Supporting Information

for

Organoaluminum Cation for Carbonyl Activation

Ramkumar Kannan,^[a] Raju Chambenahalli,^[a] Sandeep Kumar,^[b] Alex P. Andrews,^[a] Eluvathingal D. Jemmis,^[b] and Ajay Venugopal^{*[a]}

^[a] School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram 695551, India. E-mail: venugopal@iisertvm.ac.in

^[b] Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.

Contents

- 1. General Methods and Synthetic Procedures and Characterization
- 2. Catalytic Aldehyde Dimerization (Tischenko Reaction)
- 3. Catalytic Hydrosilylation of Ketones
- 4. Hydroboration and Hydrostannylation of 4,4'-dimethylbenzophenone
- 5. Other NMR Spectra
- 6. Crystallographic data
- 7. Computational Details

GENERAL METHODS AND SYNTHETIC PROCEDURES AND CHARACTERIZATION

General Methods: All manipulations were performed under argon atmosphere using standard Schlenk and glove-box techniques.^[1] The solvents used for syntheses and for NMR experiments were dried, distilled and degassed prior to use by standard methods.^[2] [(NMe₂)C₆H₄Li] ^[3] and [(CH₃CN)₂Ag][B(C₆H₃Cl₂)₄)] were prepared according to the literature procedure.^[4] Commercially available anhydrous AlCl₃ and MesMgBr (1M THF solution) were used without any further purification. Aldehydes and ketones were dried with appropriate drying agents before use. Et₃SiH, PhSiH₃, HBpin and tributyltinhydride were used without any further purification. NMR measurements were performed on Bruker 500 MHz spectrometer. The chemical shifts (δ ppm) in ¹H and ¹³C NMR spectra were referenced to the residual signals of the deuterated solvents. ¹⁹F & ³¹P NMR spectra were referenced to CFCl₃ and H₃PO₄ (85%) respectively. The chemical shifts (δ ppm) in ¹¹B NMR spectra were referenced to NaBH₄ in D₂O. Analytically pure compounds for elemental analysis were obtained by repeated crystallisation of the products. Elemental analyses were performed on Elemental Vario Micro Cube.

Compound 1: A diethyl ether solution of [(NMe₂)C₆H₄Li] (0.6g, 4.72mmol) was added dropwise to a diethyl ether solution of aluminum chloride (0.31g, 2.36mmol) —70 °C. The reaction mixture was gradually warmed up to ambient temperature and stirred for ^{CI} two hours. It was filtered and concentrated to 10 ml. Colorless crystals precipitated from this solution at 0 °C. Yield: 0.5 g (70%); **Elemental analysis** for C₁₆H₂₀N₂Cl₁Al₁: C, 63.46; H, 6.65; N, 9.25. Found: C, 63.2; H, 6.63; N, 9.24; ¹H NMR (CD₂Cl₂, 500 MHz): δ

2.97 (s, 6H, NMe₂), 7.26 (m, 2H, o,m- C₆H₄), 7.36 (t, 1H, p-C₆H₄) (³J_{HH} = 6.3 Hz), 7.61 (d, 1H, m'- C₆H₄) (³J_{HH} = 5 Hz); ¹³**C** NMR (CD₂Cl₂, 126 MHz): 48.2 (s, NMe₂), 117.2(s, o-C₆H₄), 127.8 (s, m-C₆H₄), 129 (s, C₆H₄-N), 129.9(s, p-C₆H₄), 137(s, m'-C₆H₄), 159.8(s, C₆H₄-Al).

Figure S1:¹H NMR spectrum ([CD₂Cl₂], 500 MHz) of compound 1.

Figure S2:¹³C NMR spectrum ([CD₂Cl₂], 126 MHz) of compound 1.

Compound 2: A solution of **1** (0.08 g, 0.26 mmol) in tetrahydrofuran was added dropwise to a solution of $[(CH_3CN)_2Ag][B(C_6H_3Cl_2)_4)]$ (0.23 g, 0.26 mmol) in tetrahydrofuran at -78 °C. The reaction temperature was gradually allowed to attain ambient temperature and stirred for few minutes. The reaction mixture was filtered and the filtrate was concentrated layered with 15 mL n-hexane to obtain colorless

crystals at 0 °C. Yield 0.23g (81%); Elemental analysis for $C_{52}H_{56}N_2O_3Cl_8B_1Al_1$: C, 57.91; H, 5.23; N, 2.59. Found: C, 57.64; H, 5.21; N, 2.58; ¹H NMR (CD₂Cl₂, 500 MHz): δ 1.93 (t, 12H, *o*-THF), 2.91 (s, 12H, NMe₂), 3.85 (t, 12H, *m*-THF), 6.99 (s, *p*-BAr^{Cl}), 7.04 (s, *o*-BAr^{Cl}), 7.34 (d, 2H, *o*-C₆H₄) (³J_{HH} = 10Hz), 7.4 (t, 2H, *m*-C₆H₄) (³J_{HH} = 10Hz), 7.52 (t, 2H, *p*-C₆H₄) (³J_{HH} = 10Hz), 7.63 (d, 2H, *m*'-C₆H₄) (³J_{HH} = 5Hz); ¹³C NMR (CD₂Cl₂, 126 MHz): δ 25.5 (s, *m*-THF), 47.6 (s, NMe₂), 70.8 (s, *o*-THF), 117.3 (s, *o*-C₆H₄), 123 (s, *p*-BAr₄^{Cl}), 129.5 (s, *m*-C₆H₄), 132.2 (s, *p*-C₆H₄), 132.9 (q, *i*-C₆H₄-N), 133.1 (s, *o*-BAr₄^{Cl}), 137.2 (s, *m*'-C₆H₄), 159.2 (s, Al-C₆H₄), 164.6(q, *i*-BAr₄^{Cl}); ¹¹B NMR (CD₂Cl₂, 160.5 MHz): δ -6.93 (s, BAr₄^{Cl}).

Figure S3:¹H NMR spectrum ([CD₂Cl₂], 500 MHz) of compound 2.

Figure S4:¹³C NMR spectrum ([CD₂Cl₂], 126 MHz) of compound 2.

Figure S5:¹¹B NMR spectrum ([CD_2Cl_2], 160.5 MHz) of compound 2.

Compound 3: A solution of **2** (0.02 g, 0.018 mmol) in CD_2CI_2 was reacted with OPEt₃ (0.005 g, 0.036 mmol) in an NMR tube fitted with a *J*.Young joint. The resulting solution was layered with n-hexane and allowed to stand overnight at 0 °C to afford colorless crystals. Yield: 0.0172 g (82%); Elemental analysis for $C_{52}H_{62}P_2O_2N_2CI_8B_1AI_1$: C, 55.25; H, 5.52; N, 2.47. Found: C, 54.92; H, 5.49; N, 2.45; ¹H NMR (CD_2CI_2 , 500 MHz): δ 0.98 (m, 18H, OPCH₂*CH*₃), 1.73 (m, 12H,

OP*CH*₂CH₃), 1.73 (m, 8H, Free *m*-THF), 2.51 (s, 12H, N*Me*₂), 3.59 (t, 8H, Free *m*-THF), 6.88 (m, 4H, *o*,*m*-C₆H₄), 6.91 (s, *p*-BAr^{CI}), 6.95 (s, *o*-BAr^{CI}), 7.17 (t, 2H, *p*-C₆H₄) (³J_{HH} = 10Hz), 7.42 (t, 2H, *m*'-C₆H₄) (³J_{HH} = 10Hz); ¹³C NMR (CD₂Cl₂, 126 MHz): δ 5 (s, OPCH₂CH₃), 17.4, 18 (s, OPCH₂CH₃), 25.6 (s, *m*-THF), 46.2 (s, N*Me*₂), 67.7 (s, *o*-THF), 116.7 (s, *o*-C₆H₄), 122.2 (s, *m*-C₆H₄), 123 (s, *p*-BAr₄^{CI}), 129.2 (s, *p*-C₆H₄), 132.8 (q, *i*-C₆H₄-Al), 133.1 (s, *o*-BAr₄^{CI}), 128.4 (s, *m*-C₆H₄), 137.9 (s, *m*'-C₆H₄), 161.4 (s, *-iC*₆H₄NMe₂), 164.8(q, *i*-BAr₄^{CI}); ¹¹B NMR (CD₂Cl₂, 160.5 MHz): δ -6.93 (s, BAr₄^{CI}); ³¹P NMR (CD₂Cl₂, 202.5 MHz): δ 75.45 (s, OPCH₂CH₃).

Figure S6:¹H NMR spectrum ([CD₂Cl₂], 500 MHz) of compound 3.

Figure S7:¹³C NMR spectrum ([CD₂Cl₂], 126 MHz) of compound 3.

Figure S8:¹¹B NMR ([CD_2CI_2], 160.5 MHz) of compound 3.

Figure S9: Stacked ³¹P NMR ([CD₂Cl₂], 202 MHz) of compound Et₃PO (below) and compound 3 (above).

