Supporting Information

Silver-promoted Cascade Radical Cyclization of γ, δ-Unsaturated Oxime Esters with P(O)H Compounds: Synthesis of Phosphorylated Pyrrolines

Chen Chen,* Yinwei Bao,‡ Jinghui Zhao,‡ and Bolin Zhu*

Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.

E-mail: hxxycc@tjnu.edu.cn; hxxyzbl@tjnu.edu.cn.

Table of Contents

General Information:	-S02
Preparation and Characterization of Starting Materials:	S02
Synthesis and Characterization of Phosphorylated Pyrrolines:	·S15
Control Experiments:	S34
Transformations of Phosphorylated Pyrrolines:	-S39
NMR Spectra:	-S41

General Information:

The ¹H NMR, ¹³C NMR, ³¹P NMR and ¹⁹F NMR were recorded with Bruker 400 MHz spectrometer instruments in CDCl₃. The chemical shifts (δ) of ¹H NMR and ¹³C NMR were measured in ppm, referenced to residual ¹H and ¹³C signals of nondeuterated CDCl₃ (δ = 7.26 and 77.00), as internal standards. All solvents were obtained from commercial sources and were purified according to standard procedures. Purification of products was accomplished by flash chromatography using silica gel (200–300 mesh). Thin layer chromatography (TLC) was performed on Merck silica gel GF 254 plates and visualized by UV-light (254 nm). HRMS were recorded on VG ZAB-HS mass spectrometer with ESI resource.

Preparation and Characterization of Starting Materials:

General Procedure 1:

Step 1: To a stirred solution of propargyl alcohol (1.0 equiv) in anhydrous THF (1.5 mL/mol) under N₂, was added CuI (0.2 equiv). The resulting suspension was cooled to 0 °C. R¹MgBr (2.5 equiv) in anhydrous THF, which was freshly prepared from Mg and R¹Br, was added via cannula, at such a rate as to maintain the temperature below 0 °C. The reaction was allowed to warm slowly to room temperature overnight. The reaction was again cooled to 0 °C, and then was treated with H₂O to give a light green suspension. Then it was treated with EtOAc. After treatment with 1 M hydrochloric acid, a green gelatinous precipitate was formed, which was thoroughly extracted with EtOAc. The combined organic layers were dried with Na₂SO₄. After removing the solvent, the residue was purified by column chromatography to give **SI-1**. (*Angew. Chem. Int. Ed.* **2015**, *54*, 3092)

Step 2: To a solution of the appropriate alcohol (1.0 equiv) in anhydrous Et_2O at 0 °C was added PBr₃ (1.0 equiv). The solution was warmed to room temperature and stirred

for 7 hours. The reaction was cooled to 0 °C and water was added. The organic portion was isolated, washed with brine, dried and concentrated in vacuum to afford **SI-2**, which was used in the next step without further purification. (*Angew. Chem. Int. Ed.* **2015**, *54*, 3092)

General Procedure 2:

Step 1: A solution of methyl triphenylphosphonium bromide (1.2 equiv) in anhydrous THF (1.5 mL/mol) was cooled to 0 °C under argon, followed by addition of 'BuOK (1.2 equiv). The reaction mixture was stirred at 0 °C for 1 h, and then a solution of substituted acetophenone (1.0 equiv) in anhydrous THF (0.5 mL/mol) was added dropwise. The resulting mixture was warmed gradually to room temperature and kept stirring for 12 h. The resultant reaction solution was filtered over Celite, and the filtrate was concentrated under reduced pressure to yield a residue which was further purified over silica gel flash column chromatography to afford the product.

Step 2: To a solution of **SI-3** (1.0 equiv) in anhydrous THF (1.5 mL/mol) was added *N*-bromosuccinimide (1.1 equiv) and *p*-TsOH (0.1 equiv). The reaction mixture was heated to 90 °C and kept stirring for 4 h. Then the reaction solution was cooled to room temperature, concentrated under reduced pressure, and purified by silica gel flash column chromatography to afford the **SI-2**.

General Procedure 3:

Step 1: To a stirred suspension of KOH (10.0 equiv) in toluene (1.0 mL/mol)

containing of substituted acetophenone (1.0 equiv) and 18-crown-6 (6.0 mg/mmol) was added CH_3I (0.5 mL/mol) dropwise. The mixture was stirred at 70 °C for 24 h. After cooling to room temperature, separation of the solid phase by filtration and evaporation of the toluene. The remainder was purified by column chromatography on silica gel to afford corresponding products **SI-4**. (*Org. Lett.* **2017**, *19*, 5940)

Step 2: To a solution of **SI-4** (1.0 equiv) in anhydrous 'BuOH (3.0 mL/mmol) was added 'BuOK (5.0 equiv) and the mixture was stirred at room temperature for 5 minutes. Then, **SI-2** (1.5 equiv) was added via syringe and the mixture was heated at 90 °C for 16 hours. The mixture was cooled to room temperature and H₂O was added. The mixture was extracted with EtOAc. The organic extracts were combined, washed with brine, dried with Na₂SO₄ and concentrated in vacuum. The residue was purified by column chromatography to give **SI-5**. (*Angew. Chem. Int. Ed.* **2015**, *54*, 3092)

Step 3: NH₂OH HCl (2.5 equiv) and NaOAc (2.5 equiv) were added to a solution of **SI-5** (1.0 equiv) in MeOH (4.0 mL/mmol) in a round-bottomed flask which was fitted with a reflux condenser. The mixture was heated at 80 °C until consumption of starting material was observed by TLC. After cooling to room temperature, the mixture was diluted with EtOAc, washed with brine, dried with Na₂SO₄ and concentrated in vacuum to give **SI-6**, which was used for the next step without further purification. (*Angew. Chem. Int. Ed.* **2015**, *54*, 3092)

Step 4: To a solution of **SI-6** (1.0 equiv) in anhydrous DCM (4.0 mL/mmol) at 0 °C was added Et₃N (1.2 equiv) followed by BzCl (1.2 equiv) dropwise via syringe. The mixture was then warmed to room temperature and stirred until the reaction was complete as observed by TLC. MeOH (1.0 mL/mmol) was then added and the mixture stirred for further 10 minutes. The mixture was diluted with DCM, washed with brine, dried with Na₂SO₄ and concentrated in vacuum. The residue was purified by column chromatograph to afford **1a**, **1c**, **1d**, **1e**, **1g**, **1h**, **1r-1t**. (*Angew. Chem. Int. Ed.* **2015**, *54*, 3092)

General Procedure 4:

Step 1: To a flame-dried round-bottomed flask equipped with a stirring bar was added diisopropylamine (2.5 equiv) and "BuLi (2.5 equiv) in THF, and the reaction mixture was stirred at 0 °C for 30 minutes. Then nitriles (1.0 equiv) was slowly added at -78 °C. After stirring for 1 h, **SI-2** (1.2 equiv) was added dropwise and the reaction mixture was allowed to warm up to room temperature while stirring overnight. The reaction was quenched with saturated aqueous NH₄Cl solution. Organic materials were then extracted three times with EtOAc. The organic phase was washed with water and brine, and dried with Na₂SO₄. After filtration, the solvent was evaporated to give a crude mixture, which was purified by flash column chromatography to afford **SI-7**. (*ACS Catal.* **2016**, *6*, 5571)

Step 2: To a flame-dried round-bottomed flask equipped with a stirring bar was added **SI-7** (1.0 equiv). It was solubilized in anhydrous THF. The solution was cooled to 0 $^{\circ}$ C and R²MgBr (1.5 equiv) was slowly added to the reaction flask. Then, the mixture was stirred overnight in a sealed tube at 60 $^{\circ}$ C. After cooling down to 0 $^{\circ}$ C, reaction was quenched with 3 N HCl (aq.) and warmed up for 4 h to finish the hydrolysis. The crude mixture was then extracted with EtOAc, washed with brine, dried with Na₂SO₄ and concentrated. The crude product was purified by flash column chromatography to give **SI-5**. (*ACS Catal.* **2016**, *6*, 5571)

The remaining procedures follow the **General Procedure 3:** step 3 and step 4 to afford **1b**, **1f**, **1j**.

General Procedure 5:

Step 1: 1) To a magnetically stirred aldehyde (1.0 equiv), was added isopropylmagnesium bromide (1.5 equiv), which was prepared from magnesium (1.5 equiv) and isopropyl bromide (1.5 equiv). The reaction mixture was stirred at room temperature for 36 h. Then, it was poured into saturated aqueous NH_4Cl solution and the aqueous layer was extracted with EtOAc. The combined organic layers were dried with Na_2SO_4 and concentrated in *vacuo*. The crude secondary alcohol was purified by column chromatography on silica using petroleum ether/ethyl acetate as eluent.

Step 1: 2) A solution of secondary alcohol (1.0 equiv) in 'BuOMe was stirred at 0 °C while Jones reagent (4.0 equiv) was added dropwise. The resulting mixture was allowed to warm to room temperature and stirred overnight. The 'BuOMe layer was then separated from the aqueous layer, which was extracted with EtOAc for 3 times. The combined organic layers were washed with brine, dried with Na₂SO₄, filtered and concentrated in *vacuo*. The crude ketone product **SI-4** was directly used in the next step without further purification.

The remaining procedures follow the **General Procedure 3:** step 2, step 3 and step 4 to afford **1i** and **1k**.

General Procedure 6:

Step 1: To a round bottom flask were charged *N*-Allylbenzylamine (1.0 equiv), triethylamine (1.5 equiv) and DMF (1.5 mL/mmol). *N*-hydroxybenzimidoyl chloride

(1.2 equiv) in DMF (0.5 mL/mmol) was added dropwise to the mixture while stirring. After the addition was complete, the mixture was stirred at room temperature for 2 h. The reaction was quenched with water, and the aqueous layer was extracted with CH_2Cl_2 . The combined organic layers were washed with brine, dried with Na_2SO_4 , and concentrated. The resulting residue was purified by flash column chromatography using petroleum (petroleum ether/ethyl acetate = 25:1) as eluent to afford **SI-7** as a yellow oil.

The remaining procedure follows the **General Procedure 3**: step 4 to afford **1u**.

General Procedure 7:

$$R^{6}Br \xrightarrow{Mg} R^{6}MgBr \xrightarrow{EtO^{H}OEt} R^{6}MgBr \xrightarrow{HOEt} R^{6}H^{2}R^{6}$$

$$THF, 0 \circ C-RT \xrightarrow{R^{6}H^{2}R^{6}} R^{6}H^{2}R^{6}$$

Step 1: SI-8 was prepared from aryl bromides or alkyl bromides (3.5 equiv) and magnesium (3.5 equiv). $HP(O)(OEt)_2$ (1.0 equiv) was added dropwise to a solution of **SI-8** at 0 °C. The mixture was aged for 15 minutes at 0 °C, then stirred at ambient temperature for two hours.

Step 2: ($\mathbb{R}^6 = \operatorname{aryl}$) After that cooled again to 0 °C, and 75 mL NH₄Cl aqueous was added slowly. The mixture was extracted with diethyl ether. Washed the organic phase with NaHCO₃ aqueous and brine, then dried with Na₂SO₄. After the solvent was completely removed under vacuum, the residue was purified by column chromatography on silica gel using petroleum ether/ethyl acetate as eluent to give the **2i**, **2j** and **2l**.

Step 2: (R^6 = alkyl) After that cooled again to 0 °C, 0.1 N HCl was then added dropwise over 20 minutes, then 'BuOMe was added, and the mixture agitated well for 5 minutes. The upper organic phase was decanted from the gel and saved. To the remaining gel was added CH₂Cl₂, and the mixture agitated well for 5 minutes. The resultant mixture was then filtered through a Celite pad, washing the pad with CH₂Cl₂. The filtrate phases were separated, and the organic phase combined with the first organic phase, dried (MgSO₄), and the solvents removed in vacuum. The residue was purified by column chromatography on silica gel using petroleum ether/ethyl acetate

as eluent to give the **2n** and **2o**.

General Procedure 8:

$$R^{7}$$
-Br $\xrightarrow{Ph'H'OH}_{TEA, 80 °C} Ph'H'OH Ph'H'OR^{7}$

To the phenyl-H-phosphinic acid (1.0 equiv) was added R^7 -Br (1.2 equiv) and TEA (1.1 equiv), and the mixture was closed and heated at 80 °C for 3 h. The residue was purified by column chromatograph to afford **2p**, **2q**, **2r** and **2s**.

1a, 1c, 1d, 1e, 1g, 1h, 1r-1t were synthesized by General Procedure 3
1l and 1m were synthesized by General Procedure 1 and General Procedure 3
1b, 1f, 1j were synthesized by General Procedure 4
1i and 1k was synthesized by General Procedure 5
1n-1q were synthesized by General Procedure 2 and General Procedure 3
1u was synthesized by General Procedure 6
2a-2h, 2k, 2m are commercial available
2i, 2j, 2l, 2n and 2o were synthesized by General Procedure 7

2p-2s were synthesized	by	General	Procedure	8
-------------------------------	----	---------	-----------	---

¹**H NMR** (400 MHz, CDCl₃) δ 7.54 – 7.50 (m, 2H), 7.42 – 7.35 (m, 1H), 7.29 (d, J = 8.0 Hz, 1H), 7.25 – 7.16 (m, 3H), 6.95 – 6.91 (m, 2H), 4.93 – 4.91 (m, 1H), 4.83 – 4.81 (m, 1H), 2.37 (s, 2H), 2.34 (s, 3H), 1.79 (s, 3H), 1.28 (s, 6H). ¹³**C NMR** (100 MHz, CDCl₃) δ 174.92, 163.33, 141.94, 137.33, 133.06, 132.64, 129.06, 128.74, 128.01, 127.65, 126.92, 123.62, 114.90, 46.63, 41.19, 26.13, 25.11, 21.25. **HRMS** (ESI) Calcd for C₂₂H₂₅NO₂: [M+H⁺] 336.1958, found 336.1960.

