Electronic Supplementary Information (ESI)

A non-luminescent Eu-MOF-based "turn-on" sensor towards anthrax biomark through singlecrystal to single-crystal phase transition

Dai Wu, ${ }^{[a]}$ Zhe Zhang, ${ }^{[a]}$ Xiwen Chen, ${ }^{[a]}$ Lingkun Meng, ${ }^{[a]}$ Chunguang Li, ${ }^{[a]}$ Guanghua Li, ${ }^{[a]}$ Xiaobo Chen, ${ }^{[b]}$ Zhan Shi, *[a] and Shouhua Feng ${ }^{[a]}$
${ }^{[a]}$ State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
${ }^{[b]}$ School of Engineering, RMIT University, Carlton, VIC 3053, Australia

1. Experimental section

Materials and Methods

$\mathbf{N H}_{2}$ BTC was synthesized prepared according to the previous reports. ${ }^{1}$ All other reagents and solvents were obtained from commercial sources and used without further purification. Elemental analyses were performed on a PerkinElmer 2400 element analyzer. (PXRD) data were obtained using a Rigaku D/Max 2550 automated diffractometer ($\mathrm{Cu}-\mathrm{K} \alpha, 1.5418$ Å). IR spectra were measured with KBr pellets on a Bruker IFS-66 V/S FT-IR spectrometer. TG measurement was performed on pre-weighed samples in a nitrogen stream using a Netzsch STA 449C apparatus with a heating rate of $10{ }^{\circ} \mathrm{C} \mathrm{min}^{-1}$. The luminescence spectra of the samples were recorded on an Edinburgh Instruments FLS920 spectrofluorimeter equipped with both continuous (450 W) and pulsed xenon lamps. Low-pressure N_{2} gas sorption experiments at 77 K were carried out on a Micrometrics ASAP 2020 volumetric gas sorption instrument. Before gas adsorption measurements, the samples were heated to $250^{\circ} \mathrm{C}$ for 3 h to completely remove the solvent molecules.

Synthesis of $\mathrm{Eu}\left(\mathrm{C}_{9} \mathrm{H}_{4} \mathrm{O}_{6} \mathrm{~N}\right)\left(\mathrm{H}_{2} \mathrm{O}\right) \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)(\mathrm{DMF})_{2}(\mathrm{MOF} 1)$

$\mathrm{Eu}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(44.7 \mathrm{mg}, 0.1 \mathrm{mmol})$ and $\mathrm{NH}_{2} \mathrm{BTC}(22.5 \mathrm{mg}, 0.1 \mathrm{mmol})$ in a mixed solvent of DMF $(3 \mathrm{~mL})$, ethanol (EtOH, 3 mL), and $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ were placed in a sealed vial (20 mL) and heated to 80 ${ }^{\circ} \mathrm{C}$ for 24 h . The resulting colorless needle crystals were obtained, after being washed by DMF, yield $45.1 \mathrm{mg}\left(81 \%\right.$ based on $\left.\mathrm{Eu}^{3+}\right)$. Elemental analysis: Anal. Calcd (\%) for $\mathrm{Eu}\left(\mathrm{C}_{9} \mathrm{H}_{4} \mathrm{NO}_{6}\right)\left(\mathrm{H}_{2} \mathrm{O}\right) \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)(\mathrm{DMF})_{2}(\mathrm{Mr}=558.33): \mathrm{C}, 32.26 ; \mathrm{H}, 4.33 ; \mathrm{N}, 7.52$. Found (\%): C, 32.28; H , 4.35; $\mathrm{N}, 7.50 . \mathrm{NH}_{2}-\mathrm{MOF}-76(\mathrm{Ln})(\mathrm{Ln}=\mathrm{Gd}, \mathrm{Tb})$ were synthesized following similar conditions.

