Construction of Seven- and Eight-Membered Carbocycles by Lewis Acid Catalyzed C($\mathbf{s p}^{3}$)-H Bond Functionalization

Yuna Otawa, ${ }^{\dagger}$ and Keiji Mori ${ }^{\dagger}{ }^{*}$
${ }^{\dagger}$ Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.

k_mori@cc.tuat.ac.jp

Supporting Information

Table of contents S1
General experimental procedures S2
Procedure and spectral data S3
Scanned images of ${ }^{1} \mathrm{H}-,{ }^{13} \mathrm{C}$-NMR, and ${ }^{19} \mathrm{~F}-\mathrm{NMR}$ of new compounds S37

General experimental procedures

All reactions utilizing air- and moisture-sensitive reagents were performed in dried glassware under an atmosphere of dry nitrogen. Anhydrous ethereal solvents (THF, $\mathrm{Et}_{2} \mathrm{O}$) were purchased from Kanto Chemical Co., INC., and used directly. Dichloromethane and 1,2-dichloroethane were distilled over CaH_{2}. Benzene and toluene were distilled over CaH_{2}, and stored over 4A molecular sieves. N, N-Dimethylformamide (DMF) was distilled over CaH_{2}, and stored over 4A molecular sieves.

For thin-layer chromatography (TLC) analysis, Merck pre-coated plates (silica gel $60 \mathrm{~F}_{254}$, Art $5715,0.25 \mathrm{~mm}$) were used. Column chromatography and preparative TLC (PTLC) were performed on Silica Gel 60N (spherical, neutral), Kanto Chemical Ltd. and Wakogel B-5F, Wako Pure Chemical Industries, respectively.

Melting point (mp) determinations were performed by using a AS ONE ATM-01 instrument and are uncorrected. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, ${ }^{19} \mathrm{~F}$ NMR were measured on a AL-300 MR (JEOL Ltd., 300 MHz), ECX-400 (JEOL Ltd., 400 MHz), and ECA-500 (JEOL Ltd., 500 MHz) spectrometers. Chemical shifts are expressed in parts per million (ppm) downfield from internal standard (tetramethylsilane for ${ }^{1} \mathrm{H}$, and $\mathrm{C}_{6} \mathrm{~F}_{6}$ for ${ }^{19} \mathrm{~F}, 0.00 \mathrm{ppm}$), and coupling constants are reported as hertz (Hz). Splitting patterns are indicated as follows: br, broad; s, singlet; d, doublet; t , triplet; m , multiplet. Infrared (IR) spectra were recorded on a FTIR-8600PC instrument (Shimadzu Co.). Elemental analysis (EA) was carried out on Flash2000 instrument (Amco Inc.).

1. Preparation of starting materials.

Scheme S1. Preparation of starting materials 1. Preparation of 3a was shown as a representative example.

Synthesis of 3-(2-bromophenyl)propanoic acid (s2): ${ }^{1}$
To $\mathrm{HCO}_{2} \mathrm{H}(85 \%, 4.40 \mathrm{~mL})$ were successively added $\mathrm{Et}_{3} \mathrm{~N}(6.40 \mathrm{~mL}, 46.2 \mathrm{mmol})$, s1 $(2.0 \mathrm{~mL}, 17.1 \mathrm{mmol})$, and Meldrum's acid $(2.48 \mathrm{~g}, 17.2 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was heated to $95^{\circ} \mathrm{C}$ for 4 h . After the reaction mixture was cooled to $0^{\circ} \mathrm{C}$, ice-cooled water (22.0 mL) was added. After being stirred for 14 h , the white precipitates were collected with filtration (washed with $\mathrm{H}_{2} \mathrm{O}$) to afford $\mathbf{s} 2(3.18 \mathrm{~g}, 81 \%)$ as white solid. This material had enough purity, so directly used next reaction without further purification.

Synthesis of 2-(3-(benzyloxy)propyl)benzaldehyde (s5):
To a solution of $\mathbf{s} 2(1.62 \mathrm{~g}, 7.07 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(35.5 \mathrm{~mL})$ was added $\mathrm{LiAlH}_{4}(410 \mathrm{mg}$, 10.8 mmol) at $0^{\circ} \mathrm{C}$ (portion wise). After being stirred for 2 h at refluxing temperature,
the reaction was stopped by adding $\mathrm{Na}_{2} \mathrm{SO}_{4} \bullet 10 \mathrm{H}_{2} \mathrm{O}$. After being stirred for another 0.5 h at room temperature, the crude material was filtered through Celite ${ }^{\circledR}$ pad and the resulting filtrate was concentrated in vacuo to give crude alcohol s3 (1.56 g). The crude material was used for the next reaction without further purification.

To a solution of $\mathbf{~ s} 3$ in DMF (23.6 mL) were successively added NaH (60% oil, 478 mg , $12.0 \mathrm{mmol})$, and $\operatorname{BnBr}(1.30 \mathrm{~mL}, 10.9 \mathrm{mmol})$. After being stirred for 16 h at room temperature, the reaction was quenched by addition of $\mathrm{Et}_{2} \mathrm{NH}(0.36 \mathrm{ml}, 7.09 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The crude mixture was extracted with $\mathrm{EtOAc}(\mathrm{x} 3$) and the combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane $/ \mathrm{EtOAc}=30 / 1$) to give s4 (1.54 g) as colorless oil. At this moment, $\mathbf{s 4}$ could not be isolated as pure compound, so this material was used for next reaction without further purification.
To a solution of $\mathbf{s 4}$ in THF (25.2 mL) was added $n-\operatorname{BuLi}(1.57 \mathrm{M}$ in hexane, 4.18 mL , 6.56 mmol) at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 10 min at $-78{ }^{\circ} \mathrm{C}$, to which DMF ($0.78 \mathrm{~mL}, 10.1 \mathrm{mmol}$) was added. After being stirred for 2 h , the reaction was quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ at $-78{ }^{\circ} \mathrm{C}$. The crude mixture was extracted with EtOAc (x3) and the combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane/EtOAc $=15 / 1$) to afford aldehyde s5 $(953 \mathrm{mg}, 53 \%$ from s2) as colorless oil.

IR (neat) 3087, 3064, 3030, 2940, 2859, 2793, 2736, 1695, 1600, 1574, 1495, 1488, $1453,1405,1364,1290,1207,1193,1160,1102,1028,954,907 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.94(\mathrm{tt}, 2 \mathrm{H}, J=6.0,7.6 \mathrm{~Hz}$), 3.16 (t, $2 \mathrm{H}, J=7.6 \mathrm{~Hz}$), 3.51 (t, 2H, $J=6.0 \mathrm{~Hz}), 4.52$ (s, 2H), 7.24-7.32 (m, 2H), 7.33-7.42 (m, 5H), 7.49 (dd, $1 \mathrm{H}, J=8.0,8.0 \mathrm{~Hz}), 7.83(\mathrm{dd}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 10.29(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 29.0,31.8,69.2,72.9,126.5,127.6,127.7,128.4,131.1$, 131.8, 133.8, 138.4, 144.8, 192.5 .

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2}$: C, 80.28; $\mathrm{H}, 7.13$. Found: C, $80.43 ; \mathrm{H}, 6.89$.

Synthesis of 2-(2-(3-(benzyloxy)propyl)benzylidene)malonate (3a):

To a solution of $\mathbf{s 5}(430 \mathrm{mg}, 1.69 \mathrm{mmol})$ in benzene $(8.4 \mathrm{~mL})$ were successively added dimethyl malonate ($193 \mu \mathrm{~L}, 1.69 \mathrm{mmol}$), piperidine ($179 \mu \mathrm{~L}, 1.69 \mathrm{mmol}$), and AcOH $(193 \mu \mathrm{~L}, 3.38 \mathrm{mmol})$ at room temperature. The reaction mixture was heated to reflux for 17 h . The crude mixture was concentrated in vacuo, and the residue was purified by column chromatography (silica gel, hexane/EtOAc $=9 / 1$) to give 3a ($449 \mathrm{mg}, 72 \%$) as colorless oil.

IR (neat) $3063,3029,3005,2951,2858,1735,1627,1600,1495,1483,1454,1436$, $1365,1263,1215,1184,1105,1071,1028,986 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.89(\mathrm{tt}, 2 \mathrm{H}, J=6.0,7.6 \mathrm{~Hz}), 2.81(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz})$, $3.46(\mathrm{t}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 7.17(\mathrm{ddd}, 1 \mathrm{H}, J=1.2$, $8.0,8.0 \mathrm{~Hz}), 7.22(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.26-7.38(\mathrm{~m}, 7 \mathrm{H}), 8.08(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 30.0,30.8,52.4,52.6,69.0,72.8,126.2,127.3,127.5$, 127.6, 127.9, 128.3, 129.7, 130.1, 132.2, 138.4, 141.6, 142.6, 164.3, 166.7.

Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{5}$: C, 71.72; $\mathrm{H}, 6.57$. Found: C, $71.87 ; \mathrm{H}, 6.38$.

2-(3-(Benzyloxy)propyl)-5-methylbenzaldehyde (s6).
Colorless oil (purified by silica gel column chromatography, Hexane/EtOAc $=20 / 1$).
Yield: 743 mg (48%, synthesized from commercially available, 2-bromo-4-methylbenzaldehyde).

IR (neat) 3063, 3030, 2922, 2857, 2793, 2731, 1689, 1610, 1568, 1497, 1454, 1402, $1364,1280,1240,1203,1157,1103,1072,1028,941 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.92(\mathrm{tt}, 2 \mathrm{H}, J=6.0,7.6 \mathrm{~Hz}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 3.10(\mathrm{t}, 2 \mathrm{H}, J$ $=7.6 \mathrm{~Hz}), 3.50(\mathrm{t}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 7.16(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.24-7.41(\mathrm{~m}$, $6 \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H}), 10.26(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.8,28.5,31.9,69.2,72.9,127.5,127.7,128.4,131.1$, 132.0, 133.6, 134.6, 136.2, 138.4, 141.9, 192.6.

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{2}$: C, 80.56; $\mathrm{H}, 7.51$. Found: C, 80.59; $\mathrm{H}, 7.75$.

Dimethyl 2-(2-(3-(benzyloxy)propyl)-5-methylbenzylidene)malonate (3b).
Colorless oil (purified by silica gel column chromatography, Hexane/EtOAc $=6 / 1$).
Yield: 482 mg (84%, synthesized from s6).
IR (neat) $3029,2951,2858,1734,1627,1609,1495,1454,1436,1365,1267,1228$, $1183,1102,1071,1028,987,957,926 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.87(\mathrm{tt}, 2 \mathrm{H}, J=6.0,7.6 \mathrm{~Hz}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.77(\mathrm{t}, 2 \mathrm{H}, J$ $=7.6 \mathrm{~Hz}), 3.45(\mathrm{t}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 7.08-7.13(\mathrm{~m}$, $3 \mathrm{H}), 7.25-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.39(\mathrm{~m}, 4 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 20.9,29.5,30.9,52.3,52.5,69.0,72.7,126.9,127.4$, $127.6,128.3,128.3,129.7,131.0,132.0,135.7,138.5,138.6,142.6,164.3,166.8$.

Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{5}$: C, 72.23; H, 6.85. Found: C, 72.04; H, 6.58.

2-(3-(Benzyloxy)propyl)-5-methoxybenzaldehyde (s7).
Colorless oil (purified by silica gel column chromatography, Hexane/EtOAc =9/1).
Yield: 520 mg (58%, synthesized from commercially available, 2-bromo-4-methoxylbenzaldehyde).

IR (neat) $3063,3030,3004,2940,2857,2793,2760,1686,1608,1571,1497,1464$, $1454,1423,1401,1364,1328,1276,1261,1249,1189,1163,1102,1038,937 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.91(\mathrm{tt}, 2 \mathrm{H}, J=6.0,7.6 \mathrm{~Hz}), 3.07(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz})$, $3.48(\mathrm{t}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 7.05(\mathrm{~d}, 1 \mathrm{H}, J=2.8,8.4 \mathrm{~Hz}), 7.18(\mathrm{~d}$, $1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.26-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.38(\mathrm{~m}, 5 \mathrm{H}), 10.29(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 27.7,32.3,55.4,68.9,72.9,113.4,121.0,127.6,127.7$, $128.4,132.3,134.4,137.3,138.4,158.1,191.7$.