 $\begin{array}{c} 1-(3-fluorophenyl)-2,2,4-trimethylpent-4-en-1-one \ O-benzoyl \\ oxime \ (1d) \ was \ synthesized \ by \ General \ Procedure \ 3. \ {}^{1}H \ , {}^{13}C \\ and \ {}^{19}F \ NMR \ data \ listed \ is \ for \ the \ major \ isomer. \end{array}$

¹**H NMR** (400 MHz, CDCl₃) δ 7.57 (d, J = 7.6 Hz, 2H), 7.49 – 7.39 (m, 2H), 7.32 – 7.27 (m, 2H), 7.15 – 7.10 (m, 1H), 6.96 (d, J = 7.6 Hz, 1H), 6.95 – 6.91 (m, 1H), 4.97 (s, 1H), 4.87 (s, 1H), 2.38 (s, 2H), 1.82 (s, 3H), 1.32 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 173.66 (d, J = 1.0 Hz), 163.39, 162.29 (d, J = 246.0 Hz), 141.97, 135.34 (d, J = 8.0 Hz), 133.01, 129.76 (d, J = 8.0 Hz), 129.30, 128.83, 128.31, 122.68 (d, J = 3.0 Hz), 115.38, 115.20, 114.07 (d, J = 23.0 Hz), 46.89, 41.49, 26.34, 25.32, 25.29. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -112.20 (s). **HRMS (ESI)** Calcd for C₂₁H₂₂FNO₂: [M+H⁺] 340.1707, found 340.1711.

¹**H NMR** (400 MHz, CDCl₃) δ 7.56 – 7.53 (m, 2H), 7.43 – 7.38 (m, 1H), 7.25 – 7.19 (m, 4H), 7.03 (d, *J* = 8.0 Hz, 2H), 4.93 – 4.90 (m, 1H), 4.83 – 4.81 (m, 1H), 2.37 (s, 3H), 2.35 (s, 2H), 1.79 (s, 3H), 1.28 (s, 6H). ¹³**C NMR** (100 MHz, CDCl₃) δ 175.11, 163.48, 142.01, 137.78, 132.68, 130.33, 130.15, 129.14, 128.45, 128.07, 126.46, 114.87, 46.68, 41.32, 41.32, 26.16, 25.15, 21.10. **HRMS (ESI)** Calcd for C₂₂H₂₅NO₂:

¹**H NMR** (400 MHz, CDCl₃) δ 7.68 – 7.62 (m, 1H), 7.53 – 7.48 (m, 2H), 7.44 – 7.40 (m, 2H), 7.31 – 7.26 (m, 2H), 7.14 – 7.11 (m, 2H), 4.96 (t, *J* = 1.6 Hz, 1H), 4.87 – 4.86 (m, 1H), 2.35 (s, 2H), 1.81 (s, 3H), 1.31 (s, 6H). ¹³**C NMR** (100 MHz, CDCl₃) δ 173.89, 162.18, 141.85, 134.37, 134.27, 132.91, 131.65, 130.38, 129.15, 128.23, 128.11, 115.06, 46.77, 41.40, 26.24, 25.17. HRMS (ESI) Calcd for C₂₁H₂₂CINO₂: [M+H⁺] 356.1412, found 356.1412.

¹**H NMR** (400 MHz, CDCl₃) δ 7.61 – 7.58 (m, 2H), 7.45 – 7.40 (m, 1H), 7.28 – 7.24 (m, 2H), 6.90 (d, *J* = 8.0 Hz, 1H), 6.73 – 6.67 (m, 2H), 4.94 – 4.92 (m, 1H), 4.85 (s, 1H), 3.89 (s, 3H), 3.81 (s, 3H), 2.34 (s, 2H), 1.79 (s, 3H), 1.30 (s, 6H). ¹³**C NMR** (100 MHz, CDCl₃) δ 174.63, 163.54, 148.59, 148.23, 142.11, 132.77, 129.13, 128.85, 128.16, 125.43, 119.20, 114.74, 110.35, 110.09, 55.78, 55.66, 46.82, 41.51, 26.32, 25.16. **HRMS (ESI)** Calcd for C₂₃H₂₇NO₄: [M+H⁺] 382.2013, found 382.2014.

2,2-dimethyl-4-methylene-1-phenyloctan-1-one O-benzoyl oxime (11) was synthesized by General Procedure 1 and 3. ¹H and ¹³C NMR data listed is for the major isomer.

¹H NMR (400 MHz, CDCl₃) δ 7.54 – 7.50 (m, 2H), 7.45 – 7.38 (m, 4H), 7.27 – 7.22 (m, 2H), 7.17 – 7.13 (m, 2H), 4.96 (s, 1H), 4.92 (s, 1H), 2.34 (s, 2H), 2.03 (t, *J* = 7.2 Hz, 2H), 1.43 – 1.37 (m, 2H), 1.31 (s, 6H), 1.26 (t, *J* = 6.8 Hz, 2H), 0.87 (t, *J* = 7.6 Hz, 3H).
¹³C NMR (100 MHz, CDCl₃) δ 175.28, 163.54, 146.12, 133.38, 132.83, 129.27,

129.00, 128.20, 127.92, 126.66, 113.46, 44.92, 41.53, 38.17, 30.29, 26.19, 22.39, 13.96. **HRMS (ESI)** Calcd for C₂₄H₂₉NO₂: [M+H⁺] 364.2271, found 364.2272.

4-(4-methoxyphenyl)-2,2-dimethyl-1-phenylpent-4-en-1one O-benzoyl oxime (1p) was synthesized by General Procedure 2 and 3. ¹H and ¹³C NMR data listed is for the

major isomer.

¹**H NMR** (400 MHz, CDCl₃) δ 7.52 (d, J = 7.2 Hz, 2H), 7.44 – 7.37 (m, 4H), 7.30 (d, J = 8.8 Hz, 2H), 7.27 – 7.22 (m, 2H), 7.07 – 7.04 (m, 2H), 6.80 (d, J = 8.8 Hz, 2H), 5.30 (s, 1H), 5.13 (s, 1H), 3.73 (s, 3H), 2.93 (s, 2H), 1.15 (s, 6H). ¹³**C NMR** (100 MHz, CDCl₃) δ 175.09, 163.52, 158.83, 144.83, 135.49, 133.33, 132.84, 129.23, 128.93, 128.19, 128.14, 127.91, 127.63, 126.57, 116.60, 113.45, 55.11 (d, J = 5.0 Hz), 44.35, 41.84, 26.14 (d, J = 2.0 Hz). **HRMS (ESI)** Calcd for C₂₇H₂₇NO₃: [M+H⁺] 414.2064, found 414.2068.

2,2-dimethyl-4-(naphthalen-2-yl)-1-phenylpent-4-en-1-one O-benzoyl oxime (1q) was synthesized by General Procedure 2 and 3. ¹H and ¹³C NMR data listed is for the

major isomer.

¹**H NMR** (400 MHz, CDCl₃) δ 7.81 – 7.73 (m, 4H), 7.55 – 7.50 (m, 3H), 7.42 – 7.37 (m, 6H), 7.23 (d, *J* = 8.0 Hz, 2H), 7.08 – 7.05 (m, 2H), 5.51 (s, 1H), 5.33 (s, 1H), 3.09 (s, 2H), 1.17 (s, 6H). ¹³**C NMR** (100 MHz, CDCl₃) δ 175.04, 163.59, 145.48, 140.48, 133.35, 133.25, 132.84, 132.63, 129.29, 128.20, 128.05, 127.95, 127.78, 127.43, 126.65, 126.04, 125.70, 125.16, 125.13, 118.64, 44.34, 42.01, 26.22. **HRMS (ESI)** Calcd for C₃₀H₂₇NO₂: [M+H⁺] 434.2115, found 434.2118.

2,2,5-trimethyl-1-phenylhex-4-en-1-one O-benzoyl oxime (1r) was synthesized by General Procedure 3. ¹H and ¹³C NMR data listed is for the major isomer.

¹**H NMR** (400 MHz, CDCl₃) δ 7.55 – 7.52 (m, 2H), 7.46 – 7.39 (m, 4H), 7.29 – 7.24 (m, 2H), 7.14 – 7.11 (m, 2H), 5.29 (t, *J* = 6.8 Hz, 1H), 2.27 (d, *J* = 7.2 Hz, 2H), 1.76

(s, 3H), 1.60 (s, 3H), 1.29 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 174.94, 163.57, 134.20, 133.49, 132.78, 129.29, 129.14, 128.19, 128.11, 127.91, 126.68, 119.79 (d, *J* = 4.0 Hz), 42.02, 38.19, 25.99, 25.57, 18.12. HRMS (ESI) Calcd for C₂₂H₂₅NO₂: [M+H⁺] 336.1958, found 336.1962.

N'^{OBz}

2-(cyclohex-2-en-1-yl)-2-methyl-1-phenylpropan-1-one O-benzoyl oxime (1s) was synthesized by General Procedure 3. ¹H and ¹³C NMR data listed is for the major isomer.

¹**H NMR** (400 MHz, CDCl₃) δ 7.54 – 7.51 (m, 2H), 7.46 – 7.38 (m, 4H), 7.29 – 7.24 (m, 2H), 7.15 – 7.12 (m, 2H), 5.86 – 5.74 (m, 2H), 2.47 (s, 1H), 1.99 (s, 2H), 1.86 – 1.78 (m, 2H), 1.51 – 1.40 (m, 2H), 1.28 (s, 3H), 1.24 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 175.03, 163.60, 133.45, 132.82, 129.44, 129.28, 129.07, 128.21, 128.15, 127.96, 127.76, 126.75, 44.57, 40.82, 25.17, 23.83, 23.54, 22.48, 21.21. **HRMS (ESI)** Calcd for C₂₃H₂₅NO₂: [M+H⁺] 348.1958, found 348.1960.

(1-(2-methylallyl)cyclohexyl)(phenyl)methanone O-benzoyl oxime
 (1t) was synthesized by General Procedure 3. ¹H and ¹³C NMR data listed is for the major isomer.

¹**H NMR** (400 MHz, CDCl₃) δ 7.56 – 7.52 (m, 2H), 7.46 – 7.38 (m, 4H), 7.29 – 7.21 (m, 4H), 4.97 (s, 1H), 4.95 (s, 1H), 2.38 (s, 2H), 2.04 – 2.00 (m, 2H), 1.84 (s, 3H), 1.70 – 1.65 (m, 3H), 1.59 – 1.53 (m, 5H). ¹³**C NMR** (100 MHz, CDCl₃) δ 173.43, 163.60, 141.90, 133.27, 132.82, 129.31, 129.09, 128.25, 128.22, 127.91, 126.82, 114.92, 45.14, 34.25, 31.91, 29.35, 25.95, 25.47, 22.68, 22.46. **HRMS (ESI)** Calcd for C₂₄H₂₇NO₂: [M+H⁺] 362.2115, found 362.2116.

N'-(benzoyloxy)-N-benzyl-N-(2-methylallyl)benzimidamide (1u) N'-(benzoyloxy)-N-benzyl-N-(2-methylallyl)benzimidamide (1u) was synthesized by General Procedure 6. ¹H and ¹³C NMR data listed is for the major isomer.

¹**H NMR** (400 MHz, CDCl₃) δ 7.60 – 7.57 (m, 2H), 7.49 – 7.36 (m, 10H), 7.33 – 7.27 (m, 3H), 4.98 (s, 1H), 4.92 (s, 1H), 4.57 (s, 2H), 3.72 (s, 2H), 1.70 (s, 3H). ¹³**C NMR**

(100 MHz, CDCl₃) δ 167.33, 164.52, 140.52, 137.25, 132.33, 131.56, 129.76, 129.38, 129.05, 128.52, 128.46, 128.07, 127.66, 127.32, 112.88, 52.56, 50.11, 20.22. **HRMS** (ESI) Calcd for C₂₅H₂₄N₂O₂: [M+H⁺] 385.1911, found 385.1913.

and Characterization of **Synthesis Phosphorylated Pyrrolines:**

In a 25.0 mL sealed tube, 1 (0.2 mmol, 1.0 equiv), 2 (0.2 or 0.4 mmol, 1.0 or 2.0 equiv), K₂CO₃ (55.3 mg, 0.4 mmol, 2.0 equiv) were added to a solution of AgNO₃ (17.0 mg, 0.1 mmol, 0.5 equiv) in MeCN (3.0 mL). Then, the tube was purged with N₂ for three times and sealed with PTEF cap. The reaction was allowed to stir at 100 °C for 12 h. Afterward, the resulting mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel to afford the desired pure products 3 listed in Scheme 2 and Scheme 3.

