Electronic Supplementary Information

Colloidal Syntheses of Zero-Dimensional Cs₄SnX₆ (X = Br, I) Nanocrystals with High Emission Efficiencies

Li Tan,^a Wu Wang,^b Qian Li,^{a,c} Zhishan Luo,^{a,c} Chao Zou,^a Min Tang,^a Liming Zhang,^a Jiaqing He,^b and Zewei Quan^{*a}

^a Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China

^b Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China

^c Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China

* Corresponding author

E-mail: quanzw@sustech.edu.cn

Part I: Materials and Sample Preparation

Chemicals

1-octadecene (ODE, 90%), tri-*n*-octylphosphine (TOP), oleylamine (OLA, >70%), oleic acid (OA, 90%) were purchased from Sigma-Aldrich. Tin (II) bromide (SnBr₂, 99.2 %) and Tin (II) iodide (SnI₂, 99+%) were purchased from Alfa. Cesium carbonate (Cs₂CO₃, 99.99%) was purchased from Aladdin. All chemicals were stored in an air-free, Ar-filled glovebox with O₂ and H₂O level < 0.5 ppm, and were used as received without any further purification.

Syntheses of phase-pure Cs₄SnX₆ (X = Br, I) NCs

8 mg of Cs₂CO₃ was loaded in a three-necked Schlenk flask and sealed in a glovebox, and then 5 mL of ODE was injected into the flask, followed by the addition of 0.1 mL of OA and 0.1 mL of OLA. The flask was then degassed under vacuum for 1 h at 115 °C. Subsequently, the reaction was heated to the chosen reaction temperature before the desired amount of SnX₂ dissolved in 0.5 mL of TOP was swiftly injected into the prepared Cs-precursor. The reaction vessel was kept at the injection temperature for appropriate time, followed by cooling down to room temperature by using a water bath. Finally, NCs were collected via centrifugation at 10000 rpm for 5 min, and then the samples were immediately stored in glovebox.

For the preparation of Cs_4SnBr_6NCs , 60 mg of $SnBr_2$ was used, and the reaction was conducted at 210 °C for 1 min. For the mixed halide NCs, 45 mg of $SnBr_2$ and 17.5 mg of SnI_2 were used to initiate the reaction, and the reaction was performed at 210 °C for 1 min. To synthesize Cs_4SnI_6 NCs, 70 mg of SnI_2 was dissolved in TOP, and the reaction temperature was set to 250 °C to obtain a pure phase. Instead of 1 min reaction, 15 s was used to obtain monodisperse Cs_4SnI_6 NCs.

Part II: Characterizations Methods and Calculation Details

Characterizations

Transmission electron microscopy (TEM) measurement was performed in Hitachi HT7700 microscope operated at 100 kV to investigate the sizes and morphologies of Cs₄SnX₆ NCs. The

microstructures of the Cs_4SnX_6 samples were characterized by high-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED), and their chemical composition were analyzed by energy dispersive X-ray spectroscopy (EDX) under scanning transmission electron microscopy (STEM) mode using the Super-X EDS detector in a double Cs-corrected FEI Themis G2 60-300 microscope operated at 60 kV. Analyses of STEM-EDX images were carried out by using the Velox software. The sizes of the Cs_4SnX_6 NCs were estimated from TEM images using Nano Measurer software with ~200 particles statistics.

X-ray diffraction (XRD) patterns were recorded on an X-ray diffractometer (Rigaku SmartLab) with Cu K α radiation (λ = 0.15418 nm) at a voltage of 45 kV and a current of 200 mA.

X-ray photoelectron spectroscopy (XPS) analyses were carried out on a PHI 5000 VersaProbe III spectrometer using monochromatic Al K(alpha) X-ray source. XPS samples were prepared in an argon filled glove box (O_2 , $H_2O < 0.5$ ppm) and transferred to an ultrahigh vacuum chamber.

Raman spectra were measured by using the Raman spectrometer of HORIBA iHR550 with 532 nm laser.