Synthesis of $\mathrm{Eu}\left(\mathrm{C}_{9} \mathrm{H}_{4} \mathrm{O}_{6} \mathrm{~N}\right)\left(\mathrm{H}_{2} \mathrm{O}\right) \cdot(\mathrm{DMF})_{1.5}$ (MOF 2)

Normally, cystals of MOF 1 (100 mg) was immersed in EtOH solution of DPA $(20 \mathrm{~mL}, 100 \mu \mathrm{M}$) at room temperature for 5 days. The resulting colorless needle crystals were collected, after being washed with EtOH and DMF. An approximate yield of 80% was estimated. Elemental analysis: Anal. Calcd (\%) for $\mathrm{Eu}\left(\mathrm{C}_{9} \mathrm{H}_{4} \mathrm{NO}_{6}\right)\left(\mathrm{H}_{2} \mathrm{O}\right) \cdot(\mathrm{DMF})_{1.5}(\mathrm{Mr}=501.76): \mathrm{C}, 32.38 ; \mathrm{H}, 3.22 ; \mathrm{N}, 6.99$. Found (\%): C, 32.41; H, 3.24; N, 6.96.

X-ray crystal structure determination:

Data collections were performed at 299 K on a Bruker Apex II CCD diffractometer equipped with graphite-monochromated Mo-K α radiation ($\lambda=0.71073 \AA$). Data processing was accomplished with the SAINT program. Structures were solved using direct methods (SHELXT, Olex2) and then refined using SHELXL-2014 and Olex2 to convergence. ${ }^{2}$ Anisotropic displacement parameters were applied to all non-hydrogen atoms. Hydrogen atoms were located geometrically and were added to the structure factor calculation. The formulas for MOF 1 and MOF 2 were determined by combining single-crystal structure, elemental microanalysis and TGA. A summary of the crystallographic data for these title complexes is listed in Table S1. Selected bond lengths and angles are shown in Table S2 and Table S3. CCDC-1957993 and CCDC-1957994 contain the supplementary crystallographic data for this paper. This data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Fluorescence measurements

To investigate the potential ability of MOF 1 for fluorescence detection, a fully ground sample of MOF 1 was dispersed with a final concentration of $0.1 \mathrm{mg} / \mathrm{mL}$ in ethanol solution, luminescence measurement was taken 2 h later after analyte was injected.

MOF $1(0.1 \mathrm{mg} / \mathrm{mL}, 0.1 \mathrm{~mL}$) was placed into a centrifuge tube with different solvents (2.9 mL), including methanol (MeOH), ethanol (EtOH), N, N'-dimethylformamide (DMF), N,N'-dimethyl acetamide (DMA), acetone, dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, trichloromethane $\left(\mathrm{CHCl}_{3}\right)$, hexane, acetonitrile ($\mathrm{CH}_{3} \mathrm{CN}$), 1,4-dioxane, ethyl acetate (EA), tetrahydrofuran (THF). Subsequently the sample tube was taken out and quickly sealed, then the emission spectra were recorded.

For DPA concentration-dependent luminescence measurements were prepared, as follows. MOF $1(0.1 \mathrm{mg} / \mathrm{mL}, 1.5 \mathrm{~mL})$ was placed into a centrifuge tube with various DPA ($0-200 \mu \mathrm{M}, 1.5$ mL). Subsequently the sample tube was taken out and quickly sealed, then the emission spectra were recorded after 2 h .

In-situ time-dependent luminescent experiments were prepared, as follows. MOF 1 samples $(0.1 \mathrm{mg} / \mathrm{mL}, 1.5 \mathrm{~mL})$ were added into a testing quartz cuvette, and the DPA ($60 \mu \mathrm{M}, 1.5 \mathrm{~mL}$) was injected quickly. Then the luminescence spectra and intensity of MOF sensor versus time plots were obtained.

The application performance of MOF 1 was investigated for fluorescent paper, as follows. The filter paper was cut square and impregnated with the ethanol solution of MOF $1(0.1 \mathrm{mg} / \mathrm{mL}, 20$ mL). After 10 minutes, the filter strip is taken out and dried in air. The testing strip were added to the test solution for 10s to judge the DPA content rapidly by naked eyes with observable fluorescence change under a UV lamp at 254 nm (DPA concentration: $60 \mu \mathrm{M}$, interferents: $100 \mu \mathrm{M}$).