Diethyl((2,4,4-trimethyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)methyl)phosphonate **(3aa)**

 $\begin{array}{c} \textbf{N} \quad \textbf{Vield: 96\%, 64.8 mg; appearance: brown oil; R_{f}: 0.2 (petroleum ether/ethyl acetate = 1:1). ^{1}H NMR (400 MHz, CDCl_{3}) \delta 7.66 - \end{array}$ 7.61 (m, 2H), 7.38 - 7.29 (m, 3H), 4.16 - 4.00 (m, 4H), 2.40 (d, J = 13.6 Hz, 1H), 2.34 (dd, J = 18.4, 15.2 Hz, 1H), 2.04 (dd, J = 18.4, 15.2 Hz, 1H), 1.92 (d, J = 13.6Hz, 1H), 1.48 (s, 3H), 1.37 (s, 3H), 1.34 (s, 3H), 1.32 – 1.25 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 177.18 (d, J = 1.0 Hz), 134.78, 129.21, 128.03, 127.94, 69.49, 61.29 (d, J = 6.0 Hz), 61.23 (d, J = 5.0 Hz), 51.98, 51.92, 39.21 (d, J = 136.0 Hz), 29.70 (d,J = 4.0 Hz), 28.77 (d, J = 2.0 Hz), 28.38 (d, J = 2.0 Hz), 16.34 (d, J = 6.0 Hz). ³¹P **NMR** (162 MHz, CDCl₃) δ 28.25 (s). **HRMS (ESI)** Calcd for C₁₈H₂₈NO₃P: [M+H⁺] 338.1880, found 338.1887.

Diethyl((5-(2-methoxyphenyl)-2,4,4-trimethyl-3,4-dihydro-2H-pyrrol-2*vl)methyl)phosphonate* (3ba)

Yield: 93%, 68.2 mg; appearance: brown oil; Rf: 0.2 (petroleum

OMe	,∠OEt 0
\bigcirc	0

ether/ethyl acetate = 1:2). ¹**H** NMR (400 MHz, CDCl₃) δ 7.30 – 7.24 (m, 1H), 7.08 – 7.05 (m, 1H), 6.92 – 6.85 (m, 2H), 4.15 – 4.03 (m, 4H), 3.73 (s, 3H), 2.36 (dd, J = 18.4, 15.2 Hz, 1H), 2.35 (d, J = 13.2 Hz, 1H), 2.04 (dd, J = 18.0, 15.2 Hz, 1H), 1.89 (d, J = 13.6 Hz, 1H), 1.49 (s, 3H), 1.33 – 1.26 (m, 6H), 1.14 (s, 3H), 1.14 (s, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 177.44, 156.96, 129.38, 129.29, 124.83, 119.80, 110.91, 70.81, 61.28, 61.31 (d, J = 6.0 Hz), 61.20 (d, J = 6.0 Hz), 55.33 (d, J = 4.0 Hz), 53.61, 49.67, 39.16 (d, J = 136.0 Hz), 29.59 (d, J = 3.0 Hz), 27.80 (d, J = 2.0 Hz), 27.69 (d, J = 2.0 Hz), 16.33 (d, J = 6.0 Hz). ³¹**P** NMR (162 MHz, CDCl₃) δ 28.46 (s). HRMS (ESI) Calcd for C₁₉H₃₀NO₄P: [M+H⁺] 368.1985, found 368.1990.

Diethyl((2,4,4-trimethyl-5-(m-tolyl)-3,4-dihydro-2H-pyrrol-2-yl)methyl)phosphonate (3ca)

Yield: 90%, 63.1 mg; appearance: green oil; R_f : 0.2 (petroleum ether/ethyl acetate = 1:1). ¹**H NMR** (400 MHz, CDCl₃) δ 7.47 (s, 1H), 7.43 – 7.40 (m, 1H), 7.25 – 7.15 (m, 2H), 4.15 – 4.02

(m, 4H), 2.40 (d, J = 13.6 Hz, 1H), 2.35 (dd, J = 18.4, 15.2 Hz, 1H), 2.34 (s, 3H), 2.04 (dd, J = 18.0, 15.2 Hz, 1H), 1.92 (d, J = 13.2 Hz, 1H), 1.49 (s, 3H), 1.37 (s, 3H), 1.34 (s, 3H), 1.33 – 1.27 (m, 6H). ¹³**C NMR** (100 MHz, CDCl₃) δ 177.41, 137.74, 134.74, 130.00, 128.77, 127.85, 124.79, 69.44, 61.30 (d, J = 4.0 Hz), 61.24 (d, J = 5.0 Hz), 51.94, 39.21 (d, J = 136.0 Hz), 29.68 (d, J = 4.0 Hz), 28.83 (d, J = 2.0 Hz), 28.45 (d, J = 1.0 Hz), 21.35 (d, J = 3.0 Hz), 16.36 (d, J = 5.0 Hz). ³¹**P NMR** (162 MHz, CDCl₃) δ 28.29 (s). **HRMS (ESI)** Calcd for C₁₉H₃₀NO₃P: [M+H⁺] 352.2036, found 352.2041.

Diethyl((5-(3-fluorophenyl)-2,4,4-trimethyl-3,4-dihydro-2H-pyrrol-2-yl)methyl)phosphonate (3da)

Yield: 96%, 68.0 mg; appearance: brown oil; R_{f} : 0.2 (petroleum ether/ethyl acetate = 1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.35 (m, 2H), 7.34 – 7.27 (m, 1H), 7.09 – 7.03

(m, 1H), 4.15 – 4.01 (m, 4H), 2.41 (d, *J* = 13.2 Hz, 1H), 2.32 (dd, *J* = 18.4, 15.2 Hz, 1H), 2.04 (dd, *J* = 18.4, 15.2 Hz, 1H), 1.92 (d, *J* = 13.2 Hz, 1H), 1.47 (s, 3H), 1.37 (s, 3

3H), 1.34 (s, 3H), 1.32 – 1.26 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 176.03, 162.42 (d, J = 244.0 Hz), 136.94 (d, J = 7.0 Hz), 129.63 (d, J = 8.0 Hz), 123.65 (d, J = 3.0 Hz), 116.22 (d, J = 22.0 Hz), 115.14 (d, J = 22.0 Hz), 69.66, 61.34 (d, J = 6.0 Hz), 61.28 (d, J = 6.0 Hz), 52.00, 51.89, 39.14 (d, J = 136.0 Hz), 29.74 (d, J = 4.0 Hz), 28.74 (d, J = 2.0 Hz), 28.27 (d, J = 2.0 Hz), 16.35 (d, J = 6.0 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -112.91 (s). ³¹P NMR (162 MHz, CDCl₃) δ 28.01 (s). HRMS (ESI) Calcd for C₁₈H₂₇FNO₃P: [M+H⁺] 356.1785, found 356.1784.

Diethyl((5-(4-methoxyphenyl)-2,4,4-trimethyl-3,4-dihydro-2H-pyrrol-2-

yl)methyl)phosphonate (3ea)

Yield: 95%, 69.7 mg; appearance: green oil; R_f: 0.2 (petroleum ether/ethyl acetate = 1:3). ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, J = 8.8 Hz, 2H), 6.85 (d, J = 8.8 Hz, 2H), 4.14 - 4.01 (m, 4H), 3.79 (s, 3H), 2.38 (d, J = 13.6 Hz, 1H), 2.33 (dd, J = 18.4, 15.6)

Hz, 1H), 2.02 (dd, J = 18.0, 15.2 Hz, 1H), 1.92 (d, J = 13.6 Hz, 1H), 1.46 (s, 3H), 1.39 (s, 3H), 1.36 (s, 3H), 1.31 – 1.25 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 176.06 (d, J = 1.0 Hz), 160.54, 129.60, 126.96, 113.41, 69.01, 61.28 (d, J = 3.0 Hz), 61.22 (d, J = 3.0 Hz), 52.17 (d, J = 5.0 Hz), 52.46 (d, J = 2.0 Hz), 51.57, 39.27 (d, J = 135.0Hz), 29.71 (d, J = 4.0 Hz), 28.94 (d, J = 2.0 Hz), 28.58 (d, J = 2.0 Hz), 16.34 (d, J =5.0 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 28.38 (s). HRMS (ESI) Calcd for C₁₉H₃₀NO₄P: [M+H⁺] 368.1985, found 368.1991.

Diethyl((2,4,4-trimethyl-5-(p-tolyl)-3,4-dihydro-2H-pyrrol-2-yl)methyl)phosphonate (3fa)

Yield: 75%, 52.7 mg; appearance: brown oil; R_f : 0.2 (petroleum ether/ethyl acetate = 1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, *J* = 8.0 Hz, 2H), 7.15 (d, *J* = 8.0 Hz, 2H),

4.15 - 4.02 (m, 4H), 2.40 (d, J = 13.2 Hz, 1H), 2.35 (dd, J = 18.4, 15.6 Hz, 1H), 2.35 (s, 3H), 2.04 (dd, J = 18.4, 15.6 Hz, 1H), 1.92 (d, J = 13.2 Hz, 1H), 1.48 (s, 3H), 1.39 (s, 3H), 1.36 (s, 3H), 1.33 - 1.27 (m, 6H). ¹³**C NMR** (100 MHz, CDCl₃) δ 176.88,

139.34, 131.80, 128.77, 127.99, 69.31, 61.32 (d, J = 4.0 Hz), 61.25 (d, J = 4.0 Hz), 52.23, 51.80, 39.28 (d, J = 135.0 Hz), 29.72 (d, J = 4.0 Hz), 28.89 (d, J = 1.0 Hz), 28.53 (d, J = 1.0 Hz), 21.24 (d, J = 4.0 Hz), 16.38 (d, J = 6.0 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 28.37 (s). HRMS (ESI) Calcd for C₁₉H₃₀NO₃P: [M+H⁺] 352.2036, found 352.2045.

Diethyl((5-(4-chlorophenyl)-2,4,4-trimethyl-3,4-dihydro-2H-pyrrol-2-

yl)methyl)phosphonate (3ga)

Yield: 85%, 63.2 mg; appearance: brown oil; R_f : 0.2 (petroleum ether/ethyl acetate = 1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.63 – 7.59 (m, 2H), 7.33 – 7.29 (m, 2H), 4.14 –

4.02 (m, 4H), 2.40 (d, J = 13.6 Hz, 1H), 2.31 (dd, J = 18.8, 15.6 Hz, 1H), 2.03 (dd, J = 18.4, 15.6 Hz, 1H), 1.92 (d, J = 13.6 Hz, 1H), 1.47 (s, 3H), 1.36 (s, 3H), 1.33 (s, 3H), 1.32 – 1.26 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 176.03, 135.44, 133.12, 129.40, 128.30, 69.58, 61.33 (d, J = 6.0 Hz), 61.27 (d, J = 6.0 Hz), 52.05, 51.81, 39.15 (d, J = 136.0 Hz), 29.75 (d, J = 6.0 Hz), 28.76, 28.31 (d, J = 1.0 Hz), 16.36 (d, J = 6.0 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 28.05 (s). HRMS (ESI) Calcd for C₁₈H₂₇ClNO₃P: [M+H⁺] 372.1490, found 372.1492.

Diethyl((2,4,4-trimethyl-5-(4-(trifluoromethyl)phenyl)-3,4-dihydro-2H-pyrrol-2-yl)methyl)phosphonate (3ha)

F₃C F_3 C F_3 C F

Hz, 2H), 4.13 - 4.00 (m, 4H), 2.42 (d, J = 13.6 Hz, 1H), 2.30 (dd, J = 18.4, 15.2 Hz, 1H), 2.04 (dd, J = 18.0, 15.2 Hz, 1H), 1.92 (d, J = 13.6 Hz, 1H), 1.46 (s, 3H), 1.35 (s, 3H), 1.32 (s, 3H), 1.31 - 1.23 (m, 6H). ¹³C **NMR** (100 MHz, CDCl₃) δ 176.12, 138.38, 131.09 (q, J = 33.0 Hz), 128.32, 124.95 (q, J = 3.0 Hz), 123.89 (q, J = 271.0 Hz), 69.96, 61.31 (d, J = 6.0 Hz), 61.22 (d, J = 6.0 Hz), 51.97, 51.79, 39.09 (d, J = 137.0 Hz), 29.75 (d, J = 6.0 Hz), 28.60 (d, J = 2.0 Hz), 28.10 (d, J = 3.0 Hz), 16.29 (d,

J = 4.0 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.84 (s). ³¹P NMR (162 MHz, CDCl₃) δ 27.84 (s). HRMS (ESI) Calcd for C₁₉H₂₇F₃NO₃P: [M+H⁺] 406.1753, found 406.1758.

