d, $J_{C-F} = 244.1$ Hz), 170.2, 170.3.

¹⁹F NMR (283 MHz, CDCl₃) δ 45.7 (d, 1F, J = 4.5 Hz).

Anal. Calcd for C₂₃H₂₅FO₅: C, 68.99; H, 6.29. Found: C, 69.26; H, 6.46.

Dimethyl 8-(benzyloxy)-8,9,10,11-tetrahydrocycloocta[*b*]naphthalene-7,7(6*H*)dicarboxylate (**6e**).

Colorless oil (purified by preparative TLC, Hexane/EtOAc = 9/1).

Yield: 19.4 mg (45%).

IR (neat) 3057, 3028, 2950, 2851, 1738, 1598, 1498, 1454, 1434, 1335, 1288, 1232, 1200, 1147, 1113, 1082, 1063, 1029, 890 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 1.45–1.68 (m, 2H), 1.95–2.22 (m, 2H), 2.82–2.92 (m, 1H), 3.02–3.18 (m, 1H), 3.47 (d, 1H, *J* = 14.0 Hz), 3.65–3.77 (m, 1H), 3.67 (s, 3H), 3.75 (s, 3H), 4.22 (brd, 1H, *J* = 8.0 Hz), 4.37 (d, 1H, *J* = 11.2 Hz), 4.64 (d, 1H, *J* = 11.2 Hz, Hz,

¹³C NMR (100 MHz, CDCl₃) δ 25.4, 27.8, 32.3, 33.8, 52.1, 52.5, 64.6, 72.2, 78.8, 125.2, 125.6, 126.9, 127.2, 127.3, 127.3, 127.4, 128.2, 129.0, 132.2, 133.1, 134.3, 138.3, 139.9, 170.3, 170.5.

Anal. Calcd for C₂₇H₂₈O₅: C, 74.98; H, 6.53. Found: C, 75.14; H, 6.79.

Dimethyl 7-ethoxy-7,8,9,10-tetrahydrobenzo[8]annulene-6,6(5H)-dicarboxylate (6f).

Colorless oil (purified by preparative TLC, Hexane/EtOAc = 9/1).

Yield: 15.5 mg (46%).

IR (neat) 3021, 2972, 2951, 2927, 2877, 2852, 1739, 1435, 1264, 1235, 1200, 1172, 1113, 1086, 1065, 1027, 987 cm⁻¹.

¹H NMR (500 MHz, CDCl₃) δ 1.13 (t, 3H, *J* = 6.0 Hz), 1.41–1.56 (m, 2H), 1.87–2.03 (m, 2H), 2.64–2.72 (m, 1H), 2.89–3.00 (m, 1H), 3.25 (d, 1H, *J* = 14.0 Hz), 3.28–3.37 (m, 1H), 3.55 (brd, 1H, *J* = 14.0 Hz), 3.59–3.66 (m, 1H), 3.74 (s, 3H), 3.76 (s, 3H), 4.04 (brd, 1H, *J* = 7.0 Hz), 7.01–7.12 (m, 3H), 7.17 (ddd, 1H, *J* = 1.5, 7.5, 7.5 Hz).

¹³C NMR (125 MHz, CDCl₃) δ 15.2, 25.2, 27.2, 32.0, 33.8, 52.0, 52.4, 64.3, 65.6, 78.9, 125.9, 127.4, 129.1, 130.0, 135.5, 141.5, 170.4, 170.6.

Anal. Calcd for C₁₈H₂₄O₅: C, 67.48; H, 7.55. Found: C, 67.19; H, 7.44.

3. Transformation from the adduct.

Synthesis of dimethyl 7-hydroxy-8,9-dihydro-5H-benzo[7]annulene-6,6(7H)dicarboxylate (7):

To a solution of **4a** (31.9 mg, 0.0866 mmol) in MeOH (0.60 mL) were successively added AcOH (5 μ L, 0.87 mmol) and 10% Pd/C (18.1 mg) at room temperature. After being stirred under H₂ (1 atm) at 40 °C for 18 h, the reaction mixture was filtered through Celite[®] pad and concentrated in vacuo. The residue was purified by preparative TLC (hexane/EtOAc = 3/1) to give 7 (16.5 mg, 68%) as colorless oil.

IR (neat) 3518, 3022, 2952, 2849, 1738, 1575, 1495, 1455, 1435, 1410, 1309, 1273, 1246, 1223, 1048, 1033, 1102, 1079, 1048, 1033, 977 cm⁻¹.

¹H NMR (500 MHz, CDCl₃) δ 1.78–1.98 (m, 1H), 2.21–2.32 (m, 1H), 2.55–4.40 (m, 12H), 7.04–7.20 (m, 4H).