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3}$: C, 76.03; H, 7.09. Found: C, 75.84; H, 7.26.

Dimethyl 2-(2-(3-(benzyloxy)propyl)-5-methoxybenzylidene)malonate (3c).
Colorless oil (purified by silica gel column chromatography, Hexane/EtOAc = 9/1).
Yield: 395 mg (78%, synthesized from $\mathbf{~ s 7}$).
IR (neat) 3062, 3029, 3003, 2951, 2858, 2794, 1733, 1625, 1607, 1572, 1495, 1454, $1436,1365,1290,1268,1237,1203,1166,1102,1071,1039,989 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.85(\mathrm{tt}, 2 \mathrm{H}, J=6.0,7.6 \mathrm{~Hz}), 2.74(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz})$, $3.45(\mathrm{t}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.81$ (s, 3H), 4.49 (s, 2H), 6.83-6.89 $(\mathrm{m}, 2 \mathrm{H}), 7.11(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.25-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.37(\mathrm{~m}, 4 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 29.1,31.1,52.5,52.6,55.2,68.9,72.8,112.5,116.4$, $127.3,127.5,127.6,128.3,130.8,132.9,133.8,138.5,142.3,157.7,164.2,166.7$.
Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{6}$: C, 69.33; H, 6.58. Found: C, 69.26; H, 6.72.

2-(3-(Benzyloxy)propyl)-5-fluorobenzaldehyde (s8).
Colorless oil (purified by silica gel column chromatography, Hexane/EtOAc =9/1).
Yield: 487 mg (36%, synthesized from commercially available, 2-bromo-4-fluorobenzaldehyde).
IR (neat) 3087, 3064, 3032, 2940, 2859, 2793, 1690, 1609, 1583, 1494, 1454, 1420, 1364, 1310, 1266, 1240, 1206, 1177, 1148, 1103, 1028, $968 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.92(\mathrm{tt}, 2 \mathrm{H}, J=6.0,7.6 \mathrm{~Hz}$), $3.11(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz})$, 3.48 (t, 2H, J = 6.0 Hz), 4.50 (s, 2H), 7.15-7.25 (m, 2H), 7.26-7.40 (m, 5H), 7.86 (dd, $1 \mathrm{H}, J=2.8,9.2 \mathrm{~Hz}), 10.26(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.6 \mathrm{~Hz})$.
${ }^{13}{ }^{\text {C NMR }}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 28.0,32.1,68.8,73.0,116.5\left(\mathrm{~d}, J_{C-F}=22.0 \mathrm{~Hz}\right), 120.9(\mathrm{~d}$, $\left.J_{C-F}=21.0 \mathrm{~Hz}\right), 127.6,127.7,128.4,132.9\left(\mathrm{~d}, J_{C-F}=6.7 \mathrm{~Hz}\right), 135.1\left(\mathrm{~d}, J_{C-F}=5.7 \mathrm{~Hz}\right)$, $138.3,140.6\left(\mathrm{~d}, J_{C-F}=3.8 \mathrm{~Hz}\right), 161.3\left(\mathrm{~d}, J_{C-F}=246.0 \mathrm{~Hz}\right), 190.8$.
${ }^{19}$ F NMR ($283 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 46.3$ (dd, 1F, $J=6.8,13.9 \mathrm{~Hz}$).
Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{FO}_{2}$: C, 74.98; H, 6.29. Found: C, 75.24; H, 6.14.

Dimethyl 2-(2-(3-(benzyloxy)propyl)-5-methylbenzylidene)malonate (3d).
Colorless oil (purified by silica gel column chromatography, Hexane/EtOAc =9/1).
Yield: $366 \mathrm{mg}(83 \%$, synthesized from s8).
IR (neat) $2952,2856,1733,1630,1609,1583,1489,1454,1437,1365,1268,1229$, $1179,1160,1101,1070,1028,994,972 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.86(\mathrm{tt}, 2 \mathrm{H}, J=6.0,7.6 \mathrm{~Hz}), 2.77(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz})$, $3.45(\mathrm{t}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 6.96-7.04(\mathrm{~m}, 2 \mathrm{H}), 7.17$
$(\mathrm{dd}, 1 \mathrm{H}, J=5.6,8.0 \mathrm{~Hz}), 7.25-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.39(\mathrm{~m}, 4 \mathrm{H}), 7.98(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 29.2,30.8,52.6,114.5\left(\mathrm{~d}, J_{C-F}=22.9 \mathrm{~Hz}\right), 116.9\left(\mathrm{~d}, J_{C-F}\right.$ $=20.9 \mathrm{~Hz}), 127.5,127.6,128.3,131.2\left(\mathrm{~d}, J_{C-F}=7.6 \mathrm{~Hz}\right), 133.7\left(\mathrm{~d}, J_{C-F}=8.5 \mathrm{~Hz}\right), 137.3$
$\left(\mathrm{d}, J_{C-F}=3.8 \mathrm{~Hz}\right), 138.4,141.0,160.9\left(\mathrm{~d}, J_{C-F}=244.1 \mathrm{~Hz}\right), 164.0,166.2$.
${ }^{19} \mathrm{~F}$ NMR $\left(283 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 45.5(\mathrm{dd}, 1 \mathrm{~F}, J=9.3,13.6 \mathrm{~Hz})$.
Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{FO}_{5}$: C, 68.38; H, 6.00. Found: C, 68.26; H, 5.79.

2-(3-(Benzyloxy)propyl)-4-methylbenzaldehyde (s9).
Colorless oil (purified by silica gel column chromatography, Hexane/EtOAc $=15 / 1$).
Yield: 745 mg (65\%, synthesized from commercially available, 2-bromo-5-methylbenzaldehyde).

IR (neat) $3063,3030,2922,2857,2793,2732,1736,1694,1607,1569,1496,1478$, $1454,1399,1364,1307,1292,1276,1234,1211,1200,1154,1103,1073,1028 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.93(\mathrm{tt}, 2 \mathrm{H}, J=6.0,7.6 \mathrm{~Hz}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 3.10(\mathrm{t}, 2 \mathrm{H}, J$ $=7.6 \mathrm{~Hz}), 3.51(\mathrm{t}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz})$, 7.24-7.33 (m, 1H), 7.33-7.40(m, 4H), $7.72(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 10.21(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 21.7,29.0,31.8,69.3,72.9,127.3,127.6,127.7,128.4$, $131.5,131.8,132.2,138.5,144.7,144.8,192.1$.

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{2}$: C, 80.56; H, 7.51. Found: C, 80.46; H, 7.27.

Dimethyl 2-(2-(3-(benzyloxy)propyl)-4-methylbenzylidene)malonate (3e).
Colorless oil (purified by silica gel column chromatography, Hexane/EtOAc =9/1).
Yield: $534 \mathrm{mg}(88 \%$, synthesized from s9).
IR (neat) $3030,3002,2951,2857,1735,1626,1610,1496,1454,1436,1365,1264$, $1245,1216,1182,1113,1102,1069,1028,987 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.88(\mathrm{tt}, 2 \mathrm{H}, J=6.0,7.6 \mathrm{~Hz}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.78(\mathrm{t}, 2 \mathrm{H}, J$ $=7.6 \mathrm{~Hz}), 3.47(\mathrm{t}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 6.98(\mathrm{~d}, 1 \mathrm{H}$, $J=8.0 \mathrm{~Hz}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.25-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.39(\mathrm{~m}$, $4 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.4,29.9,31.0,52.4,52.5,69.0,72.8,126.2,127.1$, $127.5,127.6,127.9,128.3,129.3,130.6,138.5,140.6,141.8,142.3,164.5,167.1$.
Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{5}: \mathrm{C}, 72.23 ; \mathrm{H}, 6.85$. Found: C, $72.45 ; \mathrm{H}, 6.94$.

2-(3-(Benzyloxy)propyl)-4-methoxybenzaldehyde (s10).
Colorless oil (purified by silica gel column chromatography, Hexane/EtOAc =9/1).
Yield: $439 \mathrm{mg} \quad(40 \%$, synthesized from commercially available, 2-bromo-5-methoxylbenzaldehyde).

IR (neat) $3087,3063,3029,2940,2856,2793,2733,1687,1599,1566,1496,1454$, $1430,1364,1327,1289,1251,1207,1167,1105,1076,1028 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.94(\mathrm{tt}, 2 \mathrm{H}, J=6.0,7.6 \mathrm{~Hz}), 3.12(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz})$, $3.53(\mathrm{t}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 6.77(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}), 6.86(\mathrm{dd}, 1 \mathrm{H}$, $J=2.0,8.4 \mathrm{~Hz}), 7.24-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.79(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 10.12$ ($\mathrm{s}, 1 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 29.3,31.6,55.4,69.4,72.9,111.8,116.2,127.4,127.6$, 127.7, 128.4, 134.7, 138.5, 147.5, 163.7, 190.8.

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3}: \mathrm{C}, 76.03 ; \mathrm{H}, 7.09$. Found: C, 76.25; H, 6.79.

Dimethyl 2-(2-(3-(benzyloxy)propyl)-4-methoxybenzylidene)malonate (3f).
Colorless oil (purified by silica gel column chromatography, Hexane/EtOAc =6/1).
Yield: $296 \mathrm{mg}(82 \%$, synthesized from s10).
IR (neat) 33030, 3003, 2951, 2856, 1734, 1602, 1568, 1496, 1454, 1436, 1366, 1310, $1253,1218,1181,1109,1069,1029,987 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.89(\mathrm{tt}, 2 \mathrm{H}, J=6.0,7.6 \mathrm{~Hz}), 2.81(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz})$, $3.48(\mathrm{t}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 6.71(\mathrm{dd}$, $1 \mathrm{H}, J=2.4,8.0 \mathrm{~Hz}), 6.77(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}), 7.25-7.39(\mathrm{~m}, 6 \mathrm{H}), 8.02(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 30.2,30.9,52.5,52.5,55.2,69.0,72.8,111.8,115.2$, $124.5,124.9,127.5,127.6,128.3,129.6,138.4,141.6,144.2,161.2,164.6,167.4$.
Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{6}$: C, 69.33; $\mathrm{H}, 6.58$. Found: C, $69.51 ; \mathrm{H}, 6.34$.

2-(3-(Benzyloxy)propyl)-4-fluorobenzaldehyde (s11).
Colorless oil (purified by silica gel column chromatography, Hexane/EtOAc =9/1).
Yield: 697 mg (52%, synthesized from commercially available, 2-bromo-5-fluorobenzaldehyde).
IR (neat) 3087, 3064, 3031, 2924, 2860, 2795, 2761, 1692, 1605, 1582, 1494, 1454, 1432, 1399, 1364, 1271, 1242, 1199, 1157, 1104, 1028, $961 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.94(\mathrm{tt}, 2 \mathrm{H}, J=6.0,7.6 \mathrm{~Hz}$), $3.14(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz})$, $3.51(\mathrm{t}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 6.97(\mathrm{dd}, 1 \mathrm{H}, J=2.4,9.6 \mathrm{~Hz}), 7.04(\mathrm{ddd}, 1 \mathrm{H}, J=$ $2.4,8.4,8.4 \mathrm{~Hz}), 7.27-7.40(\mathrm{~m}, 5 \mathrm{H}), 7.86(\mathrm{dd}, 1 \mathrm{H}, J=6.0,8.4 \mathrm{~Hz}), 10.21(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13}{ }^{2}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 28.7,31.4,68.9,73.0,113.8\left(\mathrm{~d}, J_{C-F}=21.0 \mathrm{~Hz}\right), 117.8(\mathrm{~d}$, $\left.J_{C-F}=20.9 \mathrm{~Hz}\right), 127.6,127.7,128.4,130.4\left(\mathrm{~d}, J_{C-F}=2.8 \mathrm{~Hz}\right), 134.5\left(\mathrm{~d}, J_{C-F}=9.5 \mathrm{~Hz}\right)$, $138.3,148.3\left(\mathrm{~d}, J_{C-F}=8.6 \mathrm{~Hz}\right), 165.7\left(\mathrm{~d}, J_{C-F}=255.5 \mathrm{~Hz}\right), 190.7$.
${ }^{19}$ F NMR ($283 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 58.0(\mathrm{dd}, 1 \mathrm{~F}, J=7.9,14.9 \mathrm{~Hz})$.
Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{FO}_{2}$: C, 74.98; H, 6.29. Found: C, 74.74; H, 6.45.

