Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Electronic Supporting Information for: A Heterobimetallic Cumulenic μ-Carbido Complex

Anthony F. Hill*^a Lachlan J. Watson^a

^{a.} Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, ACT 2601, Australia.

^{*} Corresponding author. E-mail: a.hill@anu.edu.au

CCDC 1959089 and 1959090 contain the supplementary crystallographic data for this paper, and are available free of charge from The Cambridge Crystallographic Data Centre.

Experimental

General Considerations

Unless otherwise stated, experimental work was carried out at room temperature under a dry and oxygen-free nitrogen atmosphere using standard Schlenk techniques with dried and degassed solvents.

NMR spectra were obtained on a Bruker Avance 400 (¹H at 400.1 MHz, ¹³C at 100.6 MHz) or a Bruker Avance 700 (¹H at 700.0 MHz, ¹³C at 176.1 MHz) spectrometers at the temperatures indicated. Chemical shifts (δ) are reported in ppm with coupling constants given in Hz and are referenced to the solvent peak, or external references (PhSe)₂ for ⁷⁷Se). The multiplicities of NMR resonances are denoted by the abbreviations s (singlet), d (doublet), t (triplet), m (multiplet), br (broad) and combinations thereof for more highly coupled systems. Where applicable, the stated multiplicity refers to that of the primary resonance exclusive of ⁷⁷Se, ⁷⁹Se, or ¹⁸³W satellites. In some cases, distinct peaks were observed in the ¹H and ¹³C{¹H} NMR spectra, but to the level of accuracy that is reportable (i.e. 2 decimal places for ¹H NMR, 1 decimal place for ¹³C NMR) they are reported as having the same chemical shift. The abbreviation 'pz' is used to refer to the pyrazolyl rings on the hydrotris(3,5dimethylpyrazol-1-yl)borate (Tp*) ligand. Spectra provided generally correspond to samples obtained directly from chromatography and may contain residual solvent as recrystallised samples often display reduced solubility.

Infrared spectra were obtained using a PerkinElmer Spectrum One FT-IR spectrometer. The strengths of IR absorptions are denoted by the abbreviations vs (very strong), s (strong), m (medium), w (weak), sh (shoulder) and br (broad). Elemental microanalytical data were provided the London Metropolitan University. High-resolution electrospray ionisation mass spectrometry (ESI-MS) was performed by the ANU Research School of Chemistry mass spectrometry service with acetonitrile or methanol as the matrix.

Data for X-ray crystallography were collected with an Agilent Xcalibur CCD diffractometer using Mo-K α radiation ($\lambda = 0.71073$ Å) and the CrysAlis PRO software.¹ The structures were solved by direct or Patterson methods and refined by full-matrix least-squares on F^2 using the SHELXS or SHELXT and SHELXL programs.² Hydrogen atoms were located geometrically and refined using a riding model. Diagrams were produced using the CCDC visualisation program Mercury.³

The synthesis of the tungsten selenocarbonylate $[W(CSe)(CO)_2(Tp^*)]NEt_4$ [1]NEt₄ has been described previously.⁴