Diethyl((5-(3,4-dimethoxyphenyl)-2,4,4-trimethyl-3,4-dihydro-2H-pyrrol-2-yl)methyl)phosphonate (3ia)

MeO N P OEt MeO EtO O Yield: 93%, 73.8 mg; appearance: brown oil; R_f : 0.2 (petroleum ether/ethyl acetate = 1:2). ¹H NMR (400 MHz, CDCl₃) δ 7.31 (s, 1H), 7.26 – 7.22 (m, 1H), 6.80 – 6.76 (m,

1H), 4.10 - 4.00 (m, 4H), 3.87 - 3.83 (m, 6H), 2.38 - 2.27 (m, 2H), 2.05 - 1.95 (m, 1H), 1.89 (d, J = 13.6 Hz, 1H), 1.45 (s, 3H), 1.38 (s, 3H), 1.35 (s, 3H), 1.30 - 1.23 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 175.90, 150.18, 148.52, 127.17, 120.82, 111.51, 110.14, 68.95, 61.22 (d, J = 5.0 Hz), 61.15 (d, J = 4.0 Hz), 55.78 (d, J = 5.0 Hz), 55.73 (d, J = 5.0 Hz), 52.58 (d, J = 2.0 Hz), 51.52, 39.24 (d, J = 136.0 Hz), 29.63 (d, J = 5.0 Hz), 29.01 (d, J = 1.0 Hz), 28.67, 16.30 (d, J = 6.0 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 28.32 (s). HRMS (ESI) Calcd for C₂₀H₃₂NO₅P: [M+H⁺] 398.2091, found 398.2100.

Diethyl((2,4,4-trimethyl-5-(naphthalen-2-yl)-3,4-dihydro-2H-pyrrol-2-

yl)methyl)phosphonate (3ja)

Yield: 79%, 61.2 mg; appearance: brown oil; R_f : 0.2 (petroleum ether/ethyl acetate = 1:1). ¹H NMR (400 MHz, CDCl₃) δ 8.152 (s, 1H), 7.88 – 7.81 (m, 4H), 7.52 – 7.46 (m,

2H), 4.18 - 4.05 (m, 4H), 2.48 (d, J = 13.2 Hz, 1H), 2.41 (dd, J = 18.4, 15.2 Hz, 1H), 2.12 (dd, J = 18.4, 15.6 Hz, 1H), 2.00 (d, J = 13.6 Hz, 1H), 1.55 (s, 3H), 1.49 (s, 3H), 1.46 (s, 3H), 1.35 - 1.29 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 177.00, 133.66, 132.80, 132.12, 128.56, 127.74, 127.66, 127.57, 126.70, 126.20, 125.75, 69.61, 61.38 (d, J = 4.0 Hz), 61.32 (d, J = 5.0 Hz), 52.34, 52.05, 39.30 (d, J = 136.0 Hz), 29.83 (d, J = 5.0 Hz), 29.05 (d, J = 0.8 Hz), 28.65 (d, J = 0.8 Hz), 16.41 (d, J = 5.0 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 28.26 (s). HRMS (ESI) Calcd for C₂₂H₃₀NO₃P: [M+H⁺]

Diethyl((2,4,4-trimethyl-5-(thiophen-2-yl)-3,4-dihydro-2H-pyrrol-2-

yl)methyl)phosphonate (3ka)

1H), 4.16 - 4.02 (m, 4H), 2.43 (d, J = 13.2 Hz, 1H), 2.34 (dd, J = 18.4, 15.6 Hz, 1H), 2.06 (dd, J = 18.0, 15.2 Hz, 1H), 1.94 (d, J = 13.6 Hz, 1H), 1.47 (s, 6H), 1.46 (s, 3H), 1.33 - 1.27 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 170.77, 138.08, 128.33, 127.99, 127.32, 70.06, 61.39 (d, J = 7.0 Hz), 61.31 (d, J = 6.0 Hz), 52.46(d, J = 2.0 Hz), 51.52, 39.21 (d, J = 136.0 Hz), 29.96 (d, J = 6.0 Hz), 28.81 (d, J = 22.0 Hz), 16.40 (d, J =5.0 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 28.09 (s). HRMS (ESI) Calcd for $C_{16}H_{26}NO_3PS$: [M+H⁺] 344.1444, found 344.1450.

Diethyl ((2-butyl-4,4-dimethyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-byrrol-2-

yl)methyl)phosphonate (3la)

Yield: 88%, 66.7 mg; appearance: brown oil; R_f : 0.2 (petroleum Ph, Fto^{OEt} ether/ethyl acetate = 1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.65 – 7.62 (m, 2H), 7.35 – 7.30 (m, 3H), 4.12 – 4.01 (m, 4H), 2.38 (d, J = 13.6 Hz, 1H), 2.34 (dd, J = 18.8, 15.6 Hz, 1H), 2.02 (dd, J = 18.4, 15.6 Hz, 1H), 1.92 (d, J = 13.6 Hz, 1H), 1.83 – 1.70 (m, 2H), 1.39 (s, 3H), 1.32 – 1.24 (m, 13H), 0.89 (t, J = 2.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 177.45, 135.01, 129.09, 127.99, 127.98, 72.48, 61.27 (d, J = 6.0 Hz), 61.14 (d, J = 7.0 Hz), 51.66, 49.26, 41.91 (d, J = 7.0 Hz), 37.28 (d, J = 137.0 Hz), 28.73 (d, J = 1.0 Hz), 28.43 (d, J = 2.0Hz), 26.61, 23.12, 16.33 (d, J = 6.0 Hz), 14.02. ³¹P NMR (162 MHz, CDCl₃) δ 28.50 (s). HRMS (ESI) Calcd for C₂₁H₃₄NO₃P: [M+H⁺] 380.2349, found 380.2358.

Diethyl((2-isobutyl-4,4-dimethyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)methyl)phosphonate (3ma)

Yield: 75%, 56.9 mg; appearance: brown oil; R_f: 0.2 (petroleum ether/ethyl acetate = 1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.70 – 7.66 (m, 2H), 7.36 - 7.30 (m, 3H), 4.14 - 4.01 (m, 4H), 2.44 (d, J

= 13.6 Hz, 1H), 2.36 (dd, J = 18.4, 15.2 Hz, 1H), 2.06 (dd, J = 18.8, 15.2 Hz, 1H), 1.92 (d, J = 13.6 Hz, 1H), 1.86 - 1.66 (m, 3H), 1.43 (s, 3H), 1.33 (s, 3H), 1.32 - 1.25(m, 6H), 1.00 (d, J = 6.4 Hz, 3H), 0.96 (d, J = 6.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 176.72, 134.97, 129.14, 128.04, 72.92 (d, J = 1.0 Hz), 61.33 (d, J = 6.0 Hz), 61.19 (d, J = 6.0 Hz), 51.38, 50.90 (d, J = 6.0 Hz), 50.36, 37.38 (d, J = 136.0 Hz), 28.74 (d, J = 1.0 Hz), 28.43 (d, J = 2.0 Hz), 25.05, 24.78, 24.57, 16.37 (d, J = 6.0 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 28.52 (s). HRMS (ESI) Calcd for C₂₁H₃₄NO₃P: [M+H⁺] 380.2349, found 380.2358.

Diethyl((4,4-dimethyl-2,5-diphenyl-3,4-dihydro-2H-pyrrol-2-yl)methyl)phosphonate (**3na**)

Yield: 90%, 71.9 mg; appearance: brown oil; R_f: 0.3 (petroleum

ether/ethyl acetate = 1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.80 –

7.76 (m, 2H), 7.56 - 7.53 (m, 2H), 7.40 - 7.36 (m, 3H), 7.32 -7.27 (m, 2H), 7.22 – 7.17 (m, 1H), 4.06 – 3.90 (m, 2H), 3.88 – 3.80 (m, 2H), 2.83 (d, J = 13.2 Hz, 1H), 2.66 – 2.44 (m, 3H), 1.43 (s, 3H), 1.23 – 1.18 (m, 3H), 1.14 – 1.10 (m, 3H), 1.06 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 178.46, 147.99 (d, J = 9.0 Hz), 134.76, 129.38, 128.14, 128.05, 127.98, 126.43, 125.98, 73.94 (d, J = 2.0 Hz), 61.35 (d, J = 7.0 Hz), 61.01 (d, J = 6.0 Hz), 52.20 (d, J = 3.0 Hz), 51.50, 41.19 (d, J = 136.0 Hz)Hz), 27.43 (d, J = 1.0 Hz), 27.02 (d, J = 2.0 Hz), 16.29 (d, J = 2.0 Hz), 16.23 (d, J =2.0 Hz), 16.17 (d, J = 2.0 Hz), 16.10 (d, J = 2.0 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 26.64 (s). **HRMS (ESI)** Calcd for C₂₃H₃₀NO₃P: [M+H⁺] 400.2036, found 400.2044.

Diethyl((4,4-dimethyl-5-phenyl-2-(m-tolyl)-3,4-dihydro-2H-pyrrol-2-

yl)methyl)phosphonate (30a)

Yield: 89%, 73.6 mg; appearance: brown oil; R_f: 0.3 (petroleum ether/ethyl acetate = 1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.80 – 21

7.76 (m, 2H), 7.40 – 7.31 (m, 5H), 7.21 – 7.16 (m, 1H), 7.03 – 7.00 (m, 1H), 4.07 – 3.90 (m, 2H), 3.90 – 3.82 (m, 2H), 2.85 (d, J = 13.2 Hz, 1H), 2.64 – 2.45 (m, 3H), 2.33 (s, 3H), 1.42 (s, 3H), 1.21 (t, J = 7.2 Hz, 3H), 1.14 (t, J = 7.2 Hz, 3H), 1.08 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 178.49, 148.13 (d, J = 10.0 Hz), 137.48, 134.89, 129.34, 128.17, 128.06, 127.88, 127.15, 126.62, 122.99, 73.96 (d, J = 3.0 Hz), 61.36 (d, J = 7.0 Hz), 61.00 (d, J = 7.0 Hz), 52.08 (d, J = 2.0 Hz), 51.51, 41.20 (d, J = 136.0 Hz), 27.39 (d, J = 1.0 Hz), 27.13 (d, J = 2.0 Hz), 21.54 (d, J = 4.0 Hz), 16.29 (d, J = 5.0 Hz), 16.17 (d, J = 5.0 Hz). ³¹**P NMR** (162 MHz, CDCl₃) δ 26.76 (s). **HRMS (ESI)** Calcd for C₂₄H₃₂NO₃P: [M+H⁺] 414.2193, found 414.2192.

Diethyl((2-(4-methoxyphenyl)-4,4-dimethyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)methyl)phosphonate (3pa)

Yield: 86%, 73.7 mg; appearance: brown oil; R_f : 0.2 (petroleum ether/ethyl acetate = 1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.77 – 7.74 (m, 2H), 7.49 – 7.44 (m, 2H), 7.40 – 7.34 (m, 3H), 6.86 – 6.81 (m, 2H), 4.04 – 3.90 (m, 2H), 3.89 – 3.80 (m, 2H), 3.77 (s, 3H), 2.78 (d, J = 13.2 Hz, 1H), 2.59 (dd, J = 18.4, 15.6 Hz, 1H), 2.51 (d, J = 13.2 Hz, 1H), 2.45 (dd, J = 18.0, 15.6 Hz, 1H), 1.41 (s, 3H), 1.21 (t, J = 7.2 Hz, 3H), 1.13 (t, J = 7.2 Hz, 3H), 1.06 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 178.29, 158.08, 140.03, 134.80, 129.37, 128.11, 128.07, 127.12, 113.26, 73.55 (d, J = 2.0 Hz), 61.32 (d, J = 7.0 Hz), 60.57 (d, J = 6.0 Hz), 55.16 (d, J = 5.0 Hz), 52.18 (d, J = 2.0 Hz), 51.54, 41.34 (d, J = 135.0 Hz), 27.46 (d, J = 2.0 Hz), 26.96 (d, J = 3.0 Hz), 16.29 (d, J = 6.0 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 26.80 (s). HRMS (ESI) Calcd for C₂₄H₃₂NO₄P: [M+H⁺] 430.2142, found 430.2142.

Diethyl((4,4-dimethyl-2-(naphthalen-2-yl)-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)methyl)phosphonate (3qa)

Yield: 74%, 66.5 mg; appearance: brown oil; R_f: 0.3 (petroleum ether/ethyl acetate = 1:1). ¹**H** NMR (400 MHz, CDCl₃) δ 7.98 (s, 1H), 7.83 – 7.78 (m, 5H), 7.70 (d, *J* = 8.0 Hz, 1H), 7.45 – 7.40 (m,

5H), 4.07 - 3.92 (m, 2H), 3.87 - 3.79 (m, 2H), 2.93 (d, J = 13.2 Hz, 1H), 2.71 (dd, J = 18.0, 15.6 Hz, 1H), 2.65 (d, J = 13.2 Hz, 1H), 2.58 (dd, J = 17.6, 15.6 Hz, 1H), 1.46 (s, 3H), 1.20 (t, J = 7.2 Hz, 3H), 1.07 (s, 3H), 1.03(t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 178.92, 145.41 (d, J = 9.0 Hz), 134.82, 133.07, 132.19, 129.45, 128.19, 128.14, 128.12, 127.74, 127.35, 125.87, 125.59, 124.77, 124.20, 74.13 (d, J = 2.0 Hz), 61.44 (d, J = 6.0 Hz), 61.05 (d, J = 7.0 Hz), 52.10 (d, J = 3.0 Hz), 51.63, 41.10 (d, J = 136.0 Hz), 27.40 (d, J = 2.0 Hz), 27.14 (d, J = 3.0 Hz), 16.26 (d, J = 4.0 Hz), 16.04 (d, J = 4.0 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 26.64 (s). HRMS (ESI) Calcd for C₂₇H₃₂NO₃P: [M+H⁺] 450.2193, found 450.2196.