Compound 4: A solution of **2** (0.04 g, 0.037 mmol) in tetrahydrofuran was treated with OP(NMe₂)₃ (25.8 μ L, 0.148 mmol). The reaction mixture was stirred for an hour and the resulting solution was layered with n-hexane to afford colorless crystals after 5 days. Yield: 0.036 g. (79.6 %); Elemental analysis for C₅₂H₆₈P₂O₂N₈Cl₈B₁Al₁: C, 51.17; H, 5.61; N, 9.18. Found: C, 50.78; H, 5.57; N,

9.16; ¹H NMR (CD₂Cl₂, 500 MHz): δ 2.54 (s, 29H, N*M*e₂, OP*NM*e₂), 2.56 (s, 19H, N*M*e₂, OP*NM*e₂), 1.81 (m, 8H, Free *m*-THF), 3.67 (t, 8H, Free *m*-THF), 6.88 (t, 2H, *m*-C₆H₄) (³J_{HH} = 5Hz), 6.99 (s, *p*-BAr^{CI}), 7.03 (m, *o*-BAr^{CI}), 7.03 (m, 2H, *o*-C₆H₄), 7.23 (t, 2H, *p*-C₆H₄) (³J_{HH} = 5Hz), 7.54 (t, 2H, *m*'-C₆H₄) (³J_{HH} = 5Hz); ¹³C NMR (CD₂Cl₂, 126 MHz): δ 25.6 (s, *m*-THF), 36.4 (s, OPNMe₂), 46.1 (s, N*M*e₂), 67.7 (s, *o*-THF), 112.4 (s, *m*-BAr₄^{CI}), 117.1 (s, *o*-C₆H₄), 122.2 (s, *m*-C₆H₄), 123 (s, *p*-BAr₄^{CI}), 128.8 (s, *p*-C₆H₄), 132.8 (q, *i*-C₆H₄-AI), 133 (s, *o*-BAr₄^{CI}), 137.7 (s, *m*'-C₆H₄), 162.2 (s, *-iC*₆H₄NMe₂), 164.6(q, *i*-BAr₄^{CI}); ¹¹B NMR (CD₂Cl₂, 160.5 MHz): δ -6.93 (s, BAr₄^{CI}). ³¹P NMR (CD₂Cl₂, 202.5 MHz): δ 24.1(t, OPNMe₂).

Figure S11:¹³C NMR ([CD₂Cl₂], 126 MHz) of compound 4.

Figure S12: ³¹P NMR ([CD₂Cl₂], 202 MHz) of compound 4.

Figure S13: ^{11}B NMR ([CD₂Cl₂], 160.5 MHz) of compound 4.

CATALYTIC ALDEHYDE DIMERIZATION (TISCHENKO REACTION)

Typical reaction procedure: Catalytic amount of **2** was introduced into a known volume of aldehyde and stirred 18 °C. The progress of the reaction was monitored by taking an aliquot of the reaction mixture and measuring ¹H NMR in C_6D_6 at regular time intervals. Mesitylene was used as an internal standard to calculate the yield of the product.

Table S1: Summary of catalytic aldehyde dimerization. a) Solvent free neat reactions, b) reaction performed in 0.1 mL C_6D_6 ,) Reaction performed in 0.4 mL C_6D_6 .