Synthesis of [W(CSe)(CO)(NO)(Tp*)] (2). A solution of [1]NEt₄ (400 mg, 0.527 mmol) and N-methyl-N-nitroso-4toluenesulfonamide (Diazald®, 118 mg, 0.551 mmol) in MeCN (30 mL) was stirred for 3.5 h, gradually turning dark green. After removing volatiles under reduced pressure, the product was extracted with benzene (15 mL) and filtered through a pad of diatomaceous earth (2 x 8 cm), washing with benzene until the filtrate ran clear. Volatiles were again removed under reduced pressure and the solid was then loaded onto a silica gel column with CH₂Cl₂, eluting the first green band with petroleum spirits (40-60 °C). Volatiles were removed under reduced pressure to give a light green solid. Yield: 241 mg (0.38 mmol, 72%). IR (CH_2Cl_2, cm^-1): 1992s, v_{CO} , 1665br v_{NO} , 1088s v_{CSe}. IR (ATR, cm⁻¹): 1972s v_{CO}, 1657s v_{NO}, 1078s v_{CSe}. ¹H NMR (700 MHz, CDCl₃, 298 K): δ_{H} = 5.91, 5.83, 5.82 (3 x s, 1H x 3, pzCH), 2.70, 2.64, 2.42, 2.39, 2.36, 2.35 (6 x s, 3H x 6, pzCH₃). ¹³C{¹H} NMR (176 MHz, CDCl₃, 298 K): δ_{C} = 367.2 (¹J_{WC} = 176, WCSe), 215.9 (¹J_{WC} = 158, WCO), 153.9, 153.5, 152.5, 145.4, 145.2, 144.9 (pzCCH₃), 107.3, 107.1, 106.8 (pzCH), 16.0, 14.9, 14.8, 13.0, 12.7, 12.6 (pzCH₃). ⁷⁷Se NMR (134 MHz, CDCl₃, 298 K): $\delta_{Se} = 1188$. MS (ESI, +ve ion, m/z): Found: 631.0593. Calcd for C17H2211BN7O280Se184W [M]+: 631.0595. Anal. Found: C, 32.49; H, 3.22; N, 15.40. Calcd for C17H22BN7O2SeW: C, 32.41; H, 3.52; N, 15.56%.

Synthesis of $[WRe(\mu-C)(CO)_3(NO)(Tp^*)(\eta-C_5H_5)]$ (5). A colourless solution of $[Re(CO)_3(\eta-C_5H_5)]$ (150 mg, 0.446 mmol) in THF (50 mL) was photolysed at 0 °C using an unfiltered mercury lamp until conversion was complete as determined by IR spectroscopy. The resultant light yellow [Re(CO)₂(THF) $(\eta$ -C₅H₅)] solution was added dropwise to a green solution of 2 (70 mg, 0.11 mmol) in THF (10 mL) and stirred for 3.5 hours during which time the mixture slowly turned yellow brown. After removing the volatiles under reduced pressure, the solid was dissolved in minimal CH₂Cl₂ and loaded onto a silica gel column (3 x 20 cm) and eluted with 100% petroleum spirits to collect a green band. The eluent was slowly changed to 30% CH₂Cl₂ in petroleum sprits (40-60 °C) to collect a yellow/green band then a dark yellow-brown band of pure 5. Yield: 12 mg (0.014 mmol, 13%). IR (CH_2Cl_2, cm^-1): 1998s, 1944s, 1915s v_{CO} , 1634s v_{NO}. IR (ATR, cm⁻¹): 2022w, 1993m, 1949m, 1891s v_{CO}, 1636s v_{NO}, 968m v_{WCRe}. ¹H NMR (400 MHz, CDCl₃, 298 K): δ_H = 5.88, 5.81, 5.74 (3 x s, 1H x 3, pzCH), 5.59 (5H, Cp), 2.70, 2.64, 2.42, 2.39, 2.36, 2.35 (6 x s, 3H x 6, pzCH₃). ¹³C{¹H} NMR (176

MHz, CDCl₃, 298 K): δ_{c} = 508.8 (WCRe), 224.7 (WCO), 200.2, 199.4 (ReCO), 152.9, 152.8, 152.2, 145.0, 144.6, 144.6 (pzCCH₃), 106.9, 106.6, 106.4 (pzCH), 88.4 (Cp), 16.6, 15.4, 14.9, 13.1, 12.9, 12.5 (pzCH₃). MS (ESI, +ve ion, *m/z*): Found: 859.12787. Calcd for C₂₄H₂₇¹¹BN₇O₄¹⁸⁷Re¹⁸⁴W [M]⁺: 859.12789. Crystals suitable for structural determination were grown by slow diffusion of *n*-hexane into a CH_2Cl_2 solution at -20 °C. *Crystal Data for* C₂₅H₂₉BCl₂N₇O₄ReW (*M*_w =943.31 g.mol⁻¹): monoclinic, space group $P2_1/c$ (no. 14), a = 8.0943(4), b =21.8669(10), c = 17.3220(7) Å, $\beta = 95.221(4)^{\circ}$, V = 3053.2(2) Å³, Z = 4, T = 150.0(1) K, μ (Mo K α) = 7.944 mm⁻¹, D_{calcd} = 2.052 Mg.m⁻ ³, 31774 reflections measured (6.546° \leq 2 Θ \leq 52.736°), 6229 unique ($R_{int} = 0.0664$, $R_{sigma} = 0.0578$) which were used in all calculations. The final R_1 was 0.0360 ($l > 2\sigma(l)$) and wR_2 was 0.0651 (all data) for 380 refined parameters with 0 restraints, CCDC 1959089.