Diethyl(2-(4,4-dimethyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)propan-2-yl)phosphonate (3ra)

Yield: 70%, 49.0 mg; appearance: brown oil; R_{f} : 0.2 (petroleum ether/ethyl acetate = 1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.27 (m, 3H), 7.24 – 7.20 (m, 2H), 4.21 – 4.09 (m, 4H), 2.22 – 2.11

(m, 1H), 1.92 - 1.83 (m, 1H), 1.80 - 1.73 (m, 1H), 1.55 (s, 3H), 1.38 - 1.33 (m, 9H), 1.23 (s, 3H), 1.04 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 171.71, 140.73 (d, J = 2.0 Hz), 127.87, 127.63, 127.54, 61.57 (d, J = 7.0 Hz), 61.50 (d, J = 7.0 Hz), 56.29, 39.44 (d, J = 138.0 Hz), 35.71 (d, J = 12.0 Hz), 34.80 (d, J = 5.0 Hz), 31.56, 28.44 (d, J = 2.0 Hz), 26.50 (d, J = 2.0 Hz), 25.01. ³¹**P NMR** (162 MHz, CDCl₃) δ 30.31 (s). **HRMS (ESI)** Calcd for C₁₉H₃₀NO₃P: [M+H⁺] 352.2036, found 352.2034.

Diethyl (3,3-dimethyl-2-phenyl-3a,4,5,6,7,7a-hexahydro-3H-indol-7-yl)phosphonate (3sa)

O OET Yield: 62%, 45.0 mg; appearance: brown oil; R_f : 0.2 (petroleum ether/ethyl acetate = 1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.63 – 7.60 (d, J = 6.0 Hz, 2H), 7.38 – 7.35 (m, 3H), 4.37 – 4.32 (m, 1H), 4.20 – 4.12 (m, 4H), 2.72 – 2.64 (m, 1H), 2.14 – 2.09 (m, 1H), 1.95 – 1.88 (m, 2H), 1.69 – 1.59 (m, 3H), 1.51 (s, 1H), 1.37 – 1.32 (m, 9H), 1.19 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 180.71 (d, J = 2.0 Hz), 135.36, 129.40, 128.12, 127.53, 64.81 (d, J = 3.0 Hz), 61.68

(d, J = 6.0 Hz), 61.53 (d, J = 7.0 Hz), 53.47, 48.56 (d, J = 2.0 Hz), 36.01 (d, J = 139.0 Hz)Hz), 24.18 (d, J = 1.0 Hz), 23.35, 21.66 (d, J = 4.0 Hz), 21.13 (d, J = 2.0 Hz), 20.47 (d, J = 4.0 Hz), 16.48 (d, J = 6.0 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 33.04 (s). HRMS (ESI) Calcd for $C_{20}H_{30}NO_3P$: [M+H⁺] 364.2036, found 364.2033.

Diethyl((3-methyl-1-phenyl-2-azaspiro[4.5]dec-1-en-3-yl)methyl)phosphonate (3ta)

 \sim_{FOEt} Yield: 91%, 68.6 mg; appearance: brown oil; R_f: 0.2 (petroleum other/stl.) ether/ethyl acetate = 1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.50 – 7.46 (m, 2H), 7.37 - 7.33 (m, 3H), 4.15 - 4.04 (m, 4H), 2.40 (d, J =

14.0 Hz, 1H), 2.35 (dd, J = 18.4, 15.2 Hz, 1H), 2.05 (dd, J = 18.4, 15.2 Hz, 1H), 1.99 $(d, J = 13.6 \text{ Hz}, 1\text{H}), 1.72 - 1.55 \text{ (m, 7H)}, 1.49 \text{ (s, 3H)}, 1.42 - 1.37 \text{ (m, 1H)}, 1.35 - 1.55 \text{ (m, 7H)}, 1.49 \text{ (s, 3H)}, 1.42 - 1.37 \text{ (m, 1H)}, 1.35 - 1.55 \text{ (m, 7H)}, 1.49 \text{ (s, 3H)}, 1.42 - 1.37 \text{ (m, 1H)}, 1.35 - 1.55 \text{ (m, 7H)}, 1.49 \text{ (s, 3H)}, 1.42 - 1.37 \text{ (m, 1H)}, 1.35 - 1.55 \text{ (m, 7H)}, 1.49 \text{ (s, 3H)}, 1.42 - 1.57 \text{ (m, 1H)}, 1.35 - 1.55 \text{ (m, 7H)}, 1.49 \text{ (s, 3H)}, 1.42 - 1.57 \text{ (m, 1H)}, 1.35 - 1.55 \text{ (m, 7H)}, 1.49 \text{ (s, 3H)}, 1.49 \text{ (s, 3H)}, 1.42 - 1.57 \text{ (m, 1H)}, 1.35 - 1.55 \text{ (m, 7H)}, 1.49 \text{ (s, 3H)}, 1.42 - 1.57 \text{ (m, 1H)}, 1.35 - 1.55 \text{ (m, 7H)}, 1.49 \text{ (s, 3H)}, 1.42 - 1.57 \text{ (m, 1H)}, 1.35 - 1.55 \text{ (m, 7H)}, 1.49 \text{ (s, 3H)}, 1.42 - 1.57 \text{ (m, 1H)}, 1.35 - 1.55 \text{ (m, 7H)}, 1.49 \text{ (s, 3H)}, 1.49 \text{ (s, 3H$ 1.28 (m, 6H), 1.24 (s, 1H), 1.15 – 1.05 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 178.31 (d, J = 1.0 Hz), 135.84, 128.71, 128.03, 127.93, 70.35, 61.39 (d, J = 7.0 Hz), 61.30 (d, J = 6.0 Hz), 58.05, 45.21 (d, J = 1.0 Hz), 39.42 (d, J = 136.0 Hz), 35.36 (d, J = 13= 23.0 Hz), 30.53 (d, J = 5.0 Hz), 25.36, 23.05 (d, J = 11.0 Hz), 16.39 (d, J = 6.0 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 28.27 (s). HRMS (ESI) Calcd for C₂₁H₃₂NO₃P: [M+H⁺] 378.2193, found 378.2188.

Diethyl((1-benzyl-4-methyl-2-phenyl-4,5-dihydro-1H-imidazol-4yl)methyl)phosphonate (3ua)

Yield: 60%, 48.0 mg; appearance: brown oil; R_f: 0.3 (ethyl Ph-V-EtOOEt acetate/methanol = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.55 (m, 2H), 7.41 – 7.31 (m, 5H), 7.29 – 7.20 (m, 3H), 4.40 (d, J = 15.6 Hz, 1H), 4.22 (d, J = 15.6 Hz, 1H), 4.12 – 4.00 (m, 4H), 3.65 (d, J = 10.4 Hz, 1H), 3.25 (d, J = 10.0 Hz, 1H), 2.26 (dd, J = 17.6, 15.2 Hz, 1H), 2.13 (dd, J = 17.6, 15.6 Hz, 1H), 1.45 (s, 3H), 1.30 – 1.24 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 164.47, 137.82, 131.01, 129.95, 128.64, 128.47, 128.26, 127.30, 127.12, 65.20 (d, *J* = 1.0 Hz), 61.41 (d, J = 6.0 Hz), 61.27 (d, J = 7.0 Hz), 61.14, 52.38, 37.85 (d, J = 134.0Hz), 28.65 (d, J = 4.0 Hz), 16.35 (d, J = 7.0 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 27.87 (s). **HRMS (ESI)** Calcd for C₂₂H₂₉N₂O₃P: [M+H⁺] 401.1989, found 401.1990.

Dimethyl((2,4,4-trimethyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)methyl)phosphonate (3ab)

Yield: 89%, 54.9 mg; appearance: brown oil; R_f : 0.3 (petroleum ether/ethyl acetate = 1:1). ¹**H NMR** (400 MHz, CDCl₃) δ 7.66 – 7.62 (m, 2H), 7.37 – 7.31 (m, 3H), 3.72 (dd, *J* = 10.8, 9.2 Hz,

6H), 2.37 (d, J = 13.2 Hz, 1H), 2.34 (dd, J = 18.4, 15.6 Hz, 1H), 2.08 (dd, J = 18.0, 15.2 Hz, 1H), 1.93 (d, J = 13.2 Hz, 1H), 1.48 (s, 3H), 1.39 (s, 3H), 1.35 (s, 3H). ¹³C **NMR** (100 MHz, CDCl₃) δ 177.47, 134.77, 129.26, 128.08, 127.94, 69.36, 51.98, 38.26 (d, J = 136.0 Hz), 29.82 (d, J = 6.0 Hz), 28.81 (d, J = 1.0 Hz), 28.35 (d, J = 2.0 Hz). ³¹P **NMR** (162 MHz, CDCl₃) δ 30.96 (s). **HRMS (ESI)** Calcd for C₁₆H₂₄NO₃P: [M+H⁺] 310.1567, found 310.1570.

Diisopropyl((2,4,4-trimethyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-

yl)methyl)phosphonate (3ac)

Yield: 92%, 67.2 mg; appearance: brown oil; R_f : 0.2 (petroleum ether/ethyl acetate = 1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.66 – 7.62 (m, 2H), 7.36 – 7.30 (m, 3H), 4.76 – 4.64 (m, 2H), 2.42 (d,

J = 13.6 Hz, 1H), 2.33 (dd, J = 18.4, 15.2 Hz, 1H), 1.97 (dd, J = 18.4, 15.2 Hz, 1H), 1.91 (d, J = 13.2 Hz, 1H), 1.49 (s, 3H), 1.37 (s, 3H), 1.35 (s, 3H), 1.32 – 1.27 (m, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 176.92 (d, J = 2.0 Hz), 134.87, 129.18, 128.03, 127.97, 69.86 (d, J = 1.0 Hz), 69.79 (d, J = 2.0 Hz), 69.65, 51.98, 51.89, 40.78 (d, J =137.0 Hz), 29.55 (d, J = 3.0 Hz), 28.74 (d, J = 2.0 Hz), 28.48 (d, J = 2.0 Hz), 24.05. ³¹P NMR (162 MHz, CDCl₃) δ 26.29 (s). HRMS (ESI) Calcd for C₂₀H₃₂NO₃P: [M+H⁺] 366.2193, found 366.2194.

Dibutyl((2,4,4-trimethyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)methyl)phosphonate (3ad)

Yield: 91%, 71.6 mg; appearance: brown oil; R_f : 0.2 (petroleum ether/ethyl acetate = 1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.66 –

7.61 (m, 2H), 7.38 - 7.29 (m, 3H), 4.06 - 3.95 (m, 4H), 2.40 (d, J = 13.6 Hz, 1H), 2.11 (dd, J = 14.8, 10.4 Hz, 1H), 2.02 (dd, J = 15.2, 10.0 Hz, 1H), 1.96 (d, J = 13.2Hz, 1H), 1.82 – 1.62 (m, 5H), 1.55 – 1.44 (m, 7H), 1.39 (s, 3H), 1.39 (s, 3H), 1.36 – 1.30 (m, 3H), 0.91 – 0.84 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 177.25, 134.61, 129.29, 128.05, 127.93, 70.70 (d, J = 5.0 Hz), 53.26 (d, J = 2.0 Hz), 51.69, 40.86 (d, J= 62.0 Hz), 30.90 (d, J = 5.0 Hz), 32.49 (d, J = 6.0 Hz), 30.08 (d, J = 18.0 Hz), 29.47 (d, J = 18.0 Hz), 28.92 (d, J = 2.0 Hz), 28.39 (d, J = 1.0 Hz), 24.27 (d, J = 2.0 Hz),24.12 (d, J = 2.0 Hz), 24.06 (d, J = 3.0 Hz), 23.91 (d, J = 4.0 Hz), 13.54. ³¹P NMR (162 MHz, CDCl₃) δ 47.12 (s). **HRMS (ESI)** Calcd for C₂₂H₃₆NO₃P: [M+H⁺] 394.2506, found 394.2504.

Dibenzyl((2,4,4-trimethyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)methyl)phosphonate (**3ae**)

Yield: 50%, 46.1 mg; appearance: brown oil; R_f: 0.2 (petroleum ether/ethyl acetate = 1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.65 – 7.62 (m, 2H), 7.39 - 7.30 (m, 13H), 5.09 - 4.93 (m, 4H), 2.42

(dd, J = 18.8, 15.6 Hz, 1H), 2.39 (d, J = 13.2 Hz, 1H), 2.15 (dd, J = 18.4, 15.6 Hz, 15.6 Hz)1H), 1.92 (d, J = 13.2 Hz, 1H), 1.51 (s, 3H), 1.37 (s, 3H), 1.32 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 177.40 (d, J = 1.0 Hz), 136.47 (d, J = 1.0 Hz), 136.41 (d, J = 1.0 Hz), 134.76, 129.28, 128.48, 128.22, 128.09, 128.02, 127.92, 127.86, 69.53, 66.99 (d, *J* = 6.0 Hz), 66.91 (d, J = 7.0 Hz), 52.19 (d, J = 2.0 Hz), 51.95, 39.72 (d, J = 136.0 Hz), 29.91 (d, J = 5.0 Hz), 28.78 (d, J = 2.0 Hz), 28.38 (d, J = 2.0 Hz). ³¹P NMR (162) MHz, CDCl₃) δ 29.45 (s). **HRMS (ESI)** Calcd for C₂₈H₃₂NO₃P: [M+H⁺] 462.2193, found 462.2191.