Substrate	Catalyst (mol %)	Product	TON	TOF	Yield (%)
	0.1		1000	2000	99ª
	0.5		800	1600	98°
	0.5		200	6000	98ª
°	0.5		200	600	99ª
~~~~0	2		50	200	98 ^b
	5		19.2	38.4	96°

### Benzaldehyde dimerization:

2 (0.005 g, 0.004 mmol), benzaldehyde (471.2 µl, 4.63 mmol), mesitylene (215 µl, 1.54 mmol).



Scheme S1: Catalytic dimerization of benzaldehyde.



**Figure S14**: Stacking of ¹H NMR spectra of benzaldehyde (bottom) and after (top) the product formation recorded in  $C_6D_6$  with internal reference (mesitylene).



Figure S15:¹³C NMR spectrum ([C₆D₆], 126 MHz) of benzyl benzoate.

¹H NMR ( $C_6D_6$ , 500 MHz):  $\delta$  5.17 (s, 2H, OCH₂), 7.03 (t, 2H, *c*,*f*-CH) (³J_{HH} = 5Hz), 7.11 (m, 4H, *b*,*e*-CH), 7.21 (d, 2H, *d*-CH) (³J_{HH} = 5Hz), 8.1 (d, 2H, *a*-CH) (³J_{HH} = 5Hz). (NMR Yield: 99 %); ¹³C NMR ( $C_6D_6$ , 126 MHz):  $\delta$  66.3 (s, OCH₂), 128.2 (s, *c*,*f*-C₆H₅), 128.1 (s, *d*-C₆H₅), 128.4 (s, *b*-C₆H₅), 129.6 (s, *a*-C₆H₅), 130.4 (s, *h*-C₆H₅), 132.6 (s, *e*-C₆H₅), 136.4 (s, *g*-C₆H₅), 165.8 (s, *i*-C=O).

#### Kinetic experiments on benzaldehyde dimerization :

0.05 mol% of **2** was introduced into a known volume of aldehyde and stirred 18 °C. The progress of the reaction was monitored for one hour by taking an aliquot of the reaction mixture and measuring ¹H NMR in  $C_6D_6$  at regular time intervals. Mesitylene was used as an internal standard to calculate the yield of the product.



Figure S16: A plot of  $1/[C_6H_5CHO]$  vs the reaction time for the benzaldehyde dimerization.

### **Control reaction:**

A reaction between benzaldehyde and 0.25 eq. of 2 in  $CD_2Cl_2$ .



### Dimerization of p-tolualdehyde:

0.5 mol% 2 (0.005 g, 0.004 mmol), p-tolualdehyde (109.3 µl, 0.92 mmol) and mesitylene (43 µl, 0.31 mmol).



Scheme S2: Catalytic dimerization of p-tolualdehyde.



**Figure S19**: Stacking of ¹H NMR spectra of p-tolualdehyde (bottom) and after (top) the product formation recorded in  $C_6D_6$  with internal reference (mesitylene).



Figure S20:¹³C NMR spectrum ([C₆D₆], 126 MHz) of 4-methylbenzyl 4-methylbenzoate

¹H NMR ( $C_6D_6$ , 500 MHz):  $\delta$  2.07 (s, 3H,  $CH_3$ ), 5.23 (s, 2H,  $OCH_2$ ), 6.87 (d, 2H, c-CH) ( $^3J_{HH} = 10Hz$ ), 6.94 (d, 2H, *d*-CH) ( $^3J_{HH} = 10Hz$ ), 7.18 (d, 2H, *b*-CH) ( $^3J_{HH} = 5Hz$ ), 8.12 (d, 2H, *a*-CH) ( $^3J_{HH} = 5Hz$ ). (NMR Yield: 99 %); ¹³C NMR ( $C_6D_6$ , 126 MHz):  $\delta$  21 (s,  $CH_3$ ), 66.2 (s,  $OCH_2$ ), 128.4 (s, *b*- $C_6H_5$ ), 128.9 (s, *c*- $C_6H_5$ ), 129 (s, *d*- $C_6H_5$ ), 129.7 (s, *a*- $C_6H_5$ ), 133.6 (s, *e*- $C_6H_5$ ), 137.2 (s, *f*- $C_6H_5$ ), 137.5 (s, *g*- $C_6H_5$ ), 143.1 (s, *h*- $C_6H_5$ ), 166 (s, *i*-C=O).

### Dimerization of butanal:

2 (0.005 g, 0.004 mmol), butanal (20.85 µl, 0.23 mmol) and mesitylene (10.75 µl, 0.07 mmol).



Scheme S3: Catalytic dimerization of butanal.



**Figure S21**: Stacking of ¹H NMR spectra of butanal (bottom) and after (top) the product formation recorded in  $C_6D_6$  with internal reference (mesitylene).



**Figure S22**:¹³C NMR spectrum ([C₆D₆], 126 MHz) of butyl butyrate.

¹H NMR ( $C_6D_6$ , 500 MHz):  $\delta$  0.77 (t, 3H,  $CH_3$ ) ( ${}^{3}J_{HH} = 5Hz$ ), 1.19 (sextet, 2H, b- $CH_2$ ) ( ${}^{3}J_{HH} = 5Hz$ ), 1.4 (quintet, 2H, c- $CH_2$ ) ( ${}^{3}J_{HH} = 5Hz$ ), 1.55 (sextet, 2H, f- $CH_2$ ) ( ${}^{3}J_{HH} = 5Hz$ ), 2.07 (t, 2H, e- $CH_2$ ) ( ${}^{3}J_{HH} = 5Hz$ ), 3.98 (t, 2H, d- $OCH_2$ ) ( ${}^{3}J_{HH} = 5Hz$ ). (NMR Yield: 98 %);  ${}^{13}C$  NMR ( $C_6D_6$ , 126 MHz):  $\delta$  13.3, 13.4 (s, a- $CH_3$ ), 18.4 (s, b- $CH_2$ ), 19 (s, f- $CH_2$ ), 30.72 (s, c- $CH_2$ ), 35.8 (s, e- $CH_2$ ), 63.5 9s, d- $OCH_2$ ), 172.4 (s, i-C=O).

### Dimerization of 2-chloro benzaldehyde:

2 (0.005 g, 0.004 mmol), 2-chloro benzaldehyde (104.2 µl, 0.09 mmol) and mesitylene (4.3 µl, 0.03 mmol).



Scheme S4: Catalytic dimerization of 2-chloro benzaldehyde.



**Figure S23**: Stacking of ¹H NMR spectra of 2-chloro benzaldehyde (bottom) and after (top) the product formation recorded in  $C_6D_6$  with internal reference (mesitylene).



Figure S24:¹³C NMR spectrum ([C₆D₆], 126 MHz) of 2-chlorobenzyl 2-chlorobenzoate.

¹H NMR ( $C_6D_6$ , 500 MHz)(Poor solubility):  $\delta$  5.32 (s, 2H, OCH₂), 6.66 (m, 2H, *g*,*h*-CH) (³J_{HH} = 5Hz), 6.74 (t, 1H, *f*-CH) (³J_{HH} = 5Hz), 6.8 (t, 1H, *e*-CH) (³J_{HH} = 5Hz), 7.04 (d, 1H, *d*-CH) (³J_{HH} = 10Hz), 7.08 (d, 1H, *c*-CH) (³J_{HH} = 10Hz), 7.23 (d, 1H, *b*-CH) (³J_{HH} = 10Hz), 7.68 (d, 1H, *a*-CH) (³J_{HH} = 5Hz). (NMR Yield: 96 %); ¹³C NMR ( $C_6D_6$ , 126 MHz): 64.3 (s, OCH₂), 126.2 (s, *e*-C₆H₄Cl), 126.6 (s, *g*-C₆H₄Cl), 127 (s, *h*-C₆H₄Cl), 128.1 (s, *c*-C₆H₄Cl), 129.3 (s, *f*-C₆H₄Cl), 130.2 (s, *l*-C₆H₄Cl), 130.2 (s, *b*-C₆H₄Cl), 130.8 (s, *d*-C₆H₄Cl), 131.5 (s, *a*-C₆H₄Cl), 137.2 (s, *j*-C₆H₄Cl), 164.6 9s, *i*-C=O).

### Dimerization of o-phthalaldehyde:

2 (0.005 g, 0.004 mmol), o-phthalaldehyde (0.124 g, 0.92 mmol) and mesitylene (43 µl, 0.31 mmol).



Scheme S5: Catalytic dimerization of o-phthalaldehyde.



**Figure S25**: Stacking of ¹H NMR spectra of o-phthalaldehyde (bottom) and after (top) the product formation recorded in  $C_6D_6$  with internal reference (mesitylene).



Figure S26:¹³C NMR spectrum ([C₆D₆], 126 MHz) of 1-Isobenzofuranone.

¹H NMR (C₆D₆, 500 MHz)(Poor solubility):  $\delta$  4.35 (s, 2H, OCH₂), 6.56 (d, 1H, a-CH) (³J_{HH} = 5Hz), 6.99 (t, 1H, *b*-CH) (³J_{HH} = 5Hz), 6.89 (t, 1H, *c*-CH) (³J_{HH} = 5Hz), 7.68 (d, 1H, *d*-CH) (³J_{HH} = 10Hz). (NMR Yield: 98 %); ¹³C NMR (C₆D₆, 126 MHz):  $\delta$  68.5 (s, OCH₂), 121.5 (s, *d*-C₆H₄), 125.2 (s, *a*-C₆H₄), 128.5 (s, *b*-C₆H₄), 132.8 (s, *c*-C₆H₄), 137.2 (s, *e*-C₆H₄), 146.3 (s, *f*-C₆H₄), 169.9 (s, *i*-C=O).

### Dimerization of cyclohexyl carboxaldehyde:

 ${\bf 2}$  (0.005 g, 0.004 mmol), cyclohexyl carboxaldehyde (112.3 µl, 0.92 mmol) and mesitylene (43 µl, 0.31 mmol).



Scheme S6: Catalytic dimerization of cyclohexyl carboxaldehyde.



**Figure S27**: Stacking of ¹H NMR spectra of cyclohexyl carboxaldehyde (bottom) and after (top) the product formation recorded in  $C_6D_6$  with internal reference (mesitylene).



Figure S28:¹³C NMR spectrum ([ $C_6D_6$ ], 126 MHz) of cyclohexylmethyl cyclohexanecarboxylate

¹H NMR ( $C_6D_6$ , 500 MHz):  $\delta$  3.89 (s, 2H, OCH₂), 2.23 (m, 1H, CH), 1.9 (m, 1H, CH), 1.57 (m, 12H, CH₂), 1.08 (m, 6H, CH₂), 0.84 (m, 2H, CH₂). (NMR Yield: 98 %); ¹³C NMR ( $C_6D_6$ , 126 MHz):  $\delta$  25.3 (s, *h*- $C_6H_{11}$ ), 25.6 (s, *g*-  $C_6H_{11}$ ), 25.7 (s, *e*-  $C_6H_{11}$ ), 26.3 (s, *f*-  $C_6H_{11}$ ), 29.1 (s, *d*-  $C_6H_{11}$ ), 29.5 (s, *c*-  $C_6H_{11}$ ), 37.2 (s, *b*-  $C_6H_{11}$ ), 43.1 (s, *a*-  $C_6H_{11}$ ), 68.8 (s, OCH₂), 174.8 (s, *i*-C=O).

### CATALYTIC HYDROSILYLATION OF KETONES

**Typical procedure:** 5 mol % of **2** was loaded into an NMR tube fitted with a J Young joint containing  $C_6D_6$  (0.5 mL). This was followed by the addition equimolar amounts of Et₃SiH and respective ketone. The solution was degassed by freeze-pump-thaw procedure and heated at 70 °C. The product formation was monitored by NMR spectroscopy. Mesitylene was used as an internal standard to calculate the yield of the product.



Scheme S7: General Hydrosilylation scheme

Table S2: Catalytic hydrosilylation promoted by 2.

Substrate 1	Substrate 2	Temp (° C)	Product	Time (h)	Yield (%)
	Et₃SiH	60	OSiEt ₃	32	95
	Et₃SiH	60	OSIEt ₃	20	98
o C	Et₃SiH	60	OSIEt ₃	34	98
O	Et₃SiH	60	OSiEt ₃	23	96
CI	Et₃SiH	60	OSiEt ₃ ClCl	15	98
	$PhSiH_3$	25		108	99
	$PhSiH_3$	25		53	99