Isolation of $[Re_2(\mu-Se)(CO)_4(\eta-C_5H_5)_2]$ (6). From the column above, elution of ${\bf 5}$ was followed by an orange band which could not be unambiguously identified, followed closely by elution of a green band of pure 6. Yield 8 mg (0.012 mmol, 10 % based on 2). IR (CH₂Cl₂, cm⁻¹): 1955s, 1907m v_{co}. ¹H NMR (400 MHz, CDCl₃, 298 K): δ_{H} = 5.44 (Cp). ¹³C{¹H} NMR (176 MHz, CDCl₃, 298 K): δ_c = 201.5, 199.0 (*C*O), 88.4 (Cp). MS (ESI, +ve ion, *m/z*): Found: 693.8823. Calcd for $C_{14}H_{10}O_4^{185}Re_2^{81}Se \ [M-e^-]^+: 693.8835.$ Crystals suitable for structural determination were grown by slow diffusion of *n*-hexane into a CH₂Cl₂ solution at -20 °C. Crystal Data for $C_{14}H_{10}O_4Re_2Se$ (M_w =693.58 g.mol⁻¹): triclinic, space group P-1 (no. 2), a = 7.4306(5), b = 7.9327(6), c = 13.4641(11) Å, $\alpha =$ 103.629(6), $\beta = 95.575(6)$, $\gamma = 104.678(6)^{\circ}$, V = 735.66(10) Å³, Z =2, T = 150.0(1) K, μ(Mo Kα) = 18.924 mm⁻¹, D_{calcd.} = 3.131 Mg.m⁻³, 5879 reflections measured (6.734° $\leq 2\Theta \leq 52.74^{\circ}$), 2872 unique ($R_{int} = 0.0378$, $R_{sigma} = 0.0554$) which were used in all calculations. The final R_1 was 0.0310 ($I > 2\sigma(I)$) and wR_2 was 0.0504 (all data) for 190 refined parameters with 0 restraints, CCDC 1959090.

Computational Details

Computational studies were performed by using the SPARTAN18[®] suite of programs.⁵ Geometry optimisation (gas phase) was performed at the DFT level of theory using either (i) the ω B97X-D range separated hybrid generalized gradient approximation functional with empirical corrections for long-range non-bonded (dispersive) interactions,⁶ or (ii) the Minnesota functional MO6-2.⁷ The Los Alamos effective core potential type basis set (LANL2DZ) of Hay and Wadt⁸ was used for tungsten and rhenium; the Pople 6-31G* basis sets⁹ were used for all other atoms. Frequency calculations were performed to confirm that the optimized structure was a minimum and also to identify vibrational modes of interest.

Thermodynamic properties (298.15 K): ZPE = 816.32 kJmol⁻¹, $H^{\circ} = -1550.237889$ au, $S^{\circ} = 864.11$ Jmol⁻¹K⁻¹, $G^{\circ} = -1550.336017$ au, $C_{v} = 479.17$ Jmol⁻¹K⁻¹.