Structure description:

MOF 1

As shown in Fig. 1a, its asymmetric unit consists of one crystallographically independent Eu ${ }^{3+}$ ion, one deprotonated $\mathrm{NH}_{2} \mathrm{BTC}^{3-}$ anion and one coordinated water molecule. Eu1 is seven coordination, with six oxygen atoms from the carboxylate groups of the three $\mathrm{NH}_{2} \mathrm{BTC}$ ligands and a terminal water molecule, forming a slightly distorted pentagonal bipyramid (Fig. S1a). The deprotonated $\mathrm{NH}_{2} \mathrm{BTC}^{3-}$ is connected to six Eu atoms (Fig. S1b). The Eu-O bond lengths are in the range of 2.253(4)-2.460(6) Å within the normal range for this bond (Table. S2), and the Eu-O bond lengths of Eu1-O7(water) is the longest. The infinite Eu-O-C chains are bridged by the benzene ring of the $\mathrm{NH}_{2} \mathrm{BTC}$ ligand to form a 3D rod-packing structure along the [001] direction. The rods pack in a tetragonal fashion, resulting in $6.6 \times 6.6 \AA^{2}$ square channels in the c direction, which are filled with DMF and $\mathrm{H}_{2} \mathrm{O}$ molecules (Fig. S1d).

The structure description of MOF 2 was similar to MOF 1 (Fig. S2). As the distance of Eu-O-C rods from each other is different from MOF 1, the 1D narrow rectangular channel of about $6.7 \times$ $6.0 \AA^{2}$ along the c axis was formed.

Table S1. Crystallographic data and structure refinement parameters for MOF 1 and MOF 2

compound	MOF 1	MOF 2
Empirical formula	$\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{EuN}_{3} \mathrm{O}_{10}$	$\mathrm{C}_{13.5} \mathrm{H}_{16.5} \mathrm{EuN}_{2.5} \mathrm{O}_{8.5}$
Fw	558.33	501.76
Crystal system	tetragonal	tetragonal
Space group	$P 4_{3}$	$P 4_{3} 2_{1} 2$
Temperature (K)	299.11	299.02
Radiation	MoK α ($\lambda=0.71073$)	MoKa ($\lambda=0.71073$)
$a / \AA ̊$	10.4323(4)	14.564(3)
b/Å	10.4323(4)	14.564(3)
c / \AA	14.3109(8)	14.223(4)
$\alpha /{ }^{\circ}$	90	90
$8 /{ }^{\circ}$	90	90
$V^{\prime}{ }^{\circ}$	90	90
V/ \AA^{3}	1557.5(15)	3017.0(15)
Z	4	8
F(000)	728.0	1464.0
Crystal size (mm^{3})	$0.28 \times 0.13 \times 0.12$	$0.27 \times 0.12 \times 0.12$
$\rho_{\text {calcd }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.655	1.713
$\mu(\mathrm{Mo} \mathrm{K} \alpha) / \mathrm{mm}^{-1}$	4.045	4.177
Reflections collected / unique	$\begin{gathered} 12785 / 2927 \\ {\left[R_{\text {int }}=0.0472\right]} \end{gathered}$	$\begin{aligned} & 25159 / 2089 \\ & {\left[R_{\text {int }}=0.062\right]} \end{aligned}$
$R_{1} / \mathrm{w} R_{2}(I>2 \sigma(I))^{\mathrm{a}, \mathrm{b}}$	0.0397/0.1135	0.0392/0.1137
$R_{1}, \mathrm{w} R_{2}$ (all data)	0.0460/0.1232	0.0460/0.1232
GOF on F^{2}	0.976	1.127

Table S2. Selected bond lengths and bond angles for MOF 1

Eu1-O1	$2.296(4)$	Eu1-O2 1	$2.360(5)$
Eu1-O3 2	$2.337(5)$	Eu1-O4 3	$2.253(4)$
Eu1-O5 4	$2.419(4)$	Eu1-O6 5	$2.359(6)$
Eu1-O7	$2.460(6)$		
O7-Eu1-O1	$64.0(2)$	O7-Eu1-O2 1	$75.4(2)$
O7-Eu1-O3 2	$74.7(3)$	O7-Eu1-O4 3	$138.5(2)$
O7-Eu1-O5 4	$145.4(2)$	O7-Eu1-O6 5	$81.3(3)$