Diphenyl((2,4,4-trimethyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)methyl)phosphine oxide (3ag)

Yield: 97%, 77.8 mg; appearance: brown oil; R_f: 0.2 (petroleum Ph Ph Ph ether/ethyl acetate = 1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.86 – 7.75 (m, 4H), 7.48 – 7.40 (m, 8H), 7.36 – 7.27 (m, 3H), 2.96 (dd, J = 14.8, 10.4 Hz, 1H), 2.69 (dd, J = 14.8, 10.8 Hz, 1H), 2.64 (d, J = 13.6 Hz, 1H), 1.97 (d, J = 13.6 Hz, 1H), 1.37 (s, 3H), 1.37 (s, 3H), 1.31 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 177.31, 134.99 (d, J = 98.0 Hz), 134.54, 134.92 (d, J = 98.0 Hz), 131.31 (d, J = 3.0 Hz), 131.23 (d, J = 3.0 Hz), 130.62 (d, J = 2.0 Hz), 130.53 (d, J = 2.0 Hz), 129.22, 128.51 (d, J = 11.0 Hz), 128.49 (d, J = 12.0 Hz), 127.96, 127.94, 71.01 (d, J = 3.0 Hz), 52.40, 51.97, 42.45 (d, J = 69.0 Hz), 30.68 (d, J = 7.0 Hz), 28.94 (d, J = 1.0 Hz), 28.32 (d, J = 2.0 Hz). ³¹**P NMR** (162 MHz, CDCl₃) δ 27.11 (s). **HRMS (ESI)** Calcd for C₂₆H₂₈NOP: [M+H⁺] 402.1981, found 402.1983.

((5-(3,4-dimethoxyphenyl)-2,4,4-trimethyl-3,4-dihydro-2H-pyrrol-2-yl)methyl)di-ptolylphosphine oxide (3ih)

Yield: 72%, 70.4 mg; appearance: brown oil; R_f : 0.2 (petroleum ether/ethyl acetate = 1:3). ¹H NMR (400 MHz, CDCl₃) δ 7.71 – 7.58 (m, 4H), 7.24 – 7.13 (m, 6H), 6.77 (d, *J* = 8.4 Hz, 1H), 3.87 (s, 3H), 3.84 (s,

3H), 2.93 (dd, J = 14.8, 9.6 Hz, 1H), 2.62 – 2.54 (m, 2H), 2.35 (s, 3H), 2.32 (s, 3H), 1.96 (d, J = 13.6 Hz, 1H), 1.38 (s, 3H), 1.35 (s, 3H), 1.33 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 175.95, 149.34 (d, J = 172.0 Hz), 141.58 (d, J = 2.0 Hz), 141.47 (d, J = 2.0 Hz), 132.40 (d, J = 42.0 Hz), 131.40 (d, J = 42.0 Hz), 130.64, 130.54, 130.45, 129.21 (d, J = 5.0 Hz), 129.09 (d, J = 5.0 Hz), 127.15, 120.97, 110.85 (d, J = 149.0 Hz), 70.54 (d, J = 2.0 Hz), 55.84 (d, J = 6.0 Hz), 55.79 (d, J = 5.0 Hz), 53.03, 51.65, 42.62 (d, J = 69.0 Hz), 30.48, 29.15 (d, J = 2.0 Hz), 28.70 (d, J = 2.0 Hz), 21.42 (d, J = 3.0 Hz), 21.39 (d, J = 2.0 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 27.72 (s). HRMS (ESI) Calcd for C₃₀H₃₆NO₃P: [M+H⁺] 490.2506, found 490.2509.

Bis(4-methoxyphenyl)((2,4,4-trimethyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)methyl)phosphine oxide (3ai)

Yield: 63%, 58.1 mg; appearance: green oil; R_f : 0.2 (petroleum ether/ethyl acetate = 1:3). ¹H NMR (400 MHz, CDCl₃) δ 7.67 – 7.55 (m, 4H), 7.38 – 7.34 (m, 2H), 7.25 – 7.18 (m, 3H), 6.89 – 6.82 (m, 4H), 3.74 (s, 3H), 3.72 (s, 3H), 2.80 (dd, J = 15.2, 10.4 Hz, 1H), 2.57 (d, J = 13.6Hz, 1H), 2.53 (dd, J = 14.8, 10.8 Hz, 1H), 1.87 (d, J = 13.6 Hz, 1H), 1.28 (s, 3H), 1.27 (s, 3H), 1.23 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 177.24, 161.93 (d, J = 3.0 Hz), 161.88 (d, J = 2.0 Hz), 134.58, 132.41 (d, J = 2.0 Hz), 132.31 (d, J = 2.0 Hz), 129.21, 127.97, 127.92, 126.77 (d, J = 17.0 Hz), 125.73 (d, J = 17.0 Hz), 114.07 (d, J = 3.0 Hz), 113.94 (d, J = 4.0 Hz), 71.01 (d, J = 3.0 Hz), 55.24 (d, J = 5.0 Hz), 52.15, 51.97, 42.74 (d, J = 71.0 Hz), 30.64 (d, J = 5.0 Hz), 28.92 (d, J = 1.0 Hz), 28.33 (d, J= 2.0 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 27.53 (s). HRMS (ESI) Calcd for C₂₈H₃₂NO₃P: [M+H⁺] 462.2193, found 462.2201.

Bis(4-fluorophenyl)((2,4,4-trimethyl-5-phenyl-3,4-dihydro-2H-pyrrol-2yl)methyl)phosphine oxide (3aj)

Yield: 85%, 74.3 mg; appearance: brown oil; R_f: 0.2 (petroleum ether/ethyl acetate = 1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.84 – 7.73 (m, 4H), 7.43 – 7.40 (m, 2H), 7.38 – 7.33 (m, 1H), 7.32 – 7.27 (m, 2H), 7.18 – 7.09 (m, 4H), 2.89

(dd, J = 15.2, 10.8 Hz, 1H), 2.69 (dd, J = 15.2, 10.8 Hz, 1H), 2.64 (d, J = 13.2 Hz, 1H)1H), 1.97 (d, J = 13.2 Hz, 1H), 1.39 (s, 6H), 1.34 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 177.45, 165.95 (t, J = 3.0 Hz), 163.43 (t, J = 3.0 Hz), 134.21, 132.95 (dd, J= 13.0, 2.0 Hz), 132.95 (dd, J = 19.0, 13.0 Hz), 131.06 (dd, J = 9.0, 3.0 Hz), 130.05 (dd, J = 11.0, 4.0 Hz), 129.36, 127.93, 127.88, 116.00 (dd, J = 12.0, 7.0 Hz), 115.79(dd, J = 13.0, 8.0 Hz), 70.88 (d, J = 3.0 Hz), 52.41, 51.90, 42.63 (d, J = 71.0 Hz),30.84 (d, J = 5.0 Hz), 28.91 (d, J = 2.0 Hz), 28.23 (d, J = 2.0 Hz). ¹⁹F NMR (376) MHz, CDCl₃) δ -107.37 (s), -107.51 (s). ³¹P NMR (162 MHz, CDCl₃) δ 26.57 (s). **HRMS (ESI)** Calcd for C₂₆H₂₆F₂NOP: [M+H⁺] 438.1793, found 438.1791.

Bis(3,5-dimethylphenyl)((2,4,4-trimethyl-5-phenyl-3,4-dihydro-2H-pyrrol-2*yl)methyl)phosphine oxide* (3ak)

Yield: 97%, 88.7 mg; appearance: brown oil; R_f: 0.2

(petroleum ether/ethyl acetate = 1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.42 (m, 4H), 7.37 – 7.27 (m, 5H), 7.07 (d, J = 9.2 Hz, 2H), 2.96 (dd, J = 15.2, 10.0 Hz, 1H), 2.61 (d, J = 13.6 Hz, 1H), 2.60 (dd, J = 15.2, 11.2 Hz, 1H), 2.32 (s, 6H), 2.28 (s, 6H), 1.98 (d, J = 13.6 Hz, 1H), 1.36 (s, 3H), 1.35 (s, 3H), 1.32 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 177.11, 138.14 (d, J = 2.0 Hz), 138.02 (d, J = 2.0 Hz), 135.32 (d, J = 29.0 Hz), 134.35 (d, J = 28.0 Hz), 134.49, 134.21, 132.91 (d, J = 6.0 Hz), 129.20, 128.14, 128.05, 127.97, 127.92, 71.00 (d, J = 3.0 Hz), 55.48, 51.97, 42.74 (d, J = 69.0 Hz), 30.47 (d, J = 4.0 Hz), 28.93 (d, J = 1.0 Hz), 28.34 (d, J = 1.0 Hz), 21.23 (d, J = 3.0 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 27.36 (s). HRMS (ESI) Calcd for C₃₀H₃₆NOP: [M+H⁺] 458.2607, found 458.2609.

Di(thiophen-2-yl)((2,4,4-trimethyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)methyl)phosphine oxide (3al)

Yield: 86%, 71.0 mg; appearance: brown oil; R_f : 0.2 (petroleum ether/ethyl acetate = 1:1). ¹**H NMR** (400 MHz, CDCl₃) δ 7.70 – 7.63 (m, 3H), 7.57 (dd, J = 6.8, 3.2 Hz, 1H), 7.49 (d, J = 7.2 Hz,

2H), 7.35 – 7.27 (m, 3H), 7.15 (d, J = 13.6 Hz, 2H), 2.97 (dd, J = 14.8, 10.8 Hz, 1H), 2.73 (dd, J = 14.8, 12.0 Hz, 1H), 2.58 (d, J = 13.6 Hz, 1H), 1.99 (d, J = 13.6 Hz, 1H), 1.43 (s, 3H), 1.38 (s, 3H), 1.33 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 177.48, 136.65 (d, J = 14.0 Hz), 135.53 (d, J = 14.0 Hz), 135.04 (d, J = 7.0 Hz), 134.94 (d, J = 6.0 Hz), 134.44, 133.08 (d, J = 5.0 Hz), 132.93 (d, J = 5.0 Hz), 129.31, 128.26 (d, J = 6.0 Hz), 128.12 (d, J = 6.0 Hz), 128.00, 127.97, 70.98 (d, J = 3.0 Hz), 52.36 (d, J = 2.0 Hz), 52.00, 47.02 (d, J = 78.0 Hz), 30.31 (d, J = 6.0 Hz), 28.89 (d, J = 2.0 Hz), 28.34 (d, J = 2.0 Hz). ³¹**P NMR** (162 MHz, CDCl₃) δ 18.42 (s). **HRMS (ESI)** Calcd for C₂₂H₂₄NOPS₂: [M+H⁺] 414.1110, found 414.1111.

Di(naphthalen-2-yl)((2,4,4-trimethyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)methyl)phosphine oxide (3am)

Yield: 92%, 92.1 mg; appearance: brown solid; R_f : 0.2 (petroleum ether/ethyl acetate = 1:1); M.P.: 156-160 °C. ¹H

NMR (400 MHz, CDCl₃) δ 8.55 (d, J = 13.2 Hz, 1H), 8.46 (d, J = 13.2 Hz, 1H), 7.94 – 7.77 (m, 8H), 7.55 – 7.47 (m, 4H), 7.32 – 7.29 (m, 2H), 7.25 – 7.22 (m, 1H), 7.12 – 7.07 (m, 2H), 3.16 (dd, J = 15.2, 10.4 Hz, 1H), 2.92 (dd, J = 15.2, 10.8 Hz, 1H), 2.76 (d, J = 13.2 Hz, 1H), 2.04 (d, J = 13.6 Hz, 1H), 1.45 (s, 3H), 1.38 (s, 3H), 1.35 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 177.25, 134.33 (d, J = 5.0 Hz), 134.30 (d, J = 5.0 Hz), 132.59 (d, J = 4.0 Hz), 132.47 (d, J = 3.0 Hz), 132.31 (d, J = 5.0 Hz), 132.23 (d, J =5.0 Hz), 131.50 (d, J = 4.0 Hz), 129.09, 128.31 (d, J = 11.0 Hz), 128.30 (d, J = 95.0Hz), 127.78 (d, J = 8.0 Hz), 127.64 (d, J = 5.0 Hz), 126.73 (d, J = 6.0 Hz), 125.68 (d, J = 10.0 Hz), 125.53 (d, J = 11.0 Hz), 71.04 (d, J = 3.0 Hz), 52.54, 51.87, 42.24 (d, J =**70.0** Hz), 30.82 (d, J = 4.0 Hz), 28.90 (d, J = 2.0 Hz), 28.27 (d, J = 2.0 Hz). ³¹**P NMR** (162 MHz, CDCl₃) δ 27.44 (s). **HRMS (ESI)** Calcd for C₃₄H₃₂NOP: [M+H⁺] 502.2294, found 502.2294.