Cartesian Coordinates (See attached .mol2 file)

Atom	x	У	z
W1	0.205622342	-0.446470381	1.016487378
N2	1.524012868	-1.456568843	1.710871269
N3	-1.345444718	0.905810197	0.064831636
04	-1.811040152	-2.878019306	1.212920873
N5	1.419350000	1.430290477	0.772036488
C6	-2.941603776	1.823685850	-1.213064228
H7	-3.717273702	1.949825329	-1.951438474
N8	-0.507759756	0.757421562	2.863406814
C9	-1.095559388	-1.977022188	1.191320965
N10	-0.746001121	2.080896688	2.792832704
N11	-1.464457448	2.206802959	0.393578310
C12	3 008155767	2 947077745	0 331395578
H13	3 946094810	3 395431469	0.043837688
C14	2 677519506	1 587881242	0 360079531
C15	-2 229801113	0.661801805	-0.903850019
C16	-2 / 15/72199	2 781256209	-0 361281769
C17	1 855060776	3 587800300	0.750585384
N10	0.010022411	3.567855505 3.6E9199EE1	1 000712501
010	0.910055411	2.030100331	2 112046527
C30	2.4142/1204	-2.113149023	2.112940527
C20	-1.148000035	2.539001553	3.990008107
C21	-0.759850380	0.381470447	4.11/013383
	-1.1/2091188	1.479581701	4.880030950
H23	-1.444419036	1.499064219	5.924121165
B24	-0.544795928	2.842374554	1.466285015
C25	0.575816622	-1.1/9121998	-0.734964015
H26	-0.801984646	4.00603/164	1.602200782
HZ/	-2.294336462	-0.331086644	-1.329779269
H28	-2.646042608	3.829343096	-0.237888138
H29	-1.385890009	3.585586645	4.120365986
H30	1.629356312	4.636060440	0.882240003
H31	-0.629751649	-0.653523143	4.402619878
H32	3.269385760	0.720297283	0.101662221
Re33	0.770887962	-2.005731489	-2.369103350
H34	2.128953931	-4.752542326	-2.272741369
C35	1.150983415	-4.342086168	-2.484263457
C36	0.650988860	-3.979248618	-3.772307195
H37	0.186149727	-4.301749677	-0.464572533
H38	1.192428427	-4.043321307	-4.705829723
C39	-0.667475804	-3.488198907	-3.596185591
H40	-1.314815298	-3.120011585	-4.381263074
C41	-1.007528353	-3.581632579	-2.212849339
H42	-1.954880772	-3.316390310	-1.763597020
C43	0.120117864	-4.117465459	-1.528442612
C44	0.248483275	-0.371133623	-3.232585814
045	-0.100040240	0.595772112	-3.749046940
C46	2.579063094	-1.395060494	-2.422122159
047	3.675380318	-1.039989944	-2.427482038

Chemical Communications

References

- 1 CrysAlis PRO, Agilent Technologies Ltd, Yarnton, Oxfordshire, England, 2014.
- 2 (a) G. Sheldrick, Acta Crystallogr. Sect. A: Found. Crystallogr., 2008, 64, 112-122; (b) G. M. Sheldrick, Acta Crystallogr. Sect. C: Cryst. Struct. Commun., 2015, 71, 3-8.
- (a) C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler and J. van de Streek, *J. Appl. Crystallogr.*, 2006, **39**, 453-457; (b) C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek and P. A. Wood, *J. Appl. Crystallogr.*, 2008, **41**, 466-470.
- 4 B. J. Frogley, A. F. Hill and L. J. Watson, *Dalton Trans.*, 2019, 48, 12598-12606.