Symmetry transformations used to generate equivalent atoms:
${ }^{1}-2-Y,-1+X,-1 / 4+Z ;{ }^{2}-1-X,-2-Y,-1 / 2+Z ;{ }^{3}-1-Y,-1+X,-1 / 4+Z ;{ }^{4}+X,-1+Y,+Z ;{ }^{5}+Y,-2-X, 1 / 4+Z$.
Table S3. Selected bond lengths and bond angles for MOF 2

Eu1-O1	$2.299(12)$	Eu1-O2 1	$2.335(10)$
Eu1-O3 3	$2.378(14)$	Eu1-O4 2	$2.253(4)$
Eu1-O5 4	$2.321(10)$	Eu1-O6 5	$2.332(11)$
Eu1-O7	$2.538(19)$		
O7-Eu1-O1 2	$142.1(6)$	O7-Eu1-O2 1	$80.9(7)$
O7-Eu1-O3 3	$145.2(6)$	O7-Eu1-O4 4	$75.7(8)$
O7-Eu1-O5 4	$68.7(6)$	O7-Eu1-O6 5	$66.5(6)$

Symmetry transformations used to generate equivalent atoms:

Fig. S1 (a) The polyhedra of Eu of MOF 1. Symmetry code for the generated atoms: A $-1-y,-1+x,-$ $0.25+z ;$ B y, $-2-x, 0.25+z ;$ C $x,-1+y, z ; D-2-y,-1+x,-0.25+z ;$ E $-1-x,-2-y,-0.5+z$. (b) The connected mode of $\mathrm{NH}_{2} \mathrm{BTC}$ in MOF 1. (c) Ball-and-stick representation of Eu-O-C rod in MOF 1. (d) View of the 3D frameworks of MOF 1 along the [001] direction.
(a)

(b)

(c)

Fig. S2 (a) The polyhedra of Eu of MOF 2. Asymmetric codes: A 1/2-Y,-1/2+X,-1/4+Z; B 1-X,-Y, $1 / 2+Z$; C $1 / 2+Y, 1 / 2-X, 1 / 4+Z ; D 1-Y,-X, 3 / 2-Z ; E 1 / 2-X,-1 / 2+Y, 7 / 4-Z$. (b) The connected mode of $N_{2} B T C$ in MOF 2. (c) Ball-and-stick representation of Eu-O-C rod in MOF 2. (d) View of the 3D frameworks of MOF 2 along the [001] direction.

Fig. S3 (a) Simulated and measured XRD powder patterns for compound MOF 1. (b) Simulated and measured XRD powder patterns for compound MOF 2 compared to MOF 1. (c) The XRD powder patterns for NH2-MOF-76(Gd) and $\mathrm{NH}_{2}-\mathrm{MOF}-76(\mathrm{~Tb})$. (d) The PXRD patterns for MOF 1 samples after being immersed into various organic solvents and six months in air atmosphere.

Fig. S4. TGA curves of as-synthesized MOF-1, MOF 2, activated MOF 1 and activated MOF 2 in \mathbf{N}_{2} flow.