¹³C NMR (125 MHz, CDCl₃) δ 30.2, 32.8, 36.1, 51.9, 52.4, 61.4, 126.1, 127.3, 128.5, 131.3, 135.4, 142.2, 170.9.

Anal. Calcd for C₁₅H₁₈O₅: C, 64.74; H, 6.52. Found: C, 64.49; H, 6.35.

Synthesis of 7-(denzyloxy)-2',2'-dimethyl-5,7,8,9-tetrahydrospiro[benzo[7]annulene -6,5'-[1,3]dioxane] (8):

To a solution of **4a** (35.4 mg, 0.0496 mmol) in THF (1.0 mL) was added LiAlH₄ (6.8 mg, 0.179 mmol) at 0 °C. After being stirred for 3.0 h at 0 °C, the reaction was stopped by adding Na₂SO₄•10H₂O. After being stirred for another 1 h at room temperature, the crude material was filtered through Celite[®] pad, and the resulting filtrate was concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane/EtOAc = 2/1) to give diol (12.4 mg, 41%) as colorless oil.

To a solution of diol (12.4 mg, 0.0397 mmol) in acetone (1.0 mL) were successively added 2,2-dimethoxypropane (9.7 μ L, 0.0794 mmol) and TsOH•H₂O (2.4 mg, 0.012 mmol) at 0 °C. After being stirred for 1.5 h at 0 °C, the reaction was stopped by adding saturated aqueous NaHCO₃ at 0 °C. The crude products were extracted with EtOAc (x3) and the combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by preparative TLC (hexane/EtOAc = 2/1) to give **8** (10.9 mg, 78%) as colorless oil.

IR (neat) 3063, 3027, 2989, 2925, 2855, 1495, 1454, 1370, 1350, 1296, 1263, 1227, 1197, 1158, 1121, 1091, 1068, 1030, 938 cm⁻¹.

¹H NMR (500 MHz, CDCl₃) δ 1.15–1.73 (m, 2H), 1.39 (s, 3H), 1.44 (s, 3H), 2.00–2.65 (m, 2H), 2.96–3.90 (m, 6H), 3.94 (d, 1H, *J* = 11.5 Hz), 4.47 (d, 1H, *J* = 11.5 Hz), 4.72 (d, 1H, *J* = 11.5 Hz), 6.98–7.49 (m, 10H).

¹³C NMR (100 MHz, CDCl₃) δ 23.8, 25.9, 28.7, 29.7, 34.9, 38.6, 65.1, 68.0, 70.9, 97.9, 126.2, 126.5, 127.5, 128.3, 128.3, 130.5, 137.6, 138.7, 142.3.

Anal. Calcd for C₂₃H₂₈O₃: C, 78.38; H, 8.01. Found: C, 78.15; H, 7.79.

CO₂Me

Synthesis of methyl 8,9-dihydro-5H-benzo[7]annulene-6-carboxylate (9):

To a solution of **4a** (15.8 mg, 0.0429 mmol) in DMSO (1.39 mL) was added LiCl (20.5 mg, 0.484 mmol) at room temperature, and the mixture were heated at 120 °C for 16 h. After cooling to room temperature, the reaction was stopped by adding H_2O . The

crude products were extracted with EtOAc (x3) and the combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by preparative TLC (hexane/EtOAc = 6/1) to give **9** (6.3 mg, 73%) as colorless oil.

IR (neat) 3064, 3021, 2949, 2887, 1708, 1645, 1494, 1456, 1435, 1284, 1257, 1222, 1196, 1177, 1165, 1107, 1086, 1055, 1043, 1011, 967 cm⁻¹.

¹H NMR (500 MHz, CDCl₃) δ 2.48–2.63 (m, 2H), 3.27 (dd, 1H, *J* = 6.0, 6.0 Hz), 3.75 (s, 3H), 3.84 (s, 2H), 6.89 (brs, 1H), 7.08–7.26 (m, 4H).

¹³C NMR (125 MHz, CDCl₃) δ 29.8, 30.9, 31.3, 52.0, 126.3, 126.8, 128.0, 128.4, 129.0, 140.7, 141.1, 141.1, 168.4.

Anal. Calcd for C₁₃H₁₄O₂: C, 77.20; H, 6.98. Found: C, 77.34; H, 7.13.