### Hydrosilylation of benzophenone:

**2** (0.005 g, 0.004 mmol), benzophenone (0.0169 g, 0.09 mmol), triethylsilane (14.81  $\mu$ l, 0.09 mmol) and mesitylene (4.3  $\mu$ l, 0.03 mmol).



**Figure S29**: Stacking of ¹H NMR spectra of hydrosilylation mixture (Et₃SiH and benzophenone) with catalyst before reaction (bottom) and after (top) the product formation recorded in  $C_6D_6$ .



Figure S30:¹³C NMR spectrum ([C₆D₆], 126 MHz) of (benzhydryloxy)triethylsilane

¹H NMR ( $C_6D_6$ , 500 MHz):  $\delta$  0.59 (q, 6H, OSi $CH_2CH_3$ ) (³J_{HH} = 5Hz), 0.93 (t, 9H, OSi $CH_2CH_3$ ) (³J_{HH} = 5Hz), 2.16 (s, 3H, *Mes-CH*₃), 5.79 (s, 1H, *CH*), 6.71 (s, 1H, *Mes-CH*), 7.05 (t, 2H, *p*-C₆H₅) (³J_{HH} = 10Hz), 7.14 (t, 4H, *m*-C₆H₅) (³J_{HH} = 10Hz), 7.42 (t, 4H, o-C₆H₅) (³J_{HH} = 10Hz). (NMR Yield: 95.3 %); ¹³C NMR (C₆D₆, 126 MHz):  $\delta$  5.8 (s, OSi $CH_2CH_3$ ), 7.6 (s, OSi $CH_2CH_3$ ), 77.5 (s, *CH*-OSiEt₃), 127.3 (s, *p*-C₆H₅), 129 (s, o-C₆H₅), 130.7 (s, *m*-C₆H₅), 146.3 (*i*-C₆H₅).

### Hydrosilylation of acetophenone:

**2** (0.005 g, 0.004 mmol), acetophenone (10.81  $\mu$ l, 0.09 mmol), triethylsilane (14.81  $\mu$ l, 0.09 mmol) and mesitylene (4.3  $\mu$ l, 0.03 mmol).



Scheme S9: Catalytic hydrosilylation of acetophenone.



**Figure S31**: Stacking of ¹H NMR spectra of hydrosilylation mixture (Et₃SiH and acetophenone) with catalyst before reaction (bottom) and after (top) the product formation recorded in  $C_6D_6$ .



**Figure S32**:¹³C NMR ([C₆D₆], 126 MHz) of triethyl(1-phenylethoxy)silane.

¹H NMR ( $C_6D_6$ , 500 MHz):  $\delta$  0.57 (q, 6H, OSi $CH_2CH_3$ ) (³J_{HH} = 10Hz), 0.93 (t, 9H, OSi $CH_2CH_3$ ) (³J_{HH} = 10Hz), 1.39 (d, 3H,  $CH_3$ ) (³J_{HH} = 10Hz), 2.16 (s, 3H, Mes- $CH_3$ ), 4.77 (q, 1H, CH) (³J_{HH} = 10Hz), 6.71 (s, 1H, *Mes-CH*), 7.08 (t, 2H, p- $C_6H_5$ ) (³J_{HH} = 5Hz), 7.19 (t, 4H, o- $C_6H_5$ ) (³J_{HH} = 5Hz), 7.33 (t, 4H, m- $C_6H_5$ ) (³J_{HH} = 5Hz). (NMR Yield: 98 %); ¹³C NMR ( $C_6D_6$ , 126 MHz):  $\delta$  2.6 (s, OSi $CH_2CH_3$ ), 4.5 (s, OSi $CH_2CH_3$ ), 25 (s,  $CH_3CHPhOSiEt_3$ ), 68.5 (s, CH-OSi $Et_3$ ), 123 (s, m- $C_6H_5$ ), 124.5 (s, p- $C_6H_5$ ), 124.7 (s, m- $C_6H_5$ ), 144.7 (i- $C_6H_5$ ).

### Hydrosilylation of cyclohexanone:

5 Mol% **2** (0.01 g, 0.009 mmol), cyclohexanone (19.2 µl, 0.18 mmol), triethylsilane (29.62 µl, 0.18 mmol) and mesitylene (8.6 µl, 0.06 mmol).



Scheme S10: Catalytic hydrosilylation of cyclohexanone.



**Figure S33**: Stacking of ¹H NMR spectra of hydrosilylation mixture (Et₃SiH and cyclohexanone) with catalyst before reaction (bottom) and after (top) the product formation recorded in  $C_6D_6$ .



Figure S34:¹³C NMR spectrum ([C₆D₆], 126 MHz) of (cyclohexyloxy)triethylsilane

¹H NMR (C₆D₆, 500 MHz): δ 0.57 (q, 6H, OSi*CH*₂CH₃) (³J_{HH} = 10Hz), 0.62 (t, 9H, OSi*CH*₂*CH*₃) (³J_{HH} = 5Hz), 1.03 (s, 3H, *CH*₃),1.21 (m, 3H, C₆H₁₀), 1.43 (m, 3H, C₆H₁₀), 1.68 (m, 2H, C₆H₁₀), 1.77 (m, 2H, C₆H₁₀), 2.16 (s, 3H, *Mes*-*CH*₃), 3.61 (q, 1H, *CH*), 6.71 (s, 1H, *Mes*-*CH*). (NMR Yield: 96 %); ¹³C NMR (C₆D₆, 126 MHz): δ 5.1 (s, OSi*CH*₂CH₃), 6.8 (s, OSi*CH*₂*CH*₃), 21 (s, α-C₆H₁₁), 24 (s, γ-C₆H₁₁), 36 (s, α, β-C₆H₁₁), 70.3 (s, *CH*OSiEt₃).

### Hydrosilylation of 1, 3-dichloroacetone:

**2** (0.01 g, 0.009 mmol), 1, 3-dichloroacetone (0.02 g, 0.18 mmol), triethylsilane (29.62 µl, 0.18 mmol) and mesitylene (8.6 µl, 0.06 mmol).



Scheme S11: Catalytic hydrosilylation of 1, 3-dichloroacetone.



**Figure S35**: Stacking of ¹H NMR spectra of hydrosilylation mixture (Et₃SiH and 1, 3-dichloroacetone) with catalyst before reaction (bottom) and after (top) the product formation recorded in  $C_6D_6$ .



**Figure S36**:¹³C NMR spectrum ([C₆D₆], 126 MHz) of ((1,3-dichloropropan-2-yl)oxy)triethylsilane.

¹H NMR ( $C_6D_6$ , 500 MHz):  $\delta$  0.48 (q, 6H, OSi $CH_2CH_3$ ) ( ${}^{3}J_{HH}$  = 5Hz), 0.9 (t, 9H, OSi $CH_2CH_3$ ) ( ${}^{3}J_{HH}$  = 5Hz), 2.16 (s, 3H, Mes- $CH_3$ ), 3.25 (t, 4H, $CH_2$ ) ( ${}^{3}J_{HH}$  = 5Hz), 3.74 (q, 1H,CH) ( ${}^{3}J_{HH}$  = 5Hz), 6.71 (s, 1H, Mes-CH). (NMR Yield: 98 %); ¹³C NMR ( $C_6D_6$ , 126 MHz):  $\delta$  2.5 (s, OSi $CH_2CH_3$ ), 4.3 (s, OSi $CH_2CH_3$ ), 43.5 (s,  $CH_2CI$ ), 69.8 (s,  $CHOSiEt_3$ ).

#### Hydrosilylation of 4, 4'-dimethylbenzophenone:

**2** (0.01 g, 0.009 mmol), 4, 4'-dimethylbenzophenone (0.03, 0.18 mmol), triethylsilane (29.62  $\mu$ l, 0.18 mmol) and mesitylene (8.6  $\mu$ l, 0.06 mmol).



Scheme S12: Catalytic hydrosilylation of 4, 4'-dimethylbenzophenone.



**Figure S37**: Stacking of ¹H NMR spectra of hydrosilylation mixture (Et₃SiH and 4, 4'-dimethyl benzophenone) with catalyst before reaction (bottom) and after (top) the product formation recorded in  $C_6D_6$ .



Figure S38:¹³C NMR spectrum ([C₆D₆], 126 MHz) of (di-p-tolylmethoxy)triethylsilane.

¹H NMR (C₆D₆, 500 MHz): δ 0.62 (q, 6H, OSi*CH*₂CH₃) (³J_{HH} = 5Hz), 0.96 (t, 9H, OSi*CH*₂*CH*₃) (³J_{HH} = 5Hz), 2.09 (s, *CH*₃), 2.16 (s, 3H, *Mes-CH*₃), 5.79 (s, 1H, *CH*), 6.72 (s, 1H, *Mes-CH*), 6.99 (d, 4H, C₆H₄) (³J_{HH} = 10Hz), 7.37 (d, 4H, C₆H₄) (³J_{HH} = 10Hz). (NMR Yield: 98 %); ¹³C NMR (C₆D₆, 126 MHz): δ 2.7 (s, OSi*CH*₂CH₃), 4.5 (s, OSi*CH*₂*CH*₃), 18.4 (s, *CH*₃), 74.2 (s, *CH*-OSiEt₃), 125 (s, α-C₆H₅), 126.5 (s, β-C₆H₅), 133.8 (s, γ-C₆H₅), 140.5 (*i*-C₆H₅).

### Deoxygenation of ketones.

**Typical procedure**: 5 mol % of **2** was loaded into an NMR tube fitted with a J Young joint containing  $CD_2CI_2$  (0.5 mL). This was followed by the addition equimolar amounts of PhSiH₃ and respective ketone. The solution was degassed by freeze-pump-thaw procedure and heated at 70 °C. The product formation was monitored by NMR spectroscopy. Mesitylene was used as an internal standard to calculate the yield of the product.

### Deoxygenation of benzophenone

5 Mol% **2** (0.01 g, 0.009 mmol), benzophenone (0.03g, 0.18 mmol), phenylsilane (7.61  $\mu$ l, 0.06 mmol) and mesitylene (8.6  $\mu$ l, 0.06 mmol).



Scheme S13: Catalytic deoxygenation of benzophenone.







Figure S40:¹³C NMR spectrum ([CD₂Cl₂], 126 MHz) of diphenylmethane.

¹H NMR (CD₂Cl₂, 500 MHz): δ 3.97 (s, Ph₂CH₂), 5.29 (s, Ph*SiH*₂), 5.84 (s, *Ph*₂CHSiO) (NMR Yield: 99 % with respect to PhSiH₃); ¹³C NMR (CD₂Cl₂, 126 MHz): δ 77.5 (s, Ph₂CH₂).

### Deoxygenation of 4,4'-dimethylbenzophenone

5 Mol% **2** (0.01 g, 0.009 mmol), 4, 4'-dimethylbenzophenone (0.03g, 0.18 mmol), phenylsilane (7.61  $\mu$ l, 0.06 mmol) and mesitylene (8.6  $\mu$ l, 0.06 mmol).



Scheme S14: Catalytic deoxygenation of 4, 4'-dimethylbenzophenone.



**Figure S41**: Stacking of ¹H NMR spectra of hydrosilylation mixture (PhSiH₃ and 4,4'dimethylbenzophenone) with catalyst before reaction (bottom) and after (top) the product formation recorded in  $CD_2CI_2$ .



**Figure S42**:¹³C NMR spectrum ([CD₂Cl₂], 126 MHz) of di-p-tolylmethane.

¹H NMR (CD₂Cl₂, 500 MHz): δ 4 (s, Ph₂CH₂), 5.33 (s, Ph*SiH*₂), 5.88 (s, *Ph*₂CHSiO) (NMR Yield: 99 % with respect to PhSiH₃); ¹³C NMR (CD₂Cl₂, 126 MHz): δ 77.3 (s, Ph₂CH₂).

#### HYDROBORATION AND HYDROSTANNYLATION OF 4,4'-DIMETHYLBENZOPHENONE

**Typical procedure:** 5 mol % of **2** was loaded into an NMR tube fitted with a J Young joint containing  $CD_2CI_2$  (0.5 mL). This was followed by the addition equimolar amounts of HBpin/ (tBu)₃SnH and respective ketone. The solution was degassed by freeze-pump-thaw procedure and heated at 70 °C in the case of hydroboration while hydrostannylation was performed at ambient temperature. The product formation was monitored by NMR spectroscopy. Yield of the reactions at 20h was recorded. Mesitylene was used as an internal standard to calculate the yield of the product.

#### Hydroboration of 4,4'-dimethylbenzophenone:

**2** (0.005 g, 0.004 mmol), 4,4'-dimethylbenzophenone (0.02g, 0.09 mmol), 4,4,5,5-tetramethyl-1,3,2-dioxaborolane (HBpin) (13.45 µl, 0.09 mmol) and mesitylene (4.3 µl, 0.03 mmol).



Scheme S15: Catalytic hydroboration of 4, 4'-dimethylbenzophenone.