The UV-Vis absorption spectra were measured with Agilent Technologies Cary Series UV-Vis-NIR Spectrophotometer in the range of 200-800 nm. The Photoluminescence (PL) and PL excitation spectra were taken by HORIBA Scientific FluoroMax-4 Spectrofluorometer. For Cs₄SnBr₆ NCs and Cs₄SnBr_xI_{6-x} NCs, the excitation wavelength was 320 nm, and the excitation wavelength for Cs₄SnI₆ NCs was 360 nm. PL lifetime measurements were performed by using the Edinburgh Instruments FLS 980-Laser Flash Photolysis Spectrometer correlated single photo counting method with a µF2 light source. The PL decay curves were fitted by using U11487 Software from Hamamatsu Photonics, and the average radiative lifetimes were determined by

$$\tau_{avg} = (\sum_{i=1}^{2} \tau_{i}^{2} A_{i}) / (\sum_{i=1}^{2} \tau_{i} A_{i})$$
 ,

where A_i and τ_i are the corresponding amplitudes and exponential decay parameters in a bi-exponential analysis. The absolute luminescent quantum yields (PLQY) were recorded with Hamamatsu absolute PL quantum yield spectrometer C11347.

First-Principle Calculations

Theoretical calculations of band structure and partial density of state (PDOS) were performed using Materials Studio 5.5 program, with generalized gradient approximation (GGA)-perdew-burke-ernzerhof (PBE) functions as implemented in the CASTEP package.¹ During calculation, the plane waves kinetic energy cut off and grid density were chosen as 280 eV and 48 \times 48 \times 48, respectively, and the convergence tolerance between optimization cycles was set as energy change with 5.0 \times 10⁻⁷ eV/atm. Meanwhile, the ion-electron interactions were modeled by the ultrasoft pseudopotential for all the elements.

Part III: Supplementary Figures and Tables

Fig. S1 Raman spectra of as-prepared Cs_4SnBr_6 NCs, $Cs_4SnBr_xI_{6-x}$ NCs and Cs_4SnI_6 NCs, showing Sn-X vibrations of $[SnX_6]^{4-}$ octahedra.

Fig. S2 XRD patterns of Cs_4SnBr_6 NCs synthesized at 180 °C with different Sn/Cs ratios. Note: CsBr and CsSnBr₃ impurities are observed.

Fig. S3 XRD patterns of Cs_4SnBr_6 NCs synthesized at different temperatures with the Sn/Cs ratio of 6.43. Note: CsBr and CsSnBr₃ impurities are observed.

Fig. S4 XRD patterns of Cs_4SnBr_6 NCs synthesized at different temperatures with the Sn/Cs ratio of 4.39.

Table S1 Cs_4SnX_6 (X= Br, I) NC compositions obtained from the quantification of STEM-EDX mapping results.

	Cs₄SnBr ₆	Cs ₄ SnBr _x I _{6-x}	Cs ₄ Snl ₆
Cs	33.3 ± 4.7 at.%	28.2 ± 3.8 at.%	38.1 ± 6.2 at.%
Sn	10.2 ± 1.5 at.%	10.5 ± 1.5 at.%	10.9 ± 1.4 at.%
Br	56.6 ± 5.8 at.%	54.6 ± 5.2 at.%	_
I	_	6.6 ± 0.9 at.%	51.0 ± 8.2 at.%

Fig. S5 XPS survey spectra of Cs_4SnX_6 (X = Br, I) NCs.

Fig. S6 XPS spectra of Cs3d (a) and Sn3d (b) of Cs_4SnX_6 (X = Br, I) NCs.

Fig. S7 XPS spectra of Br3d (a) and I3d (b) of Cs_4SnX_6 (X = Br, I) NCs.

	Cs₄SnBr ₆	Cs ₄ SnBr _x I _{6-x}	Cs₄SnI ₆
Cs	9.8 at.%	11.98 at.%	4.37 at.%
Sn	2.62 at.%	3.36 at.%	1.39 at.%
Br	14.0 at.%	15.15 at.%	_
I	_	1.77 at.%	7.12 at.%

Table S2 Cs_4SnX_6 (X= Br, I) NC compositions from the quantification of XPS.

Fig. S8 XRD patterns of Cs_4SnI_6 NCs synthesized at different temperatures with the Sn/Cs ratio of 4.37. Note: CsI is observed.

Fig. S9 XRD patterns of Cs₄SnI₆ NCs synthesized at different temperatures with the Sn/Cs ratio of 3.83.

Fig. S10 XRD patterns of Cs_4SnI_6 NCs synthesized at 230 °C with different Sn/Cs ratios. Note: CsI is observed.