References

- 1) Doušová, H.; Horák, R.; Ružicková, Z.; Šimunek, P. Beilstein J. Org. Chem. 2015, 11, 884.
- 2) Fan, Y. C.; Kwon, O. Org. Lett. 2015, 9, 2058.
- 3) K. Grudzien[´], K.; Z[·]ukowska, K.; Malin[´]ska, M.; Woz[´]niak, K.; Barbasiewicz, M. *Chem. Eur. J.* **2014**, *20*, 2819.
- 4) Romanov-Michailidis, F.; Pupier, M.; Guénée, L.; Alexakis, A. Chem. Commun.
 2014, 50, 13461
¹H NMR spectrum of **s5**.

¹³C NMR spectrum of **s5**.

¹H NMR spectrum of **3a**.

¹H NMR spectrum of **s6**.

¹³C NMR spectrum of **s6**.

¹H NMR spectrum of **3b**.

S43

¹³C NMR spectrum of **3b**.

¹H NMR spectrum of **s7**.

S45

¹³C NMR spectrum of **s7**.

¹H NMR spectrum of **3c**.

¹³C NMR spectrum of **3c**.

¹H NMR spectrum of **s8**.

¹³C NMR spectrum of **s8**.

¹⁹F NMR spectrum of **s8**.

S51

¹H NMR spectrum of **3d**.

S53

¹⁹F NMR spectrum of **3d**.

¹H NMR spectrum of **s9**.

¹³C NMR spectrum of **s9**.

...

¹H NMR spectrum of **3e**.

S57

¹³C NMR spectrum of **3e**.

¹H NMR spectrum of **s10**.

¹³C NMR spectrum of **s10**.

S61

¹H NMR spectrum of **s11**.

¹³C NMR spectrum of **s11**.

¹⁹F NMR spectrum of **s11**.

¹H NMR spectrum of **3g**.

¹⁹F NMR spectrum of **3g**.

¹H NMR spectrum of **s12**.

¹³C NMR spectrum of **s12**.

¹H NMR spectrum of **3h**.

S71

¹³C NMR spectrum of **3h**.

¹H NMR spectrum of **s13**.

.

S73

¹³C NMR spectrum of **s13**.

¹H NMR spectrum of **3i**.

¹³C NMR spectrum of **3i**.

¹H NMR spectrum of **s14**.

¹³C NMR spectrum of **s1**.

¹H NMR spectrum of **3**j.

¹H NMR spectrum of **s15**.

¹³C NMR spectrum of **s15**.

¹H NMR spectrum of **3k**.

S84

¹H NMR spectrum of **s20**.

S85

¹³C NMR spectrum of **s20**.

¹H NMR spectrum of **5a**.

¹³C NMR spectrum of **5a**.

¹H NMR spectrum of **s21**.

S89

¹³C NMR spectrum of **s21**.

¹H NMR spectrum of **5b**.

¹³C NMR spectrum of **5b**.

¹H NMR spectrum of **s22**.

¹³C NMR spectrum of **s22**.

¹H NMR spectrum of **5c**.

S95

¹H NMR spectrum of **s23**.

¹³C NMR spectrum of **s23**.

¹⁹F NMR spectrum of **s23**.

¹H NMR spectrum of **5d**.

¹⁹F NMR spectrum of **5d**.

SI 02

¹H NMR spectrum of **s24**.

¹³C NMR spectrum of **s24**.

¹H NMR spectrum of **5e**.

¹H NMR spectrum of **s25**.

¹³C NMR spectrum of **s25**.

¹H NMR spectrum of **5f**.

SI 09

¹H NMR spectrum of **4a**.

¹³C NMR spectrum of **4a**.

¹H NMR spectrum of **4b**.

¹³C NMR spectrum of **4b**.

¹H NMR spectrum of **4c**.

¹³C NMR spectrum of **4c**.

¹H NMR spectrum of **4d**.

¹H NMR spectrum of **4e**.

¹³C NMR spectrum of **4e**.

¹H NMR spectrum of **4f**.

,

¹H NMR spectrum of **4g**.

¹³C NMR spectrum of **4g**.

,

¹⁹F NMR spectrum of **4g**.

¹H NMR spectrum of **4h**.

¹³C NMR spectrum of **4h**.

¹H NMR spectrum of **4i**.

¹³C NMR spectrum of **4i**.

¹H NMR spectrum of **4**j.

¹H NMR spectrum of **4k**.

,

¹H NMR spectrum of **6a**.

¹³C NMR spectrum of **6a**.

¹H NMR spectrum of **6b**.

¹³C NMR spectrum of **6b**.

¹H NMR spectrum of **6c**.

¹H NMR spectrum of **6d**.

¹⁹F NMR spectrum of **6d**.

¹H NMR spectrum of **6e**.

¹³C NMR spectrum of **6e**.

¹H NMR spectrum of **6f**.

¹³C NMR spectrum of **7**.

¹³C NMR spectrum of **8**.

¹H NMR spectrum of **9**.

.