**Figure S43**: Stacking of ¹H NMR spectra of hydroboration mixture (HBpin and 4, 4'-dimethyl benzophenone) with catalyst before reaction (bottom) and after (top) the product formation recorded in  $C_6D_6$ .



**Figure S44**: Stacking of ¹¹B NMR spectra of hydroboration mixture (PhSiH₃ and 4,4'-dimethyl benzophenone) with catalyst before reaction (bottom) and after (top) the product formation recorded in  $C_6D_6$ .



**Figure S45**:¹³C NMR spectrum ([ $C_6D_6$ ], 126 MHz) of 2-(di-p-tolylmethoxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane.



Figure S46:¹¹B NMR spectrum ([ $C_6D_6$ ], 160.5 MHz) of 2-(di-p-tolylmethoxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

¹H NMR (C₆D₆, 500 MHz): δ 6.47 (s, 1H, *CH*OBpin). (NMR Yield at 20 h: 32 % with respect to HBpin consumption from ¹¹B NMR); ¹³C NMR (C₆D₆, 126 MHz): δ 78 (s, *CH*OBpin); ¹¹B NMR (C₆D₆, 160.5 MHz): 21.8 (s, *CH*OBpin).

### Hydrostannylation of 4,4'-dimethylbenzophenone

**2** (0.005 g, 0.004 mmol), 4,4'-dimethylbenzophenone (0.019g, 0.09 mmol), tributyltinhydride (24.94  $\mu$ l, 0.09 mmol) and mesitylene (4.3  $\mu$ l, 0.03 mmol).



Scheme S16: Catalytic hydrostannylation of 4, 4'-dimethylbenzophenone.



**Figure S47**: Stacking of ¹H NMR spectra of hydrostannalation mixture  $(HSn(Butyl)_3 \text{ and } 4,4'-$  dimethylbenzophenone) with catalyst before reaction (bottom) and after (top) the product formation recorded in  $C_6D_6$ .



**Figure S48**:¹³C NMR spectrum ([C₆D₆], 126 MHz) of tributyl(di-p-tolylmethoxy)stannane.

¹H NMR (C₆D₆, 500 MHz):  $\delta$  5.85 (s, 2H, *CH*OSn(Butyl)₃). (NMR Yield: 57.5 % with respect to the tributylsinhydride conversion); ¹³C NMR (C6D6, 126 MHz):  $\delta$  79 (s, *CH*OSn(Butyl)₃).

### **OTHER NMR SPECTRA**



Figure S49: Stacking of ¹H NMR spectra of 2 (bottom) and 2+16 eq. benzophenone (top) in CD₂D₂.



**Figure S49a**: Expanded form of stacked ¹H NMR spectra of **2** (bottom) and **2**+16 eq. benzophenone (top) in  $CD_2D_2$ .



**Figure S50**: Stacking of ¹H NMR spectra of triethylsilane (bottom) and (top) triethylsilane + **2** in the ratio of 3:1 in  $C_6D_6$ .

**Table S3**: Reaction between  $Ph_2C=O$  and  $Et_3SiH$  in  $C_6D_6$  at 60 °C catalyzed by **2** (5 mol%). **Et_3SiH:Ph_2C=O** Yield

	neiu
	(6h)
1:1	45
1:2	58
1:4	63
1:6	67
1:8	72
1:10	76

# Crystallographic Data

Table S4. Crystal data and structure refinement for 1.			
Identification code	compound_1		
CCDC Code	1959215		
Empirical formula	C16 H20 AI CI N2		
Formula weight	302.77		
Temperature	150(2) K		
Wavelength	0.71073 Å		
Crystal system	Orthorhombic		
Space group	Pccn		
Unit cell dimensions	a = 17.9517(6) Å	<b>α= 90°</b> .	
	b = 22.8784(10) Å	β <b>= 90°</b> .	
	c = 7.7265(2) Å	$\gamma = 90^{\circ}$ .	
Volume	3173.32(19) Å ³		
Z	8		
Density (calculated)	1.267 Mg/m ³		
Absorption coefficient	0.288 mm ⁻¹		
F(000)	1280		
Crystal size	0.120 x 0.100 x 0.080 mm ³		
Theta range for data collection	2.902 to 24.998°.		
Index ranges	-21<=h<=20, -27<=k<=17, -	8<= <=9	
Reflections collected	12071		
Independent reflections	2795 [R(int) = 0.0386]		
Completeness to theta = 24.998°	99.9 %		
Absorption correction	Semi-empirical from equivale	ents	
Max. and min. transmission	0.977 and 0.966		
Refinement method	Full-matrix least-squares on	F ²	
Data / restraints / parameters	2795 / 0 / 181		
Goodness-of-fit on F ²	1.011		
Final R indices [I>2sigma(I)]	R1 = 0.0354, wR2 = 0.0786		
R indices (all data)	R1 = 0.0552, wR2 = 0.0890		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.262 and -0.183 e.Å ⁻³		

Table S5. Crystal data and structure refinement	nt for <b>2</b> .		
Identification code	compound_2		
CCDC Code	1959217		
Empirical formula	C50 H52 AI B CI8 N2 O2		
Formula weight	1034.32		
Temperature	150(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P 21/c		
Unit cell dimensions	a = 17.421(6) Å	α <b>= 90°</b> .	
	b = 16.199(5) Å	β= 95.551(12)°.	
	c = 17.674(6) Å	$\gamma = 90^{\circ}$ .	
Volume	4964(3) Å ³		
Z	4		
Density (calculated)	1.384 Mg/m ³		
Absorption coefficient	0.513 mm ⁻¹		
F(000)	2144		
Crystal size	0.200 x 0.200 x 0.150 mm ³		
Theta range for data collection	1.174 to 24.994°.		
Index ranges	-20<=h<=20, -19<=k<=19, -2	21<=l<=21	
Reflections collected	60479		
Independent reflections	8730 [R(int) = 0.0813]		
Completeness to theta = 24.994°	99.9 %		
Absorption correction	Semi-empirical from equivale	ents	
Max. and min. transmission	0.927 and 0.904		
Refinement method	Full-matrix least-squares on	F ²	
Data / restraints / parameters	8730 / 0 / 581		
Goodness-of-fit on F ²	1.014		
Final R indices [I>2sigma(I)]	R1 = 0.0448, wR2 = 0.1087		
R indices (all data)	R1 = 0.0698, wR2 = 0.1233		
Extinction coefficient n/a			
Largest diff. peak and hole 0.708 and -0.360 e.Å-3			

Table S6. Crystal data and structure refinement for 3.			
Identification code	ication code compound_3		
CCDC Code	CCDC Code 1959216		
Empirical formula	C52 H62 AI B CI8 N2 O2 P2	2	
Formula weight	1130.36		
Temperature	150(2) K		
Wavelength	0.71073 Å		
Crystal system	Orthorhombic		
Space group	P 21 21 21		
Unit cell dimensions	a = 14.079(5) Å	<b>α= 90°</b> .	
	b = 17.811(6) Å	β <b>= 90°</b> .	
	c = 22.443(7) Å	$\gamma = 90^{\circ}$ .	
Volume	5628(3) Å ³		
Z	4		
Density (calculated)	1.334 Mg/m ³		
Absorption coefficient	0.513 mm ⁻¹		
F(000)	2352		
Crystal size	0.120 x 0.080 x 0.075 mm ³		
Theta range for data collection	1.815 to 25.998°.		
Index ranges	-17<=h<=16, -21<=k<=21, -:	27<=l<=27	
Reflections collected	82574		
Independent reflections	11056 [R(int) = 0.1664]		
Completeness to theta = 25.242°	99.9 %		
Absorption correction	Semi-empirical from equival	ents	
Max. and min. transmission	0.963 and 0.941		
Refinement method	Full-matrix least-squares on	F ²	
Data / restraints / parameters	11056 / 253 / 551		
Goodness-of-fit on F ²	1.019		
Final R indices [I>2sigma(I)]	R1 = 0.0664, wR2 = 0.1282		
R indices (all data)	R1 = 0.1434, wR2 = 0.1647		
Absolute structure parameter	0.04(5)		
Extinction coefficient	oefficient n/a		
Largest diff. peak and hole	peak and hole 0.450 and -0.550 e.Å ⁻³		

Table S7. Crystal data and structure refinement for 4			
Identification code	compound_4		
CCDC Code	1959218		
Empirical formula	C52 H68 AI B CI8 N8 O2 P2		
Formula weight	1220.47		
Temperature	150(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P 21/c		
Unit cell dimensions	a = 13.7249(5) Å	<b>α= 90°</b> .	
	b = 12.1252(4) Å	β <b>= 92.707(2)°</b> .	
	c = 36.2951(12) Å	$\gamma = 90^{\circ}$ .	
Volume	6033.4(4) Å ³		
Z	4		
Density (calculated)	1.344 Mg/m ³		
Absorption coefficient	0.487 mm ⁻¹		
F(000)	2544		
Crystal size	0.240 x 0.185 x 0.120 mm ³		
Theta range for data collection	1.771 to 25.998°.		
Index ranges	-16<=h<=16, -14<=k<=14, -4	44<= <=44	
Reflections collected	86993		
Independent reflections	11842 [R(int) = 0.1179]		
Completeness to theta = 25.242°	99.9 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.944 and 0.892		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	11842 / 430 / 863		
Goodness-of-fit on F ²	1.001		
Final R indices [I>2sigma(I)]	R1 = 0.0690, wR2 = 0.1763		
R indices (all data) R1 = 0.1256, wR2 = 0.2205			
Extinction coefficient	n/a		
Largest diff. peak and hole 0.848 and -0.512 e.Å ⁻³			