The TGA curves of compound MOF-1, MOF 2, activated MOF 1 and activated MOF 2 under \mathbf{N}_{2} atmosphere with a heating rate of $10^{\circ} \mathrm{C} / \mathrm{min}$ were investigated in the temperature range of $30-$ $800^{\circ} \mathrm{C}$, as shown in Fig. S4.
The TGA curve of MOF 1 shows four main weight losses. Two water molecules loss is probably
observed till $100^{\circ} \mathrm{C}$ (found, 7.3%; cald. 6.9%). DMF loss occurs probably in various steps from $100^{\circ} \mathrm{C}$ to $380^{\circ} \mathrm{C}$ (found, 26.2%; cald. 25.5%). A rapid loss of nearly 28% is seen in the temperature range $525-625^{\circ} \mathrm{C}$, showing loss of organic linker.
For MOF 2 , one coordinated water molecule loss occurs till $100^{\circ} \mathrm{C}$ (found, 3.8%; cald. 3.6\%). DMF loss occurs probably in various steps from $100^{\circ} \mathrm{C}$ to $370^{\circ} \mathrm{C}$ (found, 23.2%; cald. 21.8%). A rapid loss of nearly 25% is seen in the temperature range $420-625^{\circ} \mathrm{C}$, showing loss of organic linker.
The TGA curves of the activated MOF $\mathbf{1}$ and activated MOF $\mathbf{2}$ show the solvent molecules are removed after heating at $250^{\circ} \mathrm{C}$ in high vacuum.

Fig. S5. FT-IR spectra of $\mathrm{NH}_{2} \mathrm{BTC}$, DPA, MOF 1, MOF 2 and activated MOF 1.

Fig. S6 (a) Solid state excitation and emission spectra of free $\mathrm{NH}_{2} \mathrm{BTC}$ ligand. (b), (c) and (d) The solid-state photoluminescence spectrum of MOF 1, activated MOF 1, MOF 2 and NH2-MOF-76(Tb) at room temperature.

Fig. S7 Solid state excitation and emission spectra of $\mathrm{NH}_{2}-\mathrm{MOF}-76(\mathrm{Gd})$ at 77 k .

Fig. S8 (a) Emission spectra of MOF 1 in various solvent solution. (b)Emission spectra of MOF 1 in EtOH solution under DPA $(60 \mu \mathrm{M})$ at various time intervals at room temperature (excited at 250 $\mathrm{nm})$.

Fig. $\mathbf{S 9}$ Luminescence decay curve for the ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{2}(614 \mathrm{~nm})$ emission of MOF 2.

Fig. S10 (a), (b) Crystals photograph of MOF 1 ,MOF 2 under optical microscopy, respectively. (c) , (d) and (e) Luminescence picture of MOF 1, MOF 2 under a UV lamp at 254 nm in dark. (e) Crystals photograph of MOF 2 under a UV lamp at 254 nm in dark.

Table S4. Performance comparison of several sensors for the detection of anthrax biomark DPA.

Sensor	Detection mechanism	Detection limit	Reference
Eu-MOF (MOF 1)	fluorescence recovery	$3.8 \mu \mathrm{M}$	The present work
Tb-COP	turn-on	13.5 nM	Sens. Actuators, B., 2019, 290, 9
BODIPY-Cu ${ }^{2+}$	turn-on	$2 \mu \mathrm{M}$	J. Hazard. Mater., 2019, 377, 299
PV-Tb ${ }^{3+}$	dual colorimetric	$5 \mu \mathrm{M}$	Analyst., 2013, 138, 7079
EBT-Eu ${ }^{3+}$	dual colorimetric	$2 \mu \mathrm{M}$	Anal. Chem., 2018, 90, 4221
Tb-based Micelle	turn-on	54 nM	Anal. Chem., 2018, 90, 3600
R6H@Eu(BTC)	dual colorimetric	$4.5 \mu \mathrm{M}$	Sens. Actuators, B., 2018, 266, 263
CDs-Cu ${ }^{2+}$	on-off-on	12 nm	J. Mater. Chem. C., 2017,5, 6962
$\mathrm{Ln}(\mathrm{BDC})_{1.5} @ \mathrm{SiO}_{2}$	turn-off	48 nM	J. Am. Chem. Soc., 2007, 129, 9852

Reference

1. (a) H. N. Rubin and M. M. Reynolds, Inorg. Chem., 2017, 56, 5266-5274; (b) Y. K. Cai, A. Kulkarni, Y. G. Huang, D. Sholl and K. Walton, Cryst. Growth. Des., 2014, 14, 6122-6128.
2. (a) G. M. Sheldrick, Acta Cryst., 2015, A71, 3-8; (b) O. V. Dolomnov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl Cryst., 2009, 42, 229-341.