Fig. S11 STEM-EDX mapping results of $Cs_4SnI_6 NCs$ (a) and $Cs_4SnBr_xI_{6-x}NCs$ (b).

Table S3 Overview of optical characterizations of Cs_4SnX_6 (X = Br, I) NCs, including PLQYs, PL emission peaks, FWHM values, Stokes shifts and PL lifetimes. Note: all the values are the average of three measurements from three individual samples.

	PLQY (%)	PL peak (nm)	FWHM (nm)	Stokes Shift (nm)	PL Lifetime (ns)
Cs₄SnBr ₆	21	534	119	215	737
Cs₄SnBr _x I _{6-x}	6.6	546	121	227	253
Cs₄SnI ₆	0.7	578	121	215	13

Table S4 PLQY comparisons of all-inorganic tin-halide NCs.

	PLQYs
$Cs_2Snl_6^2$	0.48 % (quantum dots), 0.11 % (nanorods), 0.08% (nanowire), 0.054 % (nanobelts), 0.046 % (nanoplates)
$CsSn(Br_{0.5}I_{0.5})_{3}^{3}$	0.05 % (nanocubes)
CsSnBr ₃ ^{3, 4}	2.1 % (nanocages), 0.14 % (nanocubes)
CsSnl ₃ ³	0.06 % (nanocubes)
Cs₄SnX ₆ (This work)	21.4 % (Cs ₄ SnBr ₆), 6.6 % (Cs ₄ SnBr _x I _{6-x}), 0.7 % (Cs ₄ SnI ₆)

Fig. S12 XRD patterns of Cs_4SnBr_6 NCs after storage in air. (a) The XRD evolutions of Cs_4SnBr_6 NCs after storage in air for 1 h, 2 h, 3 h, 4 h and 7 h, showing that Cs_4SnBr_6 phase gradually changes into Cs_2SnBr_6 and CsBr. (b) Enlarged-view of the XRD patterns, indicating the formation of CsBr within 1 h and the formation of Cs_2SnBr_6 after 2 h.

Fig. S13 XRD patterns of $Cs_4SnBr_xI_{6-x}$ NCs after storage in air. (a) The XRD evolutions of $Cs_4SnBr_xI_{6-x}$ NCs after storage in air for 0.5 h, 1 h, 1.5 h and 2 h, showing that $Cs_4SnBr_xI_{6-x}$ phase gradually changes into Cs_2SnBr_6 and CsBr. (b) Enlarged-view of the XRD patterns, indicating the formation of CsBr and Cs_2SnBr_6 within 1 h. Note: the Br/I ratio in $Cs_4SnBr_xI_{6-x}$ NCs is around 9:1, and thus Cs_2SnBr_6 and CsBr compounds are easily observed.

Fig. S14 XRD patterns of Cs_4Snl_6 NCs after storage in air. (a) The XRD evolutions of Cs_4Snl_6 NCs after storage in air for 0.5 h, 1 h, 1.5 h, 2.5 h, and 4 h, showing that Cs_4Snl_6 phase gradually changes into Cs_2Snl_6 and CsI. (b) Enlarged-view of the XRD patterns, indicating the formation of CsI and Cs_2Snl_6 within half an hour.

Fig. S15 TEM images of (a) Cs₄SnBr₆ NCs and (b) Cs₄SnI₆ NCs after storage in air for 1 week.

Fig. S16 Electronic band structures of (a) Cs_4SnBr_6 and (b) Cs_4SnI_6 calculated based on the PBE functions (E_g , bandgap energy).

References

- 1. J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, **77**, 3865-3868.
- A. Wang, X. Yan, M. Zhang, S. Sun, M. Yang, W. Shen, X. Pan, P. Wang and Z. Deng, *Chem. Materi.*, 2016, **28**, 8132-8140.
- T. C. Jellicoe, J. M. Richter, H. F. J. Glass, M. Tabachnyk, R. Brady, S. E. Dutton, A. Rao, R. H. Friend,
 D. Credgington, N. C. Greenham and M. L. Böhm, *J. Am. Chem. Soc.*, 2016, **138**, 2941-2944.
- 4. A. Wang, Y. Guo, F. Muhammad and Z. Deng, *Chem. Mater.*, 2017, **29**, 6493-6501.