#### **Computational Details:**

All DFT computations were performed using Gaussian 09^[5] quantum chemistry program package for molecular geometry optimization and energy calculations. Density functional theory (DFT) with the meta-hybrid functional M06-2X^[6] and the correlation-consistent polarized valence split basis set, cc-pVTZ^[7] for all atoms were used. Hessian matrix of force constants of stationary points were calculated to characterize intermediates and transition state on potential energy surface. Zero-point corrected energies are reported for all isomers. Natural bond orbital (NBO)^[8] analysis was carried out using NBO 6.0 as implemented in the Gaussian 09 program package to calculate charges on C and O atoms using the same level of theory (M06-2X/cc-pVTZ).

#### **DFT Optimized coordinates of molecules**

Cartesian coordinates and zero-point corrected total energies (a.u.) of DFT optimized structures using M06-2X functional and cc-pVTZ basis set for all atoms.

#### Compound 1

#### E_{TOTAL} = -1433.595584 a.u.

6	-0.553554000	1.669503000	-0.343643000
6	0.716066000	2.234303000	-0.324160000
6	1.028731000	3.478970000	-0.850225000
1	2.035182000	3.878054000	-0.809076000
6	0.000000000	4.205291000	-1.430866000
1	0.198770000	5.181948000	-1.851522000
6	-1.289195000	3.681252000	-1.472491000
1	-2.082749000	4.260075000	-1.927153000
6	-1.562815000	2.429291000	-0.937455000
1	-2.578975000	2.055745000	-0.987128000
6	2.310925000	1.954590000	1.502587000
1	2.982994000	2.766118000	1.208117000
1	2.876510000	1.191180000	2.034514000
1	1.539486000	2.337034000	2.164923000
6	2.703585000	0.859006000	-0.611694000
1	2.218146000	0.406146000	-1.474018000
1	3.310232000	0.107057000	-0.107757000
1	3.350306000	1.675119000	-0.947291000
6	0.553554000	-1.669503000	-0.343643000

6	-0.716066000	-2.234303000	-0.324160000
6	-1.028731000	-3.478970000	-0.850225000
1	-2.035182000	-3.878054000	-0.809076000
6	0.000000000	-4.205291000	-1.430866000
1	-0.198770000	-5.181948000	-1.851522000
6	1.289195000	-3.681252000	-1.472491000
1	2.082749000	-4.260075000	-1.927153000
6	1.562815000	-2.429291000	-0.937455000
1	2.578975000	-2.055745000	-0.987128000
6	-2.703585000	-0.859006000	-0.611694000
1	-2.218146000	-0.406146000	-1.474018000
1	-3.310232000	-0.107057000	-0.107757000
1	-3.350306000	-1.675119000	-0.947291000
6	-2.310925000	-1.954590000	1.502587000
1	-2.982994000	-2.766118000	1.208117000
1	-2.876510000	-1.191180000	2.034514000
1	-1.539486000	-2.337034000	2.164923000
7	1.681198000	1.345891000	0.322979000
7	-1.681198000	-1.345891000	0.322979000
13	0.000000000	0.000000000	0.584607000
17	0.000000000	0.000000000	2.758032000

# Compound 2

# E_{TOTAL} = -1437.802646 a.u.

6	-0.373098000	1.791246000	-0.720912000
6	-1.260140000	2.181608000	0.279761000
6	-2.056367000	3.315948000	0.212323000
1	-2.735282000	3.579885000	1.013945000
6	-1.961766000	4.110578000	-0.920337000
1	-2.568379000	5.001565000	-1.006718000
6	-1.087581000	3.762033000	-1.944656000
1	-1.023499000	4.387089000	-2.825360000
6	-0.307521000	2.616357000	-1.847751000
1	0.343722000	2.373430000	-2.679932000
6	-0.628528000	1.885707000	2.586482000
1	-0.511107000	1.140661000	3.373376000

1	0.343832000	2.292519000	2.318484000
1	-1.249440000	2.700607000	2.971283000
6	-2.571321000	0.744721000	1.796213000
1	-2.436478000	-0.021455000	2.558889000
1	-3.214313000	1.535187000	2.193190000
1	-3.060845000	0.281670000	0.944989000
6	-0.712602000	-1.699249000	0.700243000
6	-1.654394000	-1.912802000	-0.304430000
6	-2.667641000	-2.857651000	-0.229027000
1	-3.384275000	-2.985483000	-1.030901000
6	-2.743462000	-3.639267000	0.914762000
1	-3.522039000	-4.383682000	1.009565000
6	-1.819769000	-3.466299000	1.940276000
1	-1.887400000	-4.081010000	2.827938000
6	-0.821476000	-2.505467000	1.835894000
1	-0.137488000	-2.391191000	2.669155000
6	-0.916672000	-1.775526000	-2.593671000
1	-0.650116000	-1.078783000	-3.388453000
1	-0.039212000	-2.344177000	-2.294354000
1	-1.664195000	-2.473334000	-2.983345000
6	-2.629294000	-0.273602000	-1.874796000
1	-2.327323000	0.440618000	-2.640224000
1	-3.399561000	-0.932112000	-2.285771000
1	-3.046006000	0.287086000	-1.043571000
6	1.999375000	0.132089000	-2.343658000
1	2.123594000	1.164842000	-2.025587000
1	1.255146000	0.086565000	-3.137872000
6	3.299281000	-0.564661000	-2.718748000
1	3.506047000	-0.488122000	-3.782710000
1	4.137306000	-0.125120000	-2.176750000
6	3.061427000	-2.000017000	-2.249417000
1	3.979977000	-2.562801000	-2.106217000
1	2.430782000	-2.538071000	-2.957592000
6	2.317236000	-1.778587000	-0.948677000
1	1.666475000	-2.593180000	-0.636797000
1	2.999486000	-1.522632000	-0.133201000
6	1.909188000	-0.513070000	2.356431000

1	1.867390000	-1.548982000	2.027219000
1	1.166838000	-0.354180000	3.137270000
6	3.297147000	-0.042604000	2.765130000
1	4.063977000	-0.599342000	2.225308000
1	3.470110000	-0.172865000	3.830011000
6	3.298480000	1.420969000	2.324670000
1	2.743034000	2.036113000	3.033042000
1	4.296522000	1.836237000	2.213514000
6	2.558626000	1.344641000	1.004729000
1	2.050421000	2.256796000	0.699055000
1	3.211584000	1.001926000	0.196766000
7	-1.251524000	1.261366000	1.411695000
7	-1.444240000	-1.026758000	-1.444941000
8	1.480846000	-0.627249000	-1.217239000
8	1.546457000	0.333629000	1.231110000
13	0.052144000	-0.012472000	-0.008531000

# Compound 3

# E_{TOTAL} = -2281.329491 a.u.

6	-0.462963000	1.986681000	-1.640513000
6	-0.008694000	3.233384000	-1.224652000
6	-0.162364000	4.395967000	-1.966936000
1	0.204356000	5.349656000	-1.607070000
6	-0.797038000	4.303704000	-3.196851000
1	-0.933786000	5.190289000	-3.801012000
6	-1.248280000	3.071521000	-3.660681000
1	-1.727070000	3.009781000	-4.629060000
6	-1.080606000	1.927674000	-2.891273000
1	-1.426202000	0.981691000	-3.295685000
6	2.074079000	3.568983000	-0.029365000
1	2.568602000	3.350927000	0.917817000
1	2.557873000	3.003802000	-0.822351000
1	2.176641000	4.638692000	-0.239160000
6	-0.014109000	3.961457000	1.095421000
1	0.470025000	3.790758000	2.055941000
1	0.015252000	5.030655000	0.862556000

1	-1.051575000	3.643627000	1.176221000
6	-0.439627000	0.835447000	1.805822000
6	-1.696316000	0.516940000	2.351556000
6	-1.858520000	0.367603000	3.730535000
1	-2.822537000	0.126392000	4.153136000
6	-0.786782000	0.547904000	4.595345000
1	-0.935723000	0.429997000	5.660279000
6	0.452270000	0.899378000	4.093196000
1	1.288532000	1.063276000	4.759643000
6	0.601096000	1.040046000	2.717295000
1	1.581845000	1.319161000	2.337933000
6	-3.986266000	-0.276989000	2.055539000
1	-4.703706000	-0.503621000	1.264276000
1	-3.720957000	-1.204706000	2.562055000
1	-4.494365000	0.378846000	2.774574000
6	-3.200315000	1.561218000	0.767553000
1	-3.966914000	1.329599000	0.026264000
1	-3.612166000	2.301397000	1.466098000
1	-2.357990000	2.004464000	0.244949000
7	0.666947000	3.170443000	0.064374000
7	-2.808036000	0.334677000	1.463394000
8	-0.251596000	-0.871845000	-0.642634000
8	1.931912000	0.583208000	-0.118993000
13	0.129169000	0.899246000	-0.099598000
15	-1.361027000	-1.914097000	-0.830025000
6	-0.717862000	-3.110116000	-2.037306000
1	0.344334000	-3.186300000	-1.790076000
1	-0.774037000	-2.626252000	-3.015460000
6	-1.685508000	-2.775652000	0.728921000
1	-0.865797000	-3.482704000	0.879770000
1	-1.591169000	-2.001987000	1.494937000
6	-2.888655000	-1.168747000	-1.456197000
1	-3.433083000	-0.832350000	-0.575304000
1	-2.564362000	-0.267099000	-1.980312000
6	-3.041024000	-3.476714000	0.813063000
1	-3.142170000	-4.269526000	0.073747000
1	-3.164215000	-3.923488000	1.798015000

1	-3.856468000	-2.769760000	0.667825000
6	-1.352176000	-4.499758000	-2.061850000
1	-0.857707000	-5.114421000	-2.811712000
1	-1.242484000	-5.001314000	-1.100947000
1	-2.410746000	-4.466067000	-2.309841000
6	-3.755139000	-2.050920000	-2.353914000
1	-4.625343000	-1.485890000	-2.682473000
1	-3.218573000	-2.375582000	-3.244717000