Dimethyl 2-(2-(3-(benzyloxy)propyl)-4-fluorobenzylidene)malonate (3g).
Colorless oil (purified by silica gel column chromatography, Hexane/EtOAc =6/1).
Yield: $320 \mathrm{mg}(68 \%$, synthesized from $\mathbf{s 1 1})$.
IR (neat) 3087, 3064, 3031, 3004, 2952, 2858, 1735, 1629, 1605, 1583, 1492, 1454, 1437, 1365, 1247, 1221, 1182, 1101, 1070, 1028, $986 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.89(\mathrm{tt}, 2 \mathrm{H}, J=6.0,7.6 \mathrm{~Hz}), 2.80(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz})$, $3.46(\mathrm{t}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 6.87(\mathrm{ddd}, 1 \mathrm{H}, J=2.0$, $8.4,8.4 \mathrm{~Hz}$), 7.17 (dd, 1H, $J=2.8,9.6 \mathrm{~Hz}$), 7.25-7.32 (m, 2H), 7.33-7.39 (m, 4H), 7.99 ($\mathrm{s}, 1 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 30.0,30.5,52.5,52.6,68.7,72.8,113.4\left(\mathrm{~d}, J_{C-F}=21.0\right.$ $\mathrm{Hz}), 116.6\left(\mathrm{~d}, J_{C-F}=21.0 \mathrm{~Hz}\right), 127.3,127.6,127.6,128.4,129.9\left(\mathrm{~d}, J_{C-F}=8.5 \mathrm{~Hz}\right)$, $138.3,141.3,144.6\left(\mathrm{~d}, J_{C-F}=7.7 \mathrm{~Hz}\right), 163.6\left(\mathrm{~d}, J_{C-F}=248.9 \mathrm{~Hz}\right), 164.2,166.6$.
${ }^{19}$ F NMR ($283 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 51.5(\mathrm{dd}, 1 \mathrm{~F}, J=7.6,14.7 \mathrm{~Hz})$.
Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{FO}_{5}$: C, 68.38; H, 6.00. Found: C, 68.49; H, 5.93.

2-(3-(Benzyloxy)propyl)-6-methylbenzaldehyde (s12).
Colorless oil (purified by silica gel column chromatography, Hexane/EtOAc $=30 / 1$).
Yield: $364 \mathrm{mg}\left(26 \%\right.$, synthesized from 2-iodo-3-methylbenzaldehyde ${ }^{2}$).
IR (neat) 3063, 3030, 2024, 2858, 2791, 1690, 1592, 1577, 1496, 1466, 1454, 1411, $1380,1364,1283,1255,1236,1191,1169,1104,1028,824 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.92(\mathrm{tt}, 2 \mathrm{H}, J=6.0,7.6 \mathrm{~Hz}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 3.05(\mathrm{t}, 2 \mathrm{H}, J$ $=7.6 \mathrm{~Hz}), 3.51(\mathrm{t}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 7.10(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.24-7.41(\mathrm{~m}$, $6 \mathrm{H}), 10.60(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}^{\text {NMR (}} 125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.8,29.8,32.1,69.3,72.9,127.6,127.7,128.4,129.1$, 129.9, 132.2, 132.9, 138.4, 141.1, 145.3, 193.5.

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{2}$: C, 80.56; $\mathrm{H}, 7.51$. Found: C, 80.77; $\mathrm{H}, 7.45$.

Dimethyl 2-(2-(3-(benzyloxy)propyl)-6-methylbenzylidene)malonate (3h).
Colorless oil (purified by silica gel column chromatography, $\mathrm{Hexane} / \mathrm{EtOAc}=12 / 1$).
Yield: $276 \mathrm{mg}(89 \%$, synthesized from s12).
IR (neat) 3063, 3030, 2924, 2858, 2791, 1690, 1592, 1577, 1496, 1466, 1454, 1411, $1380,1364,1283,1255,1236,1191,1169,1104,1028 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.86(\mathrm{tt}, 2 \mathrm{H}, J=6.4,7.6 \mathrm{~Hz}$), $2.20(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{t}, 2 \mathrm{H}, J$ $=7.6 \mathrm{~Hz}), 3.46(\mathrm{t}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}), 3.53(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 7.01-7.07(\mathrm{~m}$, $2 \mathrm{H}), 7.14(\mathrm{dd}, 1 \mathrm{H}, J=8.0,8.0 \mathrm{~Hz}), 7.25-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.2,30.0,52.1,52.6,69.5,72.7,126.3,127.5,127.6$, $128.2,128.3,130.4,132.8,135.1,138.5,139.0,145.8,163.9,165.3$.

Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{5}$: C, 72.23; $\mathrm{H}, 6.85$. Found: C, 72.09; H, 6.73.

3-(3-(Benzyloxy)propyl)-2-naphthaldehyde (s13).
Colorless oil (purified by silica gel column chromatography, Hexane/EtOAc $=15 / 1$).
Yield: 462 mg (34%, synthesized from 3-iodo-2-naphthaldehyde ${ }^{3}$).
IR (neat) 3058, 3030, 2921, 2855, 2795, 2750, 2721, 1699, 1695, 1652, 1627, 1593, $1575,1496,1463,1454,1408,1362,1330,1308,1276,1256,1231,1205,1175,1157$, 1148, 1101, 1028, 1018, $957 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.00(\mathrm{tt}, 2 \mathrm{H}, J=6.0,7.6 \mathrm{~Hz}$), $3.28(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz})$, $3.56(\mathrm{t}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 4.53(\mathrm{~s}, 2 \mathrm{H}), 7.26-7.42(\mathrm{~m}, 5 \mathrm{H}), 7.52(\mathrm{~d}, 1 \mathrm{H}, J=8.0,8.0 \mathrm{~Hz})$, $7.61(\mathrm{~d}, 1 \mathrm{H}, J=8.0,8.0 \mathrm{~Hz}), 7.67(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.95(\mathrm{~d}, 1 \mathrm{H}, J=8.0$ $\mathrm{Hz}), 8.33$ (s, 1H), $10.32(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13}{ }^{\text {C NMR }}$ ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 29.7,31.4,69.5,72.9,126.3,127.3,127.5,127.7,128.4$, 129.1, 129.2, 129.5, 131.2, 132.5, 135.7, 136.8, 138.5, 139.1, 192.9 .

Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{2}$: C, 82.86; $\mathrm{H}, 6.62$. Found: C, 82.97; H, 6.47.

Dimethyl 2-((3-(3-(benzyloxy)propyl)naphthalen-2-yl)methylene)malonate (3i).
Colorless oil (purified by silica gel column chromatography, Hexane/EtOAc $=6 / 1$).
Yield: $325 \mathrm{mg}(84 \%$, synthesized from $\mathbf{~ s 1 3})$.
IR (neat) $3058,3030,3005,2950,2858,1734,1621,1596,1495,1454,1436,1365$, 1267, 1221, 1181, 1150, 1103, 1071, 1028, 984, $951 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.98(\mathrm{tt}, 2 \mathrm{H}, J=6.4,7.6 \mathrm{~Hz}), 2.95(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz})$, $3.51(\mathrm{t}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 7.25-7.38(\mathrm{~m}, 5 \mathrm{H}), 7.43$ (ddd, $1 \mathrm{H}, J=1.2,8.0,8.0 \mathrm{~Hz}$), $7.49(\mathrm{ddd}, 1 \mathrm{H}, J=1.2,8.0,8.0 \mathrm{~Hz}), 7.64(\mathrm{~s}, 1 \mathrm{H}), 7.74$ (d, $1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.78(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.82(\mathrm{~s}, 1 \mathrm{H}), 8.17(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 30.2,30.6,52.5,52.7,69.1,72.8,125.9,127.1,127.2$, $127.5,127.6,127.8,127.8,127.9,128.1,128.4,131.3,131.6,134.0,138.1,138.5,142.7$, 164.2, 166.7 .

Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{O}_{5}$: C, 74.62; $\mathrm{H}, 6.26$. Found: C, $74.83 ; \mathrm{H}, 6.06$.

2-(3-(Allyloxy)propyl)benzaldehyde (s14).
Colorless oil (purified by silica gel column chromatography, Hexane/EtOAc $=15 / 1$).
Yield: $892 \mathrm{mg}(46 \%$, synthesized from $\mathbf{~ s 1})$.
IR (neat) 2921, 2858, 2733, 1696, 1600, 1574, 1486, 1453, 1431, 1420, 1403, 1345, 1289, 1207, 1193, 1104, 1070, 1017, $996 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.91(\mathrm{tt}, 2 \mathrm{H}, J=6.0,7.6 \mathrm{~Hz}), 3.13(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz})$, $3.46(\mathrm{t}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 3.97(\mathrm{t}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}), 5.18(\mathrm{dd}, 1 \mathrm{H}, J=2.0,10.0 \mathrm{~Hz}), 5.29$ (dd, 1H, $J=2.0,17.0 \mathrm{~Hz}), 5.88-5.98(\mathrm{~m}, 1 \mathrm{H}), 7.30(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.38(\mathrm{dd}, 1 \mathrm{H}, J$ $=8.0,8.0 \mathrm{~Hz}), 7.51(\mathrm{ddd}, 1 \mathrm{H}, J=1.0,8.0,8.0 \mathrm{~Hz}), 7.84(\mathrm{dd}, 1 \mathrm{H}, J=2.0,8.0 \mathrm{~Hz}), 10.29$ ($\mathrm{s}, 1 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 28.9,31.8,69.1,71.8,116.8,126.5,131.1,131.7,133.7$, 134.8, 144.8, 192.4.

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2}$: C, 76.44; $\mathrm{H}, 7.90$. Found: C, 76.26; $\mathrm{H}, 8.15$.

Dimethyl 2-(2-(3-(allyloxy)propyl)benzylidene)malonate (3j).
Colorless oil (purified by silica gel column chromatography, Hexane/EtOAc = 9/1).
Yield: $733 \mathrm{mg}(82 \%$, synthesized from s14).
IR (neat) $3069,3017,2952,2856,1734,1627,1601,1483,1436,1367,1262,1215$, 1184, 1164, 1143, 1107, 1071, 1018, $989,927 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.87(\mathrm{tt}, 2 \mathrm{H}, J=6.0,7.6 \mathrm{~Hz}), 2.79(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz})$, $3.42(\mathrm{t}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.97(\mathrm{dd}, 2 \mathrm{H}, J=1.6,6.0 \mathrm{~Hz}), 5.17$ (dd, 1H, J=1.6, 10.0 Hz), 5.28 (dd, 1H, J=1.6, 17.2 Hz), 5.88-5.99 (m, 1H), 7.18 (dd, $1 \mathrm{H}, J=8.0,8.0 \mathrm{~Hz}), 7.22-7.36(\mathrm{~m}, 3 \mathrm{H}), 8.08(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13}{ }^{1} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 29.9,30.8,52.4,52.6,68.9,71.7,116.7,126.2,127.3$, 127.9, 129.7, 130.1, 132.3, 134.9, 141.6, 142.6, 164.3, 166.7.

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{5}$: C, 67.91; H, 6.97. Found: C, 68.14; H, 6.76.

2-(3-Ethoxypropyl)benzaldehyde (s15).
Colorless oil (purified by silica gel column chromatography, Hexane/EtOAc =9/1).
Yield: $543 \mathrm{mg}(44 \%$, synthesized from s1).
IR (neat) 2974, 2932, 2864, 1696, 1600, 1575, 1488, 1453, 1404, 1377, 1350, 1290, $1238,1208,1186,1159,1113,1030,956 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.21(\mathrm{t}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}$), $1.91(\mathrm{tt}, 2 \mathrm{H}, J=6.0,7.6 \mathrm{~Hz})$, 3.13 (t, 2H, $J=7.6 \mathrm{~Hz}), 3.43(\mathrm{t}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 3.47(\mathrm{q}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 7.31(\mathrm{~d}, 1 \mathrm{H}, J$ $=8.0 \mathrm{~Hz}), 7.37(\mathrm{dd}, 1 \mathrm{H}, J=8.0,8.0 \mathrm{~Hz}), 7.51(\mathrm{dd}, 1 \mathrm{H}, J=8.0,8.0 \mathrm{~Hz}), 7.84(\mathrm{~d}, 1 \mathrm{H}, J=$ 8.0 Hz), $10.30(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}^{1}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 15.2,28.8,31.8,66.1,66.3,126.5,131.1,131.5,133.7$, 144.9, 192.4.