Dibutyl((2,4,4-trimethyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)methyl)phosphine oxide (3an)

Yield: 96%, 69.3 mg; appearance: brown oil; R_f : 0.2 (petroleum ether/ethyl acetate = 1:2). ¹**H** NMR (400 MHz, CDCl₃) δ 7.70 – 7.66 (m, 2H), 7.37 – 7.30 (m, 3H), 2.47 (d, *J* = 13.2 Hz, 1H), 2.11

(dd, J = 14.8, 10.0 Hz, 1H), 2.02 (dd, J = 15.2, 10.0 Hz, 1H), 1.96 (d, J = 13.2 Hz, 1H), 1.82 – 1.63 (m, 5H), 1.55 – 1.45 (m, 7H), 1.39 (s, 3H), 1.39 (s, 3H), 1.36 – 1.30 (m, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 177.25, 134.61, 129.29, 128.05, 127.93, 70.70 (d, J = 5.0 Hz), 53.26 (d, J = 2.0 Hz), 51.69, 40.86 (d, J = 62.0 Hz), 30.90 (d, J = 5.0 Hz), 30.09 (d, J = 18.0 Hz), 29.43 (d, J = 18.0 Hz), 28.92 (d, J = 2.0 Hz), 28.39 (d, J = 1.0 Hz), 24.27 (d, J = 2.0 Hz), 24.12 (d, J = 2.0 Hz), 24.06 (d, J = 3.0 Hz), 23.91 (d, J = 4.0 Hz), 13.54. ³¹**P NMR** (162 MHz, CDCl₃) δ 18.42 (s). **HRMS (ESI)** Calcd for C₂₂H₃₆NOP: [M+H⁺] 362.2607, found 362.2614.

Diisopropyl((2,4,4-trimethyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)methyl)phosphine oxide (3ao)

Yield: 95%, 63.3 mg; appearance: brown oil; R_{f} : 0.2 (petroleum 30)

ether/ethyl acetate = 1:2). ¹H NMR (400 MHz, CDCl₃) δ 7.67 – 7.64 (m, 2H), 7.36 – 7.30 (m, 3H), 2.42 (d, J = 13.6 Hz, 1H), 2.18 – 2.04 (m, 3H), 2.02 (d, J = 13.6 Hz, 1H), 1.94 (dd, J = 15.2, 8.8 Hz, 1H), 1.53 (s, 3H), 1.39 (s, 3H), 1.36 (s, 3H), 1.25 – 1.14 (m, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 177.16, 134.91, 129.13, 128.04, 127.91, 70.82 (d, J = 3.0 Hz), 53.04 (d, J = 2.0 Hz), 51.83, 35.29 (d, J = 58.0 Hz), 30.97 (d, J = 3.0 Hz), 28.83 (d, J = 2.0 Hz), 28.52 (d, J = 2.0 Hz), 27.68 (d, J = 7.0 Hz), 27.04 (d, J = 8.0 Hz), 16.12. ³¹P NMR (162 MHz, CDCl₃) δ 53.83 (s). HRMS (ESI) Calcd for C₂₂H₃₆NOP: [M+H⁺] 334.2294, found 334.2298.

Ethylphenyl((2,4,4-trimethyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-

yl)methyl)phosphinate (3ap)

Yield: 80%, 59.1 mg (dr = 1:1); appearance: brown oil; R_f : 0.2 (petroleum ether/ethyl acetate = 1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.83 - 7.73 (m, 4H), 7.57 - 7.41 (m, 10H), 7.35 - 7.24

(m, 6H), 4.07 – 3.98 (m, 2H), 3.78 – 3.70 (m, 2H), 2.63 – 2.47 (m, 4H), 2.30 (dd, J = 17.6, 15.6 Hz, 1H), 2.25 (dd, J = 17.2, 15.2 Hz, 1H), 1.96 (d, J = 13.6 Hz, 1H), 1.89 (d, J = 13.2 Hz, 1H), 1.53 (s, 3H), 1.38 (s, 3H), 1.37 (s, 3H), 1.36 (s, 3H), 1.34 (s, 3H), 1.27 – 1.20 (m, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ 176.99 (d, J = 10.0 Hz), 134.58 (d, J = 16.0 Hz), 133.09 (d, J = 19.0 Hz), 133.89 (d, J = 2.0 Hz), 131.87 (d, J = 19.0 Hz), 131.84 (d, J = 3.0 Hz), 131.59 (d, J = 10.0 Hz), 129.19 (d, J = 6.0 Hz), 128.47 (d, J = 12.0 Hz), 127.98, 127.96, 127.89, 70.03, 60.13 (d, J = 7.0 Hz), 60.06 (d, J = 6.0 Hz), 52.15 (d, J = 97.0 Hz), 43.31 (d, J = 24.0 Hz), 42.33 (d, J = 24.0 Hz), 30.57 (d, J = 7.0 Hz), 29.81, 28.91 (d, J = 2.0 Hz), 28.85 (d, J = 2.0 Hz), 28.43 (d, J = 2.0 Hz), 28.06 (d, J = 3.0 Hz), 16.40 (d, J = 2.0 Hz), 16.33 (d, J = 2.0 Hz). ³¹**P NMR** (162 MHz, CDCl₃) δ 41.1 (s), 41.0 (s). **HRMS (ESI)** Calcd for C₂₂H₂₈NO₂P: [M+H⁺] 370.1930, found 370.1930.

Isopropylphenyl((2,4,4-trimethyl-5-phenyl-3,4-dihydro-2H-pyrrol-2yl)methyl)phosphinate (3aq)

Yield: 83%, 63.6 mg (dr = 1:1.4); appearance: brown oil; R_f : ^{*i*}Pr 31

N P O'Pr / Ph O

0.2 (petroleum ether/ethyl acetate = 1:1). ¹**H** NMR (400 MHz, CDCl₃) δ 7.79 – 7.68 (m, 4.8H), 7.52 – 7.33 (m, 12H), 7.29 – 7.17 (m, 7.2H), 4.43 – 4.32 (m, 2.4H), 2.51 (dd, *J* = 18.0, 15.2 Hz, 1H), 2.48 – 2.44 (m, 2.4H), 2.42 (dd, *J* = 15.2, 11.2 Hz, 1H), 2.22 (dd, *J* = 17.6, 15.2 Hz, 1H), 2.16 (dd, *J* = 15.2, 10.4 Hz, 1.4H), 1.90 (d, *J* = 13.2 Hz, 1H), 1.82 (d, *J* = 13.2 Hz, 1.4H), 1.47 (s, 4.2H), 1.33 – 1.26 (m, 20.4H), 1.20 (s, 4.2H), 1.01 (d, *J* = 6.4 Hz, 7.2H). ¹³C NMR (100 MHz, CDCl₃) δ 176.86 (d, *J* = 16.0 Hz), 134.57 (d, *J* = 15.0 Hz), 133.86 (d, *J* = 20.0 Hz), 132.64 (d, *J* = 19.0 Hz), 131.74 (d, *J* = 2.0 Hz), 131.68 (d, *J* = 3.0 Hz), 129.16 (d, *J* = 7.0 Hz), 128.33 (d, *J* = 12.0 Hz), 127.97, 127.95, 127.92, 127.85, 70.05, 69.25 (d, *J* = 3.0 Hz), 69.19 (d, *J* = 2.0 Hz), 69.13 (d, *J* = 3.0 Hz), 51.57 (d, *J* = 110.0 Hz), 51.81, 43.57 (d, *J* = 32.0 Hz), 42.49 (d, *J* = 33.0 Hz), 30.57 (d, *J* = 7.0 Hz), 29.65 (d, *J* = 13.0 Hz), 28.90 (d, *J* = 2.0 Hz), 28.83 (d, *J* = 2.0 Hz), 28.42 (d, *J* = 2.0 Hz), 28.04 (d, *J* = 2.0 Hz), 24.56 (d, *J* = 2.0 Hz), 23.80. ³¹P NMR (162 MHz, CDCl₃) δ 39.6 (s), 39.5 (s).HRMS (ESI) Calcd for C₂₃H₃₀NO₂P: [M+H⁺] 384.2087, found 384.2086.

Butylphenyl((2,4,4-trimethyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-

yl)methyl)phosphinate (3ar)

Yield: 70%, 55.5 mg (dr = 1:1); appearance: brown oil; R_f : 0.2 (petroleum ether/ethyl acetate = 1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.83 - 7.73 (m, 4H), 7.57 - 7.42 (m, 10H), 7.35 -

7.24 (m, 6H), 4.02 - 3.92 (m, 2H), 3.68 - 3.59 (m, 2H), 2.60 (dd, J = 17.2, 15.2 Hz, 1H), 2.55 (dd, J = 17.2, 15.6 Hz, 1H), 2.52 - 2.47 (m, 2H), 2.30 (dd, J = 17.6, 15.6 Hz, 1H), 2.25 (dd, J = 18.4, 15.2 Hz, 1H), 1.97 (d, J = 13.6 Hz, 1H), 1.90 (d, J = 13.6 Hz, 1H), 1.63 - 1.53 (m, 4H), 1.53 (s, 3H), 1.38 (s, 3H), 1.37 (s, 3H), 1.36 (s, 3H), 1.35 (s, 3H), 1.33 - 1.28 (m, 4H), 1.27 (s, 3H), 0.89 - 0.82 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 177.01 (d, J = 14.0 Hz), 134.55 (d, J = 14.0 Hz), 132.98 (d, J = 21.0 Hz), 131.90 (d, J = 3.0 Hz), 131.84 (d, J = 2.0 Hz), 131.59 (d, J = 10.0 Hz), 129.21 (d, J = 6.0 Hz), 128.47 (d, J = 12.0 Hz), 127.98, 127.96, 127.89, 70.01, 63.86 (d, J = 7.0 Hz), 63.79 (d, J = 6.0 Hz), 52.16 (d, J = 97.0 Hz), 51.86, 43.28 (d, J = 23.0 Hz), 42.29 (d, J = 24.0 Hz), 32.46 (d, J = 7.0 Hz), 30.54 (d, J = 7.0 Hz), 29.73, 28.91 (d, J = 1.0 Hz),

28.83 (d, J = 2.0 Hz), 28.47 (d, J = 3.0 Hz), 28.08 (d, J = 3.0 Hz), 18.75 (d, J = 2.0 Hz), 13.52. ³¹P NMR (162 MHz, CDCl₃) δ 41.1 (s), 40.9 (s). HRMS (ESI) Calcd for C₂₄H₃₂NO₂P: [M+H⁺] 398.2243, found 398.2244.

Benzylphenyl((2,4,4-trimethyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)methyl)phosphinate (3as)

Yield: 53%, 45.7 mg (dr = 1: 0.25); appearance: brown oil; R_f: 0.2 (petroleum ether/ethyl acetate = 1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.87 - 7.76 (m, 2.5H), 7.54 - 7.43 (m, 6.5H), 7.37 -

7.26 (m, 9.75H), 5.04 (dd, J = 12.0, 6.8 Hz, 1.25H), 4.67 (dd, J = 11.6, 6.8 Hz, 1.25H), 2.65 (dd, J = 18.0, 15.2Hz, 0.25H), 2.54 (m, 2.25H), 2.39 (d, J = 15.6 Hz, 1H), 2.33 (d, J = 15.2 Hz, 0.25H), 1.97 (d, 13.6 Hz, 1H), 1.91 (d, J = 13.6 Hz, 0.25H), 1.54 (s, 0.75H), 1.39 – 1.37 (m, 6.75H), 1.33 (s, 3H), 1.29 (s, 0.75H). ¹³C NMR (100 MHz, CDCl₃) δ 177.02, 136.45 (d, J = 8.0 Hz), 134.59, 132.43 (d, J = 87.0 Hz), 132.05 (d, J = 2.0 Hz), 131.68 (d, J = 10.0 Hz), 129.23, 128.55 (d, J = 12.0 Hz), 128.38, 128.06, 127.99, 127.82, 127.81 (d, J = 21.0 Hz), 70.02, 65.55 (d, J = 6.0 Hz), 52.78 (d, J = 2.0 Hz), 51.87, 43.04 (d, J = 97.0 Hz), 29.86, 28.84 (d, J = 2.0 Hz), 28.43 (d, J = 2.0 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 42.3 (s), 42.1 (s). HRMS (ESI) Calcd for C₂₇H₃₀NO₂P: [M+H⁺] 432.2087, found 432.2088.

Control Experiments:

In a 25.0 mL sealed tube, **1a** (0.2 mmol, 64.3 mg, 1.0 equiv), **2a** (0.4 mmol, 55.2 mg, 2.0 equiv), **2g** (0.4 mmol, 80.9 mg, 2.0 equiv), K_2CO_3 (55.3 mg, 0.4 mmol, 2.0 equiv) were added to a solution of AgNO₃ (17.0 mg, 0.1 mmol, 0.5 equiv) in MeCN (3.0 mL). Then, the tube was purged with N₂ for three times and sealed with PTEF cap. The reaction was allowed to stir at 100 °C for 12 h. Afterward, the resulting mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel to afford **3ag** in 90% yield.