1	-4.115897000	-2.934891000	-1.829931000
15	2.858333000	-0.639486000	-0.084300000
6	2.278024000	-1.863667000	1.121749000
1	1.495704000	-2.439351000	0.624089000
1	1.779452000	-1.274428000	1.896766000
6	4.495029000	-0.030466000	0.389939000
1	4.556078000	0.952462000	-0.082347000
1	4.461906000	0.144529000	1.467969000
6	2.930069000	-1.387415000	-1.732627000
1	3.552311000	-0.734525000	-2.348522000
1	1.908204000	-1.291996000	-2.107020000
6	3.406384000	-2.837585000	-1.794292000
1	3.369932000	-3.193809000	-2.822194000
1	4.430311000	-2.950090000	-1.442629000
1	2.773161000	-3.491421000	-1.193921000
6	5.693461000	-0.892065000	-0.005289000
1	5.755896000	-1.008297000	-1.086647000
1	6.611933000	-0.411340000	0.325354000
1	5.658419000	-1.882549000	0.444399000
6	3.352145000	-2.768190000	1.723644000
1	3.850748000	-3.375212000	0.969395000
1	4.109754000	-2.188538000	2.249331000
1	2.898222000	-3.443428000	2.446338000

# Compound 4

# ETOTAL = -2613.374270 a.u.

6	0.841179000	1.950615000	-1.247765000
6	2.135288000	2.475811000	-1.090757000

6	2.771786000	3.120384000	-2.152453000
1	3.767661000	3.522865000	-2.038159000
6	2.133477000	3.267083000	-3.377448000
1	2.644870000	3.767699000	-4.188844000
6	0.846423000	2.790251000	-3.548503000
1	0.338770000	2.909954000	-4.496161000
6	0.222628000	2.145906000	-2.485485000
1	-0.781611000	1.761706000	-2.635741000
6	4.235089000	2.474241000	0.138009000
1	4.645909000	2.184746000	1.105441000
1	4.661305000	1.830320000	-0.631310000
1	4.557979000	3.507197000	-0.050756000
6	2.224206000	3.164878000	1.218981000
1	2.749503000	2.981591000	2.156505000
1	2.319152000	4.232215000	0.974902000
1	1.173961000	2.933173000	1.378808000
6	-0.895073000	1.193475000	1.792945000
6	-1.828893000	2.212074000	1.600205000
6	-2.643053000	2.681589000	2.625154000
1	-3.358069000	3.476238000	2.449468000
6	-2.527816000	2.112360000	3.886273000
1	-3.152442000	2.464446000	4.696217000
6	-1.608382000	1.092781000	4.111378000
1	-1.523585000	0.655804000	5.097797000
6	-0.801191000	0.643508000	3.072727000
1	-0.095593000	-0.159096000	3.267690000
6	-3.205843000	2.635288000	-0.358370000
1	-3.129462000	2.908556000	-1.412068000
1	-3.577609000	1.613916000	-0.290196000
1	-3.932855000	3.308045000	0.114050000
6	-1.362476000	4.084244000	0.125120000
1	-1.261471000	4.331103000	-0.931915000
1	-2.021484000	4.819244000	0.603907000
1	-0.378383000	4.148711000	0.582147000
7	2.792555000	2.318644000	0.172509000
7	-1.882944000	2.723071000	0.245551000
8	-1.451525000	-0.015220000	-0.949292000

8	0.909429000	-0.711227000	0.281928000
13	-0.130469000	0.803804000	0.019673000
15	2.171168000	-1.546832000	0.392116000
15	-2.425245000	-1.168342000	-0.757482000
7	3.328641000	-0.723705000	1.207254000
7	1.840283000	-2.945418000	1.203873000
7	2.700087000	-1.957424000	-1.107353000
7	-1.639542000	-2.533661000	-1.276066000
7	-2.906640000	-1.531025000	0.763844000
7	-3.799949000	-0.775846000	-1.572171000
6	2.980613000	0.036105000	2.401781000
1	2.991509000	-0.586152000	3.302621000
1	3.709773000	0.834430000	2.529003000
1	1.999601000	0.492774000	2.287444000
6	4.745288000	-1.014868000	1.043608000
1	5.303390000	-0.078893000	1.019631000
1	5.136199000	-1.626328000	1.862387000
1	4.920439000	-1.538248000	0.106185000
6	3.411039000	-3.192508000	-1.398573000
1	3.391963000	-3.864267000	-0.544140000
1	2.948161000	-3.696093000	-2.250113000
1	4.455154000	-2.989491000	-1.652890000
6	2.827466000	-0.937706000	-2.145499000
1	3.872652000	-0.640742000	-2.273264000
1	2.465125000	-1.340154000	-3.093496000
1	2.243118000	-0.054588000	-1.895626000
6	0.854647000	-3.872339000	0.665671000
1	0.146986000	-3.337944000	0.034829000
1	1.328899000	-4.673618000	0.088192000
1	0.302859000	-4.329091000	1.489311000
6	2.738554000	-3.539230000	2.183383000
1	3.338634000	-4.344179000	1.746373000
1	3.406232000	-2.791451000	2.599890000
1	2.149426000	-3.961136000	2.998626000
6	-1.988549000	-2.265689000	1.645405000
1	-0.966843000	-1.889303000	1.576601000
1	-2.327400000	-2.127060000	2.669453000

1	-1.995649000	-3.331778000	1.417457000
6	-3.918702000	-0.733007000	1.466043000
1	-4.553659000	-1.400119000	2.049706000
1	-3.444911000	-0.009473000	2.132905000
1	-4.542059000	-0.199619000	0.753974000
6	-4.981492000	-1.631018000	-1.524280000
1	-5.031584000	-2.288770000	-2.396060000
1	-4.980978000	-2.238481000	-0.622521000
1	-5.875435000	-1.005540000	-1.516310000
6	-3.759940000	0.101684000	-2.738919000
1	-3.772268000	-0.476810000	-3.666349000
1	-4.636128000	0.751845000	-2.725525000
1	-2.868230000	0.720024000	-2.712142000
6	-0.637568000	-2.427552000	-2.335946000
1	-1.092377000	-2.514507000	-3.327339000
1	-0.108568000	-1.481328000	-2.261927000
1	0.085326000	-3.238520000	-2.219892000
6	-2.350259000	-3.807888000	-1.287954000
1	-3.104119000	-3.834552000	-0.503739000
1	-2.836995000	-3.987266000	-2.251114000
1	-1.638885000	-4.617535000	-1.110734000

# INT-1

# E_{TOTAL} = -1664.053808 a.u.

6	-1.355707000	0.730729000	1.747455000
6	-2.195004000	-0.315193000	2.114913000
6	-3.044445000	-0.278665000	3.211134000
1	-3.684927000	-1.115319000	3.462354000
6	-3.053939000	0.873661000	3.983988000
1	-3.703203000	0.938106000	4.846341000
6	-2.234958000	1.948314000	3.650174000
1	-2.257970000	2.843574000	4.257207000
6	-1.400375000	1.879019000	2.541525000
1	-0.797160000	2.749098000	2.298087000
6	-1.438915000	-2.602062000	1.854550000

1	-1.187773000	-3.347838000	1.099003000
1	-0.532373000	-2.282379000	2.361534000
1	-2.114318000	-3.056265000	2.585931000
6	-3.339194000	-1.868467000	0.591996000
1	-3.132264000	-2.637041000	-0.151618000
1	-4.030542000	-2.269311000	1.338516000
1	-3.810203000	-1.030479000	0.084689000
6	-1.354661000	-0.736008000	-1.747016000
6	-2.197433000	0.307387000	-2.113698000
6	-3.047557000	0.268439000	-3.209300000
1	-3.690882000	1.103137000	-3.459754000
6	-3.054067000	-0.883724000	-3.982425000
1	-3.703822000	-0.950006000	-4.844270000
6	-2.231523000	-1.955887000	-3.649436000
1	-2.252260000	-2.851101000	-4.256619000
6	-1.396366000	-1.884259000	-2.541368000
1	-0.790371000	-2.752569000	-2.298539000
6	-1.448628000	2.596623000	-1.853522000
1	-1.199348000	3.343161000	-1.098104000
1	-0.541448000	2.279958000	-2.361249000
1	-2.125980000	3.048772000	-2.584389000
6	-3.345736000	1.856664000	-0.589923000
1	-3.140799000	2.624842000	0.154655000
1	-4.038368000	2.256532000	-1.335781000
1	-3.814375000	1.016723000	-0.083646000
7	-2.072355000	-1.446922000	1.202557000
7	-2.077916000	1.439362000	-1.201295000
13	-0.768786000	-0.002066000	0.000191000
6	3.022442000	-3.517643000	-1.047710000
6	3.995528000	-4.452881000	-0.742992000
6	4.308457000	-4.705096000	0.586445000
6	3.656936000	-4.029925000	1.617890000
6	2.686550000	-3.096168000	1.320567000
6	2.368288000	-2.838661000	-0.017555000
1	2.763401000	-3.308090000	-2.078458000
1	4.507827000	-4.983571000	-1.532469000
1	5.068584000	-5.436769000	0.825269000

1	3.912962000	-4.240523000	2.646525000
1	2.167164000	-2.557618000	2.101627000
6	1.350276000	-1.874761000	-0.366875000
1	1.137548000	-1.718524000	-1.432569000
8	0.710741000	-1.229211000	0.465334000
6	3.010549000	3.526747000	1.046261000
6	2.357483000	2.846400000	0.016327000
6	2.672090000	3.107315000	-1.322013000
6	3.637689000	4.045878000	-1.619768000
6	4.288145000	4.722397000	-0.588541000
6	3.978875000	4.466765000	0.741112000
1	2.754319000	3.314590000	2.077182000
1	2.153593000	2.567624000	-2.102872000
1	3.890827000	4.259147000	-2.648572000
1	5.044520000	5.457854000	-0.827662000
1	4.490313000	4.998540000	1.530416000
6	1.344231000	1.877608000	0.366027000
1	1.133796000	1.719179000	1.431851000
8	0.706191000	1.230347000	-0.465992000

## тs

# E_{TOTAL} = -2009.451524 a.u.

6	-1.652725000	-1.721773000	-0.998051000
6	-2.581460000	-2.157702000	-0.060172000