- 5 Spartan 18[®] (2018) Wavefunction, Inc., 18401 Von Karman Ave., Suite 370 Irvine, CA 92612 U.S.A
- 6 (a) Y.-S. Lin, G.-D. Li, S.-P. Mao and J.-D. Chai, J. Chem. Theory Comput., 2013, 9, 263-272. (b) J.-D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys., 2008, 10, 6615-6620.
- 7 Y. Zhao and D. G. Truhlar, *Theor. Chem. Acc.*, 2008, **120**, 215-241.
- 8 (a) P. J. Hay and W.R. Wadt, J. Chem. Phys., 1985, 82, 270-283. (b) W. R. Wadt and P. J. Hay, J. Chem. Phys., 1985, 82, 284-298. (c) P. J. Hay, W. R. Wadt, J. Chem. Phys., 1985, 82, 299-310.
- 9 W. J. Hehre, R. Ditchfeld and J. A. Pople, *J. Chem. Phys.*, 1972, **56**, 2257-2261.

Calculated Infrared Spectrum of [WRe(μ -C)(CO)₃(NO)(Tp)] with location of primarily v_{as}(W=C=Re) at 984 cm⁻¹ (Obs.: 968 cm⁻¹).

COMMUNICATION

Chemical Communications

IR (ATR, cm⁻¹) for [W(CSe)(CO)₂(Tp*)]NEt₄ (**2**)

6 | Chem. Commun., 2019, **00**, 1-3

This journal is © The Royal Society of Chemistry 2019

This journal is © The Royal Society of Chemistry 2019

Chem. Commun., 2019, **00**, 1-3 | **7**

COMMUNICATION

Chemical Communications

8 | Chem. Commun., 2019, 00, 1-3

This journal is © The Royal Society of Chemistry 2019

This journal is © The Royal Society of Chemistry 2019

187. Tp* =C=Se OC NO 600 1550 1500 1450 1400 1350 1300 1250 1200 1150 1100 1050 1000 950 f1 (ppm) 900 850 800 750 700 650 600 550 500 450 400

⁷⁷Se NMR (134 MHz, CDCl₃, 298 K) for [W(CSe)(CO)₂(Tp*)]NEt₄ (**2**)

Chemical Communications

Chemical Communications

IR (CH₂Cl₂, cm⁻¹) for [WRe(μ -C)(CO)₃(NO)(Tp*)(η -C₅H₅)] (5)

10 | Chem. Commun., 2019, **00**, 1-3

This journal is © The Royal Society of Chemistry 2019

Please do not adjust margins

IR (ATR, cm^{-1}) for [WRe(μ -C)(CO)₃(NO)(Tp*)(η -C₅H₅)] (5)

Chemical Communications

Difference IR (ATR, cm^{-1}) of [W(CSe)(CO)₂(Tp^{*})]NEt₄ (**2**) and [WRe(μ -C)(CO)₃(NO)(Tp^{*})(η -C₅H₅)] (**5**)

12 | Chem. Commun., 2019, **00**, 1-3

This journal is © The Royal Society of Chemistry 2019

Chem. Commun., 2019, **00**, 1-3 | **13**

Chemical Communications

 $^{13}C\{^{1}H\}$ NMR (176 MHz, CDCl_3, 298 K) for [WRe($\mu\text{-C})(CO)_{3}(NO)(Tp^{*})(\eta\text{-C}_{5}H_{5})]$ (5)

14 | Chem. Commun., 2019, 00, 1-3

This journal is © The Royal Society of Chemistry 2019

IR (CH₂Cl₂, cm⁻¹) for [Re₂(μ -Se)(CO)₄(η -C₅H₅)₂] (6)

This journal is © The Royal Society of Chemistry 2019

COMMUNICATION

Chemical Communications

¹H NMR (400 MHz, CDCl₃, 298 K) for $[Re_2(\mu-Se)(CO)_4(\eta-C_5H_5)_2]$ (6)

16 | Chem. Commun., 2019, **00**, 1-3

This journal is © The Royal Society of Chemistry 2019

 $^{13}\text{C}\{^1\text{H}\}$ NMR (176 MHz, CDCl_3, 298 K) for $[\text{Re}_2(\mu\text{-Se})(\text{CO})_4(\eta\text{-}C_5\text{H}_5)_2]$ (6)

This journal is © The Royal Society of Chemistry 2019

Chem. Commun., 2019, **00**, 1-3 | **17**