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2}$: C, 74.97; H, 8.39. Found: C, 74.78; H, 8.57.

Dimethyl 2-(2-(3-(benzyloxy)propyl)benzylidene)malonate (3k).
Colorless oil (purified by silica gel column chromatography, Hexane/EtOAc =6/1).
Yield: $377 \mathrm{mg}(92 \%$, synthesized from $\mathbf{~ s 1 5})$.
IR (neat) 2974, 2952, 2866, 1733, 1627, 1601, 1571, 1484, 1436, 1375, 1262, 1214, $1184,1164,1113,1070,987,944 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.21(\mathrm{t}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.86(\mathrm{tt}, 2 \mathrm{H}, J=6.0,7.6 \mathrm{~Hz})$, $2.78(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 3.39(\mathrm{t}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 3.46(\mathrm{q}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 3.70(\mathrm{~s}, 3 \mathrm{H})$, 3.88 ($\mathrm{s}, 3 \mathrm{H}$), 7.17 (dd, $1 \mathrm{H}, J=8.0,8.0 \mathrm{~Hz}), 7.22-7.34(\mathrm{~m}, 3 \mathrm{H}), 8.08(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 15.2,29.8,30.8,52.4,52.6,66.0,69.1,126.2,127.3$, $127.8,129.7,130.1,132.3,141.6,142.7,164.3,166.7$.

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{5}$: C, 66.65; $\mathrm{H}, 7.24$. Found: C, 66.48; H, 7.02.

Scheme S2. Preparation of starting materials 5. Preparation of 5a was shown as a representative example.

Synthesis of 2-(4-(benzyloxy)butyl)benzaldehyde (s20):

To a solution of $\mathbf{s 1 6}(343 \mathrm{mg}, 1.53 \mathrm{mmol})$ in $\mathrm{EtOH}(2.0 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{~mL})$ were successively added $\mathrm{NaOH}(444 \mathrm{mg}, 11.1 \mathrm{mmol})$ and aqueous $\mathrm{H}_{2} \mathrm{O}_{2}(5 \mu \mathrm{~L}, 0.153 \mathrm{mmol})$. After the mixture was heated to reflux for 19 h , the reaction was quenched by addition of conc. HCl . The crude mixture was extracted with EtOAc (x4) and the combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo to give crude $\mathbf{s} 17(350 \mathrm{~g})$ as orange solid. This crude material was used for the next reaction without further purification.

To a solution of $\mathbf{s} 17$ in $\mathrm{Et}_{2} \mathrm{O}(7.2 \mathrm{~mL})$ was added $\mathrm{LiAlH}_{4}(82.7 \mathrm{mg}, 2.18 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ (portion wise). After being stirred for 3 h at refluxing temperature, the reaction was stopped by adding $\mathrm{Na}_{2} \mathrm{SO}_{4} \bullet 10 \mathrm{H}_{2} \mathrm{O}$. After being stirred for another 0.5 h at room temperature, the crude material was filtered through Celite ${ }^{\circledR}$ pad and the resulting filtrate was concentrated in vacuo to give crude alcohol $\mathbf{s 1 8}(321 \mathrm{mg})$ as yellow liquid. The crude material was used for the next reaction without further purification.
To a solution of $\mathbf{s 1 8}$ in DMF (3.5 mL) were successively added $\mathrm{NaH}(60 \%$ oil, 116 mg , $2.90 \mathrm{mmol})$, and $\operatorname{BnBr}(0.30 \mathrm{~mL}, 2.52 \mathrm{mmol})$. After being stirred for 16 h at room temperature, the reaction was quenched by addition of $\mathrm{Et}_{2} \mathrm{NH}(217 \mu \mathrm{l}, 2.10 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The crude mixture was extracted with EtOAc (x3) and the combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane $/ \mathrm{EtOAc}=30 / 1$) to give $\mathbf{s} 19(408 \mathrm{~g})$ as colorless oil. At this moment, $\mathbf{s} 19$ could not be isolated as pure compound, so this material was used for next reaction without further purification.
To a solution of $\mathbf{s 1 9}$ in THF (6.4 mL) was added $n-\mathrm{BuLi}(1.57 \mathrm{M}$ in hexane, 1.10 mL , 1.73 mmol) at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 10 min at $-78{ }^{\circ} \mathrm{C}$, to which DMF ($0.20 \mathrm{~mL}, 2.58 \mathrm{mmol}$) was added. After being stirred for 1 h , the reaction was quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ at $-78{ }^{\circ} \mathrm{C}$. The crude mixture was extracted with EtOAc (x3) and the combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane/EtOAc = 15/1) to afford aldehyde $\mathbf{s 2 0}(164 \mathrm{mg}$, 40% from s16) as colorless oil.

IR (neat) $3029,2916,2852,1697,1600,1573,1453,1363,1288,1207,1102,753 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.68-1.77(\mathrm{~m}, 4 \mathrm{H}), 3.05(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.51(\mathrm{t}, 2 \mathrm{H}$,
$J=6.0 \mathrm{~Hz}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 7.24-7.40(\mathrm{~m}, 7 \mathrm{H}), 7.49(\mathrm{ddd}, 1 \mathrm{H}, J=1.2,8.0,8.0 \mathrm{~Hz}), 7.83$ (dd, $1 \mathrm{H}, J=1.2,8.0 \mathrm{~Hz}), 10.27(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 28.8,29.5,32.2,70.0,72.9,126.5,127.5,127.6,128.3$, 131.0, 131.7, 133.6, 133.7, 138.5, 145.3, 192.3.

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{2}$: C, 80.56; $\mathrm{H}, 7.51$. Found: C, $80.81 ; \mathrm{H}, 7.32$.

Synthesis of dimethyl 2-(2-(4-(benzyloxy)butyl)benzylidene)malonate (5a):
To a solution of $\mathbf{s 2 0}$ ($164 \mathrm{mg}, 0.611 \mathrm{mmol}$) in benzene (3.1 mL) were successively added dimethyl malonate ($70 \mu \mathrm{~L}, 0.611 \mathrm{mmol}$), piperidine ($65 \mu \mathrm{~L}, 0.611 \mathrm{mmol}$), and $\mathrm{AcOH}(35 \mu \mathrm{~L}, 0.611 \mathrm{mmol})$ at room temperature. The reaction mixture was heated to reflux for 20 h . The crude mixture was concentrated in vacuo, and the residue was purified by column chromatography (silica gel, hexane/EtOAc =9/1) to give 5a (134 $\mathrm{mg}, 57 \%)$ as colorless oil.

IR (neat) $3029,2950,2859,1733,1626,1600,1483,1436,1365,1263,1215,1102$, 1072, $986 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.61-1.73(\mathrm{~m}, 4 \mathrm{H}), 2.71(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.48(\mathrm{t}, 2 \mathrm{H}$, $J=6.0 \mathrm{~Hz}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 7.17(\mathrm{dd}, 1 \mathrm{H}, J=7.6 .7 .6 \mathrm{~Hz}), 7.21$ (d, 1H, $J=7.6 \mathrm{~Hz}$), 7.25-7.35 (m, 7H), 8.06 (s, 1H).
${ }^{13} \mathrm{C}^{\mathrm{N}} \mathrm{NR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 27.6,29.3,33.3,52.4,52.6,70.0,72.9,126.2,127.2$, 127.5, 127.6, 127.9, 128.3, 129.7, 130.1, 132.1, 138.5, 142.0, 142.7, 164.3, 166.8.

Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{5}$: C, 72.23; $\mathrm{H}, 6.85$. Found: C, 72.44; H, 6.59.

2-(4-(Benzyloxy)butyl)-5-methylbenzaldehyde (s21).
Colorless oil (purified by silica gel column chromatography, Hexane/EtOAc = 10/1).
Yield: 317 mg (25%, synthesized from commercially available, 2-bromo-4-methylbenzaldehyde).

IR (neat) 3029, 2918, 2855, 1687, 1609, 1567, 1497, 1454, 1409, 1364, 1281, 1239, 1202, 1157, 1103, 1028, $942 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.64-1.72(\mathrm{~m}, 4 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 3.00(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz})$, 3.49 (t, 2H, $J=6.0 \mathrm{~Hz}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 7.15(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.22-7.38(\mathrm{~m}, 6 \mathrm{H}), 6.63$ (s, 1H), 10.23 (s, 1H).
${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 20.7,28.9,29.5,31.8,70.0,72.9,127.5,127.6,128.3$, $131.0,131.9,133.4,134.6,136.1,138.5,142.4,192.5$.

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{2}$: C, 80.82; H, 7.85. Found: C, 80.59; H, 7.94.

Dimethyl 2-(2-(4-(benzyloxy)butyl)-5-methylbenzylidene)malonate (5b).
Colorless oil (purified by silica gel column chromatography, Hexane/EtOAc =6/1).
Yield: $266 \mathrm{mg}(76 \%$, synthesized from $\mathbf{~} 21)$.
IR (neat) $3029,2949,2859,1735,1627,1566,1495,1454,1436,1365,1270,1227$, 1163, 1103, 1071, 1028, $988 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.61-1.70(\mathrm{~m}, 4 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.67(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz})$, $3.47(\mathrm{t}, 2 \mathrm{H}, J=5.6 \mathrm{~Hz}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 7.07-7.13(\mathrm{~m}, 3 \mathrm{H})$, 7.24-7.30 (m, 1H), 7.31-7.36 (m, 4H), $8.03(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.9,27.7,29.3,32.8,52.3,52.6,70.1,72.8,126.8$, $127.4,127.6,128.3,128.3,129.6,131.0,131.9,135.6,138.5,139.1,142.7,164.4$, 166.8.

Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{5}$: C, 72.70; $\mathrm{H}, 7.12$. Found: C, 72.61; H, 6.98.

2-(4-(Benzyloxy)butyl)-5-methoxybenzaldehyde (s22).
Colorless oil (purified by silica gel column chromatography, Hexane/EtOAc =9/1).
Yield: 276 mg (36%, synthesized from commercially available, 2-bromo-4-methoxylbenzaldehyde).
IR (neat) 3030, 2937, 2858, 1686, 1607, 1571, 1497, 1454, 1400, 1364, 1327, 1264,

1190, 1163, 1103, 1038, $938 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.61-1.76(\mathrm{~m}, 4 \mathrm{H}), 2.97(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 3.49(\mathrm{t}, 2 \mathrm{H}$, $J=6.0 \mathrm{~Hz}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 7.06(\mathrm{~d}, 1 \mathrm{H}, J=2.8,8.4 \mathrm{~Hz}), 7.17(\mathrm{~d}, 1 \mathrm{H}, J=8.4$ $\mathrm{Hz}), 7.26-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.39(\mathrm{~m}, 4 \mathrm{H}), 10.27(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta 29.4,31.1,55.5,70.0,72.9,113.4,121.1,127.5,127.6$, 128.4, 132.2, 134.2, 137.9, 138.5, 158.1, 191.6.

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{3}$: C, 76.48; $\mathrm{H}, 7.43$. Found: C, 76.37; H, 7.67.

Dimethyl 2-(2-(4-(benzyloxy)butyl)-5-methoxybenzylidene)malonate (5c).
Colorless oil (purified by silica gel column chromatography, Hexane/EtOAc $=4 / 1$).
Yield: $258 \mathrm{mg}(87 \%$, synthesized from $\mathbf{s 1})$.
IR (neat) $3029,3003,2949,2860,1732,1625,1606,1572,1495,1454,1436,1366$, 1271, 1237, 1203, 1167, 1103, 1071, 1039, $989 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.57-1.70(\mathrm{~m}, 4 \mathrm{H}), 2.64(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.47(\mathrm{t}, 2 \mathrm{H}$, $J=5.6 \mathrm{~Hz}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 6.83-6.89(\mathrm{~m}, 2 \mathrm{H})$, $7.11(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.24-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.37(\mathrm{~m}, 4 \mathrm{H}), 8.01(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 27.8,29.2,32.4,52.5,52.6,55.2,70.0,72.8,112.5$, $116.3,127.2,127.4,127.5,128.3,130.7,132.7,134.3,138.5,142.3,157.6,164.2$, 166.7.

Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{6}$: C, 69.88; $\mathrm{H}, 6.84$. Found: C, $70.04 ; \mathrm{H}, 6.73$.

2-(4-(Bbenzyloxy)butyl)-5-methoxybenzaldehyde (s23).
Colorless oil (purified by silica gel column chromatography, Hexane/EtOAc = 9/1).
Yield: 354 mg (23\%, synthesized from commercially available, 2-bromo-5-fluorobenzaldehyde).

IR (neat) 3063, 3031, 2937, 2860, 1693, 1605, 1582, 1493, 1454, 1431, 1399, 1363, 1240, 1194, 1155, 1103, 1028, $965 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.65-1.80(\mathrm{~m}, 4 \mathrm{H}), 3.04(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.50(\mathrm{t}, 2 \mathrm{H}$, $J=5.6 \mathrm{~Hz}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 6.95(\mathrm{dd}, 1 \mathrm{H}, J=2.4,9.6 \mathrm{~Hz}), 7.02(\mathrm{ddd}, 1 \mathrm{H}, J=2.4,8.0,8.0$ Hz), 7.26-7.30 (m, 1H), 7.31-7.38 (m, 4H), $7.83(\mathrm{dd}, 1 \mathrm{H}, J=6.0,8.0 \mathrm{~Hz}), 10.18(\mathrm{~s}$, $1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 28.4,29.4,32.0,69.8,72.9,113.7\left(\mathrm{~d}, J_{C-F}=21.9 \mathrm{~Hz}\right.$), $117.6\left(\mathrm{~d}, J_{C-F}=21.0 \mathrm{~Hz}\right), 127.5,127.6,128.3,130.2\left(\mathrm{~d}, J_{C-F}=2.9 \mathrm{~Hz}\right), 134.5\left(\mathrm{~d}, J_{C-F}=\right.$ $9.4 \mathrm{~Hz}), 138.2,148.7\left(\mathrm{~d}, J_{C-F}=9.6 \mathrm{~Hz}\right), 165.7\left(\mathrm{~d}, J_{C-F}=254.6 \mathrm{~Hz}\right), 190.5$.
${ }^{19}$ F NMR ($283 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 57.9$ (dd, 1F, $J=9.1,15.8 \mathrm{~Hz}$).
Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{FO}_{2}$: C, 75.50; H, 6.69. Found: C, 75.72; H, 6.82 .

Dimethyl 2-(2-(4-(benzyloxy)butyl)-4-fluorobenzylidene)malonate (5d).
Colorless oil (purified by silica gel column chromatography, Hexane/EtOAc =6/1).
Yield: $168 \mathrm{mg}(80 \%$, synthesized from $\mathbf{~} 23)$.
IR (neat) 3031, 2951, 2852, 1735, 1605, 1583, 1492, 1436, 1365, 1245, 1220, 1155, 1102, 1071, $986 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.61-1.73(\mathrm{~m}, 4 \mathrm{H}), 2.69(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.49(\mathrm{t}, 2 \mathrm{H}$, $J=6.0 \mathrm{~Hz}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 6.87(\mathrm{ddd}, 1 \mathrm{H}, J=2.8,8.4,8.4 \mathrm{~Hz})$, 6.93 (dd, 1H, $J=2.8,9.6 \mathrm{~Hz}), 7.25-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 27.2,29.2,33.2,52.5(\mathrm{~m}), 52.7$ (m), 69.9, 72.9, 113.3 (d, $\left.J_{C-F}=21.9 \mathrm{~Hz}\right), 116.5\left(\mathrm{~d}, J_{C-F}=24.7 \mathrm{~Hz}\right), 127.2,127.5,127.6,128.2\left(\mathrm{~d}, J_{C-F}=3.9 \mathrm{~Hz}\right)$, $128.3,129,8\left(\mathrm{~d}, J_{C-F}=8.6 \mathrm{~Hz}\right), 138.4,141.3,145.0\left(\mathrm{~d}, J_{C-F}=7.7 \mathrm{~Hz}\right), 163.6\left(\mathrm{~d}, J_{C-F}=\right.$ $249.8 \mathrm{~Hz}), 155.6,164.2$,
${ }^{19}$ F NMR ($283 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 51.5$ (dd, 1F, $J=9.1,13.6 \mathrm{~Hz}$).
Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{FO}_{5}$: C, 68.99; H, 6.29. Found: C, 69.23; H, 6.17.

3-(4-(Benzyloxy)butyl)-2-naphthaldehyde (s24).
Colorless oil (purified by silica gel column chromatography, Hexane/EtOAc =9/1).

Yield: 240 mg (25%, synthesized from 3-iodo-2-naphthaldehyde ${ }^{3}$).
IR (neat) 3058, 2936, 2858, 1696, 1629, 1594, 1496, 1454, 1361, 1255, 1173, 1102, 889 cm^{-1}.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.69-1.82(\mathrm{~m}, 4 \mathrm{H}), 3.19(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.52(\mathrm{t}, 2 \mathrm{H}$, $J=6.0 \mathrm{~Hz}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 7.26-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.37(\mathrm{~m}, 4 \mathrm{H}), 7.50(\mathrm{ddd}, 1 \mathrm{H}, J=1.2$, $8.0,8.0 \mathrm{~Hz}), 7.60(\mathrm{ddd}, 1 \mathrm{H}, J=1.2,8.0,8.0 \mathrm{~Hz}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz})$, $7.94(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 8.31(\mathrm{~s}, 1 \mathrm{H}), 11.32(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13}{ }^{1} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 28.3,29.6,32.9,20.2,72.9,126.3,127.3,127.5,127.6$, $128.3,129.1,129.2,129.4,131.2,12.5,135.7,136.6,138.5,139.6,192.9$.

Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{2}$: C, 82.99; H, 6.96. Found: C, 83.24; H, 7.14.

Dimethyl 2-((3-(4-(benzyloxy)butyl)naphthalen-2-yl)methylene)malonate (5e).
Colorless oil (purified by silica gel column chromatography, Hexane/EtOAc $=6 / 1$).
Yield: 173 mg (92%, synthesized from $\mathbf{s} 24$).
IR (neat) $3058,3030,2949,2861,1732,1621,1596,1496,1454,1436,1363,1266$, $1220,1181,1150,1103,1071,1028,984,951 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.64-1.82(\mathrm{~m}, 4 \mathrm{H}), 32.85(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.51(\mathrm{t}, 2 \mathrm{H}$, $J=6.0 \mathrm{~Hz}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 7.26-7.37(\mathrm{~m}, 4 \mathrm{H}), 7.43(\mathrm{dd}, 1 \mathrm{H}, J$ $=8.0,8.0 \mathrm{~Hz}), 7.49(\mathrm{dd}, 1 \mathrm{H}, J=8.0,8.0 \mathrm{~Hz}), 7.64(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{dd}, 1 \mathrm{H}, J=8.0,8.0$ $\mathrm{Hz}), 7.81(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 27.2,29.3,33.4,52.4,52.6,70.0,72.8,125.8,127.1$, 127.1, 127.4, 127.5, 127.6, 127.6, 127.8, 128.1, 128.3, 131.1, 131.5, 134.0, 138.4, 138.5, 142.7, 164.2, 166.9.

Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{O}_{5}$: C, 74.89; $\mathrm{H}, 6.53$. Found: C, $74.72 ; \mathrm{H}, 6.78$.

2-(4-Ethoxybutyl)benzaldehyde ($\mathbf{s 2 5}$).
Colorless oil (purified by silica gel column chromatography, Hexane/EtOAc =9/1).

Yield: 319 mg (42%, synthesized from s1).
IR (neat) 2974, 2934, 2861, 1697, 1600, 1574, 1487, 1452, 1377, 1354, 1289, 1208, $1191,1160,1112 \mathrm{~cm}^{-1}$.
${ }^{1} H$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.19(\mathrm{t}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.62-1.75(\mathrm{~m}, 4 \mathrm{H}), 3.06(\mathrm{t}, 2 \mathrm{H}$, $J=7.2 \mathrm{~Hz}), 3.41-3.50(\mathrm{~m}, 2 \mathrm{H}), 3.47(\mathrm{q}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 7.28$ (dd, 1H, $J=1.2,7.6 \mathrm{~Hz}$), 7.36 (dd, 1H, $J=7.6,7.6 \mathrm{~Hz}$), $7.50(\mathrm{ddd}, 1 \mathrm{H}, J=1.2,7.6,7.6$ $\mathrm{Hz}), 7.83(\mathrm{dd}, 1 \mathrm{H}, J=1.2,7.6 \mathrm{~Hz}), 10.28(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 15.2,28.9,29.5,32.3,66.1,70.3,126.5,131.0,131.6$, 133.6, 133.8, 145.4, 192.4.

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}$: C, 75.69; H, 8.80. Found: C, 75.46; H, 8.94.

Dimethyl 2-(2-(4-ethoxybutyl)benzylidene)malonate (5f).
Colorless oil (purified by silica gel column chromatography, Hexane/EtOAc $=6 / 1$).
Yield: 283 mg (85%, synthesized from s25).
IR (neat) 2950, 2863, 2800, 1731, 1627, 1601, 1565, 1484, 1436, 1375, 1263, 1215, 1184, 1113, 1071, $987 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.19(\mathrm{t}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.56-1.70(\mathrm{~m}, 4 \mathrm{H}), 2.71(\mathrm{t}, 2 \mathrm{H}$, $J=6.8 \mathrm{~Hz}), 3.37-3.48(\mathrm{~m}, 2 \mathrm{H}), 3.46(\mathrm{q}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 7.17$ (dd, $1 \mathrm{H}, J=7.6,7.6 \mathrm{~Hz}), 7.23(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.25-7.34(\mathrm{~m}, 2 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 15.1,27.5,29.3,33.3,52.4,52.6,66.0,70.3,126.1$, 127.1, 127.8, 129.6, 131.0, 132.1, 142.0, 142.6, 164.3, 166.7.

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{5}$: C, 67.48; $\mathrm{H}, 7.55$. Found: C, 67.19; H, 7.71.

2. Synthesis of spiro isochroman derivatives.

General Procedure of the formation of $\mathbf{7 -}$ or $\mathbf{8 - m e m b r e d}$ ring adducts.

To a solution of benzylidene malonate $\mathbf{3}$ or $\mathbf{5}(0.10 \mathrm{mmol})$ in $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}(1.0 \mathrm{~mL})$ was added $\mathrm{Sc}(\mathrm{OTf})_{3}$ (5 or $10 \mathrm{~mol} \%$), and the mixture was heated at reflux. After completion of the reaction, the reaction was stopped by adding saturated aqueous NaHCO_{3}. The crude products were extracted with $\mathrm{EtOAc}(x 3)$ and the combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. The residue was purified by preparative TLC to give 7 - or 8 -membred ring adducts 4 or 6.

Dimethyl 7-(benzyloxy)-8,9-dihydro-5H-benzo[7]annulene-6,6(7H)-dicarboxylate (4a). Colorless oil (purified by preparative TLC, Hexane/EtOAc $=6 / 1$).

Yield: 27.6 mg (75%).
IR (neat) 3063, 3027, 2951, 2857, 1739, 1496, 1455, 1435, 1348, 1329, 1306, 1273, $1246,1222,1208,1185,1172,1159,1101,1065,1029,959 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.01-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.45(\mathrm{~m}, 2 \mathrm{H}), 3.17-3.26(\mathrm{~m}$, $1 \mathrm{H}), 3.27(\mathrm{~d}, 1 \mathrm{H}, J=14.4 \mathrm{~Hz}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~d}, 1 \mathrm{H}, J=14.4 \mathrm{~Hz})$, $4.41(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.39-4.46(\mathrm{~m}, 1 \mathrm{H}), 4.72(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 7.01-7.12(\mathrm{~m}$, 4H), 7.24-7.39 (m, 5H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 26.6,27.6,34.2,51.9,52.6,70.6,78.2,125.9,127.1$, 127.4, 127.5, 128.2, 128.3, 130.6, 135.6, 138.2, 143.6, 169.1, 170.5.

Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{5}$: C, 71.72; $\mathrm{H}, 6.57$. Found: C, 71.54; H, 6.67.

Dimethyl 7-(benzyloxy)-3-methyl-8,9-dihydro-5H-benzo[7]annulene-6,6(7H)-dicar boxylate (4b).

Colorless oil (purified by preparative TLC, Hexane/EtOAc = 9/1).
Yield: 27.7 mg (69\%).

IR (neat) 3029, 3006, 2950, 2858, 1348, 1327, 1303, 1272, 1243, 1210, 1153, 1112, 1093, 1065, 1029, $968 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.97-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.22-2.43(\mathrm{~m}, 2 \mathrm{H})$, $3.12-3.27(\mathrm{~m}, 2 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.61-3.75(\mathrm{~m}, 1 \mathrm{H}), 4.40(\mathrm{~d}, 1 \mathrm{H}, J=12.0$ $\mathrm{Hz}), 4.36-4.47(\mathrm{~m}, 1 \mathrm{H}), 4.72(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 6.87-6.99(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.40(\mathrm{~m}$, 5 H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.8,26.8,27.1,34.2,51.8,52.6,60.4,70.6,78.3,127.4$, 127.5, 127.6, 128.1, 128.3, 131.4, 135.2, 135.4, 138.2, 140.5, 169.1, 170.6.

Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{5}$: C, 72.23; $\mathrm{H}, 6.85$. Found: C, 72.46; H, 6.59.

Dimethyl 7-(benzyloxy)-3-methoxy-8,9-dihydro-5 H -benzo[7]annulene-6,6(7 H)-dicarbo xylate (4c).
Colorless crystal (purified by preparative TLC, Hexane/EtOAc $=9 / 1$), which was subjected to the X-ray crystallographic analysis.
Yield: 31.0 mg (72\%).
IR (neat) 3027, 3001, 2951, 2857, 2837, 1739, 1610, 1582, 1506, 1455, 1434, 1348, 1327, 1276, 1262, 1245, 1211, 1159, 1111, 1094, 1066, 1029, $965 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.01-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.38(\mathrm{~m}, 2 \mathrm{H}), 3.15-3.28(\mathrm{~m}$, $2 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.61-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 4.41(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.0$ $\mathrm{Hz}), 4.38-4.47(\mathrm{~m}, 1 \mathrm{H}), 4.72(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 6.59(\mathrm{dd}, 1 \mathrm{H}, J=2.8,8.4 \mathrm{~Hz}), 6.63$ $(\mathrm{d}, 1 \mathrm{H}, J=2.8 \mathrm{~Hz}), 6.98(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.25-7.40(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 26.7,27.8,33.3,51.9,52.6,55.1,60.5,70.7,78.2,110.7$, 114.0, 127.4, 127.5, 127.6, 128.3, 131.6, 138.2, 144.9, 158.5, 169.2, 170.6.

Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{6}$: C, 69.33; H, 6.58. Found: C, 69.56; H, 6.45.

Dimethyl 7-(benzyloxy)-3-fluoro-8,9-dihydro-5 H -benzo[7]annulene-6,6(7H)-dicarbo xylate (4d).

Colorless oil (purified by preparative TLC, Hexane/EtOAc = 9/1).
Yield: 23.4 mg (65\%).
IR (neat) 3064, 3031, 3005, 2952, 2859, 1739, 1612, 1593, 1499, 1455, 1435, 1348, 1327, 1307, 1271, 1256, 1244, 1212, 1065, 1029, $978 \mathrm{~cm}^{-1}$.
${ }^{1} H$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.97-2.06(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{dd}, 1 \mathrm{H}, J=$ $6.5,14.0 \mathrm{~Hz}), 3.17(\mathrm{~d}, 1 \mathrm{H}, J=14.0 \mathrm{~Hz}), 3.23(\mathrm{~d}, 1 \mathrm{H}, J=14.0 \mathrm{~Hz}), 3.53(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~s}$, $3 \mathrm{H}), 3.71(\mathrm{~d}, 1 \mathrm{H}, J=14.0 \mathrm{~Hz}), 4.40(\mathrm{~d}, 1 \mathrm{H}, J=11.0 \mathrm{~Hz}), 4.39-4.46(\mathrm{~m}, 1 \mathrm{H}), 4.71(\mathrm{~d}$, $1 \mathrm{H}, J=11.0 \mathrm{~Hz}), 6.75-6.83(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{dd}, 1 \mathrm{H}, J=6.0,8.0 \mathrm{~Hz}), 7.25-7.38(\mathrm{~m}, 5 \mathrm{H})$. ${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta 26.6,26.8,34.1,52.0,52.7,60.2,70.7,78.1,113.4$ (d, $\left.J_{C-F}=20.4 \mathrm{~Hz}\right), 117.3\left(\mathrm{~d}, J_{C-F}=21.4 \mathrm{~Hz}\right), 127.4,127.6,128.3,129.5\left(\mathrm{~d}, J_{C-F}=6.6 \mathrm{~Hz}\right)$, $137.8\left(\mathrm{~d}, J_{C-F}=5.7 \mathrm{~Hz}\right), 138.1,139.3,161.0\left(\mathrm{~d}, J_{C-F}=242.0 \mathrm{~Hz}\right), 168.8,170.2$.
${ }^{19}$ F NMR ($283 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 43.4$ (dd, 1F, $J=9.1,13.6 \mathrm{~Hz}$).
Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{FO}_{5}$: C, 68.38; H, 6.00. Found: C, 68.12; H, 6.25 .

Dimethyl 7-(benzyloxy)-2-methyl-8,9-dihydro-5 H -benzo[7]annulene-6,6(7H)-dicarbo xylate (4e).
Colorless oil (purified by preparative TLC, Hexane/EtOAc = 9/1).
Yield: 25.7 mg (68%).
IR (neat) 3029, 3006, 2951, 2858, 1739, 1506, 1497, 1455, 1435, 1347, 1329, 1305, $1273,1253,1240,1220,1207,1176,1156,1112,1093,1065,1029,968 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.99-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.25-2.39(\mathrm{~m}, 2 \mathrm{H})$, $3.15-3.28(\mathrm{~m}, 2 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.61-3.72(\mathrm{~m}, 1 \mathrm{H}), 4.40(\mathrm{~d}, 1 \mathrm{H}, J=12.0$ $\mathrm{Hz}), 4.38-4.46(\mathrm{~m}, 1 \mathrm{H}), 4.72(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 6.84-6.89(\mathrm{~m}, 2 \mathrm{H}), 6.96(\mathrm{~d}, 1 \mathrm{H}, J=$ 7.6 Hz), 7.25-7.38 (m, 5H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.0,26.7,27.5,33.8,51.9,52.6,60.4,70.6,78.3,126.5$, $127.4,127.5,128.3,129.1,130.5,132.4,136.6,138.2,143.4,169.2,170.6$.
Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{5}$: C, 72.23; H, 6.85. Found: C, 72.27; H, 6.72.

Dimethyl 7-(benzyloxy)-2-methoxy-8,9-dihydro-5H-benzo[7]annulene-6,6(7H)-dicarbo xylate (4f).

Colorless oil (purified by preparative TLC, Hexane/EtOAc = 9/1).
Yield: 21.1 mg (53\%).
IR (neat) 3001, 2951, 1738, 1609, 1580, 1506, 1454, 1436, 1331, 1310, 1280, 1263, 1243, 1219, 1207, 1185, 1173, 1156, 1114, 1093, 1064, 1044, 1029, 1013, $948 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.96-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.41(\mathrm{~m}, 2 \mathrm{H}), 3.13(\mathrm{~d}, 1 \mathrm{H}, J=$ $12.4 \mathrm{~Hz}), 3.21(\mathrm{~d}, 1 \mathrm{H}, J=14.0 \mathrm{~Hz}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.60-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.74$ (s, 3H), $4.41(\mathrm{~d}, 1 \mathrm{H}, J=11.2 \mathrm{~Hz}), 4.36-4.48(\mathrm{~m}, 1 \mathrm{H}), 4.72(\mathrm{~d}, 1 \mathrm{H}, J=11.2 \mathrm{~Hz}), 6.63$ $(\mathrm{dd}, 1 \mathrm{H}, J=2.4,8.0 \mathrm{~Hz}), 6.67(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}), 6.97(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.25-7.38$ ($\mathrm{m}, 5 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 26.6,26.9,34.4,51.9,52.6,55.2,60.4,70.6,78.2,111.6$, $116.7,127.4,127.5,128.3,129.0,135.8,136.9,138.2,157.7,169.0,170.5$.
Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{6}$: C, 69.33; H, 6.58. Found: C, 69.15; H, 6.75.

Dimethyl 7-(benzyloxy)-2-fluoro-8,9-dihydro-5 H -benzo[7]annulene-6,6(7H)-dicarbo xylate ($\mathbf{4 g}$).
Colorless oil (purified by preparative TLC, Hexane/EtOAc = 6/1).
Yield: 24.3 mg (64\%).
IR (neat) 3064, 3031, 3005, 2952, 2861, 1739, 1610, 1594, 1501, 1455, 1436, 1348, $1330,1308,1273,1242,1216,1206,1164,1147,1094,1063,1029,972 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.01-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.28-2.40(\mathrm{~m}, 2 \mathrm{H}), 3.17-3.30(\mathrm{~m}$, $1 \mathrm{H}), 3.26(\mathrm{~d}, 1 \mathrm{H}, J=14.0 \mathrm{~Hz}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~d}, 1 \mathrm{H}, J=14.0 \mathrm{~Hz})$, $3.66(\mathrm{~d}, 1 \mathrm{H}, J=14.0 \mathrm{~Hz}), 4.39-4.48(\mathrm{~m}, 1 \mathrm{H}), 4.40(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.71(\mathrm{~d}, 1 \mathrm{H}, J=$ $12.0 \mathrm{~Hz}), 6.72-6.83(\mathrm{~m}, 2 \mathrm{H}), 7.03(\mathrm{dd}, 1 \mathrm{H}, J=6.0,8.0 \mathrm{~Hz}), 7.25-7.38(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 26.5,27.6,33.4,52.0,52.7,60.2,70.7,78.1,112.3$ (d, $\left.J_{C-F}=21.0 \mathrm{~Hz}\right), 115.1\left(\mathrm{~d}, J_{C-F}=21.0 \mathrm{~Hz}\right), 127.4,127.6,128.3,131.3\left(\mathrm{~d}, J_{C-F}=2.9 \mathrm{~Hz}\right)$,
$132.0\left(\mathrm{~d}, J_{C-F}=7.7 \mathrm{~Hz}\right), 138.1,145.8\left(\mathrm{~d}, J_{C-F}=7.7 \mathrm{~Hz}\right), 161.7\left(\mathrm{~d}, J_{C-F}=243.1 \mathrm{~Hz}\right)$, 169.0, 170.3.
${ }^{19}$ F NMR ($283 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 45.2$ (dd, $1 \mathrm{~F}, J=9.1,13.6 \mathrm{~Hz}$).
Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{FO}_{5}$: C, 68.38; H, 6.00. Found: C, 68.12; H, 6.25 .

Dimethyl 7-(benzyloxy)-4-methyl-8,9-dihydro-5 H -benzo[7]annulene-6,6(7H)-dicarbo xylate (4h).

Colorless oil (purified by preparative TLC, Hexane/EtOAc = 9/1).
Yield: $23.3 \mathrm{mg}(60 \%)$.
IR (neat) $3065,3028,2951,2858,1738,1575,1497,1466,1455,1434,1348,1328$, $1302,1271,1239,1211,1185,1171,1092,1069,1028,972,957 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.08-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.46(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H})$, $3.15-3.29(\mathrm{~m}, 1 \mathrm{H}), 3.45-3.53(\mathrm{~m}, 1 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}), 3.62-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H})$, $4.37-4.45(\mathrm{~m}, 1 \mathrm{H}), 4.41(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.72(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 6.88-7.03(\mathrm{~m}$, 3H), 7.23-7.40 (m, 5H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.9,26.5,28.2,51.6,52.6,60.0,70.5,78.3,126.5$, 126.6, 127.4, 127.5, 128.3, 128.5, 134.1, 137.0, 138.3, 143.9, 169.3, 170.7.

Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{5}$: C, 72.23; $\mathrm{H}, 6.85$. Found: C, $72.51 ; \mathrm{H}, 6.58$.

Dimethyl 8-(benzyloxy)-9,10-dihydro-6 H -cyclohepta[b]naphthalene-7,7(8 H)-dicarbo xylate (4i).

Colorless oil (purified by preparative TLC, Hexane/EtOAc = 9/1).
Yield: 26.4 mg (65\%).
IR (neat) 3005, 2950, 2851, 1738, 1574, 1454, 1432, 1345, 1324, 1280, 1264, 1240, $1210,1146,1092,1065,1045,1028,1013,953 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.08-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.66(\mathrm{~m}$, 1H), 3.32-3.52 (m, 2H), 3.45 (s, 3H), 3.66 (s, 3H), 3.83 (d, 1H, $J=13.6 \mathrm{~Hz}$), 4.41-4.49
$(\mathrm{m}, 1 \mathrm{H}), 4.44(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.75(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 7.21-7.45(\mathrm{~m}, 7 \mathrm{H}), 7.52$ ($\mathrm{s}, 1 \mathrm{H}$), $7.56(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz})$.
${ }^{13}{ }^{1} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 27.4,27.8,34.5,52.0,52.7,61.2,70.7,78.0,125.2$, 125.6, 126.1, 127.0, 127.1, 127.4, 127.6, 128.3, 129.3, 132.2, 132.8, 134.4, 138.2, 141.6, 169.0, 170.5.

Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{O}_{5}$: C, 74.62; $\mathrm{H}, 6.26$. Found: C, $74.39 ; \mathrm{H}, 6.03$.

Dimethyl 7-(allyloxy)-8,9-dihydro-5 H -benzo[7]annulene-6,6(7H)-dicarboxylate (4j).
Colorless oil (purified by preparative TLC, Hexane/EtOAc = 9/1).
Yield: 20.5 mg (62%).
IR (neat) $3065,3020,2952,2856,1739,1574,1495,1456,1434,1410,1328,1306$, $1273,1246,1223,1208,1185,1172,1130,1103,1086,1065,1015,996,961 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.95-2.06(\mathrm{~m}, 1 \mathrm{H}), 2.18-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.43(\mathrm{~m}$, $1 \mathrm{H}), 3.18(\mathrm{~d}, 1 \mathrm{H}, J=14.4 \mathrm{~Hz}), 3.25(\mathrm{~d}, 1 \mathrm{H}, J=14.4 \mathrm{~Hz}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~d}, 1 \mathrm{H}, J=$ 14.4 Hz), $3.74(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{tdd}, 1 \mathrm{H}, J=1.2,5.6,12.8 \mathrm{~Hz}), 3.87(\mathrm{tdd}, 1 \mathrm{H}, J=1.2,5.6$, $12.8 \mathrm{~Hz}), 4.32(\mathrm{brs}, 1 \mathrm{H}), 5.15(\mathrm{tdd}, 1 \mathrm{H}, J=1.2,1.2,10.8 \mathrm{~Hz}), 5.28(\mathrm{tdd}, 1 \mathrm{H}, J=1.2,1.2$, $17.2 \mathrm{~Hz}), 5.79-5.93(\mathrm{~m}, 1 \mathrm{H}), 7.02-7.14(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 26.8,27.6,34.2,51.9,52.6,60.3,69.8,78.1,116.5$, 125.9, 127.1, 128.2, 130.6, 134.6, 135.6, 143.6, 169.1, 170.5.

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{5}$: C, 67.91; H, 6.97. Found: C, 68.15; H, 7.25.

Dimethyl 7-ethoxy-8,9-dihydro-5H-benzo[7]annulene-6,6(7H)-dicarboxylate (4k).
Colorless oil (purified by preparative TLC, Hexane/EtOAc = 9/1).
Yield: 21.9 mg (70%).
IR (neat) 3021, 2975, 2952, 1741, 1495, 1455, 1436, 1346, 1328, 1305, 1272, 1247, 1222, 1208, 1185, 1115, 1091, 1067, 1047, 1025, $958 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.16(\mathrm{t}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.92-2.05(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.28$
$(\mathrm{m}, 1 \mathrm{H}), 2.32-2.42(\mathrm{~m}, 1 \mathrm{H}), 3.12-3.27(\mathrm{~m}, 2 \mathrm{H}), 3.29-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.60-$ $3.80(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 4.26$ (brs, 1H), 7.02-7.13 (m, 4H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 15.5,26.9,27.6,34.2,51.9,52.6,60.4,62.4,78.1,125.9$, 127.0, 128.2, 130.6, 135.7, 143.8, 169.2, 170.7.

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{5}$: C, $66.65 ; \mathrm{H}, 7.24$. Found: C, $66.84 ; \mathrm{H}, 7.52$.

Dimethyl 7-(benzyloxy)-7,8,9,10-tetrahydrobenzo[8]annulene-6,6(5H)-dicarboxylate (6a).

Colorless oil (purified by preparative TLC, Hexane/EtOAc =9/1).
Yield: 21.9 mg (56\%).
IR (neat) $3062,3027,2950,2850,1739,1566,1495,1452,1235,1204,1164,1116$, 1076, 1060, 1028, $978,921 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.40-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.90-2.15(\mathrm{~m}, 2 \mathrm{H}), 2.61-2.72(\mathrm{~m}$, $1 \mathrm{H}), 2.91-3.03(\mathrm{~m}, 1 \mathrm{H}), 3.27(\mathrm{~d}, 1 \mathrm{H}, J=14.0 \mathrm{~Hz}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.60-3.73(\mathrm{~m}, 1 \mathrm{H})$, $3.73(\mathrm{~s}, 3 \mathrm{H}), 4.18(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 4.37(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.63(\mathrm{~d}, 1 \mathrm{H}, J=12.0$ $\mathrm{Hz}), 7.01-7.13(\mathrm{~m}, 3 \mathrm{H}), 7.17(\mathrm{ddd}, 1 \mathrm{H}, J=1.2,8.0,8.0 \mathrm{~Hz}), 7.23-7.38(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 25.4,27.4,32.3,33.852 .1,52.4,64.3,72.1,78.9,126.0$, $127.3,127.4,127.5,128.2,129.2,130.0,135.4,138.3,141.5,170.4,170.5$.

Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{5}$: C, 72.23; H, 6.85. Found: C, 72.01; H, 7.11.

Dimethyl 7-(benzyloxy)-3-methyl-7,8,9,10-tetrahydrobenzo[8]annulene-6,6(5H)dicarboxylate (6b).
Colorless oil (purified by preparative TLC, Hexane/EtOAc = 9/1).
Yield: 25.8 mg (66\%).
IR (neat) $3029,3005,2950,2863,1731,1605,1498,1470,1454,1435,1335,1304$, 1265, 1235, 1197, 1164, 1120, 1089, 1062, 1029, $983 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.40-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.87-2.21(\mathrm{~m}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H})$,
2.59-2.69 (m, 1H), 2.86-2.98 (m, 1H), 3.22 (d, 1H, $J=14.0 \mathrm{~Hz}), 3.52-3.64(\mathrm{~m}, 1 \mathrm{H})$, $3.65(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 4.08-4.21(\mathrm{~m}, 1 \mathrm{H}), 4.37(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.62(\mathrm{~d}, 1 \mathrm{H}, J=$ 12.0 Hz), 6.85 (brs, 1H), 6.94-7.03 (m, 2H), 7.23-7.36 (m, 5H).
${ }^{13}{ }^{1}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.9,25.7,27.6,31.9,33.9,51.9,52.4,64.3,72.0,79.1$, 127.3, 127.3, 127.3, 128.2, 128.2, 129.1, 130.7, 135.1, 135.3, 138.3, 169.3, 170.5.

Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{5}$: C, 72.70; $\mathrm{H}, 7.12$. Found: C, 72.45; H, 7.18.

Dimethyl 7-(benzyloxy)-3-methoxy-7,8,9,10-tetrahydrobenzo[8]annulene-6,6(5H)dicarboxylate ($6 \mathbf{c}$).
Colorless oil (purified by preparative TLC, Hexane/EtOAc = 9/1).
Yield: 28.9 mg (72%).
IR (neat) 3028, 3001, 2950, 2934, 2849, 1738, 1608, 1579, 1500, 1434, 1327, 1257, 1235, 1196, 1108, 1062, $914 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.37-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.87-2.22(\mathrm{~m}, 2 \mathrm{H}), 2.58-2.66(\mathrm{~m}$, $1 \mathrm{H}), 2.80-2.95(\mathrm{~m}, 1 \mathrm{H}), 3.22(\mathrm{~d}, 1 \mathrm{H}, J=14.0 \mathrm{~Hz}), 3.52-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H})$, $3.73(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 4.16(\mathrm{brd}, 1 \mathrm{H}, J=6.4 \mathrm{~Hz}), 4.37(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.62(\mathrm{~d}$, $1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 6.72(\mathrm{dd}, 1 \mathrm{H}, J=2.4,8.0 \mathrm{~Hz}), 6.98(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz})$, $7.23-7.36(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 25.6,27.6,31.5,34.0,52.1,52.4,55.0,64.2,72.1,79.0$, $112.7,115.6,127.3,127.3,128.2,130.0,133.6,136.5,138.3,157.7,170.3,170.5$.

Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{6}$: C, 69.88; H, 6.84. Found: C, 70.05; H, 6.59.

Dimethyl 7-(benzyloxy)-2-fluoro-7,8,9,10-tetrahydrobenzo[8]annulene-6,6(5H)dicarboxylate (6d).

Colorless oil (purified by preparative TLC, Hexane/EtOAc = 9/1).
Yield: 32.5 mg (82%).
IR (neat) $3063,3030,951,2851,1738,1610,1591,1498,1472,1452,1435,1335,1319$,

1265, 1235, 1200, 1175, 1113, 1078, 1060, 1007, $984 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.42-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.91-2.18(\mathrm{~m}, 2 \mathrm{H}), 2.58-2.69(\mathrm{~m}$, $1 \mathrm{H}), 2.89-3.02(\mathrm{~m}, 1 \mathrm{H}), 3.25(\mathrm{~d}, 1 \mathrm{H}, J=14.4 \mathrm{~Hz}), 3.55(\mathrm{~d}, 1 \mathrm{H}, J=14.4 \mathrm{~Hz}), 3.64(\mathrm{~s}$, $3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 4.22(\mathrm{brd}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 4.37(\mathrm{~d}, 1 \mathrm{H}, J=11.6 \mathrm{~Hz}), 4.63(\mathrm{~d}, 1 \mathrm{H}, J=$ $11.6 \mathrm{~Hz}), 6.75-6.83(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{dd}, 1 \mathrm{H}, J=6.4,7.2 \mathrm{~Hz}), 7.24-7.38(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta 25.1,27.0,32.3,32.9,52.1,52.4,64.2,72.2,78.7,112.7$ $\left(\mathrm{d}, J_{C-F}=20.0 \mathrm{~Hz}\right), 115.6\left(\mathrm{~d}, J_{C-F}=21.0 \mathrm{~Hz}\right), 127.3,127.4,128.2,131.1,131.4,138.1$, $143.8\left(\mathrm{~d}, J_{C-F}=6.7 \mathrm{~Hz}\right), 162.1\left(\mathrm{~d}, J_{C-F}=244.1 \mathrm{~Hz}\right), 170.2,170.3$.
${ }^{19}$ F NMR ($283 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 45.7(\mathrm{~d}, 1 \mathrm{~F}, J=4.5 \mathrm{~Hz}$).
Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{FO}_{5}$: C, 68.99; H, 6.29. Found: C, 69.26; H, 6.46.