In a 25.0 mL sealed tube, **1a** (0.2 mmol, 64.3 mg, 1.0 equiv), **2i** (0.2 mmol, 52.4 mg, 1.0 equiv), **2j** (0.2 mmol, 47.6 mg, 1.0 equiv), K_2CO_3 (55.3 mg, 0.4 mmol, 2.0 equiv) were added to a solution of AgNO₃ (17.0 mg, 0.1 mmol, 0.5 equiv) in MeCN (3.0 mL). Then, the tube was purged with N₂ for three times and sealed with PTEF cap. The reaction was allowed to stir at 100 °C for 12 h. Afterward, the resulting mixture was concentrated under reduced pressure. The residue was purified by short column chromatography on silica gel to afford the mixed products.

3.725 3.699 3.699 3.699 3.699 2.955 2.956 2.914</

Synthesis of AgP(O)Ph₂:

In a 25.0 ml sealed tube, diphenylphosphine oxide (202 mg, 1.0 mmol) and AgNO₃ (203 mg, 1.2 mmol) were added. After 3 vacuum/N₂ cycles, CH₃CN (4 mL) was added. The reaction mixture was stirred at 100 °C overnight. The mixture was filtered and the filter cake was washed with water and then CH₃CN. The residue was dried under vacuum to afford AgP(O)Ph₂ as a white solid.

In a 25.0 mL sealed tube, **1a** (0.2 mmol, 64.3 mg, 1.0 equiv) and K_2CO_3 (55.3 mg, 0.4 mmol, 2.0 equiv) were added to a solution of AgP(O)Ph₂ (61.9 mg, 0.2 mmol, 1.0 equiv) in MeCN (3.0 mL). Then, the tube was purged with N₂ for three times and sealed with PTEF cap. The reaction was allowed to stir at 100 °C for 12 h. Thin-layer chromatography (TLC) analysis indicated that **3ag** was not detected.

In a 25.0 mL sealed tube, **1a** (0.2 mmol, 64.3 mg, 1.0 equiv), **2g** (0.2 mmol, 52.4 mg, 1.0 equiv), TEMPO (0.4 mmol, 62.5 mg, 2.0 equiv), K_2CO_3 (55.3 mg, 0.4 mmol, 2.0 equiv) were added to a solution of AgNO₃ (17.0 mg, 0.1 mmol, 0.5 equiv) in MeCN (3.0 mL). Then, the tube was purged with N₂ for three times and sealed with PTEF cap. The reaction was allowed to stir at 100 °C for 12 h. Afterward, the resulting mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel to afford **4** in 30% yield.
2,2,6,6-tetramethyl-1-((2,4,4-trimethyl-5-phenyl-3,4-dihydro-2H-pyrrol-2yl)methoxy)piperidine (4)

Yield: 30%, 21.4 mg; appearance: yellow oil; R_f : 0.4 (petroleum ether/ethyl acetate = 5:1); ¹H NMR (400 MHz, CDCl₃) δ 7.67 – 7.64 (m, 2H), 7.36 – 7.33 (m, 3H), 3.91 (d, J = 8.4 Hz, 1H), 3.79 (d, J = 8.8 Hz, 1H), 2.35 (d, J = 12.8 Hz, 1H), 1.69 (d, J = 12.8 Hz, 1H), 1.51 – 1.43 (m, 9H), 1.34 (s, 3H), 1.32 (s, 3H), 1.24 (s, 3H), 1.20 (s, 3H), 1.13 (s, 3H), 1.08 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 178.01, 135.37, 128.97, 128.07, 128.01, 82.70, 72.54, 60.08, 51.93, 48.98, 39.78, 33.20 (d, J = 16.0 Hz), 29.61, 27.95, 26.71, 20.50 (d, J = 28.0 Hz), 17.07. HRMS (ESI) Calcd for C₂₃H₃₆N₂O: [M+H⁺] 357.2900, found 357.2896.

In a 25.0 mL sealed tube, **1a** (0.2 mmol, 64.3 mg, 1.0 equiv), Tempo (0.4 mmol, 62.5 mg, 2.0 equiv), K_2CO_3 (55.3 mg, 0.4 mmol, 2.0 equiv) were added to a solution of AgNO₃ (17.0 mg, 0.1 mmol, 0.5 equiv) in MeCN (3.0 mL). Then, the tube was purged with N₂ for three times and sealed with PTEF cap. The reaction was allowed to stir at 100 °C for 12 h. Thin-layer chromatography (TLC) analysis indicated that **4** was not detected.

In a 25.0 mL sealed tube, **1a** (0.2 mmol, 64.3 mg, 1.0 equiv), **2a** (0.4 mmol, 52.2 mg, 1.0 equiv), ethene-1,1-diyldibenzene (0.4 mmol, 62.5 mg, 2.0 equiv), K_2CO_3 (55.3 mg, 0.4 mmol, 2.0 equiv) were added to a solution of AgNO₃ (17.0 mg, 0.1

mmol, 0.5 equiv) in MeCN (3.0 mL). Then, the tube was purged with N_2 for three times and sealed with PTEF cap. The reaction was allowed to stir at 100 °C for 12 h. Afterward, the resulting mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel to afford **5** in 81% isolated yield.

Diethyl (2,2-diphenylvinyl)phosphonate (5)

OEt Yield: 81%, 51.3 mg; appearance: yellow oil; R_f: 0.3 (petroleum ether/ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.29 (s, 5H), 7.25 – 7.17 (m, 5H), 6.10 (d, *J* = 15.6 Hz, 1H), 3.86 – 3.69 (m, 4H), 1.04 (t, *J* = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 159.96 (d, *J* = 6.0 Hz), 141.46 (d, *J* = 22.0 Hz), 138.86 (d, *J* = 8.0 Hz), 129.68 (d, *J* = 2.0 Hz), 129.29, 128.55, 128.18 (d, *J* = 11.0 Hz), 127.75, 114.78 (d, *J* = 192.0 Hz), 61.44 (d, *J* = 6.0 Hz), 16.10 (d, *J* = 2.0 Hz), 16.04 (d, *J* = 2.0 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 16.67 (s). Spectral data were in agreement with reported literature *(Eur. J. Org. Chem.* 2019, 2138)

Transformations of Phosphorylated Pyrrolines:

To a 25 mL round-bottom flask equipped with a magnetic stirring bar were added 3aa (135.3 mg, 0.4 mmol, 1.0 equiv), N-hydroxybenzimidoyl chloride (124.5 mg, 0.8 mmol, 2.0 equiv), Et₃N (90.0 mg, 0.8 mmol, 2.0 equiv) and DCM (10 mL). The mixture was stirred at room temperature for 5 h. The solvent was removed in vacuo, and the crude product was purified by column chromatography using (petroleum ether/ethyl acetate = 5:1) as eluent to give the product 6 (170.5 mg, 93%) as a yellow oil.

Diethyl((4-methyl-3,6a-diphenyl-3a,5,6,6a-tetrahydro-4H-cyclopenta[d]isoxazol-4*vl)methyl)phosphonate* (6)

Yield: 93%, 170.5 mg (dr = 1:1.2); appearance: yellow oil; R_f : $\begin{array}{c} & & \\ N & & \\ N$

7.28 (m, 6.6H), 7.25 - 7.15 (m, 6.6H), 4.05 - 3.78 (m, 8.4H),

2.75 - 2.65 (m, 1H), 2.62 (d, J = 13.2 Hz, 1H), 2.49 (d, J = 13.2 Hz, 1.2H), 2.35 (dd, J= 19.6, 15.6 Hz, 1H, 2.12 - 2.06 (m, 2.2H), 1.93 (dd, J = 20.8, 14.4 Hz, 1.2H), 1.74 (s, 1.2 H)3.6H), 1.64 (dd, J=21.2, 14.4 Hz, 1.2H), 1.25 – 1.15 (m, 19.2H), 1.09 (t, J = 7.2 Hz, 3.6H), 0.76 (s, 3H), 0.76 (s, 3.6H). ¹³C NMR (100 MHz, CDCl₃) δ 159.91 (d, J = 1.0 Hz), 159.86, 140.17, 130.62, 130.42, 129.03, 128.94, 128.77, 128.55, 127.95, 127.34, 127.31, 125.82, 125.80, 113.57, 113.40 (d, J = 2.0 Hz), 64.55, 64.51, 64.30, 64.28, 61.48, 61.46, 61.42, 61.39, 61.35, 54.28, 52.71, 43.72, 43.65, 41.31, 39.98, 39.36, 38.00, 30.52, 28.30, 28.28, 28.06, 24.62, 24.60, 24.45, 24.43, 16.20, 16.18, ³¹P NMR (162 MHz, CDCl₃) & 26.83 (s), 26.39 (s). HRMS (ESI) Calcd for C₂₆H₃₄NO₄P: [M+H⁺] 457.2251, found 457.2257.

To a 25 mL sealed tube equipped with a magnetic stirring bar were added **3ag** (80.4 mg, 0.2 mmol, 1.0 equiv), trichlorosilane (216.7 mg, 1.66 mmol, 8.3 equiv), Et₃N (667.9 mg, 6.6 mmol, 33.0 equiv) and xylene (4 mL). The mixture was stirred at 150 °C for 48 h. The solvent was removed in *vacuo*, and the crude product was purified by column chromatography using (petroleum ether/ethyl acetate = 5:1) as eluent to give the product **7** (55.5 mg, 85%) as a yellow oil.

2-((diphenylphosphanyl)methyl)-2,4,4-trimethyl-5-phenyl-3,4-dihydro-2H-pyrrole (7)

Ph Yield: 85%, 65.5 mg; appearance: brown oil; R_f : 0.5 (petroleum ether/ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.52 – 7.41 (m, 6H), 7.34 – 7.27 (m, 9H), 2.62 (dd, J = 14.0, 3.2 Hz,

1H), 2.58 (dd, J = 14.0, 3.6 Hz, 1H), 2.22 (d, J = 13.2 Hz, 1H), 1.87 (d, J = 13.2 Hz, 1H), 1.44 (s, 3H), 1.43 (s, 3H), 1.29 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 176.76, 139.95 (d, J = 2.0 Hz), 139.83 (d, J = 2.0 Hz), 134.86, 133.14 (d, J = 6.0 Hz), 132.95 (d, J = 5.0 Hz), 129.09, 128.39, 128.33, 128.27, 128.22, 128.09, 127.95, 71.91 (d, J = 15.0 Hz), 53.11 (d, J = 8.0 Hz), 51.65, 44.22 (d, J = 15.0 Hz), 30.66 (d, J = 8.0 Hz), 29.26 (d, J = 1.0 Hz), 27.98. ³¹P NMR (162 MHz, CDCl₃) δ -23.10 (s). HRMS (ESI) Calcd for C₂₆H₂₈NP: [M+H⁺] 386.2032, found 386.2032.

NMR Spectra:

7.749 7.729 7.566 7.566 7.566

4,120 4,120 4,120 4,120 4,109 4,109 4,0050

7, 311 26, 27, 7, 260 27, 7, 220 26, 77, 7, 220 26, 77, 7, 220 26, 77, 7, 220 26, 77, 7, 220 26, 77, 7, 220 26, 77, 7, 220 26, 77, 7, 220 26, 77, 7, 220 26, 77, 7, 220 26, 77, 7, 220 26, 77, 7, 220 26, 77, 7, 220 26, 77, 7, 200 26, 77, 7, 200 26, 77, 7, 200 26, 77, 7, 200 26, 77, 7, 200 26, 77, 7, 200 26, 77, 7, 200 26, 77, 7, 200 26, 77, 7, 200 26, 77, 7, 200 26, 77, 7, 200 26, 77, 7, 200 20, 200 20, 2

¹H NMR (400 MHz, CDCI₃)

N P OEt Eto O 3ka ¹H NMR (400 MHz, CDCl₃)

∼_P<OEt EtO

Ń

3ka

7.1.981 7.7.7.88 7.7.7.88 7.7.7.88 7.7.7.88 7.7.7.88 7.7.7.88 7.7.7.88 7.7.7.88 7.7.7.88 7.7.7.88 7.7.7.88 7.7.429 7.7.4497 7.7.4497 7

¹H NMR (400 MHz, CDCl₃)

7.623 7.608 7.374 7.360 7.360

7.823 7.778 7.778 7.7750 7.7750 7.7756 7.7756 7.7566 7.7566 7.7566 7.7566 7.7566 7.7566 7.7566 7.7566 7.7566 7.7570 7.7566 7.7428 7.7428 7.73333 7.73333 7.73333 7.73333 7.73333 7.733333 7.73333 7.73333 7.7

¹H NMR (400 MHz, CDCl₃)

41.1 40.9

¹H NMR (400 MHz, CDCl₃)

7.7.291 7.7.244 7.7.244 7.7.244 7.7.193 7.7.193 7.7.179 7.171 6.076 6.076 6.076 3.3.858 3.3.841 3.3.815 7.3.719 3.3.710 3.3.710 3.3.710 3.3.7144 3.3.71444 3.3.714444 3.3.7144444444

¹H NMR (400 MHz, CDCl₃)

³¹P NMR (162 MHz, CDCI₃)

---23.1