6	-3.774235000	-2.788614000	-0.385460000
1	-4.470784000	-3.120834000	0.374620000
6	-4.049785000	-2.987156000	-1.731623000
1	-4.966593000	-3.479991000	-2.026155000
6	-3.149334000	-2.560476000	-2.705529000
1	-3.380447000	-2.722802000	-3.749888000
6	-1.961948000	-1.935693000	-2.342636000
1	-1.286207000	-1.606078000	-3.123836000
6	-3.118741000	-1.105777000	2.080940000
1	-2.669576000	-0.814784000	3.029546000
1	-3.393415000	-0.208964000	1.531641000
1	-4.015894000	-1.697230000	2.284627000

6	-1.794143000	-3.119558000	2.012579000
1	-1.394742000	-2.878350000	2.995342000
1	-2.675563000	-3.756648000	2.125109000
1	-1.032168000	-3.658224000	1.452814000
6	1.006382000	-1.520687000	1.477716000
6	2.279430000	-1.953107000	1.061001000
6	3.346936000	-2.013796000	1.959188000
1	4.327825000	-2.331838000	1.640790000
6	3.158810000	-1.688914000	3.294717000
1	3.992260000	-1.757220000	3.980530000
6	1.908616000	-1.301117000	3.746152000
1	1.751629000	-1.063602000	4.789759000
6	0.864694000	-1.214972000	2.834036000
1	-0.101225000	-0.868248000	3.195050000
6	3.840381000	-2.576854000	-0.724958000
1	3.857830000	-2.731273000	-1.802765000
1	4.470378000	-1.720708000	-0.491872000
1	4.249356000	-3.472091000	-0.245330000
6	1.612944000	-3.435859000	-0.743623000
1	1.703709000	-3.560982000	-1.823213000
1	1.919819000	-4.368536000	-0.258719000
1	0.570815000	-3.245305000	-0.507778000
7	-2.137252000	-1.874483000	1.304195000
7	2.465659000	-2.322942000	-0.313926000
13	-0.436060000	-0.853885000	0.297657000
6	3.643768000	-0.224179000	-3.043325000
6	2.957193000	0.116546000	-1.880972000
6	3.501936000	1.029136000	-0.977612000
6	4.735775000	1.595044000	-1.244239000
6	5.418036000	1.260477000	-2.410148000
6	4.872960000	0.355401000	-3.312372000
1	3.210163000	-0.935986000	-3.735739000
1	2.957090000	1.267716000	-0.072546000
1	5.169229000	2.296374000	-0.544400000
1	6.381195000	1.707165000	-2.615902000
1	5.406794000	0.103024000	-4.217493000
6	1.672298000	-0.507614000	-1.585304000

1	1.327305000	-1.309001000	-2.246841000
8	0.876848000	0.018343000	-0.785791000
6	1.134714000	3.546055000	-0.004682000
6	2.354180000	4.106699000	0.347130000
6	2.998809000	3.701773000	1.507901000
6	2.425652000	2.731661000	2.321123000
6	1.202268000	2.174892000	1.982426000
6	0.565557000	2.579692000	0.814987000
1	0.649833000	3.833954000	-0.926469000
1	2.804722000	4.852142000	-0.293091000
1	3.948747000	4.141510000	1.779401000
1	2.929443000	2.405468000	3.220275000
1	0.754187000	1.413663000	2.604172000
6	-0.759583000	1.947862000	0.475912000
8	-1.069432000	0.756937000	0.885068000
8	-1.122522000	2.219398000	-0.923874000
6	-2.149861000	2.935473000	-0.439940000
1	-1.560125000	2.704430000	0.986734000
1	-1.985980000	4.010487000	-0.333756000
6	-3.489391000	2.426803000	-0.447955000
6	-4.529598000	3.247919000	0.012634000
6	-3.750499000	1.138567000	-0.930731000
6	-5.823682000	2.773656000	0.000325000
1	-4.311629000	4.245685000	0.372964000
6	-5.053800000	0.677039000	-0.946153000
1	-2.939227000	0.524898000	-1.296416000
6	-6.080940000	1.489563000	-0.478390000
1	-6.634927000	3.394221000	0.352184000
1	-5.263757000	-0.313624000	-1.324064000
1	-7.098975000	1.124202000	-0.493273000

# INT-2

## ETOTAL = -2009.545530 a.u.

6	-0.002287000	2.599209000	-0.258374000
6	1.142248000	3.209592000	0.241876000

6	1.493364000	4.529439000	-0.008224000
1	2.397143000	4.966221000	0.398199000
6	0.638723000	5.282852000	-0.797727000
1	0.876319000	6.315042000	-1.015144000
6	-0.530371000	4.718902000	-1.304536000
1	-1.192584000	5.324093000	-1.909084000
6	-0.846504000	3.393838000	-1.039088000
1	-1.758971000	2.984274000	-1.458861000
6	3.303761000	2.132441000	0.627912000
1	3.764978000	1.307393000	1.171141000
1	3.320396000	1.913816000	-0.438459000
1	3.890603000	3.037939000	0.801553000
6	1.903396000	2.738417000	2.490809000
1	2.432992000	2.012394000	3.103662000
1	2.382310000	3.715492000	2.591432000
1	0.875807000	2.802616000	2.841423000
6	-0.010416000	0.093989000	2.330627000
6	-1.291041000	-0.167912000	2.854987000
6	-1.446518000	-0.989247000	3.972613000
1	-2.427064000	-1.203024000	4.370891000
6	-0.338261000	-1.531239000	4.608146000
1	-0.477997000	-2.155695000	5.480039000
6	0.935592000	-1.257429000	4.140382000
1	1.803757000	-1.662976000	4.642242000
6	1.076408000	-0.458374000	3.012431000
1	2.081999000	-0.273080000	2.641042000
6	-3.723208000	-0.140552000	2.574573000
1	-4.482210000	0.284009000	1.918389000
1	-3.718163000	-1.221017000	2.438408000
1	-4.005654000	0.092309000	3.607865000
6	-2.475059000	1.878520000	2.308268000
1	-3.225954000	2.264213000	1.616157000
1	-2.742786000	2.199652000	3.322079000
1	-1.515674000	2.315622000	2.048133000
7	1.916800000	2.296095000	1.083632000
7	-2.429535000	0.418370000	2.213109000
13	0.340889000	0.825967000	0.539187000

6	-4.491191000	-0.605673000	-0.737921000
6	-3.195211000	-1.035292000	-0.463013000
6	-2.910124000	-2.394755000	-0.333702000
6	-3.927514000	-3.318682000	-0.482217000
6	-5.221703000	-2.888312000	-0.764877000
6	-5.506511000	-1.534834000	-0.894242000
1	-4.695880000	0.454260000	-0.834411000
1	-1.896085000	-2.701045000	-0.114793000
1	-3.721803000	-4.374689000	-0.378255000
1	-6.013601000	-3.615415000	-0.882143000
1	-6.513779000	-1.210232000	-1.112903000
6	-2.142909000	-0.045957000	-0.312144000
1	-2.432591000	1.010108000	-0.342766000
8	-0.944430000	-0.348733000	-0.259647000
6	4.427604000	-2.244293000	-1.358168000
6	5.207375000	-3.294346000	-0.908693000
6	4.908085000	-3.914244000	0.299084000
6	3.828808000	-3.488993000	1.064210000
6	3.048852000	-2.433044000	0.628698000
6	3.352231000	-1.809955000	-0.581974000
1	4.648260000	-1.756715000	-2.296505000
1	6.047155000	-3.632766000	-1.498332000
1	5.518650000	-4.737586000	0.643716000
1	3.594948000	-3.982516000	1.996711000
1	2.198252000	-2.098858000	1.207079000
6	2.506369000	-0.699395000	-1.026560000
8	1.666194000	-0.176378000	-0.288673000
8	2.703077000	-0.299479000	-2.252661000
6	1.812555000	0.678849000	-2.828409000
1	1.741520000	1.543485000	-2.165949000
1	2.315122000	0.975700000	-3.745734000
6	0.446108000	0.107434000	-3.103276000
6	0.198392000	-1.258697000	-3.106574000
6	-0.589482000	0.993384000	-3.377372000
6	-1.080007000	-1.734212000	-3.366073000
1	0.997916000	-1.962260000	-2.912714000
6	-1.865854000	0.517571000	-3.637496000

1	-0.395187000	2.058289000	-3.383970000
6	-2.114397000	-0.849445000	-3.627860000
1	-1.265911000	-2.799322000	-3.365335000
1	-2.664689000	1.213682000	-3.856721000
1	-3.110491000	-1.222865000	-3.823420000

.

#### **References:**

[1] R. J. Errington, "Advanced practical inorganic and metal organic chemistry" **1997**, Blackie academic & professional, London.

[2] W. F. Armarego, C. L. L. Chai, "Purification of laboratory chemicals" 2013, Elsevier, UK

[3] D. W. Slocum, T. K. Reinscheld, C. B. White, M. D. Timmons, P. A. Shelton, M. G. Slocum, R. D. Sandlin, E. G. Holland, D. Kusmic, J. A. Jennings, K. C. Tekin, Q. Nguyen, S. J. Bush, J. M. Keller, P. E. Whitley, *Organometallics* 2013, *32*, 1674-1686.

[4] A. S. Weller. et al., Tetrahedron Lett. 2003, 44, 7329-7331 and Eur. J. Inorg. Chem. 2010, 5124.

[5] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. *Gaussian 09*, Gaussian, Inc.: Wallingford, CT, USA, 2009.

[6] Y. Zhao and D. G. Truhlar, *Theor. Chem. Acc.* 2008, 120, 215 – 241.

[7] T. H. Dunning, The Journal of Chemical Physics 1989, 90 (2), 1007-1023.

[8] (a) F. Weinhold, "Natural bond orbital analysis: A critical overview of relationships to alternative bonding perspectives" *Journal of Computational Chemistry* **2012**, *33* (30), 2363-2379; (b) E. D. Glendening, C. R. Landis, F. Weinhold, "NBO 6.0: Natural bond orbital analysis program" *Journal of Computational Chemistry* **2013**, *34* (16), 1429-1437.