Dimethyl 8-(benzyloxy)-8,9,10,11-tetrahydrocycloocta[b]naphthalene-7,7(6H)dicarboxylate (6e).
Colorless oil (purified by preparative TLC, Hexane/EtOAc = 9/1).
Yield: $19.4 \mathrm{mg}(45 \%)$.
IR (neat) 3057, 3028, 2950, 2851, 1738, 1598, 1498, 1454, 1434, 1335, 1288, 1232, $1200,1147,1113,1082,1063,1029,890 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.45-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.95-2.22(\mathrm{~m}, 2 \mathrm{H}), 2.82-2.92(\mathrm{~m}$, $1 \mathrm{H}), 3.02-3.18(\mathrm{~m}, 1 \mathrm{H}), 3.47(\mathrm{~d}, 1 \mathrm{H}, J=14.0 \mathrm{~Hz}), 3.65-3.77(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H})$, $3.75(\mathrm{~s}, 3 \mathrm{H}), 4.22(\mathrm{brd}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 4.37(\mathrm{~d}, 1 \mathrm{H}, J=11.2 \mathrm{~Hz}), 4.64(\mathrm{~d}, 1 \mathrm{H}, J=11.2$ Hz ,
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 25.4,27.8,32.3,33.8,52.1,52.5,64.6,72.2,78.8,125.2$, 125.6, 126.9, 127.2, 127.3, 127.3, 127.4, 128.2, 129.0, 132.2, 133.1, 134.3, 138.3, 139.9, 170.3, 170.5.

Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{O}_{5}$: C, 74.98; $\mathrm{H}, 6.53$. Found: C, $75.14 ; \mathrm{H}, 6.79$.

Dimethyl 7-ethoxy-7,8,9,10-tetrahydrobenzo[8]annulene-6,6(5H)-dicarboxylate (6f).

Colorless oil (purified by preparative TLC, Hexane/EtOAc = 9/1).
Yield: $15.5 \mathrm{mg}(46 \%)$.
IR (neat) 3021, 2972, 2951, 2927, 2877, 2852, 1739, 1435, 1264, 1235, 1200, 1172, 1113, 1086, 1065, 1027, $987 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.13(\mathrm{t}, 3 \mathrm{H}, J=6.0 \mathrm{~Hz}), 1.41-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.87-2.03$ $(\mathrm{m}, 2 \mathrm{H}), 2.64-2.72(\mathrm{~m}, 1 \mathrm{H}), 2.89-3.00(\mathrm{~m}, 1 \mathrm{H}), 3.25(\mathrm{~d}, 1 \mathrm{H}, J=14.0 \mathrm{~Hz}), 3.28-3.37$ $(\mathrm{m}, 1 \mathrm{H}), 3.55(\mathrm{brd}, 1 \mathrm{H}, J=14.0 \mathrm{~Hz}), 3.59-3.66(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 4.04$ (brd, $1 \mathrm{H}, J=7.0 \mathrm{~Hz}$), $7.01-7.12(\mathrm{~m}, 3 \mathrm{H}), 7.17$ (ddd, $1 \mathrm{H}, J=1.5,7.5,7.5 \mathrm{~Hz}$).
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 15.2,25.2,27.2,32.0,33.8,52.0,52.4,64.3,65.6,78.9$, 125.9, 127.4, 129.1, 130.0, 135.5, 141.5, 170.4, 170.6.

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{5}$: C, 67.48; $\mathrm{H}, 7.55$. Found: C, 67.19; H, 7.44.

3. Transformation from the adduct.

Synthesis of dimethyl 7-hydroxy-8,9-dihydro-5H-benzo[7]annulene-6,6(7H)dicarboxylate (7):

To a solution of $\mathbf{4 a}(31.9 \mathrm{mg}, 0.0866 \mathrm{mmol})$ in $\mathrm{MeOH}(0.60 \mathrm{~mL})$ were succesively added $\mathrm{AcOH}(5 \mu \mathrm{~L}, 0.87 \mathrm{mmol})$ and $10 \% \mathrm{Pd} / \mathrm{C}(18.1 \mathrm{mg})$ at room temperature. After being stirred under $\mathrm{H}_{2}(1 \mathrm{~atm})$ at $40{ }^{\circ} \mathrm{C}$ for 18 h , the reaction mixture was filtered through Celite ${ }^{\circledR}$ pad and concentrated in vacuo. The residue was purified by preparative TLC (hexane/EtOAc $=3 / 1$) to give $7(16.5 \mathrm{mg}, 68 \%)$ as colorless oil.

IR (neat) 3518, 3022, 2952, 2849, 1738, 1575, 1495, 1455, 1435, 1410, 1309, 1273, 1246, 1223, 1048, 1033, 1102, 1079, 1048, 1033, $977 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.78-1.98(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.55-4.40(\mathrm{~m}$, 12H), 7.04-7.20 (m, 4H).
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 30.2,32.8,36.1,51.9,52.4,61.4,126.1,127.3,128.5$, 131.3, 135.4, 142.2, 170.9.

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{5}$: C, 64.74; H, 6.52. Found: C, 64.49; H, 6.35.

Synthesis of 7-(denzyloxy)-2',2'-dimethyl-5,7,8,9-tetrahydrospiro[benzo[7]annulene

 -6,5'-[1,3]dioxane] (8):To a solution of $\mathbf{4 a}(35.4 \mathrm{mg}, 0.0496 \mathrm{mmol})$ in THF $(1.0 \mathrm{~mL})$ was added $\mathrm{LiAlH}_{4}(6.8$ $\mathrm{mg}, 0.179 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. After being stirred for 3.0 h at $0^{\circ} \mathrm{C}$, the reaction was stopped by adding $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$. After being stirred for another 1 h at room temperature, the crude material was filtered through Celite ${ }^{\circledR}$ pad, and the resulting filtrate was concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane/EtOAc $=2 / 1$) to give diol $(12.4 \mathrm{mg}, 41 \%)$ as colorless oil.

To a solution of diol ($12.4 \mathrm{mg}, 0.0397 \mathrm{mmol}$) in acetone (1.0 mL) were successively added 2,2-dimethoxypropane ($9.7 \mu \mathrm{~L}, 0.0794 \mathrm{mmol}$) and $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(2.4 \mathrm{mg}, 0.012$ mmol) at $0{ }^{\circ} \mathrm{C}$. After being stirred for 1.5 h at $0^{\circ} \mathrm{C}$, the reaction was stopped by adding saturated aqueous NaHCO_{3} at $0^{\circ} \mathrm{C}$. The crude products were extracted with EtOAc (x3) and the combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. The residue was purified by preparative TLC (hexane/EtOAc $=2 / 1$) to give $\mathbf{8}(10.9 \mathrm{mg}, 78 \%)$ as colorless oil.

IR (neat) $3063,3027,2989,2925,2855,1495,1454,1370,1350,1296,1263,1227$, 1197, 1158, 1121, 1091, 1068, 1030, $938 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.15-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 2.00-2.65$ $(\mathrm{m}, 2 \mathrm{H}), 2.96-3.90(\mathrm{~m}, 6 \mathrm{H}), 3.94(\mathrm{~d}, 1 \mathrm{H}, J=11.5 \mathrm{~Hz}), 4.47(\mathrm{~d}, 1 \mathrm{H}, J=11.5 \mathrm{~Hz}), 4.72$ $(\mathrm{d}, 1 \mathrm{H}, J=11.5 \mathrm{~Hz}), 6.98-7.49(\mathrm{~m}, 10 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 23.8,25.9,28.7,29.7,34.9,38.6,65.1,68.0,70.9,97.9$, $126.2,126.5,127.5,128.3,128.3,130.5,137.6,138.7,142.3$.

Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{3}$: C, 78.38; $\mathrm{H}, 8.01$. Found: C, 78.15; H, 7.79.

Synthesis of methyl 8,9-dihydro-5H-benzo[7]annulene-6-carboxylate (9):

To a solution of $\mathbf{4 a}(15.8 \mathrm{mg}, 0.0429 \mathrm{mmol})$ in DMSO $(1.39 \mathrm{~mL})$ was added $\mathrm{LiCl}(20.5$ $\mathrm{mg}, 0.484 \mathrm{mmol})$ at room temperature, and the mixture were heated at $120^{\circ} \mathrm{C}$ for 16 h . After cooling to room temperature, the reaction was stopped by adding $\mathrm{H}_{2} \mathrm{O}$. The
crude products were extracted with EtOAc (x3) and the combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. The residue was purified by preparative TLC (hexane/EtOAc $=6 / 1$) to give $9(6.3 \mathrm{mg}, 73 \%)$ as colorless oil.

IR (neat) 3064, 3021, 2949, 2887, 1708, 1645, 1494, 1456, 1435, 1284, 1257, 1222, 1196, 1177, 1165, 1107, 1086, 1055, 1043, 1011, $967 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.48-2.63(\mathrm{~m}, 2 \mathrm{H}), 3.27(\mathrm{dd}, 1 \mathrm{H}, J=6.0,6.0 \mathrm{~Hz}), 3.75(\mathrm{~s}$, 3H), 3.84 ($\mathrm{s}, 2 \mathrm{H}$), 6.89 (brs, 1H), 7.08-7.26 (m, 4H).
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 29.8,30.9,31.3,52.0,126.3,126.8,128.0,128.4,129.0$, 140.7, 141.1, 141.1, 168.4 .

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{2}$: C, 77.20; $\mathrm{H}, 6.98$. Found: C, $77.34 ; \mathrm{H}, 7.13$.

References

1) Doušová, H.; Horák, R.; Ružicková, Z.; Šimunek, P. Beilstein J. Org. Chem. 2015, 11, 884.
2) Fan, Y. C.; Kwon, O. Org. Lett. 2015, 9, 2058.
3) K. Grudzien', K.; Z'ukowska, K.; Malin'ska, M.; Woz'niak, K.; Barbasiewicz, M. Chem. Eur.J. 2014, 20, 2819.
4) Romanov-Michailidis, F.; Pupier, M.; Guénée, L.; Alexakis, A. Chem. Commun. 2014, 50, 13461
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{s 5}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{~} \mathbf{5}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 a}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 a}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{s 6}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{s 6}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 b}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 b}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{s} \mathbf{7}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{s} 7$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 c}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 c}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{s} \mathbf{8}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{s 8}$.

${ }^{19}$ F NMR spectrum of $\mathbf{s 8}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 d}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 d}$.

${ }^{19}$ F NMR spectrum of $\mathbf{3 d}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{s} \mathbf{9}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{s} 9$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3} \mathbf{e}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 e}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{s 1 0}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{s 1 0}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 f}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 f}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{s 1 1}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{s} 11$.

${ }^{19}$ F NMR spectrum of $\mathbf{s} \mathbf{1 1}$.

${ }^{1}$ H NMR spectrum of $\mathbf{3 g}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 g}$.

${ }^{19}$ F NMR spectrum of $\mathbf{3 g}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{s 1 2}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{s} \mathbf{1 2}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 h}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 h}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{s 1 3}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{s} \mathbf{1 3}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 i}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 i}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{s} \mathbf{1 4}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{s} \mathbf{1}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 j}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 j}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{s 1 5}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{s 1 5}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 k}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 k}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{s 2 0}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{s 2 0}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 a}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 a}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{s} \mathbf{2 1}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{s} \mathbf{2 1}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 b}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 b}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{s 2 2}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{s} \mathbf{2 2}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 c}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 c}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{s} \mathbf{2 3}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{s} \mathbf{2 3}$.

${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{s 2 3}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 d}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 d}$.

${ }^{19}$ F NMR spectrum of $\mathbf{5 d}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{s} \mathbf{2 4}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{s} 24$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5} \mathbf{e}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 e}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{s 2 5}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{s} \mathbf{2 5}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 f}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 f}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 a}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 a}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 b}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 b}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 c}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 c}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 d}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 d}$.

${ }^{19}$ F NMR spectrum of $\mathbf{4 d}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 e}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 e}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 f}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 f}$.

${ }^{1}$ H NMR spectrum of $\mathbf{4 g}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 g}$.

${ }^{19}$ F NMR spectrum of $\mathbf{4 g}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 h}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 h}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 i}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 i}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4} \mathbf{j}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4} \mathbf{j}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 k}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 k}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6 a}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{6 a}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6 b}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{6 b}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6 c}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{6 c}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6 d}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{6 d}$.

${ }^{19}$ F NMR spectrum of $\mathbf{6 d}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6 e}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{6 e}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6 f}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{6 f}$.

${ }^{1} \mathrm{H}$ NMR spectrum of 7.

${ }^{13} \mathrm{C}$ NMR spectrum of 7 .

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{9}$.

${ }^{13} \mathrm{C}$ NMR spectrum of 9 .

